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1. Introduction 

Known from time immemorial to the inhabitants of the Pacific region, tsunamis became 
worldwide known with the great Indian Ocean disaster of December 26, 2004, and its toll of 
about 234'000 deaths, 14'000 missing and over 2,000,000 displaced persons. Beyond 
triggering the international help in managing the immediate post-event, and sustaining 
eventual rehabilitation of about 10'000 km2 of hit coastal areas, the disaster scenario was 
intensively focused on by spaceborne remote sensing. The latter, was the only fast and 
appropriate mean of collecting updated information in as much as 14 hit countries, 
stretching from Indonesia to South Africa across the Indian Ocean. 
Short-term, institutional satellite observation response was mostly centered on the 
International Charter on Space and Major Disasters, a joint endeavor of 17 public and 
private satellite owners worldwide (including the three founding agencies: ESA-European 
Space Agency, CNES-Centre National d'Etudes Spatiales, and CCRS-Canadian Center for 
Remote Sensing) that provided emergency spaceborne imaging and rapid mapping support 
(www.disasterscharter.org/web/charter/activations). 
In disaster response, remote sensing information needs are usually restrained to damage 
assessment, thus have limited duration. This implies that information must be timely and 
timely useable, and be provided with high-to-very high spatial resolution. 
Conversely, high temporal resolution - useful in repeated damage assessment across 
moderate or long lasting events, as for example storm sequences, earthquake swarms and 
volcanic unrests - is generally unnecessary in the tsunami case, where damage presents 
large amplitude but is assessed once and for all after the main wavetrain has struck. 
A much wider community of institutional and private users of remote sensing information, 
in form of special cartography products, and much longer lasting benefits are experienced if 
information is used for tsunami flooding risk mapping, impact scenario building and the 
inherent contingency planning. 
Benefits are intimately connected to the characteristics of tsunamis that occur seldom, 
propagate at top speeds close to 200 m/s on deep ocean floors, and can hit in a few hours 
areas distant thousands of kilometers from the source. On account of these parameters, 
tsunami impact mitigation cannot simply rely upon response. 
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In 2004, once the earthquake originating the tsunami was felt, it would have been possible to 
give a 2-hour advance impact notice in distant countries as India, Sri Lanka and Maldives. 
This did not happen, because a monitoring-and-alert system as the current PTWC-Pacific 
Tsunami Warning Center managed by NOAA-National Ocean and Atmosphere 
Administration (www.prh.noaa.gov/ptwc/) did not exist yet in the Indian Ocean. 
However, since slowest velocities of tsunami waves are much larger than humans can run 
for escaping them, in lack of efficient emergency plans to enact immediately, it is clear that 
the alert system alone would not have solved the problem. 
We can conclude that the risk can be mitigated acting principally on early warnings and 
preparedness. The latter is by far the leading issue, as preparedness measures can be 
effective even without early warning, whereas early warning is useless without 
accompanying measures. 
Here, we discuss how a multi-technique, integrated remote sensing approach provides the 
essential information to satisfy prevention and response needs in a tsunami prone area, 
located in the heart of the theater of the great 2004 Indian Ocean tsunami. 

 
2. Tsunamis and Storm Surges 

Tsunamis are liquid gravitational waves that are triggered by sudden displacement of water 
bodies by co-seismic seafloor dislocation or underwater landslide mass push/pull. The 
speed (celerity) of tsunami waves is 
 

V= tanh 2
2
g d  

        (1) 

 
with g the gravity acceleration, d the thickness of the water layer in meters and  the 
wavelength. If the argument of the hyperbolic tangent is large with d >/2, equation (1) 
reduces to 
 

maxV
2
g
         (2) 

 
whereas in shallow waters and d </20, equation (1) becomes 
 

minV gd          (3) 

 
On account of the steadily large ratio between wavelength and thickness of the water layer, 
the shallow water approximation of equation (3) applies generally. 
The main parameter that discriminates tsunamis from swell, is wavelength: wind generated 
waves present near-constant wavelengths up to a few hundred meters, and periods between 
seconds and tens of seconds. 
Conversely, a tsunami wave as in equation (2) travelling in a 4000m thick ocean water layer, 
locally reaches 200m/s with periods of 100-120 minutes (or wavelenghts of several hundred 
kilometers) and unnoticeable amplitude with respect to wavelength. When approaching the 

 

shore ('shoaling') with velocity dropping below 20 m/s, wavelengths shorten to kilometers, 
and wave amplitudes increase (run-up) before penetrating coastal areas. 
Outstanding wave heights are obtained as a combination of steep seafloor topographic 
gradient, and a short distance from the source. The worst documented such case occurred in 
the near field of a MW=8.0 earthquake in 1946 at Unimak Island, Alaska, where the Scotch 
Cap lighthouse was flushed away by a 35-meter high wave. 
Reportedly, wave heights for the great Indian Ocean tsunami of 26th December 2004, may 
have exceeded 15 m along northern Sumatra coasts (Geist et al., 2007). In Sri Lanka, about 
2000 km away from the epicentre of the MW=9.2±0.1 earthquake, largest wave heights may 
have exceeded 10 m in the East, whereas at least 5000 lives were taken by wavetrains not 
higher than 4 m, in the South and the Southwest of the island. 
 

