47 research outputs found

    Designing Volumetric Truss Structures

    Full text link
    We present the first algorithm for designing volumetric Michell Trusses. Our method uses a parametrization approach to generate trusses made of structural elements aligned with the primary direction of an object's stress field. Such trusses exhibit high strength-to-weight ratios. We demonstrate the structural robustness of our designs via a posteriori physical simulation. We believe our algorithm serves as an important complement to existing structural optimization tools and as a novel standalone design tool itself

    Unstructured and semi-structured hexahedral mesh generation methods

    Get PDF
    Discretization techniques such as the finite element method, the finite volume method or the discontinuous Galerkin method are the most used simulation techniques in ap- plied sciences and technology. These methods rely on a spatial discretization adapted to the geometry and to the prescribed distribution of element size. Several fast and robust algorithms have been developed to generate triangular and tetrahedral meshes. In these methods local connectivity modifications are a crucial step. Nevertheless, in hexahedral meshes the connectivity modifications propagate through the mesh. In this sense, hexahedral meshes are more constrained and therefore, more difficult to gener- ate. However, in many applications such as boundary layers in computational fluid dy- namics or composite material in structural analysis hexahedral meshes are preferred. In this work we present a survey of developed methods for generating structured and unstructured hexahedral meshes.Peer ReviewedPostprint (published version

    Geometric modeling and optimization over regular domains for graphics and visual computing

    Get PDF
    The effective construction of parametric representation of complicated geometric objects can facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a 3D shape, the procedure of finding such a parametric representation upon a canonical domain is called geometric parameterization. Regular geometric regions, such as polycubes and spheres, are desirable domains for parameterization. Parametric representations defined upon regular geometric domains have many desirable mathematical properties and can facilitate or simplify various surface/solid modeling and processing computation. This dissertation studies the construction of parameterization on regular geometric domains and explores their applications in shape modeling and computer-aided design. Specifically, we studies (1) the surface parameterization on the spherical domain for closed genus-zero surfaces; (2) the surface parameterization on the polycube domain for general closed surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Euclidean space. We propose novel computational models to solve these geometric problems. Our computational models reduce to nonlinear optimizations with various geometric constraints. Hence, we also need to explore effective optimization algorithms. The main contributions of this dissertation are three-folded. (1) We developed an effective progressive spherical parameterization algorithm, with an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms, our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications in spherical harmonic decomposition and shape analysis. (2) We propose a first topology-preserving polycube domain optimization algorithm that simultaneously optimizes polycube domain together with the parameterization to balance the mapping distortion and domain simplicity. We develop effective nonlinear geometric optimization algorithms dealing with variables with and without derivatives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh generation and cross-surface parameterization. (3) We develop a novel quaternion-based optimization framework for 3D frame field construction and volumetric parameterization computation. We demonstrate our constructed 3D frame field has better smoothness, compared with state-of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization and high-quality hexahedral mesh generation

    Hexahedral-dominant meshing

    Get PDF
    This article introduces a method that generates a hexahedral-dominant mesh from an input tetrahedral mesh.It follows a three-steps pipeline similar to the one proposed by Carrier-Baudoin et al.:(1) generate a frame field; (2) generate a pointset P that is mostly organized on a regulargrid locally aligned with the frame field; and (3) generate thehexahedral-dominant mesh by recombining the tetrahedra obtained from the constrained Delaunay triangulation of P.For step (1), we use a state of the art algorithm to generate a smooth frame field. For step (2), weintroduce an extension of Periodic Global Parameterization to the volumetric case. As compared withother global parameterization methods (such as CubeCover), our method relaxes some global constraintsand avoids creating degenerate elements, at the expense of introducing some singularities that aremeshed using non-hexahedral elements. For step (3), we build on the formalism introduced byMeshkat and Talmor, fill-in a gap in their proof and provide a complete enumeration of all thepossible recombinations, as well as an algorithm that efficiently detects all the matches in a tetrahedral mesh.The method is evaluated and compared with the state of the art on adatabase of examples with various mesh complexities, varying fromacademic examples to real industrial cases. Compared with the methodof Carrier-Baudoin et al., the method results in better scoresfor classical quality criteria of hexahedral-dominant meshes(hexahedral proportion, scaled Jacobian, etc.). The methodalso shows better robustness than CubeCover and its derivativeswhen applied to complicated industrial models

    A Visualization System for Hexahedral Mesh Quality Study

    Full text link
    In this paper, we introduce a new 3D hex mesh visual analysis system that emphasizes poor-quality areas with an aggregated glyph, highlights overlapping elements, and provides detailed boundary error inspection in three forms. By supporting multi-level analysis through multiple views, our system effectively evaluates various mesh models and compares the performance of mesh generation and optimization algorithms for hexahedral meshes.Comment: Accepted by IEEE VIS 2023 Short Papers and will be published on IEEE Xplore. Paper contains 4 pages, and 1 reference page. Supplemental includes 4 page

    VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base Domains

    Get PDF
    Correspondences between geometric domains (mappings) are ubiquitous in computer graphics and engineering, both for a variety of downstream applications and as core building blocks for higher level algorithms. In particular, mapping a shape to a convex or star-shaped domain with simple geometry is a fundamental module in existing pipelines for mesh generation, solid texturing, generation of shape correspondences, advanced manufacturing etc. For the case of surfaces, computing such a mapping with guarantees of injectivity is a solved problem. Conversely, robust algorithms for the generation of injective volume mappings to simple polytopes are yet to be found, making this a fundamental open problem in volume mesh processing. VOLMAP is a large scale benchmark aimed to support ongoing research in volume mapping algorithms. The dataset contains 4.7K tetrahedral meshes, whose boundary vertices are mapped to a variety of simple domains, either convex or star-shaped. This data constitutes the input for candidate algorithms, which are then required to position interior vertices in the domain to obtain a volume map. Overall, this yields more than 22K alternative test cases. VOLMAP also comprises tools to process this data, analyze the resulting maps, and extend the dataset with new meshes, boundary maps and base domains. This article provides a brief overview of the field, discussing its importance and the lack of effective techniques. We then introduce both the dataset and its major features. An example of comparative analysis between two existing methods is also present
    corecore