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1 Introduction

The development of new medical drugs is driven by progress in many areas.
These include medicine, biotechnology, new production equipment and not least,
as will be the focus here, the area of mathematical and statistical modelling.

Before a new drug can move from a simple molecule in the laboratory to
become a new product in the local pharmacy, there are many questions which
must first be answered: Is it safe, also for patients, elderly people, pregnant
women, etc.? Does the drug work? In which way should it be given to the
patient? Are there any unwanted side-effects? The answer to all these questions
require a long series of trials, which must be carefully planned to discover all
facets of a new drug candidate.

New drug candidates are in the early development phase initially tested with
animals. These tests aim to show if the drug seems to work and also to check for
unwanted side effects. The next step is to move to clinical trials with humans.
These trials have traditionally been separated into 4 phases. In Phase 1 the drug
is given to healthy young male persons mainly to see if it is safe for humans
but the sponsor (the drug company) will of course also look for indications of a
positive effect. In Phase 2 the drug is given to the target patient group again
mainly to show that it is still safe, but also to give indications of a positive
effect. When safety has been established and the sponsor believes in the drugs
potential, it will be moved to Phase 3, which generally involve the largest and
most costly trials. These trials focus on proving the positive effect of the drug
to the health authorities. If all goes well, the drug is approved and marketed.
In some cases this will be followed by new trials, which is known as Phase 4
studies.

The series of clinical trials is not only very costly but also time consuming.
The drug may easily take 10 years to get approved and marketed to the patients.
Due to this both health authorities and drug companies are looking of ways to
accelerate this project, while still keeping it as safe as possible. The primary
target is to insure that no harmful drugs get approved, but at the same time
that the good drug are not delayed unnecessarily from reaching the patients,
who will benefit from them. It is in this connection that mathematical and
statistical modelling has become an important tool, since it may help to give
improved understanding of the outcome of clinical trials.

The scientific disciplines concerning mathematical modelling in drug devel-
opment are called pharmacokinetics and pharmacodynamics, or in brief just
PK/PD. In popular terms PK is often described as “what the body does to
the drug” and PD as “what the drug does to the body”. More specifically
PK focuses on modelling how the drug passes through the body, normally by
modelling concentrations in various areas of the body as a function of time, see
Figure 1(a). PD aims at linking these modelled drug concentration to certain
measure of effect through a PD-model. An example of a PD-model is shown
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in Figure 1(b). With a combined PK/PD model it is thus possible to give a
picture of the expected effect for a given dose as a function of time as illustrated
in Figure 1(c).
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Figure 1: Illustration of PK/PD modelling.

For more thorough reading on pharmacokinetics and pharmacodynamics the
books Gabrielsson and Weiner (1997) and Rowland and Tozer (1997) are sug-
gested.

2 The ADME Model

A complicated process is initiated as soon as a drug enters the body. This
process can be divided into four phases, absorption, distribution, metabolism
and elimination and hence the acronym ADME.

The absorption phase describes how the drug enters the body, or more pre-
cisely how the drug enters the bloodstream. When using intravenous (iv) ad-
ministration, no absorption phase is present since the drug is injected directly
into the bloodstream. The whole dose can be given in one rapid injection, called
a bolus dose, or by using a constant rate infusion over a certain period of time.
All other dosing methods, that is when the drug is not injected directly into
the bloodstream, are called extravascular dosing. Examples of such methods
are injections into a muscle or fat tissue and oral dosing. Those methods have
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one thing in common, they require an absorption phase since the drug needs
to cross some boundaries in the body before it reaches the bloodstream. As an
example when administrating a pill (oral dosing), the pill needs to dissolve and
cross the gut wall before it reaches the bloodstream.

The distribution phase describes how the drug spreads through the body,
into its fluids and tissues, after it has reached the bloodstream. It is in the
distribution phase the drug is brought to the place of action trough the blood-
stream. The time it takes for the drug to get to the place of action is very
dependent on if it is easily accessible by the bloodstream. The heart is, as an
example, easily accessible by the bloodstream while the bone marrow is not.

The third phase, metabolism, describes a process where the initial (parent)
compound is broken into another compounds, called metabolites. The metabo-
lites can either be inactive, therefore reducing the drugs effect on the body, or
they can be active, sometimes more active than the parent compound. The liver
plays a leading role in metabolism since it produces many of the enzymes used
by metabolism.

The last phase, the elimination phase, describes how the compounds and
their metabolites are removed from the body via excretion. Most drugs are
eliminated via the kidneys with urine.