YEAR DAMAGE AREA (SOURCE AREA) SOURCE TYPE CASUALTIES 
(approx.) 

2004 Eastern and Central Indian Ocean (Sumatra) Earthquake 240000 
1991 Bangladesh, Chittagong (category-5 tropical cyclone) Storm surge 138000 
1970 Bangladesh (Bhola category-4 tropical cyclone) Storm surge 500000 
1908 southern Italy, Messina and Reggio Calabria Earthquake 100000 
1896 Honshu (off-Sanriku, Japan) Earthquake 27000 
1883 Indonesia, Sunda strait (Krakatau) Volcanic eruption 35000 
1868 South America Pacific coasts (Peru-Chile, Arica) Earthquake 70000 
1771 Japan, Ryukyu Islands Earthquake 13000 
1755 Portugal, Lisbon (Alentejo fault and Carrincho bank) Earthquake 60000 
1741 Japan, Oshima and Hokkaido (controversial amplitude) Volcano landslide 2000-15000 

Table 1. Top-10 deadly seawater floodings worldwide in the last three Centuries, in inverse 
temporal order. Most frequent tsunami triggers relate to earthquakes, either directly (co-
seismic displacement) or indirectly (submarine landslides; Tinti et al., 2005): in terms of 
ground floor dislocation alone, earthquake Magnitudes Mw<7 are not believed to trigger 
tsunamis. In tropical areas of strong cyclogenetic activity as the Bay of Bengal and the Gulf 
of Mexico, the combination of strong tropical storms and low topographic gradient of 
coastal areas, may lead to massive inland penetration of sea waters called 'storm surge'. 
 
With little modifications, the above concepts may consistently apply to storm driven water 
surges, or 'storm surges', a threat provided with much higher repeat frequency (yearly) than 
tsunamis. Storm surges, typically associated to tropical cyclones, are a near-permanent 
elevation of the sealevel for the duration of the event, arising from the combination of 
extreme atmospheric pressure drop and push of the associated strong winds. Storm surges 
are common in tropical areas worldwide. Storm surges were responsible of the largest, flood 
related, mass casualty ever scored (in Bangladesh, Bengal Bay, 1970; ca. 500’000, see Table 1). 
In economic terms, the costliest tropical storm surge  was that associated to hurricane 
Katrina, August 2005, with over 100 Billion USD of direct and indirect losses. 

