11 research outputs found

    3D Perception Based Lifelong Navigation of Service Robots in Dynamic Environments

    Get PDF
    Lifelong navigation of mobile robots is to ability to reliably operate over extended periods of time in dynamically changing environments. Historically, computational capacity and sensor capability have been the constraining factors to the richness of the internal representation of the environment that a mobile robot could use for navigation tasks. With affordable contemporary sensing technology available that provides rich 3D information of the environment and increased computational power, we can increasingly make use of more semantic environmental information in navigation related tasks.A navigation system has many subsystems that must operate in real time competing for computation resources in such as the perception, localization, and path planning systems. The main thesis proposed in this work is that we can utilize 3D information from the environment in our systems to increase navigational robustness without making trade-offs in any of the real time subsystems. To support these claims, this dissertation presents robust, real world 3D perception based navigation systems in the domains of indoor doorway detection and traversal, sidewalk-level outdoor navigation in urban environments, and global localization in large scale indoor warehouse environments.The discussion of these systems includes methods of 3D point cloud based object detection to find respective objects of semantic interest for the given navigation tasks as well as the use of 3D information in the navigational systems for purposes such as localization and dynamic obstacle avoidance. Experimental results for each of these applications demonstrate the effectiveness of the techniques for robust long term autonomous operation

    Multi-task near-field perception for autonomous driving using surround-view fisheye cameras

    Get PDF
    Die Bildung der Augen führte zum Urknall der Evolution. Die Dynamik änderte sich von einem primitiven Organismus, der auf den Kontakt mit der Nahrung wartete, zu einem Organismus, der durch visuelle Sensoren gesucht wurde. Das menschliche Auge ist eine der raffiniertesten Entwicklungen der Evolution, aber es hat immer noch Mängel. Der Mensch hat über Millionen von Jahren einen biologischen Wahrnehmungsalgorithmus entwickelt, der in der Lage ist, Autos zu fahren, Maschinen zu bedienen, Flugzeuge zu steuern und Schiffe zu navigieren. Die Automatisierung dieser Fähigkeiten für Computer ist entscheidend für verschiedene Anwendungen, darunter selbstfahrende Autos, Augmented Realität und architektonische Vermessung. Die visuelle Nahfeldwahrnehmung im Kontext von selbstfahrenden Autos kann die Umgebung in einem Bereich von 0 - 10 Metern und 360° Abdeckung um das Fahrzeug herum wahrnehmen. Sie ist eine entscheidende Entscheidungskomponente bei der Entwicklung eines sichereren automatisierten Fahrens. Jüngste Fortschritte im Bereich Computer Vision und Deep Learning in Verbindung mit hochwertigen Sensoren wie Kameras und LiDARs haben ausgereifte Lösungen für die visuelle Wahrnehmung hervorgebracht. Bisher stand die Fernfeldwahrnehmung im Vordergrund. Ein weiteres wichtiges Problem ist die begrenzte Rechenleistung, die für die Entwicklung von Echtzeit-Anwendungen zur Verfügung steht. Aufgrund dieses Engpasses kommt es häufig zu einem Kompromiss zwischen Leistung und Laufzeiteffizienz. Wir konzentrieren uns auf die folgenden Themen, um diese anzugehen: 1) Entwicklung von Nahfeld-Wahrnehmungsalgorithmen mit hoher Leistung und geringer Rechenkomplexität für verschiedene visuelle Wahrnehmungsaufgaben wie geometrische und semantische Aufgaben unter Verwendung von faltbaren neuronalen Netzen. 2) Verwendung von Multi-Task-Learning zur Überwindung von Rechenengpässen durch die gemeinsame Nutzung von initialen Faltungsschichten zwischen den Aufgaben und die Entwicklung von Optimierungsstrategien, die die Aufgaben ausbalancieren.The formation of eyes led to the big bang of evolution. The dynamics changed from a primitive organism waiting for the food to come into contact for eating food being sought after by visual sensors. The human eye is one of the most sophisticated developments of evolution, but it still has defects. Humans have evolved a biological perception algorithm capable of driving cars, operating machinery, piloting aircraft, and navigating ships over millions of years. Automating these capabilities for computers is critical for various applications, including self-driving cars, augmented reality, and architectural surveying. Near-field visual perception in the context of self-driving cars can perceive the environment in a range of 0 - 10 meters and 360° coverage around the vehicle. It is a critical decision-making component in the development of safer automated driving. Recent advances in computer vision and deep learning, in conjunction with high-quality sensors such as cameras and LiDARs, have fueled mature visual perception solutions. Until now, far-field perception has been the primary focus. Another significant issue is the limited processing power available for developing real-time applications. Because of this bottleneck, there is frequently a trade-off between performance and run-time efficiency. We concentrate on the following issues in order to address them: 1) Developing near-field perception algorithms with high performance and low computational complexity for various visual perception tasks such as geometric and semantic tasks using convolutional neural networks. 2) Using Multi-Task Learning to overcome computational bottlenecks by sharing initial convolutional layers between tasks and developing optimization strategies that balance tasks