The four phases of the ADME model can be summarized as:

Absorption Drug entering the body

Distribution Drug is spreading to different areas of the body

Metabolism Drug is being changed to new chemical compounds

Elimination Drug is removed from the body

3 Fundamental concepts

Concentration is defined as amount per volume and is the most central concept
in PK/PD modelling. The reason is that concentration of a drug is relatively
easy to measure from a blood sample and at the same time concentration is a
key factor when modelling both positive and negative effects of a drug. Con-
centration is calculated as

C =
A

V
(1)

where A is amount of drug and V is the volume of distribution. The amount
of drug is either measured as mass (mg) or in number of molecules (mol). The
volume of distribution is defined as the volume which the drug has to distribute
evenly into in order to reach the measured concentration in the blood, C. If the
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the drug only distributes into the blood then the volume of distribution will be
equal to the volume of the blood. However, often the volume of distribution will
be larger than the volume of the blood. This can happen if the drug distributes
into other parts of the body or if the drug is chemically bound in a way where it
cannot be measured. The amount of drug is unchanged, but only a smaller part
can be measured in the blood. This will result in a larger volume of distribution
to reflect the lower measured concentration of the drug.

Another central issue is the timecourse of the elimination of the drug. In the
most simple model one assumes that the elimination rate is proportional to the
remaining amount of drug, A. The proportionality constant is CL/V , where
CL is called clearance and measures the volume of blood which is cleared for
drug per time. The rate of clearance is thus CL/V ·A. CL and V are sometimes
referred to as micro constants and are sometimes replaced by

K =
CL

V
, (2)

where K, the elimination rate constant, is a so called a macro constant. The
choice of parameterization will be decided by the identifiability of the parameters
based on the given data. In some situations it is possible to estimate both CL
and V but some times they cannot be separated and it is thus only possible to
estimate K.

A basic measure of the exposure of the drug is called AUC, which stands for
area under the curve. AUC measures the area under the curve of concentration
vs. time. An important feature of AUC is that it can be evaluated for most
types of models and it can even be determined graphically based of a series of
concentration measurements.

4 Compartment models

The purpose of PK modelling is mainly to describe how a drug passes through
the body by modelling concentrations of the drug in different areas of the body.
To measure the concentration of a drug a blood sample is usually taken and the
concentration measured. Since the heart is pumping blood constantly it can be
assumed that the concentration of the drug is the same within the bloodstream
at a given time. This means that as soon as the drug has reached the blood-
stream the concentration of the drug is the same throughout the bloodstream.
However, it might not be the case that the drug spreads instantly to other parts
of the body. Therefore, in order to build mathematical models to describe how
the concentration changes with time the body can conveniently be divided into
parts, called compartments, where the drug can be assumed to behave in the
same manner. This type of modelling is called compartment modelling. The
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compartment where the concentration is measured, usually the bloodstream, is
of special interest and is called the central compartment.

The most basic model found is the one describing a one compartment system,
which only includes the central compartment and a possible absorption compart-
ment. This model is appropriate to use if the drug distributes to accessible areas
of the body instantly. If the drug is given directly into the bloodstream (iv) the
system only includes a central compartment while in the case of extravascular
dosing the system should have an absorption compartment in addition to the
central compartment. As an example, if the drug is administrated orally the
system should include a gut compartment.

In some cases the one compartment model is not suitable for describing the
system and in these cases a multi compartment model may need to be applied
(see Sec. 4.2). However, in the remaining part of this report the focus will
mainly be on the one compartment model (with an additional compartment if
the drug is not administrated directly into the bloodstream) since many systems
can be described using that model.

A compartment system can easily be visualized by drawing the compart-
ments as circles and the connections between them with arrows indicating the
direction of the flow between the compartments. A figure showing the one com-
partment system in case of intravenous bolus dose is shown in Figure 2(a) and
in the case of oral dosing in Figure 2(b).

Central

K

(a) 1-compartment
system

Gut Central
Ka

K

(b) 1-compartment system with additional
gut compartment

Figure 2: Illustration of compartment models.

The transfer rate of a drug from one compartment to another can usually
be described using first order kinetics, meaning that the rate of change is pro-
portional to the amount of the drug in the source compartment.

4.1 One-compartment models

The relationship between the rate of elimination and the amount of a drug in a
one compartment model with first order kinetics when drug is administrated as
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a bolus dose (the system shown in Figure 2(a)) can be written mathematically
as:

dA

dt
= −K · A (3)

where A is the amount of the drug and K is the first order elimination rate
constant. K is always positive and its size controls the speed of the elimination.
The differential equation can be solved resulting in a function describing the
amount of the drug in the central compartment at a given time

Abolus(t) = A0 exp(−K · t) (4)

where A0 is the amount of the drug at time t = 0, that is the size of the given
dose.

In the case of extravascular dosing other compartments needs to be added
to the model. E.g. for oral dosing a extra gut compartment is often sufficient
to model the absorption phase (the system shown in Figure 2(b)). Usually the
rate of change in the gut compartment can be described with first order kinetics
resulting in the following differential equation

dAgut

dt
= −Ka · Agut (5)

where Agut is the amount of the drug in the gut and Ka is the first order
absorption constant. It is usually the case that Ka > K meaning the absorp-
tion of the drug from the gut into the central compartment is faster than the
elimination process. However, in some cases Ka < K which is known as the flip-
flop situation. The flip-flop situation is discussed further in Section 4.1.2. The
change in amount in the central compartment can now be found by combining
(3) describing the elimination, and (5) describing the absorption from the gut
resulting in

dA

dt
=

from gut︷ ︸︸ ︷
F · Ka · Agut −

elimination︷ ︸︸ ︷
K · A (6)

where F denotes the bioavailability which is the fraction of the dose that reaches
the central compartment. The differential equation can be solved resulting in
an expression for the amount of drug in the central compartment for a given
time which is a function of both the absorption and the elimination:

Aoral(t) =
KaFA0

Ka − K
(exp(−K · t) − exp(−Ka · t)) (7)

Equations (4) and (7) can now be used to describe the amount of drug in
the central compartment for a one compartment system in the case of a bolus
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dose and oral dosing, respectively. Usually it is more interesting to model the
concentration (C) in stead of the amount since it is the concentration of the
drug in the blood that is measured. According to (1) the concentration is found
by dividing the amount by the volume of distribution resulting in

Cbolus(t) =
Abolus(t)

V
=

A0

V
· exp(−K · t) (8)

in the case of a bolus dose, and

Coral(t) =
Aoral(t)

V
=

KaFA0

V (Ka − K)
(exp(−K · t) − exp(−Ka · t)) (9)

in the case of oral dosing.

4.1.1 Case study: pain reliever

To illustrate the use of compartment modelling the drug paracetamol will be
used as a case study. Paracetamol is the active substrate in a large number of
pain relieving drugs on the market although its mechanism of action is still a
source of debate. At correct dosages it works well against head ache and fever
but at very high dosages it can cause lasting damages on the liver. For adults
it is recommended to take doses of 1000mg at most 3-4 times a day and never
more than 4g per day.

Paracetamol has been tested in a number of trails and it has been shown
that the pharmacokinetics can be adequately described by a multi-compartment
model structure, which will be introduced in Section 4.2 in further detail (see also
Rawlins et al. (1977)). As a good approximation however, it can be modelled
using a one-compartment model with a 1st order elimination from the blood
and likewise a 1st order absorption from the stomach. Paracetamol can thus
be modelled with the systems shown in Figure 2 for intravenous bolus and oral
dosing. Based on Rawlins et al. (1977) the elimination rate constant can be
found to K = 0.28h−1 and the volume of distribution is 0.60L/kg giving V =
42L for an average 70kg adult. The absorption is controlled by an absorption
rate constant of Ka = 1.80h−1 and the bioavailability is found to F = 0.89.
Note that Ka > K holds here, meaning that paracetamol is absorbed faster
than it is eliminated.

Based on the information found for paracetamol it is possible to draw the
concentration as a function of time based on (8) and (9). This is called a
concentration profile and is shown for both intravenous bolus and oral dosing
in Figure 3.

Concentration profiles are also commonly shown with concentration on a
log-scale as seen in Figure 4. This makes it possible to directly read off the
elimination rate constant K as the slope of the line for intravenous bolus dos-
ing. For oral dosing K is found as the slope of the last part of the profile
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Figure 3: Concentration profiles for dosing of 1000mg paracetamol.

(terminal slope) where it follows a straight line. This holds since Ka > K and
the absorption from the gut thus has finished so the drug is only contained in
the blood as for intravenous bolus dosing.
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Figure 4: Concentration profile on log-scale for dosing of 1000mg paracetamol.

In this case looking at Figure 4(b) we find approximately

K = −∆(log C)
∆t

= − log 3 − log 7.5
7h − 4h

≈ 0.305h−1 (10)

which compares well to the true value of K = 0.28h−1.
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4.1.2 Flip-flop situation

Cases where the absorption rate constant is larger than the elimination rate
constant (Ka < K) is called a flip-flop situation. In these situations the absorp-
tion will be the so-called rate limiting step in the final phase of the elimination
for oral dosing (Gabrielsson and Weiner 1997) and thus the terminal slope for
oral dosing will be −Ka instead of −K as shown in Figure 4(b). For intravenous
dosing the slope is −K independent of Ka.

In order to be able to decide if it is a flip-flop situation it is necessary to
perform both an intravenous bolus dosing study and an oral dosing study. If
the terminal slope of the oral dosing concentration profile is parallel to the
intravenous bolus concentration profile it is a normal situation, since the final
elimination rates are equal. This can be known since the intravenous bolus
concentration profile consists only of an elimination phase without an absorption
phase.