 
3. Rationale 

As stated earlier, operational effectiveness in tsunami impact mitigation requires taking 
major preparedness measures to allow exposed populations moving fast to the closest safe 
area nearby. This solution may allow avoiding blanket evacuation of tsunami jeopardized 
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areas, that may imply permanent activity banning in large, critical portions of the territory, 
especially if the topografic gradient is very low (as in Sri Lanka and Bangladesh, e.g.) and 
small increase of water levels lead to deep inland flooding. 
In terms of preparedness, this means that escape way solutions must be addressed well in 
advance. Considering that unnoticeably elevated areas close to the shoreline can be good, 
and sometimes unexpected escape places to single out, map and include in emergency 
plans, protection against tsunamis and timeliness of response require the advance drawing 
of quantitative impact scenarios. 
Emergency cartography must be frequently updated to mirror the modifications with time 
in location and value of vulnerable elements (inhabitants, buildings and infrastructures). 
This calls for the use of fast, synoptic and high-to-very high resolution mapping 
technologies: a need that can be satisfied by airborne and spaceborne remote sensing only. 
These concepts drove the design and the carrying out in 2006 - upon request of the 
Government of Sri Lanka to the Italian Government - of a thorough field investigation 
aimed to ease, provide with quantitative grounds and speed-up the national emergency 
planning in tsunami-prone areas. The request addressed the need of drawing a realistic set 
of flooding scenarios for most of the coastal areas of the island, with special emphasis on 
settlements and infrastructures in the reach of a model tsunami or a model storm surge. The 
basic criteria of investigation were broadly inspired by the format of early risk assessment 
and scenario simulation in the reference cases of Northwest USA (Mendocino and 
Humboldt in northern California, Tacoma in Washington, e.g.). 
This portion of the Pacific coast is subjected to frequent tsunami impact from local seismic 
sources in the unresting, undersea Mendocino fault zone (Oppenheimer et al., 1993), and is 
focused on by the US National Tsunami Hazard Mitigation Program (Lander et al., 1993; 
Eisner et al., 2001; Priest et al., 2001; Venturato et al., 2007). 
Downstream to US NTHMP, US Geological Survey provided dissemination of impact maps, 
portraying different scenarios based on possible tsunami impacts heights, and listing the 
number of people that would be affected by tsunamis of 5m, 10m, and 15m height 
respectively, with elevation data based on the SRTM (Shuttle Radar Topography Mission) 
Digital Elevation Model. The latter, is available worldwide. It displays planimetric 
resolution of 90 meters and absolute vertical accuracy of 9.6m (mission specifications). In the 
case of Sri Lanka, these parameters were considered not sufficient for reaching the required 
level of horizontal and vertical resolution compatible with a terrain heterogeneous at all 
scales, densely vegetated, provided with scattered manufacts eventually hidden or partly 
covered by tropical vegetation, and displaying negligible topographic gradients as low as 1-
2% over much of the coastal zones of interest. 
The drawing of quantitative flooding scenarios required collecting the information needed 
for completing the following steps, at the suitable scale: 
i) model tsunami (at sea, before impact): requires detailed 3D knowledge of the seabed, 
aimed to model and forecast, spot by spot, the wavetrain pattern, the energy distribution 
and the run-up before impact. On account of the expected wavelengths to deal with, the 
ideal working scale for accurate modelling was considered to lie between 1/10000 and 
1/20000 within at least 10 km from the shoreline. In lack of such information, and on 
account of unfavorable time and cost implications of an ad-hoc campaign, it was decided to 
rely upon the existing, loose seafloor cartographies by NOAA and British Admiralty, and 
the few wave heights observed in December 2004 (Liu et al., 2005). 

 

ii) Model flooding (on land, after impact): requires very high-resolution 3-D terrain model, 
to simulate the hydraulic behavior of flooded zones at scales of 1/5000 or better, and to 
draw the limits of the impact zone, the expected severity of the areal impacts and, if 
appropriate, the energy absorption on impacted manufacts. In brief, the risk model and the 
scenarios, to permit emergency deciders to plan evacuation and safety measures, and urban 
planners to adopt structural measures finalized to ease citizens' escape in case of alert. 
According to urban planners, this target requires ground resolutions in the order of 1 m, and 
elevation precisions in the order of 0.2+0.3 m to be achieved uniformly over large areas. 
Since the 2004 tsunami losses concentrated in ocean-bound strips of variable width, up to 
observed maxima of as much as 8 km in the East of the island (Batticaloa), the width of 
coastal areas to map and model was fixed at 3 km in average.  
This pointed to an expected 1800 km2 to map in 3D, in very short times (maximum one 
month), and with the resolutions/precisions as above: such target - clearly out of reach for 
standard topography missions - could be achieved only with use of State-of-the-Art active 
and passive remote sensing techniques. 
It was chosen to combine airborne LiDAR and Hyperspectral - for top 3D resolution and 
simultaneous confidence qualification of elevation data - and spaceborne RaDAR (Prati et 
al., 1994) with multispectral mapping (Hirn & Ferrucci, 2005, 2006), aimed to extend Digital 
Elevation Model building and thematic mapping, to the whole of the areas requested by the 
Sri Lankan Government via the Disaster Management Center in Colombo. As a good 
balance between high resolution needs and feasibility issues, operational costs and security 
issues, the inter-Government agreement converged on mapping in 3D and at high-to-very 
high resolution, a portion of the coastal areas hosting at least two-thirds of damage and 
casualties observed in 2004. 
Overall, the island had suffered 34'000 casualties and has experienced - for various reasons - 
over 1'100'000 displaced persons, ca. 500'000 of of which directly related to the tsunami 
destruction. The percentage of tsunami affected coastal populations ranged from 35% in the 
northern coastal districts of Kilinochi, to 80% in the eastern districts of Mullaitivu and 78% 
in Ampara, whereas the southern districts of Galle, Matara, and Hambantota displayed 
about 20% impact, albeit with scattered pockets of severe damage. The location map and the 
survey plan are shown in Figure 1. 

 
4. The HyperDEM campaign 

Following establishment of the inter-Government agreement five months after the 2004 
tsunami, the operational project "'HyperDEM - The precise Digital Elevation Model of the 
coastal areas of Sri Lanka", was launched early in September 2005. 
The work was completed in summer 2006 after acquisition of an overall data volume of 2.7 
TeraBytes. Upon completion of the work, the End Users - the Disaster Management Center 
and the Ministry of Disaster Management and Humanitarian Affairs - were provided with 
ca. 2'500 km2 of Digital Elevation Models of the coastal areas (location maps in Figure 1) 
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Fig. 1. (Left) Location map of areas surveyed by airborne LiDAR, hyperspectral and aerial 
photo (red squares) and spaceborne RaDAR (blue open squares). In the former, both Digital 
Elevation and Digital Surface Models were obtained at 1m resolution; in the latter, only 
DSM, at 30m resolution. (Right) Location of Landsat-7/ETM+ (green) and ERS-1 /ERS-
2/ENVISAT (violet) satellite frames used in HyperDEM. ASTER and QuickBird imagery 
was also used for satisfying interpretation needs eventually arisen during processing of the 
2.7 TeraByte dataset. 

 
4.1 Airborne campaign 
The airborne campaign and the related technical activities, were set up and carried out by 
the Istituto Nazionale di Oceanografia e Geofisica Sperimentale-OGS of Trieste, Italy. The 
survey, planned for integrated operation and combined acquisition of active and passive 
instruments at once, was designed on target ground resolutions of 1 m2 for LiDAR (Figure 2), 
and 4 m2 for hyperspectral (Figures 3, 4). 
 

 

 
Fig. 2. Example of 3D rendering of combined LiDAR (1m planimetric resolution, 0.3 m 
precision in elevation on steady reflectors) and digital camera aerial scenery (resolution of 
0.2 m). Picture taken over the artificial lake of Angunakolapelessa, north of Hambantota, 
south Sri Lanka. 
 
After a long waiting because of a long lasting Autumn Monsoon, the survey was finally 
carried out in about one month after move-in of instruments to Colombo, early on February, 
2006. 
About 1'780 km2 were LiDAR mapped airborne, at the planimetric resolution of 1 meter and 
the elevation precision of 0.3 metres (Figure 1, left), with the following payloads installed on 
the airborne platform, a De Havilland DHC-3 single-propeller "Otter" operated by the Sri 
Lankan private operator Air Taxi : 
 a LiDAR system Optech ALTM 3033. The instrument consisted of a Near Infrared 

(A=1064 nm) Laser beam with pulse repetition rate of 33KHz. A scanning mirror directs 
the Laser optical pulses across the flight path, providing coverage to either sides of the 
flight direction. The forward motion of the aircraft provides coverage in the direction of 
flight. 

ALTM 3033 incorporates a GPS receiver and an Inertial Measurement Unit (IMU), that 
acquires flight attitude data at the frequency of 200 Hz. 
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flight. 
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 A hyperspectral radiometer AISA Eagle 1K by the Finnish firm SPECIM. It is a 
pushbroom scanner made up of a V-NIR hyperspectral sensor, a GPS/INS Applanix 
sensor, and a laptop implemented data acquisition unit. 

AISA Eagle 1K operates at wavelengths between 400-970 nm; it is able to record up to 244 
bands (with spectral sampling of 2.3 nm/pixel) and 1024 spatial pixels. The system is 
flexible enough to allow acquiring data in almost every band combination, simultaneously 
acting on the number of bands and the bandwidth by use of a computer assisted procedure. 
We operated the system with 42-channel configuration, aimed at improving the signal-noise 
ratio in individual spectral bands. 
 A semi-metric digital camera ROLLEI 6008 db45, with digital back Phase-One, model 

H2O. The camera presented a pixel spacing of 9 micrometers, in a scene composed of 
4080 x 5440 pixel with 48-bit dynamics. Acquisition is assisted by a camera 
compensation system to adjust the roll and pitch variations due to aircraft position and 
flight attitude. 