    LiDAR Domain Adaptation - Automotive 3D Scene Understanding

    Get PDF
    Umgebungswahrnehmung und Szeneverständnis spielen bei autonomen Fahrzeugen eine wesentliche Rolle. Ein Fahrzeug muss sich der Geometrie und Semantik seiner Umgebung bewusst sein, um das Verhalten anderer Verkehrsteilnehmer:innen vorherzusagen und sich selbst im fahrbaren Raum zu lokalisieren, um somit richtig zu navigieren. Heutzutage verwenden praktisch alle modernen Wahrnehmungssysteme für das automatisierte Fahren tiefe neuronale Netze. Um diese zu trainieren, werden enorme Datenmengen mit passenden Annotationen benötigt. Die Beschaffung der Daten ist relativ unaufwendig, da nur ein mit den richtigen Sensoren ausgestattetes Fahrzeug herumfahren muss. Die Erstellung von Annotationen ist jedoch ein sehr zeitaufwändiger und teurer Prozess. Erschwerend kommt hinzu, dass autonome Fahrzeuge praktisch überall (z.B. Europa und Asien, auf dem Land und in der Stadt) und zu jeder Zeit (z.B. Tag und Nacht, Sommer und Winter, Regen und Nebel) eingesetzt werden müssen. Dies erfordert, dass die Daten eine noch größere Anzahl unterschiedlicher Szenarien und Domänen abdecken. Es ist nicht praktikabel, Daten für eine solche Vielzahl von Domänen zu sammeln und zu annotieren. Wenn jedoch nur mit Daten aus einer Domäne trainiert wird, führt dies aufgrund von Unterschieden in den Daten zu einer schlechten Leistung in einer anderen Zieldomäne. Für eine sicherheitskritische Anwendung ist dies nicht akzeptabel. Das Gebiet der sogenannten Domänenanpassung führt Methoden ein, die helfen, diese Domänenlücken ohne die Verwendung von Annotationen aus der Zieldomäne zu schließen und somit auf die Entwicklung skalierbarer Wahrnehmungssysteme hinzuarbeiten. Die Mehrzahl der Arbeiten zur Domänenanpassung konzentriert sich auf die zweidimensionale Kamerawahrnehmung. In autonomen Fahrzeugen ist jedoch das dreidimensionale Verständnis der Szene essentiell, wofür heutzutage häufig LiDAR-Sensoren verwendet werden. Diese Dissertation befasst sich mit der Domänenanpassung für LiDAR-Wahrnehmung unter mehreren Aspekten. Zunächst wird eine Reihe von Techniken vorgestellt, die die Leistung und die Laufzeit von semantischen Segmentierungssystemen verbessern. Die gewonnenen Erkenntnisse werden in das Wahrnehmungsmodell integriert, das in dieser Dissertation verwendet wird, um die Wirksamkeit der vorgeschlagenen Domänenanpassungsansätze zu bewerten. Zweitens werden bestehende Ansätze diskutiert und Forschungslücken durch die Formulierung von offenen Forschungsfragen aufgezeigt. Um einige dieser Fragen zu beantworten, wird in dieser Dissertation eine neuartige quantitative Metrik vorgestellt. Diese Metrik erlaubt es, den Realismus von LiDAR-Daten abzuschätzen, der für die Leistung eines Wahrnehmungssystems entscheidend ist. So wird die Metrik zur Bewertung der Qualität von LiDAR-Punktwolken verwendet, die zum Zweck des Domänenmappings erzeugt werden, bei dem Daten von einer Domäne in eine anderen übertragen werden. Dies ermöglicht die Wiederverwendung von Annotationen aus einer Quelldomäne in der Zieldomäne. In einem weiteren Feld der Domänenanpassung wird in dieser Dissertation eine neuartige Methode vorgeschlagen, die die Geometrie der Szene nutzt, um domäneninvariante Merkmale zu lernen. Die geometrischen Informationen helfen dabei, die Domänenanpassungsfähigkeiten des Segmentierungsmodells zu verbessern und ohne zusätzlichen Mehraufwand bei der Inferenz die beste Leistung zu erzielen. Schließlich wird eine neuartige Methode zur Erzeugung semantisch sinnvoller Objektformen aus kontinuierlichen Beschreibungen vorgeschlagen, die – mit zusätzlicher Arbeit – zur Erweiterung von Szenen verwendet werden kann, um die Erkennungsfähigkeiten der Modelle zu verbessern. Zusammenfassend stellt diese Dissertation ein umfassendes System für die Domänenanpassung und semantische Segmentierung von LiDAR-Punktwolken im Kontext des autonomen Fahrens vor

    Proceedings of the European Conference on Agricultural Engineering AgEng2021

    Get PDF
    This proceedings book results from the AgEng2021 Agricultural Engineering Conference under auspices of the European Society of Agricultural Engineers, held in an online format based on the University of Évora, Portugal, from 4 to 8 July 2021. This book contains the full papers of a selection of abstracts that were the base for the oral presentations and posters presented at the conference. Presentations were distributed in eleven thematic areas: Artificial Intelligence, data processing and management; Automation, robotics and sensor technology; Circular Economy; Education and Rural development; Energy and bioenergy; Integrated and sustainable Farming systems; New application technologies and mechanisation; Post-harvest technologies; Smart farming / Precision agriculture; Soil, land and water engineering; Sustainable production in Farm buildings

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore