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Abstract

Discretization techniques such the finite element method, the finite volume method
or the discontinuous Galerkin method are the most used simulation techniques in ap-
plied sciences and technology. These methods rely on a spatial discretization adapted
to the geometry and to the prescribed distribution of element size. Several fast and
robust algorithms have been developed to generate triangular and tetrahedral meshes.
In these methods local connectivity modifications are a crucial step. Nevertheless, in
hexahedral meshes the connectivity modifications propagate through the mesh. In this
sense, hexahedral meshes are more constrained and therefore, more difficult to gener-
ate. However, in many applications such as boundary layers in computational fluid dy-
namics or composite material in structural analysis hexahedral meshes are preferred.
In this work we present a survey of developed methods for generating structured and
unstructured hexahedral meshes.
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1 Introduction

Spatial discretizations, represented by a mesh, have been related with computational
methods since the appearance of the first electronic computers. Later, the evolution
of computer graphics capabilities has induced to use meshes in new areas of appli-
cation such as medical imaging, scientific visualization and 3D animation. However,
automatic mesh generation was first prompted by many applications of computational
methods in applied science and engineering. Specifically, the generation of a mesh is
a pre-requisite for the application of several numerical techniques including the finite
difference method (FDM), the finite element method (FEM), and the finite volume
method (FVM).

The application of the above numerical techniques to 3D simulations lead to meshes
composed by polyhedral elements. In these applications, the most common types
are the tetrahedral (four triangular faces) and hexahedral (six quadrilateral faces) el-
ements. There exist several fast and robust implementations of tetrahedral meshes.
The classical three approaches to generate tetrahedral meshes are: the advancing front
method [1–3], the Delaunay approach [4, 5] and the octree based methods [6, 7]. Ad-
ditional information on these methods can be found in [8–10]. In these methods,
local connectivity modifications are a crucial step. However, in hexahedral meshes,
the connectivity modifications might propagate through the mesh. Therefore, hex-
ahedral meshes are more constrained and only a limited type of geometries can be
automatically meshed with high-quality hexahedral elements. Moreover, there exists
no automatic hexahedral mesher that generates high-quality meshes on an arbitrary
geometry. That is, hexahedral mesh generation is still considered as an open problem.

In industrial applications, the semi-automatic process for obtaining a hexahedral
mesh, is often the most time-consuming task of the whole analysis. Nevertheless,
hexahedral elements are preferred in a wide range of applications, see [11]:

(i) In elastic and elasto-plastic analysis, eigenvalues of stiffness matrix for hexahe-
dra are smaller than those for tetrahedra. Specifically, the tetrahedron is too stiff
and locks in bending tests [12].

(ii) In structural analysis, empirical studies have shown that hexahedral elements
provide more accuracy than tetrahedral elements for the same computational
cost [13, 14]. To obtain similar accuracy a tetrahedral mesh usually requires
between four and ten times more elements than a hexahedral mesh.

(iii) In Navier-Stokes computations, elements with high aspect ratio are required at
boundary layers. Stretched hexahedra perform better than stretched tetrahedra
capturing the anisotropy of the flow field over such viscous regions.

(iv) In structural dynamics simulations of composite materials, elements strictly aligned
with material features are required. Hexahedral elements reproduce better than
tetrahedra the anisotropic properties of composite materials.



These advantages hold when comparing trilinear hexahedra versus linear tetrahedra
but not in the case of their high-order versions, see details in [15]. Quadratic tetrahedra
require less computational effort than quadratic hexahedra to obtain similar accuracy
[13, 14]. However, hexahedra can also be suitable for high-order applications of the
FEM. For instance, the spectral element method (SEM) is an accurate and efficient
technique that explodes the characteristics of hexahedral elements [16]. Efficiency is
achieved by using the tensor product of Gauss-Lobatto points to determine the location
of both interpolation and integration points. This results in diagonal mass matrices and
the adequacy to parallel implementations.

For these reasons, special attention is focused on developing automatic algorithms
to generate hexahedral meshes. However, the utilization of hexahedra in industrial
application is often hampered by the conversion of the computer aided design (CAD)
model into a mesh adapted to the details of the geometry and to the prescribed distri-
bution of the element size. Generating a mesh of the model can represent the ninety
per cent of the analysis time [17]. In this process the most time-consuming tasks are:

(i) Geometry healing. Usually, the CAD model that defines the geometry cannot
be directly used in a mesh generation algorithm. For instance, the model may
contain duplicated entities that corrupt the topology tree. In addition, meshing
techniques usually require watertight models. That is, the geometry should not
contain gaps in the boundary. In this step, it is usual that some parts of the
geometry may have to be reconstructed from scratch.

(ii) Geometry de-featuring. This step is related to the previous one and is often
performed at the same time. The initial model usually contains small details
that do not influence on the final analysis, but can increase the computational
cost of the numerical simulation. For instance, small protrusions or extrusions,
screw holes or extremely realistic representations of the geometry. The user has
to manually remove them from the initial model. Hence, it is a time-consuming
step that has to be performed by trained personnel that have to decide which
features are relevant to the numerical analysis.

(iii) Geometry decomposition. Depending on the mesh generation algorithm to be
applied, the geometry has to be manually decomposed. This is especially true
when the user needs hexahedral meshes, because there is no hexahedral mesher
that can handle an arbitrary geometry. Typically, the decomposition step is not
automatically performed and, for complex geometries, it can also be a difficult
and time-expensive operation.

(iv) Mesh generation. The user assigns the mesh generation algorithm to be applied
and the prescribed element size. Note that incompatible element sizes may in-
duce bad quality meshes, in the sense of element shape and accuracy of the
initial geometry approximation. Moreover, it may impede the mesher to gener-
ate a mesh at all. In this case, the user has to manually detect the areas where an
invalid element size has been prescribed and correct it.
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Figure 1: (a) A hexahedral chord. (b) A hexahedral sheet.

Several works have analyzed the geometrical and topological properties of hexa-
hedral meshes and their dual counterpart [11, 18–21]. These properties show that a
hexahedral mesh cannot be considered as a local object, but as a global object, since
a local modification in the mesh connectivity may propagate through the whole mesh.
These properties can be summarized as follow:

(i) Opposing faces (dual chord). We can think of a hexahedra as three pairs of
opposed faces. Since each face has an opposing face, a hexahedral mesh can be
viewed as a collection of hexahedral chords, see Figure 1(a).

(ii) Continuous layers (dual sheet). A hexahedra contains three sets of logically
parallel edges. We can select all the logical parallel edges of a hexahedral mesh
to construct a sheet of hexahedra. Thus, a hexahedral mesh can be viewed as a
collection of hexahedral sheets that intersect each other, see Figure 1(b).

(iii) Element quality. The angles between faces have to be less than π in order to
obtain a positive element Jacobian. Moreover, the ideal mesh should contain
hexahedra whose angles should be similar to π/2.

The first property implies that each dual chord that starts at the boundary also has
to terminate at the boundary. Thus, the number of quadrilaterals in the boundary of a
hexahedral mesh is an even number. More specifically, it is needed an even number of
quadrilaterals at the boundary to generate a hexahedral mesh of the volume interior,
see [18]. In addition, the first two properties imply that hexahedral meshes are more
constrained than tetrahedral ones. For example, local connectivity modifications are
straightforward in tetrahedral meshes. However, the local connectivity modifications
of hexahedral meshes are propagated through dual chords and dual sheets. For this
reason, local connectivity modifications of hexahedral meshes are difficult. Moreover,
the same issue happens when refining or de-refining a hexahedral mesh. That is, the
modifications introduced by the algorithm are propagated through the geometry. Fi-
nally, we highlight that the third property implies that high-quality hexahedral meshes
are preferred to capture boundary layers.

During the last decades, several general-purpose algorithms for fully automatic
hexahedral mesh generation have been proposed. These algorithms are described and



Table 1: Classification of quadrilateral and hexahedral mesh generation methods.
Geometry Decomposition Inside-Outside Outside-Inside

Indirect
methods

Combining Tris/Tets
Q Morph/H Morph

Direct
methods

Methods for specific geometries
Submapping
Multisweeping/multiaxis sweeping

General purpose methods
Medial axis / surfaces
Feature-based
Local Dual Contribution
Cross-Field based methods

Grid-based
Receding Front

Primal Methods
Plastering
Uncons. plastering

Dual Methods
Whisker Weaving

classified in the surveys by Owen [22], Blacker [11], Tautges [23], Baker [24], Shi-
mada [25], and Shepherd [26]. A more detailed presentation of some quadrilateral
and hexahedral mesh generation methods can be found in [8, 10]. However, none of
the existent algorithms is robust, automatic and generates high-quality meshes for an
arbitrary geometry. Therefore, special attention has been focused on existing algo-
rithms that decompose the entire geometry into several simpler pieces. These smaller
volumes can be easily meshed by well-known methods that exhibit an outstanding
performance in these simpler volumes.

In this paper we present an overview of the current methods to generate quadrilat-
eral and hexahedral meshes. It is worth to notice that they can be classified according
to several criteria since they share several properties. For instance, the unconstrained
plastering [27–29] can be considered as an unconstrained method or as a method that
generates the hexahedral mesh advancing from the boundaries towards the inner part
of the geometry.

Before classifying hexahedral mesh generation algorithms we consider core meth-
ods, see Section 2. Core methods are specific-purpose methods that deal with simple
and non-general geometry configurations. Therefore, they are widely used to mesh
the sub-volumes obtained by other methods that decompose the geometry into sim-
pler pieces.

We first classify hexahedral mesh generation methods according to two main cat-
egories, see Table 1. On one hand, we consider indirect methods or methods that
generate hexahedral meshes from a tetrahedral one, see Section 3. On the other hand,
we consider direct methods or methods that directly generate the hexahedral mesh, see
Section 4. In addition, hexahedral meshing algorithms can also be classified according
to how the mesh is generated. In this sense we consider: methods that decompose the
geometry in smaller pieces (automatically or based on human interaction), methods
that first create the inner part of the mesh and then adapt it to the boundaries of the
domain, i.e. inside-outside methods, and those that generate the hexahedral mesh ad-
vancing from the boundary towards the inner part of the geometry, i.e. outside-inside
methods.



2 Core methods

Hexahedral mesh generation techniques have been improved in the last decade. Sev-
eral algorithms have been devised in order to generate hexahedral meshes for any
arbitrary geometry. However, a general and fully automatic hexahedral mesh genera-
tion algorithm is still an unreachable goal. That is, further research is still needed in
order to work out a general purpose algorithm that, given any volume, generates high
quality hexahedral elements at low cost (both in cpu and in user interaction time).
However, specific algorithms have been developed in order to mesh specific geome-
tries delivering high-quality meshes in a very efficient manner. In addition, they are
used to mesh the small pieces or blocks obtained by decomposition methods. They
can be classified in three groups: 1. Methods based on primitives (Section 2.1); 2.
methods based on mappings (Section 2.2); and 3. the sweep method (Section 2.3).

2.1 Methods based on primitives

Primitive hexahedral meshers [30] are fast and easy to implement algorithms. While
they are not applicable to a great number of geometries, they constitute the basis for
more complex methods that are able to mesh more complicated geometries. The basic
idea behind these methods is to identify simple geometrical shapes and mesh them
with a predetermined template. A tetrahedra divided in four hexahedra is an example
of a meshing template that can be applied to mesh, for instance, an octant of an sphere.
Other templates include spheres, cylinders or boxes. The applicability of the algorithm
is quite limited, but the element quality is usually good. In addition, it is worth to
notice that several meshing environments include these kind of templates.

