78 research outputs found

    Ocean Surface Observations Using the TanDEM-X Satellite Formation

    Get PDF
    The TanDEM-X SAR satellite formation permits improved ocean surface observations by means of bistatic along-track interferometry (ATI) when compared to single-satellite systems. The flexible imaging geometry of its two cooperating SAR sensors forms an interferometer that can achieve very high sensitivity to motions of objects on ground. This way, radar imaging of surface currents with unprecedented accuracy, high spatial resolution and wide coverage at the same time becomes possible. We demonstrate the capabilities of the sensor in the contexts of tidal current mapping, measurement of thermohaline and wind-driven ocean currents as well as detection of areas with surface films. We have developed a dedicated postprocessing system for TanDEM-X image products that allows extracting surface current information from the data. By this paper, we address bistatic data acquisition and processing aspects for sea surface imaging with TanDEM-X like interferometric baseline geometry, temporal decorrelation, and phase calibration. We present a variety of examples of data evaluation that clearly demonstrate the application potential of the methodology

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    Sea Surface Current Measurements Using Along-Track Interferometric SAR

    Get PDF
    Ocean currents affect the weather, the climate and the marine ecosystem. Observing ocean currents is important for understanding the upper-ocean layer dynamics and its interaction with the other components of the climate system. In-situ measurements are sparse and their deployment and maintenance is costly. Satellite remote sensing with large spatial coverage offers a good complement to the in-situ observations. In this work we have studied the spaceborne Along-Track Interferometric SAR (ATI-SAR) for measuring sea surface currents. The measurement principle is based on the fact that the phase difference between two SAR acquisitions is directly related to radial (line-of-sight) velocity of the illuminated surface. Previous studies based on similar systems were carried out in areas with well defined and strong tidal currents ( ~1 - 3 m/s). In this work we demonstrate thecapability of ATI-SAR, through several study cases, in areas with weak currents ( <0.5 m /s). This is challenging for the satellite measurements of surface currents because it requires very accurate processing and retrieval algorithms. In addition, it has been found that wave motion contribution, systematically dominates the measured ATI-SAR radial velocity in these weak current areas. Estimation of the wave motion contribution relies on high-resolution and accurate wind data. Thus, a wind speed retrieval algorithm from SAR is needed to support the ATI-SAR current retrieval. We have shown that with an appropriate processing of the ATI-SAR phase and with applying the necessary corrections to the measured velocity a good agreement with ocean circulation models is achieved (rmse =0.1 m /s). These corrections include phase calibration and wind compensation to correct for instrument and geophysical systematic errors, respectively. Finally, a novel method for removing the wind direction ambiguity, based on the ATI-SAR phase, is presented. In previous methods, the wind ambiguity removal was based on external information, e.g. an atmospheric model or on visual observation of wind shadows

    Integration of high-resolution, Active and Passive Remote Sensing in support to Tsunami Preparedness and Contingency Planning

    Get PDF
    In the aftermath of the Sri Lanka tsunami disaster, a stack of synoptic procedures and remote sensing techniques was chosen for satisfying the urgent mapping needs of the Government. This choice presented the undebated advantage of (a) allowing to start the work immediately (b) without relying upon ground logistics until the onset of the air campaign, (c) minimizing the duration of the work on spot, while (d) covering fast - and at an otherwise unreacheable resolution - large portions of a difficult-to-penetrate territory, (e) keeping the work sustainable and, overall, (f) allowing to carry out the work. This combination of airborne and spaceborne techniques is ready-to-use worldwide, and the techniques for flooding simulation and scenario building can be chosen at whatever level of complexity - choosing preferably robustness. It is also worth noting further that the new generation of metric resolution, X-band Radar satellite constellations (as TerraSAR-X and Cosmo-SkyMED), may allow creating LiDAR-like products avoiding airborne missions. The products of the space-and-air campaign were handed over by the Ambassador of Italy to the Minister for Disaster Management and Humanitarian Affairs on 7th December 2006, Colombo, Sri Lanka

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    Arctic sea ice trafficability: new strategies for a changing icescape

