5,222 research outputs found

    Decoupling Multivariate Polynomials Using First-Order Information

    Full text link
    We present a method to decompose a set of multivariate real polynomials into linear combinations of univariate polynomials in linear forms of the input variables. The method proceeds by collecting the first-order information of the polynomials in a set of operating points, which is captured by the Jacobian matrix evaluated at the operating points. The polyadic canonical decomposition of the three-way tensor of Jacobian matrices directly returns the unknown linear relations, as well as the necessary information to reconstruct the univariate polynomials. The conditions under which this decoupling procedure works are discussed, and the method is illustrated on several numerical examples

    Symmetric Tensor Decomposition by an Iterative Eigendecomposition Algorithm

    Get PDF
    We present an iterative algorithm, called the symmetric tensor eigen-rank-one iterative decomposition (STEROID), for decomposing a symmetric tensor into a real linear combination of symmetric rank-1 unit-norm outer factors using only eigendecompositions and least-squares fitting. Originally designed for a symmetric tensor with an order being a power of two, STEROID is shown to be applicable to any order through an innovative tensor embedding technique. Numerical examples demonstrate the high efficiency and accuracy of the proposed scheme even for large scale problems. Furthermore, we show how STEROID readily solves a problem in nonlinear block-structured system identification and nonlinear state-space identification

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction

    Markov and mixed models with applications

    Get PDF

    Multifrequency Aperture-Synthesizing Microwave Radiometer System (MFASMR). Volume 1

    Get PDF
    Background material and a systems analysis of a multifrequency aperture - synthesizing microwave radiometer system is presented. It was found that the system does not exhibit high performance because much of the available thermal power is not used in the construction of the image and because the image that can be formed has a resolution of only ten lines. An analysis of image reconstruction is given. The system is compared with conventional aperture synthesis systems

    Transformer NN-based behavioral modeling and predistortion for wideband pas

    Get PDF
    Abstract. This work investigates the suitability of transformer neural networks (NNs) for behavioral modeling and the predistortion of wideband power amplifiers. We propose an augmented real-valued time delay transformer NN (ARVTDTNN) model based on a transformer encoder that utilizes the multi-head attention mechanism. The inherent parallelized computation nature of transformers enables faster training and inference in the hardware implementation phase. Additionally, transformers have the potential to learn complex nonlinearities and long-term memory effects that will appear in future high-bandwidth power amplifiers. The experimental results based on 100 MHz LDMOS Doherty PA show that the ARVTDTNN model exhibits superior or comparable performance to the state-of-the-art models in terms of normalized mean square error (NMSE) and adjacent channel power ratio (ACPR). It improves the NMSE and ACPR up to −37.6 dB and −41.8 dB, respectively. Moreover, this approach can be considered as a generic framework to solve sequence-to-one regression problems with the transformer architecture
    • …
    corecore