2.2 Methods based on mappings

This methods are designed to mesh domains that are topologically equivalent to a
quadrilateral (2D) or hexahedra (3D) using a mapping between a computational do-
main and the physical domain. The mapping can be defined explicitly (algebraic meth-
ods or explicit conformal methods) or implicitly (PDE-based methods).

2.2.1 Algebraic mapping methods

The transfinite interpolation method or TFI [31] is the most used algebraic method
to generate structured meshes on generalized boxes. In these methods an explicit ex-
pression is used to map a predetermined mesh on the computational domain onto the
physical domain, see Figure 2. The mesh quality of the final mesh is directly related
to the resemblance of the geometry with a box. The success of this method is based
on the following five properties: 1. it is efficient from the computational point of view
(both in terms of memory foot-print and computational time), 2. it is a Boolean sum
of univariate interpolations, 3. it can accommodate several interpolation functions



Figure 2: Transfinite interpolation (TFI) method.

(liner, cubic, Hermite or Bezier/Bernstein polynomials), 4. it provides explicit control
over grid point location; and 5. it is suited to incorporate grid spacing control. Other
algebraic methods have been developed that further extend the potencial and the ap-
plicability of this explicit methods [32, 33]. A detailed presentation of algebraic and
transfinite interpolation can be found in [8, 10, 34].

2.2.2 Explicit Conformal mappings

One of the most used techniques to generate structured meshes for outer domains was
through the use of explicit conformal mappings. That is, a mapping that locally pre-
serves the angles. Early on, the numerical methods to solve a PDE were based on
finite differences techniques. Thus, orthogonal grids were desired in order to achieve
better accuracy. The main idea is to solve the PDE in a computational domain dis-
cretized with an orthogonal grid. Then, the PDE is expressed in the coordinates of
the computational domain. Since conformal mappings preserve the angles, the trans-
formed PDE does not contain additional cross-derivative terms. However, conformal
mappings had to be obtained for each different geometry, and its usage was abandoned
in front of the elliptic-based methods. Some examples of conformal mappings are the
Sells’ circle mapping [35] to mesh the exterior domain of a two-dimensional airfoil,
and the axisymmetric mapping of South and Jameson, [36].

2.2.3 PDE-based methods

PDE-based methods have been widely used for many decades to generate structured
quadrilateral and hexahedral meshes [37, 38]. In these methods the mapping between
a computational domain and the physical domain is defined implicitly by a PDE equa-
tion. Elliptic equations are the most used option for inner (bounded) domains. Control
functions have been added to ensure orthogonality and element shape (stretched ele-
ments for boundary layers). Although elliptic methods are more expensive from the
computational point of view than algebraic methods, they are preferred in several ap-
plications due to the smoothness of the obtained grids. For outer (unbounded) domains
hyperbolic equations are also used in a large range of simulations. These methods gen-



erate the mesh by propagating an initial configuration. Although only partial control
on the location of the mesh nodes in the outer boundary is possible, these methods
provide control on orthogonality and element area. Hyperbolic methods are faster
than elliptic ones. However, their major disadvantage is that singularities in the ini-
tial data propagate through the mesh. Parabolic methods combines, in some sense,
the advantages of elliptic and parabolic methods. They maintain some advantages of
the elliptic methods (smoothness, orthogonality, shape of the elements, specification
of the exact nodal location on the outer boundary) and some other from hyperbolic
methods (computational efficiency). A detailed presentation on PDE-based methods
can be found in [8, 34, 39].

2.3 Sweeping

Most of the commercial CAD packages allow to model volumes by extruding, or
sweeping, a surface along a delimited axis. These one-to-one sweep volumes are
defined by a source surface, a target surface and a series of linking-sides (see Figure
3(a)). In order to ensure that a given geometry is one-to-one sweepable, the following
conditions must be satisfied:

(i) The source and target surfaces must be topologically equivalent (they must have
the same number of holes and logical sides). However, they may have different
areas and curvatures.

(ii) The linking-sides must be mappable, or equivalently, defined by four logical
sides.

(iii) The sweep volume has one source surface and one target surface.

(iv) The sweep volume must be defined by only one axis.

A detailed presentation on constraints which must be met for a volume to be sweep-
able, in a generic sense, are presented in [40]. Based on the definition of an extrusion
geometry, the traditional procedure to generate an all-hexahedral mesh by sweeping
consists of the following four steps:

(i) Generation of a quadrilateral mesh over the source surface (structured or not).

(ii) Projection of the source mesh onto the target surface.

(iii) Generation of a structured quadrilateral mesh over the linking-sides.

(iv) Generation of the inner layers of nodes and elements.

Several quadrilateral surface mesh generation algorithms can be used in the first
step [41–46]. The gridding of the linking-sides involved in the third step can be gener-
ated using any standard structured quadrilateral surface mesh generator [8,47]. Hence,
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Figure 3: (a) Generic one-to-one sweepable volume; (b) Available data for generating
the inner layers of nodes: • boundary nodes of the cap surfaces, and ◦ boundary nodes
of the inner layers.

the two main issues to be dealt with by any sweep algorithm are the second and fourth
step. In both steps, the meshes to be generated (i.e. the mesh over the target surface
and the inner layer meshes) must be topologically equivalent to the source surface
mesh.

In order to project the mesh on the source surface to the target surface, two different
strategies are devised:

(i) Least-squares approximation of an affine mapping. An affine mapping that con-
verts the nodes from the source face to the target face computed. The mapping
is generated by means of a least-squares approximation of an affine mapping,
see [48, 49]. Then in order to improve the location of inner nodes, a boundary
error method is introduced in [50] and then described in [51].

(ii) Faceted projection. This method uses a triangulation to project the nodes from
the source to the target faces, see [52]. First, the method generates a triangula-
tion of the source and target faces using the same topological mesh. Thus, each
triangle on the source face has a corresponding one in the target face. Then, the
nodes on the source face are transferred to the target face using the triangula-
tions via barycentric coordinates and elevation information. One special case of
faceted projection is defined in [53], where the mapping between the source and
target face is an harmonic function.