On the other hand, if it is observed that the terminal slope for oral dosing
is less steep than the intravenous bolus profile slope then the final phase must
be absorption. The two situations are illustrated in Figure 5.

Time
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c.
) iv
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(a) Terminal phase for oral dosing is elimi-
nation

Time

lo
g(

C
on

c.
) iv

oral

(b) Terminal phase for oral dosing is absorp-
tion

Figure 5: Situations with both elimination (normal) and absorption (flip-flop)
as terminal phase seen as parallel and non-parallel terminal slopes respectively.

It is possible to determine the remaining rate constant (either Ka in a normal
situation and K in a flip-flop situation) using the method of residuals. This is
explained in detail in Gabrielsson and Weiner (1997).

4.1.3 Maximum concentration

It is often of importance to know the maximum concentration, Cmax, of a drug in
the blood and the time it takes to reach this maximum, tmax. For an intravenous
bolus dose the maximum concentration is obtained just after the drug is injected
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into the the bloodstream, that is tmax = 0 and the maximum concentration can
be calculated as

Cmax,iv =
A0

V
(11)

where A0 is the size of the dose and V is the volume of distribution.

In the case of extravascular administration, the concentration will not peak
until after a while because of the absorption step. In general, the time it takes
to reach the maximum can be found by differentiating the expression for C(t)
for the system, with respect to t, set the derivative equal to zero and finally
solve for tmax. In the case of oral dosing in a one compartment system following
first order absorption and elimination the expression for C(t) is given in (9).
Differentiating this expression, setting the derivative to zero and solving for
tmax gives

tmax =
1

Ka − K
ln

(
Ka

K

)
(12)

The resulting maximum concentration at tmax then becomes

Cmax,oral =
KaFA0

V (Ka − K)
(exp(−K · tmax) − exp(−Ka · tmax)) (13)

which can be simplified to

Cmax,oral =
FA0

V
exp(−K · tmax) (14)

4.1.4 Half-life of drug

An important property of a drug is its biological half-life, t1/2. The half-life is
the time it takes for reducing the amount of drug left in the body by 50%. In
the case of a bolus dose, in a one-compartment system, the amount of the drug
in the body at t = t1/2 is

A(t1/2) = A0 exp(−K · t1/2) (15)

according to (4). By definition, half of the given amount (A0) should be left at
in the body at t = t1/2 or

1
2
A0 = A0 exp(−K · t1/2) (16)

which can be simplified to

t1/2 =
ln 2
K

(17)
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4.1.5 Constant rate infusion and multiple dosing

It is often the case that it is not enough for a patient to have effect of a drug
during the time span where a single pill or intravenous bolus dose is active in
the body. In some cases the solution is simply to give a higher dose, but since
this may cause unwanted side effects, this is not always the best way to go.

Another possibility to prolong the effect of a drug is to give it as a constant
rate infusion into the vein. This is the best way to control the drug flow into
the body and it is easily modelled for a constant rate Rin by

dC

dt
=

Rin

V
− CL

V
· C (18)

assuming a one-compartment model with first order elimination. The solution
is given as

C(t) =
Rin

CL

[
1 − exp

(
−CL

V
t

)]
. (19)

In some cases it is more practical to approximate the constant rate infusion
by taking pills with a constant time interval. This is known as multiple dosing
and is related to a constant rate infusion by the equation

Rin =
F · A0

τ
(20)

where A0 is the dose in each pill, F is the bioavailability (the fraction that
reaches the blood) and τ is the time interval between dosing. The concentration
profile for multiple dosing is a sum of single oral dosing profiles which can be
written as

CMD(t) =
N−1∑
n=0

Coral(t − nτ) (21)

where N is the number of doses and Coral is given in (9).

The system is in steady state when the elimination rate equals the infusion
rate, that is when

Rin

V
=

CL

V
CSS (22)

which gives a steady state concentration
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CSS =
Rin

CL
. (23)

It can be shown by using (19) that 90% of CSS is reached after 3.32 half-
lives. This result is independent of the rate of infusion which gives rise to the
general rule of thumb that 90% of steady state concentration is reached after
3-4 half-lives (Gabrielsson and Weiner 1997).

Two examples of constant rate infusion and multiple dosing concentration
profiles for paracetamol are shown in Figure 6.
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Figure 6: Multiple dosing of 4g paracetamol with 4 oral doses of 1g shown as a
thick line. The dotted line is a constant rate infusion at a corresponding rate.

4.2 Multi-compartment models

It may be the case that the one-compartment model is not sufficient to describe
the distribution and elimination of a drug. More complicated models where
additional compartments are added to the central compartment, resulting in
a multi-compartment system, should then be applied. As a consequence, the
system consists of a central compartment, representing the bloodstream and
rapidly equilibrated organs, one or more peripheral compartments, represent-
ing more slowly equilibrating tissues, and finally in the case of extravascular
administration, an absorption compartment.

The expression for C(t) for a one compartment system (intravenous dosing)
only includes a singe exponential term (Equation (4)). The best way to reveal
how many compartments are needed to best describe the time course of the
concentration is to plot the concentration on a semi-logarithmic scale. For
a multi-compartment system this will most likely look like a piecewise linear
function. As a general rule of thumb one compartment is needed for each linear
part that is identified. As an example a two compartment system in the case of
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a bolus dose and the corresponding concentration profile are shown in Figure
7. It can be seen by looking at the figure that the concentration profile consists
of two linear phases, a rapid initial and a slow terminal phase, which is the
”fingerprint” of two-compartment systems.
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(a) Two-compartment system
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(b) Concentration profile for a two-
compartment system

Figure 7: Illustration of two-compartment models.

The system shown in Figure 7(a) can be described mathematically using
two differential equations, where C1 and C2 represents the concentration in the
central compartment and the peripheral compartment respectively.

dC1

dt
= K21 · C2 − K12 · C1 − K · C1 (24)

dC2

dt
= K12 · C1 − K21 · C2 (25)

A solution of the differential equations, that is an expression for the concentra-
tion in the central compartment, can be written as

C = A · exp(−αt) + B · exp(−βt) (26)

Expressions for A, B, α, β given by K12, K21 and K can be found in Gabrielsson
and Weiner (1997). The half-lives of the two phases can finally be calculated as

t1/2,α =
log(2)

α
(27)

and
t1/2,β =

log(2)
β

. (28)

4.2.1 Case study: pain reliever continued

To illustrate the use of compartment modelling, the intake of paracetamol was
modelled using a one compartment model in Section 4.1.1. It has however been
shown that paracetamol concentration, after intravenous bolus dosis, follows a
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bi-exponential decline indicating that a two compartment model should be used
to describe the system. Based on Rawlins et al. (1977), the time course of the
concentration following an intravenous bolus dose of 1000mg is given by

C(t) = 13.8 · exp(−2.55t) + 13.0 · exp(−0.28t) (29)

The resulting concentration profile is shown in Figure 8.
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Figure 8: Concentration profile for paracetamol (1000mg intravenous bolus).

5 PD modelling

This section contains a brief introduction to pharmacodynamics (PD). In phar-
macodynamics the dependent variable is not always straight forward to define.
The dependent variable in pharmacokinetics is amounts or concentrations of
the drug but for pharmacodynamics the dependent variable is not so obvious.
How is the effect of a drug measured? Drugs against high blood pressure or
fewer can be measured on the actual drop in pressure or temperature. Within
epilepsy the desired effect of a drug should lower the number of seizures making
the PD measurement a count. Within pain relieve the measurement can be a
scale where the subject grades the pain and here the response variable will be
an ordinal variable.

This wide variety of possible outcomes of a pharmacodynamic trial makes it
hard to present a single methodology to handle all cases of PD modelling. This
section will focus on the most simple models and only with continuous response
variables.
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5.1 Receptor Theory

This section includes a quick introduction into receptor theory and how it helps
in the understanding of the pharmacodynamic response. The presentation of
the receptor theory is highly inspired by Gabrielsson and Weiner (1997).

Before a drug molecule can give rise to a pharmacodynamic effect it needs
to interact with the cells. The cell membrane is covered in different receptors
each with a specific structure. The structure defines which molecules that can
attach to the receptor. In engineering terms a receptor can best be described
as a docking station. The drug binding to the receptor initiates a change in the
structure of the receptor and thereby changing the cell membrane.

Drugs are divided into two classes according to their function on the receptor.
Agonists initiates a structural change in the receptor thereby changing the cell
resulting in a response. Antagonists have a different role by simply binding to
the receptor but not inducing any response. By occupying the receptor it blocks
the receptor for other molecules. This is also why antagonists are sometimes
referred to as blockers.

The set of unoccupied receptors [R] placed on the target cells that potentially
can bind with drug molecules [D] and their relation to the bound drug/receptor
complex [DR] can be stated as

[D] + [R]
k1

�
k−1

[DR] (30)

where D denotes the drug, R the receptors and DR the bound drug/receptor
complex.

The equation is based on a reversible receptor that can release the drug and
be occupied by a new drug molecule. The constant k1 indicates the rate of
change from unbound to bounded and k−1 the other way. The binding property
between the drug and the receptor determines the proportion of bound drug at
equilibrium. The term affinity, which is often used to describe how good a drug
binds to the receptor, is defined as

Affinity =
k1

k−1
=

1
Kd

. (31)

The inverse of the affinity is denoted the disassociation constant Kd as shown
above and is also often used.