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Sea ice is an important part of the Arctic social-environmental system, in part because it provides a platform for human transportation and for marine flora and fauna that use the ice as a habitat. Sea ice loss projected for coming decades is expected to change ice conditions throughout the Arctic, but little is known about the nature and extent of anticipated changes and in particular potential implications for over-ice travel and ice use as a platform. This question has been addressed here through an extensive effort to link sea ice use and key geophysical properties of sea ice, drawing upon extensive field surveys around on-ice operations and local and Indigenous knowledge for the widely different ice uses and ice regimes of Utqiaġvik, Kotzebue, and Nome, Alaska. A set of nine parameters that constrain landfast sea ice use has been derived, including spatial extent, stability, and timing and persistence of landfast ice. This work lays the foundation for a framework to assess and monitor key ice-parameters relevant in the context of ice-use feasibility, safety, and efficiency, drawing on different remote-sensing techniques. The framework outlines the steps necessary to further evaluate relevant parameters in the context of user objectives and key stakeholder needs for a given ice regime and ice use scenario. I have utilized this framework in case studies for three different ice regimes, where I find uses to be constrained by ice thickness, roughness, and fracture potential and develop assessment strategies with accuracy at the relevant spatial scales. In response to the widely reported importance of high-confidence ice thickness measurements, I have developed a new strategy to estimate appropriate thickness compensation factors. Compensation factors have the potential to reduce risk of misrepresenting areas of thin ice when using point-based in-situ assessment methods along a particular route. This approach was tested on an ice road near Kotzebue, Alaska, where substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiaġvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice

    TerraSAR-X and Wetlands: A Review

    Get PDF
    Since its launch in 2007, TerraSAR-X observations have been widely used in a broad range of scientific applications. Particularly in wetland research, TerraSAR-X\u27s shortwave X-band synthetic aperture radar (SAR) possesses unique capabilities, such as high spatial and temporal resolution, for delineating and characterizing the inherent spatially and temporally complex and heterogeneous structure of wetland ecosystems and their dynamics. As transitional areas, wetlands comprise characteristics of both terrestrial and aquatic features, forming a large diversity of wetland types. This study reviews all published articles incorporating TerraSAR-X information into wetland research to provide a comprehensive study of how this sensor has been used with regard to polarization, and the function of the data, time-series analyses, or the assessment of specific wetland ecosystem types. What is evident throughout this literature review is the synergistic fusion of multi-frequency and multi-polarization SAR sensors, sometimes optical sensors, in almost all investigated studies to attain improved wetland classification results. Due to the short revisiting time of the TerraSAR-X sensor, it is possible to compute dense SAR time-series, allowing for a more precise observation of the seasonality in dynamic wetland areas as demonstrated in many of the reviewed studies

    Mapping the surface water storage variation in densely impounded semi-arid NE Brazil with satellite remote sensing approach

    Get PDF
    Surface water bodies provide vital support to the society and fundamentally affect ecosystems in various manners. Precise knowledge of the spatial extent of surface water bodies (e.g. reservoirs) as well as of the quantity of water they store is necessary for efficient water deployment and understanding of the local hydrology. Remote sensing provides broad opportunities for surface water mapping. The main objectives of this thesis are: 1) delineating surface water area of partly vegetated water bodies only from remote sensing data without field data input; 2) obtaining the surface water storage, and 3) analyzing its spatio-temporal variations for northeastern (NE) Brazil as a representative for a densely dammed semi-arid region. At first, I investigated the potential of digital elevation models (DEMs) generated from TanDEM-X data, which were acquired during the low water level stage, for reservoirs’ bathymetry derivation. I found that the accuracy of such DEMs can reach one meter, both in the absolute and relative respects. It has shown that DEMs derived from TanDEM-X data have great potentials for representing the reservoirs’ bathymetry of temporally dried-out reservoirs. Subsequently, I targeted at developing a method for mapping the water surface beneath canopy independent of field data for further delineation of the effective water surface. Instead of the commonly used backscattering coefficients, I investigated the capability of the Gray-Level Co-Occurrence Matrix (GLCM) texture index to distinguish different types of Radar backscattering taking place in (partly) vegetated reservoirs. This experiment demonstrated that different types of backscattering at the vegetated water surface show distinct statistical characteristics on GLCM variance derived from TerraSAR-X satellite time series data. Furthermore, with the threshold established based on the statistics of the sub-populations dominated by different types of backscattering, the vegetated water surfaces were effectively mapped, and the effective water surface areas were further delineated with an accuracy of 77% to 95%. ii Based on the investigation of the DEMs generated from TanDEM-X data, I derived the formerly unknown bathymetry for 2 105 reservoirs of various sizes in four representative regions of an overall area of 10 000 km2. The spatial distributions of surface water storage capacities in the four regions were subsequently extracted from the combination of the reservoir bathymetry and the water surface extents provided by RapidEye satellite time series. Furthermore, the spatio-temporal variations of surface water storage were derived for the four representative regions on an annual basis in the period of 2009-2017. This study showed that 1) The density of reservoirs in NE Brazil amounts to 0.04-0.23 reservoirs per km2, the corresponding water surface and surface water storage are 1.18-4.13 ha/km2 and 0.01-0.04 hm3 m/km², respectively; 2) On the spatial unit of 5×5 km2, the surface water storage in the region constantly decreased due to a prolonged drought with a rate of 105 m3/year from 2009 to 2017, with a slight increase from 2016 to 2017 in a few reservoirs; 3) Local precipitation deficit controls the variation of the overall surface water storage in the region. In this thesis I demonstrated the great potential of the great potential of SAR and optical satellite time series data for hydrological applications. The method I developed for delineating the effective water extent from the vegetated reservoirs has shown high potential transferability for other similar regions. The data gaps of bathymetry and surface waters storage capacity were filled for 2 105 reservoirs in NE Brazil. The results of the spatio-temporal variations of surface water storage in four representative regions from 2009-2016 can support future water management and improve hydrological prediction in NE Brazil