Projection methods based on facets [52] and least-squares approximations [48, 50,
51,54,55] are also used to compute the position of the inner nodes in step (iv). Accord-
ing to [56] projection algorithms based on a least-squares approximation of an affine
mapping are the fastest option to project nodes. In [53], it is proposed a method based
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Figure 4: Decomposition of: (a) a triangle into three quadrilaterals; and (b) a tetrahe-
dron into four hexahedra.

on deformation cages. A computational domain is constructed in which the sweeping
procedure is performed. Then, using a cage deformation method, the inner nodes are
mapped from the computational domain to the physical domain.

3 Indirect methods

Indirect methods rely on a previous triangular or tetrahedral discretization of the do-
main. Then, this initial mesh is transformed in a quadrilateral or hexahedral mesh.
Two approaches have been developed to perform this transformation. On the one hand,
there are methods that decompose each triangle or tetrahedron into three quadrilaterals
or four hexahedra, respectively (see Figure 4). On the other hand, there are methods
that combine several tetrahedral elements to create a single hexahedron.

Decomposition methods, although easy to implement, have not been used in indus-
try due to the low quality of the generated hehahedra. Therefore, special attention has
been focused on methods that combine existing triangles and tetrahedra.

Several methods have been proposed to combine triangular elements in order to
generate quadrilateral meshes. For instance, [57] is based on an heuristic combination
of triangles resulting in a quad-dominant mesh. This technology was improved by con-
sidering an advancing-front approach during the triangle combination [58–60]. These
methods start from the boundary of the domain and advance towards the inner part of
the geometry until the fronts collide and no triangles are left. In this sense, they can
also be classified as outside-inside methods. Reference [61] proposes a local method
based on edge classification to transform triangular surface meshes into quadrilateral
ones. On the contrary, in reference [62] a graph-based method to to combine triangles
into quadrilateral elements using the Blossom algorithm. Later, in references [63, 64]
the method is modified to incorporate an alignment of the vertices of the triangular



mesh to obtain oriented quads in the final mesh. A similar approach also base on
graph theory is also presented in [65], where an open source implementation of an
indirect method is detailed.

The advacing-front approach presented in the Q-morph method [60] were extended
to three dimensions in the H-morph algorithm [66]. This algorithm generates hexahe-
dral-dominant meshes for arbitrary volumes. That is, the mesh contains both tetrahe-
dral and hexahedral elements. The H-Morph method starts with an initial tetrahedra. It
uses an advancing front technique where the initial front consists of a set of prescribed
quadrilateral surface facets. Fronts are processed and new hexahedra are generated.
The procedure continues until no tetrahedra remain within the volume, or tetrahedra
remain which cannot be transformed or combined into valid hexahedral elements. It
is important to point out that Q-morph is a boundary sensitive method, since the mesh
is generated in an outside-to-inside advancing-front manner, and can be applied to any
type of geometries. However, its application in industry has been hampered by its
failure to generate full hexahedral meshes in some cases.

4 Direct methods

Several approaches have been used to directly generate a full hexahedral mesh. On the
one hand, there are methods that generate the final mesh by decomposing the geometry
in sub-volumes that can be meshed using one of the core methods, see Section 4.1.
On the other hand, several methods try to generate the hexahedral mesh by creating
and inserting elements in the geometry. This creation and insertion process can be
started in the inner part of the geometry and adjusted to reproduce the boundaries of
the domain using an inside-outside approach, see Section 4.2, or can be started at the
boundaries of the domain and then advanced inwards the geometry using an outside-
inside approach, see Section 4.3.

4.1 Geometry decomposition

These methods rely on idea that a high-quality hexahedral mesh can be generated if
the geometry is decomposed into simpler volumes. Some algorithms perform this
decomposition taking into account specific properties of the geometry to be meshed,
see Section 4.1.1. Therefore, its application is restricted to certain geometry config-
urations. On the contrary, other methods are designed to obtain a decomposition of
an arbitrary geometry into simple blocks, see Section 4.1.2. Finally, it is worth to
mention that there are several attempts to combine different hexahedral meshes into a
single, conformal mesh, see [67–69]. In this way, the user can generate an hexahedral
mesh on each part and then match them all to create a conformal mesh of the whole
domain.



4.1.1 Methods for specific geometries

Submapping

One of the most important techniques to generate structured hexahedral meshes is the
submapping algorithm [70, 71]. This method relies on a geometric decomposition of
the domain into patches logically equivalent to an hexahedron. Then, each patch is
meshed separately using a standard structured mesh generation algorithm such as the
transfinite interpolation method. The mesh compatibility between patches is previ-
ously imposed by solving an integer linear problem (ILP). The quality of the obtained
mesh is governed by the objective function of the integer linear problem.

The submapping method has been extensively used to mesh simply connected
blocky geometries. Therefore, in [72–74], the authors develop special algorithms in
order to automatically discretize surfaces and volumes with holes. Inner holes of the
geometries are connected to the boundary in order to automatically generate a simply-
connected geometry. Thus, the standard submapping algorithm can be applied. In the
case of volumes with through holes, the solution of the integer linear problem may not
guarantee the mesh compatibility, because there are missing equations. To overcome
this drawback, the missing equations are generated using a graph representation of the
geometry.

Reference [75] proposes a submapping technique that avoids the decomposition of
the geometry. Once the boundary mesh is generated, the position of the inner volume
nodes is computed by solving a linear problem.