The decision to operate simultaneously the semi-metric digital camera with typical footprint 
in the order of 0.2 m (when operated at the same flight level useful in obtaining the nominal 
LiDAR resolution of 1 m) for assisting in the interpretation of ambiguous elevation features 
in the very-high resolution LiDAR and hyperspectral datasets. 
In cartography applications, indeed, LiDAR raw elevation data are systematically purged of 
false or misleading information as those due to lateral backscattering, multiple scattering, 
returns from strongly reflecting physical surfaces, and so forth (Baltsavias, 1999; Kraus & 
Pfeifer, 1998). 
Such information-cleaning process is performed through a classification process that allows 
assigning physical meaning to scatterers provided with variable signal/noise ratios. First 
pulses are typically associated to strongly reflecting objects, like trees, wires, roofs and 
bridges, whereas later (and weaker) pulses are attributed to returns from "ground" (Kraus & 
Pfeifer, 1998). 
As stated earlier, the average inland extension of prospected area is about 3 km, with an 
isolated maximum of over 10 km in the sensitive area of the artificial basin and the dam of 
Angunakolapelessa (Figures 1-left and 2), immediate north of Hambantota in the south. 
Airborne LiDAR, orthophotos and hyperspectral data were acquired from February 11th and 
21st, in two legs, separated by a four-day interval (17th to 20th February) devoted to process 
acquired data, assess the dataset completeness and plan eventual recoveries. The flight zone 
(Figure 1, left) spanned between Puttalam, in the West, and Pottuvil, in the Southeast. For 
security reasons, authorized flight plans did not include the capital, Colombo, nor some 
specific damaged coastal zones in the East (Trincomalee, Batticaloa, Ampara). Instead, 
eastern areas (Figure 1) were covered by spaceborne RaDAR, and qualified by high 
resolution spaceborne multispectral observation (Figure 1, right). Flight heights ranged 
between 900-2700 metres, as a function of the desired ground resolution, the morphology 
and land-cover of surveyed areas, and the meteorological conditions. 
Flight paths were computed in real time by DGPS (differential kinematic GPS), using data 
simultaneously acquired by one GPS receiver onboard the aircraft and two, twin-frequency 
geodetic GPS receivers Ashtech (mod. Z-Extreme) at the fixed rate of one measurement per 
second. Twin-frequency GPS receivers were operated only on the benchmarks of an ad-hoc 
geodetic frame created by OGS, starting from a re-calculated benchmark of the Sri Lanka 
Survey Department, at the Katunayake International airport, north of Colombo. 

 

 
Fig. 3. Automated identification and contouring of 4x4 m2 pixels unprovided with 
vegetation, done on AISA hyperspectral V-NIR data by use of a patented method, mutuated 
by burn scar analysis (Ferrucci & Hirn, 2005). Processing was conducted on raw data (left), 
aimed to prepare and carry out future operations in real-time. In contoured pixels (center), 
LiDAR elevation measurement are expected to be precise within the error estimate (±0.15m 
averaged over buildings and bare soils). Unlike vegetation, bare rocks, soils and buildings 
are the essential constituents of DSMs (see Figure 5) for flooding and tsunami impact 
simulation. The Level-2 classification (right) was used for pixel-by-pixel elevation quality 
assessment (Figure 4). 
 
All benchmarks of the new geodetic frame were calculated and located on ellipsoids WGS84 
and Everest 1830 in the Transverse Mercator projection. Upon completion of the campaign, 
the Sri Lanka Survey Dept. was provided with the monographs of newly established 
benchmarks. 
The best estimate aircraft trajectory  (SBET), made up of fixes spaced 0.15 cm in average, 
presented rms residual errors < 0.3m, that are compatible with the required precision in 
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elevation. Range data were geo-referenced by use of spatial and orientation parameters; 
basic products are vectors of points, including the information on position, GPS time and 
backscattered LiDAR amplitude. All products were delivered in UTM-44N projection, 
WGS84 datum. 
 

 
Fig. 4. Sample output of the automated identification and contouring process of buildings 
and vegetation, done on 56-channel AISA hyperspectral VNIR data by use of a patented 
method, mutuated by burn scar analysis (Ferrucci & Hirn, 2005). In these pixels, LiDAR 
elevation measurement are expected to be precise within the error estimate (0.15m 
averaged over buildings and bare soils). 
 
Finally, bare pixels (without vegetation) were weighted 1, vegetated pixels weighted 0, and 
vegetated pixels for which two LiDAR returns are available (an early reflection from the top 
of canopy, and a late reflection from the underlying ground) were marked 0.5. This 
procedure allowed creating automatically (i) a mask including all points whose elevation is 
fully reliable within the nominal error range (Figure 4), and (ii) a three-dimensional, Level-2 
land-cover of subsets weighted 0.5 and 1. 
The information was completed by carrying out same bare soil classification on 
multispectral, very high-resolution, pre-/post-tsunami QuickBird data. In spite of the 
comparable pixel footprint, however, the 4-band Visible/Near-Infrared spectral content of 
QuickBird provided much poorer information than the airborne 56-band Hyperspectral 
airborne radiometer. 
LiDAR data were also corrected by use of a geodic model derived from the EGM96 model. 
In particular, Digital Elevation Models obtained by airborne LiDAR, were associated to co-
registered airborne Hyperspectral data that underwent unsupervised, Level-2 classification 
for automatically discriminating bare soil from vegetation. 
 

 

 
 

Fig. 5. LiDAR-derived Digital Surface Model (DSM, left) and Digital Ground Model (DGM, 
right). In the DGM, thick walls are emphasized by removal of most of buildings and 
vegetation. Because of such removal, DGMs are suited to standard cartography, but they are 
not to tsunami or storm surge flood modelling since they do not contain anymore relevant 
obstacles and vulnerable structures. The example relates to the 17th  Century Dutch fort in 
Galle, southern Sri Lanka. 