    Remote sensing of sea ice properties and dynamics using SAR interferometry

    Get PDF
    Landfast ice is attached to the coastline and islands and stays immobile over most of the ice season. It is an important element of polar ecosystems and plays a vital role as a marine habitat and in life of local people and economy through offshore technology. Landfast ice is routinely used for on-ice traffic, tourism, and industry, and it protects coasts from storms in winter from erosion. However, landfast ice can break or experience deformation in order of centimeters to meters, which can be dangerous for the coastline and man-made structures, beacons, on-ice traffic, and represents a safety risk for working on the ice and local people. Therefore, landfast ice deformation and stability are important topics in coastal engineering and sea ice modeling. In the framework of this dissertation, InSAR (SAR Interferometry) technology has been applied for deriving landfast ice displacements (publication I), and mapping sea ice morphology, topography and its temporal change (publication III). Also, advantages of InSAR remote sensing in sea ice classification compared to backscatter intensity were demonstrated (publications II and IV). In publication I, for the first time, Sentinel-1 repeat-pass InSAR data acquired over the landfast ice areas were used to study the landfast ice displacements in the Gulf of Bothnia. An InSAR pair with a temporal baseline of 12 days acquired in February 2015 was used. In the study, the surface of landfast ice was stable enough to preserve coherence over the 12-day period, enabling analysis of the interferogram. The advantage of this long temporal baseline is in separating the landfast ice from drift ice and detecting long-term trends in deformation maps. The interferogram showed displacements of landfast ice on the order of 40 cm. The main factor seemed to be compression by drift ice, which was driven against the landfast ice boundary by strong winds from southwest. Landfast ice ridges can hinder ship navigation, but grounded ridges help to stabilize the ice cover. In publication III, ridge formation and displacements in the landfast ice near Utqiaġvik, Alaska were examined. The phase signatures of two single-pass bistatic X-band SAR (Synthetic Aperture Radar) image pairs acquired by TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) satellite on 13 and 24 January 2012 were analyzed. Altogether six cases were identified with ridge displacement in four and formation in two cases under onshore compression. The ridges moved approximately 0.6 and 3.7 km over the study area and ridge formation reached up to 1 meter in upward. The results well corresponded with the locations identified as convergence zones retrieved from the drift algorithm generated by a SAR-based sea ice-tracking algorithm, backscatter intensity images and coastal radar imagery. This method could potentially be used in future to evaluate sea ice stability and ridge formation. A bistatic InSAR pair acquired by the TanDEM-X mission in March 2012 over the Bothnian Bay was used in two further studies (publications II and IV). The potential of X-band InSAR imagery for automated sea ice classification was evaluated. The first results were presented in publication II and the data were further elaborated in publication IV. The backscatter intensity, coherence magnitude and InSAR-phase features, as well as their different combinations, were used as the informative features in classification experiments. In publication II, the purpose was to assess ice properties on the scale used in ice charting, with ice types based on ice concentration and sea ice morphology, while in publication IV, a detailed small-scale analysis was performed. In