Multisweeping and multiaxis sweeping

Sweeping algorithms have been successfully applied to extrusion geometries for many
years. These algorithms can be applied in extrusion volumes defined by one source
and one target surface, see [48, 49, 52, 53, 55]. For this reason, they are called one-
to-one sweeping methods. However, real CAD extrusion models are not composed
by a single one-to-one volume. Therefore, special attention has been focused on al-
gorithms that automatically decompose any extrusion geometry into these simpler
pieces. Many-to-one algorithms [76] can handle extrusion geometries with several
source surfaces but a single target surface, see Figure 6(b). These algorithms decom-
pose the initial volume into one-to-one sub-volumes and then discretize each one sepa-
rately. In the last years, several algorithms have been proposed to mesh many-to-many
extrusion geometries with multiple source and target surfaces, see [50, 51, 77–79].
Figure 6(c) presents an extrusion geometry with two source surfaces and two tar-
get surfaces. The many-to-many methods split the original geometry into many-to-
one sub-volumes. Each sub-volume is further decomposed into one-to-one barrels.
The decomposition process is achieved by projecting target surfaces to corresponding
source surfaces. In addition, an imprinting process between source and target sur-
faces is performed to determine the decomposition. Multi-sweeping algorithms have
been improved in order to increase the robustness of the imprinting process and the
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Figure 5: Examples of submapping meshes. Quadrilateral submapping mesh over an
engine of a DLR F6 aircraft: (a) general view, and (b) detailed view. Hexahedral
submapping mesh for a gear: (c) general view, and (d) detailed view.

(a) (b) (c) (d)

Figure 6: Simple extrusion geometries with its source surfaces (light gray) and target
surfaces (dark gray). (a) One-to-one extrusion geometry. (b) Many-to-one extrusion
geometry. (c) Many-to-many extrusion geometry. (d) Multi-axis sweep geometry.
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Figure 7: Many-to-many sweep meshes: (a) Mechanical piece; (b) gear; (c) linking-
rod.

location of inner nodes created during the decomposition. These aspects are of the
major importance when the geometry contains high-curved surfaces, and non-planar
or twisted sweep levels. Finally, in [80], a multi-axis sweeping algorithm that can
handle geometries with several sweeping axis is presented, see Figure 6(d).

Other Methods

Specific methods have been devised for a specific kind of geometries. For instance,
tubular structures appears in many industrial and medical applications. In references
[81, 82] two different strategies for this kind of geometries are presented.

4.1.2 General purpose methods

Medial axis/surface

The medial axis transform has been widely used in mesh generation to decompose
the initial geometry [83–87]. The medial axis is defined as the locus of the centers



of spheres that are tangent to the boundary of the geometry in two or more points,
where all such spheres are contained inside the volume. While the algorithms based
on the medial axis can potentially decompose any kind of volumes, the truth is that
the computation of the medial axis is a difficult task that is not fully solved. The
medial axis is heavily sensitive to boundary modifications. In addition, it may become
degenerated, since it may be locally defined by curves or points. For instance, the
medial axis of a sphere is a point.

Reference [88] proposes a new methodology to generate all-hexahedral meshes on
arbitrary geometries by using the medial axis. The main idea consists on generating
a quadrilateral mesh on the medial surface and then sweep the quadrilaterals from the
interior to the boundary. However, problems may arise when the medial axis is degen-
erated, since there is no one-to-one mapping from the medial axis to the boundary. The
medial axis is also used to analyze the geometry and suggest manual decompositions
of the geometry into sweepable sub-volumes, see [89].

Feature-based methods

Feature-based decomposition algorithms try to decompose the initial geometry into
sub-domains by using its features. Typically, these features consist on paths of edges.
Then, using these paths of edges, virtual surfaces are constructed in order to de-
compose the geometry. The process is iterated until each of the sub-domains can
be meshed. See [90–93] for additional details.

Other kind of decomposition methods try to compute a poly-cube of the initial
model and then, decompose the poly-cube in order to generate an hexahedral mesh.
Finally, the mesh of the poly-cube is mapped to the initial geometry. The main prob-
lem of this approach is the construction of the poly-cube that approximates the initial
geometry, since it has a great impact on the quality of the final mesh. Several tech-
niques have been proposed in [94–96].

The fun-sheet matching method, see [97], obtains a block decomposition of the
geometry by means of hexahedral sheets extraction. First, a tetrahedral mesh is gen-
erated and the is converted into an hexahedral mesh by partitioning each tetrahedron
into four hexahedra. Additional layers of hexahedral elements are placed at the bound-
ary to ensure that the boundary is properly captured. Then, the algorithm iteratively
removes hexahedral sheets until a block decomposition is computed.

Local Dual Contributions

The objective of this method [98,99] is to obtain a block decomposition of a geometry.
Therefore, the final mesh will be obtained by applying, for instance, transfinite inter-
polation and ensuring mesh compatibility through block faces. The first characteristic
of this method is that to generate the block decomposition, it builds a geometrical and
topological description of its dual. Therefore, it can also be classified as a dual method.
The second characteristic is that it builds this dual representation without a prescribed



quadrilateral surface mesh. Thus, it can also be classified as an unconstrained method.
The method starts from a coarse tetrahedral discretization of the domain. Then,

each mesh tetrahedron is split into four hexahedra, see [100]. From this tetrahedral
mesh, an initial dual description of the block decomposition is build. However, this
dual description does not reproduce the features of the boundary in the mesh. To over-
come this drawback, the method applies a hierarchical scheme and a set of matching
rules that explicitly insert descriptions of dual surfaces and handle their intersection.
That is, it generates a dual of the block mesh with intersections of the proper multi-
plicity, without gaps and that respects the boundary features of the domain. Then this
dual description is dualized to obtain a topological decomposition of the domain in
blocks (ultra-coarse quadrilaterals or hexahedra). Thus, the Local Dual Contribution
algorithm can be decomposed in three steps: i) the generation of a coarse reference
mesh composed by tetrahedral elements; ii) the insertion of dual surfaces by addition
of local dual contributions; and iii) the dual regions are ized to obtained the final block
mesh.