The properties of association and disassociation determines the proportions
in each state at equilibrium. It is clear that both the willingness to associa-
tion/bind and the ability to stay associated/connected affects the proportions
in equilibrium. One easy way to affect the amount of bound drug is simply to
add more drug.
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The link from the drug/receptor complex to the pharmacodynamic response
can be thought of as a direct link between the receptor occupancy and the re-
sponse. However often an extra state is included although hard to measure. The
extra state extends the occupied state by introducing an occupied and activated
state. It splits the assumption that an occupied receptor is automatically active.

Inactive︷ ︸︸ ︷
[D] + [R] � [DR] �

Active complex︷ ︸︸ ︷
[DR∗] (32)

Equation (32) should be interpreted using the concepts of binding and acti-
vation. Now a drug can be specified as both having a property for binding and
activation of the receptor. This ability to activate the receptor is denoted in-
trinsic activity and is more difficult to measure (Gabrielsson and Weiner 1997).

5.1.1 Michaelis-Menten model

It is possible to derive a model for the relation between drug concentration and
effect based on receptor theory. The effect response E is assumed proportional
to the occupancy of the receptors and thus that the maximal effect is achieved
if all receptors [Rtot] are occupied. This can be stated as

E = α[RD] (33)
Emax = α[Rtot] (34)

where [Rtot] = [R] + [RD] is the total number of receptors and Emax is the
maximal effect and α is the proportionality constant.

The steady state conditions can be stated as

d[RD]
dt

= k1[R][D] − k−1[RD] = 0

[R][D]
[RD]

=
k−1

k1
= Kd (35)

By substituting [R] with ([Rtot] − [RD])

[D]([Rtot] − [RD])
[RD]

= Kd

[RD]
[Rtot]

=
[D]

[D] + Kd
(36)
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Now by inserting the response assumptions

E/α

Emax/α
=

[D]
[D] + Kd

E

Emax
=

[D]
[D] + Kd

E =
Emax[D]
[D] + Kd

(37)

The relationship in (37) is called a Michaelis-Menten relationship between
drug concentration and the effect. This derivation demonstrates the motivation
for the use of saturable models in pharmacodynamic modelling. Physiologically
it also makes sense that at some point increasing the drug concentration will
not result in a increased response.

The disassociation constant Kd determines the concentration at 1/2·Emax as
can be seen from (37). An example of the model on both normal and logarithmic
scale is shown in Figure 9.
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Figure 9: Michaelis-Menten relationship with response.

5.1.2 Commonly used PD models

The Michaelis-Menten relationship forms the basis of one of the most commonly
used models to describe the relation between effect and concentration. This
model is called the Sigmoid Emax model and is described by

E = E0 +
EmaxCn

Cn + ECn
50

(38)

where C is the concentration and EC50 is the concentration at E0 +1/2 ·Emax.
The extra parameter n is included to provide a more flexible model. The model
is often used with n = 1 and then simply called an Emax model.

18



In order to be able to estimate parameters in the (Sigmoid) Emax model
it necessary to have estimates of the effect all the way from E0 up to a point
where maximum effect E0 +Emax seems to have been reached. If this is not the
case it is often advisable to use a more simple model such a the linear model

E = E0 + S · C (39)

or the log-linear model

E = m · log(C + C0) . (40)

Both of the models will in many situations be able to adequately describe
the observed concentration-effect relationship. A comparison of all three models
are shown in Figure 10. For the Emax model n = 1, E0 = 3, Emax = 8 and
EC50 = 100 and remaining parameters S, m and C0 are chosen so they all have
the same effect at concentrations of 0 and EC50.

0

E0

E0 + Emax

1 10 100 1000 10000

linear
log−linear
Emax

Figure 10: Comparison of standard models in PD analysis.

5.2 Modelling with effect compartments

In many situations it is not enough to directly model the response as a function
of systemic concentrations in the PK model. This can happen if maximum effect
is delayed compared to the maximum concentration.

This can numerically be handled by adding an additional compartment with
concentration Ce representing the near cell tissue. This is called an effect com-
partment and is assumed to have a negligible volume. There will thus not be
any mass transfer from the PK model. Furthermore a rate parameter govern-
ing the time delay from systemic concentration C1 to near cell concentration is
needed and for identifiability the same parameter is often used as elimination
from the effect compartment. The model for the effect compartment is

dCe/dt = ke1C1 − ke0Ce . (41)
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The response from the drug is now modelled as a link from the effect com-
partment to the response. The link can be either a linear, log-linear, Michaelis-
Menten or an even more complex relationship.

The response functions is often extended with the use of subject specific
covariates as this can increase the accuracy of the model.