addition, the sampling design was different in these publications. In publication II, to achieve the best discrimination between open water and several sea-ice types, RF (Random Forests) and ML (Maximum likelihood) classifiers were employed. The best overall accuracies were achieved by combining backscatter intensity & InSAR-phase using RF approach and backscatter intensity & coherence-magnitude using ML approach. The results showed the advantage of adding InSAR features to backscatter intensity for sea ice classification. In the further study (publication IV), a set of state-of-the-art classification approaches including ML, RF and SVM (Support Vector Machine) classifiers were used to achieve the best discrimination between open water and several sea-ice types. Adding InSAR-phase and coherence magnitude to backscatter intensity improved the OA (Overall Accuracy) compared to using only backscatter intensity. The RF and SVM algorithms gave somewhat larger OA compared to ML at the expense of a somewhat longer processing time. Results of publications II and IV demonstrate InSAR features have potential to improve sea ice classification. InSAR could be used by operational ice services to improve mapping accuracy of automated sea ice charting with statistical and machine learning classification approaches.Viime vuosikymmeninä satelliittivälitteisestä SAR-tutkasta on tullut erittäin tärkeä työkalu merijään kaukokartoituksessa. Tämän tutka perustuu sähkömagneettisten aaltojen sirontaan kiinnostavasta kohteesta takaisin tutkaan, mitä seuraa signaalin voimakkuuden mittaaminen. SAR-tutkat käyttävät synteettistä antennia, joka perustuu satelliitin liikkeeseen, mikä mahdollistaa tarkkojen, korkean erotuskyvyn kuvien tuottamisen. SAR-anturit mittaavat myös signaalin vaihetta, jota käytetään interferometria tekniikassa pinnan topografian ja siirtymien laskemiseen eri sovelluksissa, kuten maan muodonmuutoksissa, tarkassa kartoituksessa, maanjäristyksen arvioinnissa ja tulivuorenpurkauksien tarkkailussa. Interferometri tekniikkaa käytettiin tässä opinnäytetyössä pienten jäänsiirtymien analysointiin kiintojäävyöhykkeellä, joka on kiinni rantaviivassa ja saarissa eikä juuri liiku tuulien tai virtausten mukana. Kiintojääalueilla on pohjaan tarttuneita jäävalleja, jotka edistävät kiintojääpeitteen vakautumista. Kiintojäällä on tärkeä rooli merellisenä elinympäristönä, maankäytön kysymyksissä sekä paikallisten ihmisten elämässä ja meritekniikassa. Kiintojää voi murtua liikahdella useita metrejä, mikä voi olla vaarallista rakenteille, majakoille ja jäällä liikkujille. Tässä väitöskirjassa Sentinel-1A ja TanDEM-X satelliitteja ja interferometri tekniikkaa on käytetty arktisilla alueilla ja Itämerellä mittaamaan kiintojään muodonmuutoksia ja siirtymiä sekä niihin liittyviä mekanismeja. Lisäksi on tutkittu automaattista merijääluokitusta interferometrian apuohjelmiston avulla, mikä laajentaa operatiivisten merijääpalvelujen tutkahavaintojen käyttöä. Sentinel-1A:n avulla voitiin tarkastella 12 päivän pituisia muutoksia Pohjanlahden kiintojäävyöhykkeellä, kun interferometria tekniikka mittasi voimakkaan tuulen aiheuttaman 40 cm:n siirtymiä. Pohjoisella jäämerellä voitiin tunnistaa jäävallien siirtymiä ja muodostumia. Vallit siirtyivät noin 0,6 ja 3,7 km matkoja ja muodostuessaan ne kasvoivat metrin korkeuteen. Interferometri tekniikan lisääminen tutkakuvauksen analyysiin osoitti potentiaalin parantaa automaattisen merijääkartoituksen kartoituksen tarkkuutta tilastollisilla ja koneoppimiseen perustuvan luokittelun menetelmillä. Tulevaisuuden työnä merijään luokituksessa ja vallitutkimuksissa olisi suositeltavaa käyttää erilaisia ja useampia tutkakuvauksen geometrioita sekä erilaisia jääolosuhteita eri sääolosuhteiden vallitessa
    corecore