Cross-field based methods

A new family of methods to generate quadrilateral meshes on surfaces have been de-
veloped by the computer graphics community [101–106]. These methods initially
sought a globally smooth parameterization of the surface that does not require any
previous partition of the geometry. These parameterizations are derived from a di-
rectionally field (also called cross-field). For instance, this directionally fields can
be aligned with the principal directions of curvature . These parameterizations pro-
vide well shaped quadrilateral regions that are almost structured (most of the inner
nodes have valence four). Thus, a high-quality quadrilateral mesh can be generated.
However, cross-fields based on main curvatures may present discontinuities and oscil-
lations. Therefore, the cross-field is processed in order to obtain a smooth representa-
tion.

In reference [107], the cross-field is used to compute an automatic partitioning of
an arbitrary planar geometry. Similar to sub-mapping method, this method generates
a geometry decomposition into four-sided regions with curvilinear edges. However, it
can deal with any arbitrary geometry (in contrast to block geometries) and are based on
solving a PDE (in contrast to solving a linear integer problem). It is important to point
out that in [107] the cross-field is computed by imposing that it has to be aligned with
the boundary of the domain (to generate high-quality meshes on the boundary) and
is computed in the interior by solving a PDE. Cross-fields are also used in Reference
[108] to compute the decomposition of planar geometries. However in this case the
cross-field is propagated towards the interior of the domain using a fast marching
algorithm [109]. It is worth to notice that Reference [108] extends the method to
non-planar surfaces.

Cross-field based methods have been extended to generate hexahedral meshes for
arbitrary geometries. The CubeCover method [110] extends to volumetric geometries



the ideas introduced in [103] for surfaces. In this case the cross-field is prescribed
on the boundary (aligned with the boundary) and extended to the inner part. The fi-
nal hexehedral mesh is generated from this cross-field. Similar approaches are used
in [111–113], although the procedure to compute the inner cross-field is different.
Although cross-field based methods are a promising alternative for hexahedral mesh
generation, they still exhibit some limitations. On one hand, they do not provide a
theoretical guarantees that they can always generate a valid all-hex mesh. Neverthe-
less, they can generate full hexahedral meshes in some complex geometries. On the
other hand, further research is needed in order to deal with non-constant element size.
Finally, it is important to point out that cross-field based methods are unconstrained
methods since they mesh the geometry from an unmeshed boundary.

4.2 Inside-Outside

Grid-based methods

The grid-based methods are one of the most successful approaches to hexahedral
meshing [114, 115]. The main reason is that the approach is highly automated and
that it can be applied to any geometry. The mesh is generated from the inside to the
outside of the volume. First, a grid mesh is generated in the inner part of the geometry.
The initial mesh can be generated using a Cartesian grid or using an octree to adapt
the inner mesh to the prescribed element size. Then, this mesh is projected or adapted
in order to capture the boundary of the domain. Since the mesh is generated in an
inside-outside manner, high-quality elements are generated in the interior. However,
the element quality near the boundary may be lower. In addition, the final mesh may
not correctly capture the geometric features present in the model.

References [116, 117] describe an algorithm to extract adaptive quadrilateral and
hexahedral meshes directly from volumetric data. The main advantage of this method
is that it is not necessary to construct a geometric model from the volumetric data.
Moreover, in [118], a new grid-based method to generate hex-meshes for multi-material
domains, is presented.

Reference [119] proposes an algorithm to embed topological features in a hexahe-
dral mesh in order to correctly capture the geometrical features present in the volume.
The topological features of the geometry are included in a Cartesian mesh without the
need to enrich the initial mesh. In this way, the grid-based methods can correctly mesh
geometries that present sharp features. Reference [120] presents a method to correctly
capture the boundary of assembly models using grid-based methods. Finally, it is im-
portant to point out that special efforts have been focused on the development of new
templates to adapt the inner mesh to the geometry boundaries [121, 122]



Receding Front

Two of the most used techniques to generate unstructured hexahedral meshes are the
advancing front methods and the grid-based techniques. On the one hand, the grid-
based methods are robust and fully automatic. In addition, these methods generate
high-quality elements in the inner part of the mesh. These advantages are possible
because the mesh is generated using an inside-outside approach. However, the grid-
based methods generate low quality hexahedra near the boundary and the final mesh
depends on the spatial orientation of the domain. These drawbacks appear because the
inner mesh does not have layers of hexahedra that progressively adapt the inner mesh
to the boundary shape of the domain.

On the other hand, the advancing front methods, see Section 4.3, generate high-
quality meshes near the boundary that do not depend on the orientation of the object.
This is possible because the elements are generated layer by layer following the shape
of the boundary surface. However, the advancing front methods are less robust and
automatic than the grid-based ones. As the fronts advance into the volume, they collide
between them and the intersections have to be computed. In addition, the fronts define
complex voids in the inner parts of the domain. Those voids are as difficult to mesh
as the original geometry and, for this reason, they can not be automatically meshed.

The receding front method combines the advantages of the advancing front meth-
ods and the grid-based techniques, while avoiding its disadvantages. The method
pre-computes a set of mesh fronts by combining the solution of two Eikonal equa-
tions. Then, the mesh is generated from the inside to the outside using an advancing
front technique that uses the pre-computed fronts as a guide in order to avoid front
collisions. The method has been applied to generate hexahedral meshes for exterior
domains, see Figures 8(a) and 8(b). However, further research is needed to improve
its robustness and to check its capabilities for arbitrary geometries.

The idea of advancing a front from the inner part of the geometry has been also used
in [123] where the fronts are guided by a harmonic field. Similarly to the receding
front method, further research is needed to extend it to more complex geometries with
variable features near the boundary.

4.3 Outside-Inside

Advancing front techniques are the framework for the outside-inside approach to gen-
erate hexahedral meshes. These fronts are advanced according to geometrical proper-
ties, primal methods, or according to topological properties, dual methods.