 
4.2 Spaceborne campaign 
The spaceborne campaign was conducted synergetically by the Department of Electronics 
and Information of the Politecnico di Milano, that manufactured products in Synthetic 
Aperture Radar interferometry with the proprietary procedure PS-InSARTM (Prati et al., 
1994; Ferretti et al., 1999, 2001), and the University of Calabria, that manufactured 
multispectral and cartography products exploiting the proprietary procedure MyME2 (Hirn 
& Ferrucci, 2005; Ferrucci & Hirn, 2005). 
The overall process relied upon same strategy as in the air campaign, with elevation data 
founded upon interferometric Synthetic Aperture RaDAR techniques, and pixel 
qualification carried out on Infra-Red multispectral satellite scenery. 
Pixel qualification was based on the automated discrimination of bare soils, buildings and 
infrastructures from vegetation. These classes return highest confidence weight to RaDAR 
measured elevation values in the same pixel, whereas dense canopy returns lower or zero 
values. Overall, the space dataset was composed of 67 images, both RaDAR and 
multispectral, with resolutions ranging from metric (QuickBird) to decametric (ASTER, 
Landsat-7, ERS-1, ERS-2, Envisat). To fit the requirements of HyperDEM, repeat-pass 
interferometry was carried out to provide for two different products: Permanent Scatterers 
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(PS-InSAR™) data and DEM using ERS-1/ERS-2 'Tandem' pair combinations. PS-InSAR is a 
trademark of Politecnico di Milano. 
 

 
 

Fig. 6. View of the eastern coast (North is to the left) from radar satellites ERS (Track 33 - 
Frame 3465) of the European Space Agency. Because of the overall limited dataset, and the 
characteristics of the eastern coast areas (alternating rain forest, extremely flat terrains and 
frequent water bodies), the technical choice switched from PS-InSARTM to Multi-Baseline 
InSAR technique. 
 
The available SAR dataset was composed of 23 scenes along ERS/Envisat track 33 
(Descending orbit), frames 3447 and 3465, acquired since 1992 at uneven rates. Accounting 
for the pixel dimensions (20m x 20m), and the lack of penetration of C-band RaDAR 
radiation across canopy, the elevation model mirrors the envelope of the Earth surface, 
including vegetation. In particular, the characteristics of the land cover make this area very 
sensitive to temporal decorrelation, that is, the loss of coherence between two successive 
images due to a large time interval elapsed between acquisitions. For this reasons, basic 

 

RaDAR analysis was recentred on past ERS-1/ERS-2 tandem pairs, with 1-day intervals 
between over passes and 35-day repeat times. 
 

 

 
 

 

Fig. 7. SAR Multi-image, reflectivity map of a portion of the eastern coast of Sri Lanka 
(North is to the left). Dark shading indicates dense vegetation cover, whereas black areas 
correspond to internal water bodies. Radar scattering is de-organized by foliage, and water 
bodies favor forward scattering instead of backscattering towards the Radar platform. Both 
features in combination give rise to incoherent behaviour within multi-temporal sequences. 
 
The useable SAR dataset, composed of 42 scenes, was theoretically sufficient for carrying 
out thorough PS-InSAR analysis. Conversely, the characteristics of land cover - in 
combination with the characteristics specified above of Synthetic Aperture RaDARs onboard 
the ESA spacecrafts - did not reveal suitable for thorough, Permanent Scatterer analysis 
(Figures 6, 7). 
After elimination of tandem pairs with baseline larger than 1km, only 5 pairs for frame 3465, 
and only 3 for frame 3447 were left. This forced moving from the PS-InSAR™ technique to 
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the Multi-Interferogram approach (Prati et al., 1994; Ferretti et al., 1999): which is less 
precise, but less sensitive to the quantity of data (Figure 8). 
 

 
 

Fig. 8. Multi-interferogram DSM of eastern Sri Lanka: particular of the area of Batticaloa. 
Legend of elevation classes witnesses of a very flat topography that, with rich vegetation 
cover and spatial frequence of water bodies, leads to limited success of PS interferometry 
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Fig. 9. DSM obtained by LiDAR (left), by Multi-Interferogram InSAR (centre) and map of the 
LiDAR-InSAR elevation differences (right). Colorbars shown for elevation (left) and errors 
(right). Minimum standard deviation of 2.56 m is a good estimate of InSAR topography 
accuracy in the whole area. 
 
