3,624 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Smart grids for rural conditions and e-mobility - Applying power routers, batteries and virtual power plants

    Get PDF
    Significant reductions of greenhouse gas emission by use of renewable energy sources belong to the common targets of the European Union. Smart grids address intelligent use and integration of conventional and renewable generation in combination with controllable loads and storages. Two special aspects have also to be considered for smart grids in future: rural conditions and electric vehicles. Both, the increasing share of renewable energy sources and a rising demand for charging power by electrical vehicles lead to new challenges of network stability (congestion, voltage deviation), especially in rural distribution grids. This paper describes two lighthouse projects in Europe (“Well2Wheel” and “Smart Rural Grid”) dealing with these topics. The link between these projects is the implementation of the same virtual power plant technology and the approach of cellular grid cells. Starting with an approach for the average energy balance in 15 minutes intervals in several grid cells in the first project, the second project even allows the islanded operation of such cells as a microgrid. The integration of renewable energy sources into distribution grids primary takes place in rural areas. The lighthouse project “Smart Rural Grid”, which is founded by the European Union, demonstrates possibilities to use the existing distribution system operator infrastructure more effectively by applying an optimised and scheduled operation of the assets and using intelligent distribution power routers, called IDPR. IDPR are active power electronic devices operating at low voltage in distribution grids aiming to reduce losses due to unbalanced loads and enabling active voltage and reactive power control. This allows a higher penetration of renewable energy sources in existing grids without investing in new lines and transformers. Integrated in a virtual power plant and combined with batteries, the IDPR also allows a temporary islanded mode of grid cells. Both projects show the potential of avoiding or postponing investments in new primary infrastructure like cables, transformers and lines by using a forward-looking operation which controls generators, loads and batteries (mobile and stationary) by using new grid assets like power routers. While primary driven by physical restrictions as voltage-band violations and energy balance, these cells also define and allow local smart markets. In consequence the distribution system operators could avoid direct control access by giving an incentive to the asset owners by local price signals according to the grid situation and forecasted congestions.Peer ReviewedPostprint (published version

    Enhancement of Controllability in Distribution Grid by Means of Power Electronics Components based Distributed and Centralized Solutions

    Get PDF
    The contemporary distribution grid is undergoing evolutions for the increased penetration of distributed generation and new types loads. Innovative operation schemes and components should be adopted to cope with the emerging grid issues. Exploiting power electronics (PE) components, operation approaches can address the issues. In this thesis, fast charging station (FCS), energy storage static synchronous compensator (ES-STATCOM), and smart transformer (ST), have been analyzed in the development of solutions to enhance grid controllability. A load-leveling approach has been proposed, using reactive power from the spare capacity of the FCSs, to regulate the grid voltage, eventually to shape the power demand of voltage-sensitive loads, tracking the demand forecast, reducing the mismatch, and keeping a satisfactory charging. This approach is a distributed solution since it coordinates the actuators spread geographically in the grid. A PE based approach employing voltage-correlation coefficients has been proposed to cope with voltage violation. For PE components such as ES-STATCOM and ST, the applied correlation coefficients must be adapted accordingly. Corresponding voltage regulation schemes have been developed. The analysis has illustrated the effectiveness of the proposed schemes and distinguished some significant differences between ES-STATCOMs and STs. The meshed grid configuration can offer more flexibility respecting the radial grid configuration. This work has proposed an ST based meshed grid operation approach as a centralized solution. An operation scheme has been developed, employing a multi-objective operation algorithm to address the emerging issues. Besides, a power quality conditioning scheme has been developed to condition the harmonics in current

    Online coordination of plug-in electric vehicles considering grid congestion and smart grid power quality

    Get PDF
    © 2018 MDPI AG. All rights reserved. This paper first introduces the impacts of battery charger and nonlinear load harmonics on smart grids considering random plug-in of electric vehicles (PEVs) without any coordination. Then, a new centralized nonlinear online maximum sensitivity selection-based charging algorithm (NOL-MSSCA) is proposed for coordinating PEVs that minimizes the costs associated with generation and losses considering network and bus total harmonic distortion (THD). The aim is to first attend the high priority customers and charge their vehicles as quickly as possible while postponing the service to medium and low priority consumers to the off-peak hours, considering network, battery and power quality constraints and harmonics. The vehicles were randomly plugged at different locations during a period of 24 h. The proposed PEV coordination is based on the maximum sensitivity selection (MSS), which is the sensitivity of losses (including fundamental and harmonic losses) with respect to the PEV location (PEV bus). The proposed algorithm uses the decoupled harmonic power flow (DHPF) to model the nonlinear loads (including the PEV chargers) as current harmonic sources and computes the harmonic power losses, harmonic voltages and THD of the smart grid. The MSS vectors are easily determined using the entries of the Jacobian matrix of the DHPF program, which includes the spectrums of all injected harmonics by nonlinear electric vehicle (EV) chargers and nonlinear industrial loads. The sensitivity of the objective function (fundamental and harmonic power losses) to the PEVs were then used to schedule PEVs accordingly. The algorithm successfully controls the network THDv level within the standard limit of 5% for low and moderate PEV penetrations by delaying PEV charging activities. For high PEV penetrations, the installation of passive power filters (PPFs) is suggested to reduce the THDv and manage to fully charge the PEVs. Detailed simulations considering random and coordinated charging were performed on the modified IEEE 23 kV distribution system with 22 low voltage residential networks populated with PEVs that have nonlinear battery chargers. Simulation results are provided without/with filters for different penetration levels of PEVs

    A Practical Approach for Coordination of Plugged- In Electric Vehicles To Improve Performance and Power Quality of Smart Grid

    Get PDF
    This PhD research is undertaken by supplications including 14 peer-reviewed published articles over seven years research at Curtin University. This study focuses on a real-time Plugged-in Electric Vehicle charging coordination with the inclusion of Electric Vehicle battery charger harmonics in Smart Grid and future Microgrids with incorporation of Renewable Energy Resources. This strategy addresses utilities concerns of grid power quality and performance with the application of SSCs dispatching, active power filters or wavelet energy

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer

    Get PDF
    Power quality and energy consumption measurements support providers and energy users with solutions for acquiring and reporting information about the energy supply for residential, commercial, and industrial sectors. In particular, since the average number of electronic devices in homes increases year by year and their sensitivity is very high, it is not only important to monitor the total energy consumption, but also the quality of the power supplied. However, in practice, end-users do not have information about the energy consumption in real-time nor about the quality of the power they receive, because electric energy meters are too expensive and complex to be handled. In order to overcome these inconveniences, an innovative, open source, low-cost, precise, and reliable power and electric energy meter is presented that can be easily installed and managed by any inexperienced user at their own home in urban or rural areas. The system was validated in a real house over a period of two weeks, showing interesting results and findings which validate our proposal
    corecore