4.3.1 Primal methods

Advancing front techniques for quadrilateral meshing was first introduced by the
paving method in [41, 42]. Later, further improvements [44] and extensions to sur-
face meshing [43] were proposed. The input of the method is a pre-meshed boundary.
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Figure 8: Meshes generated using the receding front method for: (a) the exterior
domain of a five-pointed star and; (b) the exterior domain of a plane.

Fronts are determined from this discretized boundary and are propagated (outside-
inside approach) until they collide or small voids are left. Note that in this process the
basic geometric operations are: node location, element creation and front management
(seaming of elements, wedge and tuck insertion). In this case, special templates are
used to obtain the final quadrilateral mesh. The paving method produces high-quality
meshes with quadrilateral elements well-aligned with the geometry boundary.

The plastering method [124–126] is the natural extension of the paving method to
generate hexahedral meshes for any arbitrary three-dimensional geometry. It starts
from a quadrilateral surface mesh of the geometry and advances inwards the solid.
As the fronts advance elements are created. Finally, the fronts collide or generate
inner unmeshed voids. The plastering method generates high quality meshes at the
boundary, however it fails to mesh these inner voids and therefore, hybrid meshes
may be obtained as a a result. In some way, it propagates the quadrilateral boundary
mesh to the inner part of the geometry and yields to an over-constraint boundary mesh
for the inner voids. To overcome this issue, the unconstrained plastering [27–29] was
introduced. This method starts from an unmeshed boundary. Therefore, there is not
a boundary mesh topology that has to be respected. Moreover, in the unconstrained
plastering layers advance inward the geometry delaying the definition of the elements
until they are completely defined by the intersection of the fronts. Unfortunately,
hybrid meshes are also obtained in the case of complex geometries and therefore,
further research is needed in order to achieve a full unstructured hexahedral mesh
generator.

4.3.2 Dual methods

Dual Methods are based on the concept of the dual mesh. In Reference [19], the
authors introduce the Spatial Twist Continuum (STC) to represent the dual of an all-



hexahedral mesh. The whisker weaving algorithm uses the STC to construct a hexahe-
dral mesh, see [127]. The algorithm begins with a quadrilateral mesh of the boundary
and then constructs hexahedral element connectivity advancing into the solid. Finally,
when the dual mesh is constructed, the nodes are positioned in the physical space.
However, since the algorithm only takes into account the topology of the mesh, and
not the geometrical features, low-quality elements can be generated. Several exten-
sions of the whisker weaving algorithm have been presented in the literature to over-
come its original drawbacks and to improve the quality of the final mesh. In [128], the
authors introduce different weaving patterns to improve the mesh quality. In addition,
the new patterns are also able to modify the boundary quadrilateral mesh to eliminate
intersecting dual curves. Moreover, in [129], the geometric features of the model are
also taken into account, which further improves the mesh quality. However, for an
arbitrary geometry, it is not yet possible to obtain a mesh without inverted elements.
Other approaches of dual methods are the ones proposed in [130, 131]. These algo-
rithms perform a decomposition of the geometry in the dual space. Therefore, they can
also be considered as decomposition methods and included in Section 4.1. Although
they are able to generate a dual mesh, they do not generate the primal mesh. Recently,
the dual method presented in [130] has been extended to more complex geometries
in [132].

5 Concluding Remarks

In this work we have presented a detailed survey of hexahedral mesh generation al-
gorithms. Although there exist several attempts to develop a high-quality hexahedral
mesh generation algorithm for arbitrary geometries, none of them completely fulfills
all the requirements. For instance, the grid-based methods are able to generate hexa-
hedral meshes for a wide range of geometries (from mechanical to bio-mediacal appli-
cations). However, they fail to deliver adequate discretizations for computational fluid
dynamics or solid mechanics applications, where high-quality elements have to be
aligned with the boundaries. For this kind of applications, the industry and commer-
cial packages rely on assembly models to mesh each part separately while maintaining
the compatibility between them. For large models, this approach still requires large
and intensive human iteration. To overcome this drawback automatic decomposition
methods are currently investigated. One of the most promising alternative are the
cross-field based methods. These methods compute a decomposition of the geometry
by solving a PDE and then, each part is meshed separately using a mapping algo-
rithm. Although the final mesh is not currently adapted to a prescribed size function,
the elements can be coarsened or refined using existing algorithms in order to obtain
the desired element size. Although encouraging results have been obtained during the
last years, several aspects of the method have to be revised and improved. For in-
stance, a deeper analysis is needed in order to find a sufficient condition to obtain an
all-hexahedral structure or decomposition.

Assembly models will be intensively used in industry in the near future. Therefore,



there will be an increasing demand of methods that allow generating high-quality
meshes for these models. Since assembly models can be meshed in several steps,
it is important to analyze the topological constraints that allow obtaining conformal
hexahedral meshes at the interface between two previously meshed sub-volumes.

Finally, it is worth to notice that meshing algorithms are closely related to the
computational methods that use these meshes. Therefore, new trends in computational
mechanics community will pose new challenges and will open new possibilities. For
instance, during the last decade high-order methods have attracted interest in the FEM
community. The standard strategy to generate high-order meshes is an a posteriori
approach. That is, first, a linear mesh is generated according to the requirements of
the numerical simulation, and then it is curved to match the boundary geometry. In
this process inverted element may appear that will preclude the use of the high-order
mesh in a subsequent analysis. Thus, robust untangling and smoothing techniques will
be needed to improve these meshes. Moreover, new approaches can be devised that
improve the performance of current high-order mesh generation technology.

Similarly, iso-geometric analysis suggests new applications and opens frontiers to
our community. The close relationship between CAD representation and volume de-
composition becomes stronger in this scenario. In particular, automatic and robust
volume parameterization and volume decomposition algorithms are needed.
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conexas mediante submapping. Revista Internacional de Métodos Numéricos
para Cálculo y Diseño en Ingenierı́a, 2007.