As for merge of the very-high resolution LiDAR, and moderate-to-high resolution other 
spatial data, it is worth recalling that raw data coming from the LiDAR airborne acquisition 
are in dual form, "first pulse" and "last pulse". First-pulses, allow mapping the reflecting 
envelope surface and give rise to DSM; whereas the last-pulses subset, the DGM or 
"ground", is constituted of rays bouncing back from the ground after crossing void spaces in 
the canopy. 
The generic definition of "DEM" (Digital Elevation Model), applies to elevation of terrain 
referred to bare-Earth without vegetation and/or buildings (Figure 5-right). In order to deal 
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with LiDAR and InSAR data at once, conversely, we had to split models into DGM 
("ground") and DSM ("surface"). Definitely, DGM refers only to LiDAR, whereas DSM 
(Figures 5-left and 8) - that envelopes the whole of reflecting structures above the Earth’s 
surface - refers also to RaDAR. Consequently, a comparison between different results 
obtained in the East - by space and RaDAR - and in the West and South - by air and LiDAR - 
can be performed only on Digital Surface Models. 
 

 
Fig. 10. Difference in resolution of Digital Surface Models of Arugam Bay, southeastern Sri 
Lanka, obtained by LiDAR (left) and Synthetic Aperture Radar (right). The shaded relief 
images show the first-pulse, 1-meter LiDAR shaded relief DSM (left) and its equivalent from 
the 20-meter PS-InSAR™ interferometric DEM. The shoreline of the official cartography 
1/50’000 is also shown (gray line). 
 
Comparison, done over the LiDAR-InSAR, DSM overlap area of Arugam Bay in the 
southeast (see Figures 9 and 10) leads to a satisfactory, least standard deviation value of 2.56 
meters. 
It is worth noting, however, that such comparison is carried out on products displaying a 
two-order of magnitude difference in ground resolution, that is, 1 square meter per pixel for 
LiDAR, vs. 400 square meters for InSAR. 

 
5. Results and products 

Raw data leading to the construction of precise 3-D models of the explored coastal areas of 
Sri Lanka, came from spaceborne Synthetic Aperture RaDAR (SAR) and airborne LiDAR 
surveying. 
Both types of data data were post-processed, to remove errors and fill by resampling and 
interpolation voids arising from acquisition, and to transform clouds of points in (X, Y, Z) in 
a grid of X-Y evenly spaced points endowed with the inherent Z elevation fields. 
Information that can be extracted from LiDAR is dual: "first pulse" and "last pulse". 
First pulses relate to Laser beam reflections from the external envelope of objects (canopy, 
roofs, electric wires, etc.), whereas last detectable pulses in a Laser beam reflection sequence 
can be associated to the last reflector, that is, bare Earth. Such dual LiDAR (Laser Scanner) 

 

datasets, give rise to two, 3-D cartographic products (Figure 5): Digital Ground Model 
(DGM) and Digital Surface Model (DSM) , to be used alone or in combination. 
DGM represents the bare-Earth elevation cleaned of vegetation and manufacts, whereas 
DSM represent the elevation of LIDAR first pulses, including manufacts. DGM is suitable 
for mapping the water penetration in vegetated areas, provided with smooth topography 
and little or nil 3-D manufacts. 
DSM is indicated for detailed inundation mapping in urban areas since it contains 3-D 
footprints of manufacts, that are of utmost relevance in risk assessment if such vulnerable 
elements are in the reach of tsunami or storm surge generated flooding. 
Conversely, spaceborne RaDAR data allow creating one product – DSM - Due to much 
longer wavelength (~6*10-2 metres for Radar against ~1*10-6 metres for LiDAR) and pixel 
size (~500 m2 for Radar against ~1 m2 for LiDAR). However, spaceborne DSM obtained by 
PS-InSAR™ RaDAR interferometry, are accurate enough to approximate realistically the 
terrain in areas with sparse or nil vegetation. 
Post-processed LiDAR products keep a horizontal resolution of 1 meter, displaying an 
accuracy in elevation (pseudo-vertical) better than 30 cm. 
The interferometric RaDAR product presents a horizontal resolution of 20 meters, an 
average vertical precision of ±3 meters, with a resolution in elevation better than 1cm in 
multi-temporal, differential mode only. 
Accounting for the huge data volume, the process of map generation required developing 
an automated procedure to process the dataset, preserve the surface information, and 
minimize time consumption. The nearest neighbour interpolation method was used to 
generate DGMs and DSMs from raw data. 
This kind of interpolation method has the property of not extrapolating above or below 
actual data values coming from input. This has appeared essential, because of (a) the very 
close spacing of input data points, and (b) the fact that other potential methods (e.g. 
polynomial functions or kriging) may substantially modify the representation of some 
terrain attributes like buildings or tree canopy. 
LiDAR models were arranged in tiles of 1000 x 1000 x 1 metre (excepting those along the 
shoreline), for as much as 4600 billion grid points measured in elevation (Baltsavias, 1999; 
Kraus & Pfeifer, 1998; Axelsson, 2000). 
Spaceborne RaDAR Digital Surface Models were arranged in two frames of 1811x3497 and 
894x3202 (columns x rows) respectively, with 20-metre spacing of points, allowing for total 
2.4 million grid points measured in elevation. 