5.2.1 Case study: pain reliever continued

This example shows how a PD model can be build on top of a PK model to
model the effect after an oral dose of 1000mg paracetamol. The PK-model used
is the two-compartment model shown in Sec. 4.2.1. This is used in combination
with a first order absorption from the gut. The PK model is defined belown in
(42) to (44).

dCgut/dt = −KaCgut (42)
dC1/dt = −k12C1 + k21C2 − k10C1 + FKaCgut (43)
dC2/dt = k12C1 − k21C2 (44)

The PD model used in this example is taken from (Gibb and Anderson
2008). It uses an effect compartment with an Emax model to model the effect.
The effect compartment model is shown in (41) and is only a hypothetical
compartment to introduce a delay of effect. It does thus not influence the PK
model.

The compartment structure of the combined PK/PD model is shown in
Figure 11. The arrows for the effect compartment are shown with dashed lines
to indicate the there is no actual mass transfer.

Effect

Ce

Gut

Cgut

Central
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Emax model  

Figure 11: PK/PD model for paracetamol.
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The effect is measured on a visual analogue scale (VAS) from 0-10 where
reduction below 10 indicates pain relief. The Emax model for the effect is

Effect = 10 − EmaxCe

EC50 + Ce

with Emax = 5.17 and EC50 = 9.98mg/L. The rate constants for the effect
compartment are ke0 = ke1 = 0.83h−1 giving a half-life of 50 min. A simulation
of the combined PK/PD model is shown in Figure 12.

By looking at the model for the effect in Figure 12(b) it can be seen that
pain relief following a 1000mg oral dose can be expected after 0.5-1 hour and it
seems to last around 6 hours or more. With the combined PK/PD model it is
now also possible to give estimates of the expected effect at e.g. half or double
dose without actually doing the experiment, although results from extrapolation
should always be treated with care.
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(b) Model of pain relief.

Figure 12: Illustration of PK/PD model for paracetamol.

6 Modelling data

To work with real life data a model of a system must be able to handle noisy
observations. The models discussed until now has only been concerned with
relatively simple deterministic relationships, but real systems naturally contain
much more variation than suggested by these simple models. The remaining
part of the text will focus on how to extend these models to include a model for
the different types of variation found in data. The aim is to enable the use of
a reliable statistical framework for consistent inference, simulation, prediction
and control by providing a proper description of the variation into the model.

The variation found in data can be caused by a number of sources. The main
sources include ordinary measurement variation and variation due to difference
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between individuals, sites, occasions, etc. There may also be stochastic fluctua-
tions of the system within an individual or approximations in the applied model,
which will also lead to variation in data that must be accounted for. Further
more, the model for an individual may depend on an input process (e.g. room
temperature) which is sampled continuously together with the response. Mea-
surements of this process is normally assumed to be done without measurement
error, but if this is not true it will also lead to variation in the data that must
be included in the model.

This section will discuss how to handle all of these different sources of vari-
ation.

6.1 Single individual

The structure of data for a single individual is

yj , j = 1...n (45)

where yj is a possibly multi-dimensional response. The sub-index is short hand
notation referring to the sampling times t0 < tj < tn.

6.1.1 Error model using ODEs

Modelling of PK for single individuals has traditionally been based on ordinary
differential equations (ODEs) as for example done in a classical tool like NON-
MEM (Beal and Sheiner 2004). The observed deviations from the deterministic
part of this model is treated as measurement error, which implies that the in-
dividual is assumed to follow the model exactly, or stated differently that the
model represents the true state of the individual. This class of models can be
stated as a state space model, which is written as

dxt = f(xt, ut, t, φ)dt (46)
yj = h(xj , uj , tj , φ) + ej (47)

where xt is the state (vector) in the model and the model for the state is given
by (46). The parameters in the model are denoted φ, and ut is a vector of input
variables to the system. The second equation (47) in the state space model is
the measurement equation defining how the states are observed. In this case an
additive error model is chosen, but this is only one of several choices. Both the
measurement and state equation can be multi-dimensional.

The states can represent amounts, concentrations, time-varying parameters
or other dynamic parts of a system described by a state space model. At any
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point in time the state vector contains all the information about the future
which is known as the Markovian property. The input variables ut is a process
influencing the system and it is observed only at measurement time points and
is often assumed constant in between (known as zero order hold). A typical
input variable could be e.g. body temperature or room temperature that may
affect the system. The input process is assumed to be known exactly and as a
consequence future values of the states in a deterministic model can be predicted
without uncertainty by solving the ODE.

In the following a one-compartment ODE model for an intravenous bolus
dose will be used as an example. The model is described by

dxt = −kxt dt (48)

which is also shown in (3). Here xt represents concentration in the central
compartment and k is the elimination rate constant.