[73] E. Ruiz-Gironés and J. Sarrate. Generation of structured meshes in multi-
ply connected surfaces using submapping. Advances in Engineering Software,
41:379–387, 2010.

[74] E. Ruiz-Gironés and J. Sarrate. Generation of structured hexahedral meshes
in volumes with holes. Finite Elements in Analysis and Design, 46:792–804,
2010.

[75] R. Chen and P. Xi. A digraph-based hexahedral meshing method for coupled
quasi-polycubes. Computer Methods in Applied Mechanics and Engineering,
268:18–39, 2014.

[76] M. A. Scott, S. E. Benzley, and S. J. Owen. Improved many-to-one sweep-
ing. International Journal for Numerical Methods in Engineering, 65:332–348,
2006.

[77] M. Lai, S. Benzley, and D. White. Automated hexahedral mesh generation by
generalized multiple source to multiple target sweeping. International Journal
for Numerical Methods in Engineering, 49:261–275, 2000.

[78] J. Shepherd, S. E. Benzley, and S. Mitchell. Interval assignment for vol-
umes with holes. International Journal for Numerical Methods in Engineering,
49:277–288, 2000.



[79] E. Ruiz-Gironés, X. Roca, and J. Sarrate. Using a computational domain and a
three-stage node location procedure for multi-sweeping algorithms. Advances
in Engineering Software, 42(9):700–713, 2011.

[80] K. Miyoshi and T. Blacker. Hexahedral mesh generation using multi-axis
cooper algorithm. In Proceedings of the 9th International Meshing Roundtable,
2000.

[81] G. Xiong, S. Musuvathy, and T. Fang. Automated structured all-quadrilateral
and hexahedral meshing of tubular surfaces. In Proceedings of the 21st Inter-
national Meshing Roundtable, pages 103–120. Springer, 2013.

[82] E Marchandise, C Geuzaine, and JF Remacle. Cardiovascular and lung mesh
generation based on centerlines. International journal for numerical methods
in biomedical engineering, 29(6):665–682, 2013.

[83] C. G. Armstrong, D. J. Robinson, R. M. McKeag, T. S. Li, S. J. Bridgett, R. J.
Donaghy, and C. A. McGleenan. Medials for meshing and more. In Proceed-
ings of the 4th International Meshing Roundtable, 1995.

[84] M.A. Price, C.G. Armstrong, and M.A. Sabin. Hexahedral mesh generation
by medial surface subdivision: Part I. Solids with convex edges. International
Journal for Numerical Methods in Engineering, 38:3335–3359, 1995.

[85] M.A. Price and C.G. Armstrong. Hexahedral mesh generation by medial sur-
face subdivision: Part II. solids with flat and concave edges. International
Journal for Numerical Methods in Engineering, 40(1):111–136, 1997.

[86] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral mesh
generation using the embedded Voronoi graph. Engineering with Computers,
15(3):248–262, 1999.

[87] A. Sheffer and M. Bercovier. Hexahedral meshing of non-linear volumes us-
ing Voronoi faces and edges. International Journal for Numerical Methods in
Engineering, 49(1-2):329–351, 2000.

[88] W. R. Quadros. Laytracks3d: Mesh generator for general assembly models us-
ing medial axis transform. In Research note presented at the 22nd International
Meshing Roundtable, 2013.

[89] J. H. Lu, I. Song, W. R. Quadros, and K. Shimada. Geometric reasoning in
sketch-based volumetric decomposition framework for hexahedral meshing. In
Proceedings of the 21st International Meshing Roundtable, pages 297–314,
2013.

[90] H. Sakurai. Volume decomposition and feature recognition: Part 1—polyhedral
objects. Computer-Aided Design, 27(11):833–843, 1995.



[91] H. Sakurai and P. Dave. Volume decomposition and feature recognition, part ii:
curved objects. Computer-Aided Design, 28(6):519–537, 1996.

[92] R. Sonthi, G. Kunjur, and R. Gadh. Shape feature determination usiang the
curvature region representation. In Proceedings of the fourth ACM symposium
on Solid modeling and applications, pages 285–296. ACM, 1997.

[93] Y. Lu, R. Gadh, and T. J. Tautges. Feature based hex meshing methodol-
ogy: feature recognition and volume decomposition. Computer-Aided Design,
33(3):221–232, 2001.

[94] Y. He, H. Wang, C. Fu, and H. Qin. A divide-and-conquer approach for au-
tomatic polycube map construction. Computers & Graphics, 33(3):369–380,
2009.

[95] J. Gregson, A. Sheffer, and E. Zhang. All-hex mesh generation via volumetric
polycube deformation. In Computer graphics forum, volume 30, pages 1407–
1416. Wiley Online Library, 2011.

[96] M. Livesu, N. Vining, A. Sheffer, J. Gregson, and R. Scateni. Polycut: mono-
tone graph-cuts for polycube base-complex construction. ACM Transactions
on Graphics (TOG), 32(6):171, 2013.

[97] N. Kowalski, F. Ledoux, M. L. Staten, and S. J. Owen. Fun sheet matching -
automatic generation of block-structured hexahedral mesh using fundamental
sheets. In 10th usnccm, 2009.

[98] X. Roca and J. Sarrate. Local dual contributions on simplices: a tool for block
meshing. In Proceedings of the 17th International Meshing Roundtable, pages
513–531. Springer, 2008.

[99] X. Roca and J. Sarrate. Local dual contributions: Representing dual surfaces for
block meshing. International Journal for Numerical Methods in Engineering,
83:709–740, 2010.

[100] G. F. Carey. Hexing the tet. Communications in Numerical Methods in Engi-
neering, 18(3):223–227, 2002.

[101] G. Bunin. A continuum theory for unstructured mesh generation in two dimen-
sions. Computer Aided Geometric Design, 25(1):14–40, 2008.
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