 
6. Simulations 

According to the inter-Government agreement referred to above, the Disaster Management 
Centre in Colombo was provided also with a few inundation examples (Figures 11 and 12), 
aimed to demonstrate the procedures for tsunami and/or storm surge scenario building - 
whose responsibility and exploitation rights stay with the national Authority. 
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Fig. 11. Shaded relief, Digital Surface Model of the town of Galle, in the Southwest, with 
static demonstration of flooding simulation by a 2-meter (center) and a 4-meter (bottom) 
model surge. The synthetic urban flooding scenario shown here, is satisfactorily consistent 
with field evidence observed at Galle in the aftermath of the event of December 26, 2004. 
The full wave cut the 17th Century Dutch Fort (bottom) off from mainland, but did not hit 
the internal streets. This simulation demonstrates that areas allowing safe escape from a 4-
meter tsunami, storm surge or tidal wave, can be found and better reached close to the 
shoreline instead than inland. 
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Fig. 12. Shaded relief, Digital Ground Model in the area of Hambantota, southeastern coast, 
with static flooding simulation by a model surge corresponding to a ca. 5-meter tsunami 
wave estimated by eye-witnesses and later field investigations. The combination of very low 
topographic gradient, and presence of lagoons, rivers and ponds close to the shoreline, led 
to significant inland impact of the incoming wavetrain (over 4 km). 
 
In lack of specific works in scientific literature - that is more focused on the propagation at 
sea and the impact effects on the sea-shore interface - the demonstrations were carried out 
following a simplified static approach, consisting in the consecutive piling-up of 1-meter 
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thick layers. Since the procedure does not account for the significant, dynamic component of 
tsunami wavetrains, it is probably better suited to storm surges or tidal waves. The sites 
chosen for demontration are the urban area of Galle - in the southwest - and the area of 
Hambantota, in the southeast. 
Galle (Figure 11) and the surrounding coast were the site of major damage and casualty 
(more than 4'000), engendered by a relatively small wave height reported in the order of 4 
meters. In Hambantota, (Figure 12) the impacting tsunami wave was reportedly steeper, 
higher (5-6 meters, according to eye-witnesses) and penetrating the coast by a few 
kilometers. Such significant water ingression is explained by the combination of little 
topographic gradient over ca. 4-5 kilometers, and presence of large lagoons (at the foot of 
Hambantota itself), ponds, and rivers. As in Galle with a 4-meter wave, in Hambantota the 
simulation with a 5-meter wave satisfactorily fits the observed extent of flooding. 
 
7. Conclusions 
In the broad aftermath of the Sri Lanka tsunami disaster, the stack of synoptic procedures 
and remote sensing techniques chosen for satisfying the urgent needs of the User, presented 
the undebated advantage of : (a) allowing to start the work immediately, (b) without relying 
upon ground logistics until the onset of the air campaign, (c) minimizing the duration of the 
work on spot, (d) covering fast - and at an otherwise unreacheable resolution - large 
portions of a difficult-to-penetrate territory, (e) keeping the work sustainable and, overall, (f) 
allowing to carry out the work. This combination of airborne and spaceborne techniques 
was, and is ready-to-use worldwide, and the techniques for flooding simulation and scenario 
building, can be chosen at whatever level of complexity - choosing preferably robustness.  
It is also worth noting further that the new generation of metric resolution, X-band Radar 
satellite constellations (as TerraSAR-X and Cosmo-SkyMED), may allow creating LiDAR-
like products avoiding the air work on spot. Conversely, much is missing on the standpoint 
of Infra-Red observation, that has currently become poor and poorly resoluted in terms of 
SWIR spectral resolution (necessary for vegetation and bare soils applications). Whatever 
the choice of the platform, however, the technique combination holds valid and robust for 
further applications. In conclusion, the HyperDEM products were handed over by the 
Ambassador of Italy in Sri Lanka to the Minister for Disaster Management and 
Humanitarian Affairs, on 7th December 2006, in Colombo, Sri Lanka. 
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research results and prospects of the future developments in the area of geosciences and remote sensing;
emerging research directions are discussed. The volume consists of twenty-six chapters, encompassing both
theoretical aspects and application-oriented studies. An unfolding perspective on various current trends in this
extremely rich area is offered. The book chapters can be categorized along different perspectives, among
others, use of active or passive sensors, employed technologies and configurations, considered scenario on
the Earth, scientific research area involved in the studies. 
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