Traditionally there are four main types of error models for the measurement
equation called additive, multiplicative, additive and multiplicative, and log-
normal error. The four error models are shown in (49), (50), (51) and (52)
respectively, where ej , ej,1 and ej,2 are Normal IID random variables. In Figure
13 the error models are illustrated graphically.

yj = xj + ej (49)
yj = xj · (1 + ej) (50)
yj = xj · (1 + ej,1) + ej,2 (51)
yj = xj · exp(ej) (52)

The optimal choice of measurement error model is very dependent on the
data. The additive error model (49) is the simplest but may not always be
appropriate. Measurements of concentrations are usually more uncertain for
higher values, and this is not included in the additive model. However, if the
measured concentrations only range over a small interval, the additive model
may still be reasonable. When simulating from a model with concentrations
close to zero the additive model will easily give negative values, see Figure
13(a), and this is often problematic.

The multiplicative error model (50) takes the increasing uncertainty for
higher values into account. In this model the standard deviation of the residu-
als increases proportionally to the mean of the model. The model can still give
negative values in simulations, but it is far less likely than with the additive
model. In some cases it is appropriate to use a combination of the additive and
multiplicative model, as specified in (51). The model still has increasing residual
standard deviation with the mean but also allows for a larger uncertainty for
smaller values.
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(d) Log-normal noise, Eq. 52.

Figure 13: Error models illustrated with 95% prediction intervals around the
model mean for an intravenous bolus dose.

The last error model shown in Figure 13 is the log-normal error model (52).
This model resembles the multiplicative model as can be seen by comparing
Figure 13(b) and 13(d). Being log-normal the residual distribution is asymmet-
ric and bounded away from zero, which is an advantage for simulation as it will
only give positive values. However, the distribution does not include 0, and
this is a problem if the observed data has such measurements. The log-normal
error model can be achieved with an additive error structure by using a log-
transformation of the observations, i.e. log yj = µ∗ + ej where µ∗ = log µ. An
effect of this is that if the model for µ∗ is additive then the resulting model for
µ will be multiplicative since µ = exp(µ∗).

6.1.2 Error model using SDEs

In most cases it is not reasonable to assume that the variation in time of the
concentration for an individual follows the model exactly as it is assumed using
an ODE model. As mentioned earlier there may also be some variation due to
incorrect model specification, true random biological variation or uncertainty
from measuring an input process which cannot be explained or included in
the ODE model. A way to describe such sources of errors is to base the state
space model on stochastic differential equations (SDEs) instead of ODEs. This
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is called a stochastic state space model and is defined as

dxt = f (xt, ut, t, φi)dt + σω(ut, t, φi)dωt (53)
yj = h(xj , uj , tj , φi) + ej . (54)

The stochastic differential equation in (53) is based on the Standard Wiener
process ωt (Øksendal 1992). This process is characterized by ω0 = 0, it is almost
surely continuous and it has independent normal increments with ωt − ωs ∼
N(0, t− s) for 0 ≤ s < t. The Wiener process can be seen as a process that has
the properties expected from the limit of a discrete random walk

∑t/∆t
i=1 ei with

ei ∼ N(0, ∆t) for ∆t → 0.

Using the Wiener process the simple one-compartment elimination model in
(48) can be extended to a model based on SDEs by writing

dxt = −kxt dt + σωdωt . (55)

The term dωt is an infinitesimal increment of the Wiener process and the
model can thus in simple terms be described as an ordinary differential equation
where the evolution in time is perturbed by normal distributed noise. The
solution to (55) is

xt = x0e
−kt +

∫ t

0

σωe−k(t−s)dωs (56)

which can be seen to be the ODE solution plus the integral of Wiener process
increments with exponential weights. The process is known as an Ornstein-
Uhlenbeck process with zero mean. A simulation of the process is shown in
Figure 14.
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Figure 14: Simulation of simple one-compartment SDE model (55).

There are a few problems with the model proposed in (55). There is nothing
limiting the concentration from increasing when the increments of the Wiener
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process are positive. This should normally not happen in the real world as this
would require a reverse elimination process. Moreover the model will fluctuate
around zero when the initial dose has been eliminated, and the model will thus
predict negative concentrations. In fact it can be shown that the unconditional
distribution of xt is normal with mean zero which is not suitable in a model for
concentrations.

A more realistic model can be achieved by adding noise to the elimination
rate constant k instead of directly to the concentration. A good first choice is to
model kt as an Ornstein-Uhlenbeck process with a non-zero mean k̄. However,
the elimination rate should never be negative, so the elimination rate used will
be k2

t . The model is given by

dxt = −k2
t xt dt (57)

dkt = −γ(kt − k̄)dt +
√

2σ2
ωγdωt . (58)

It can be shown that the unconditional distribution of kt is normal with mean
E[kt] = k̄ and that kt has the autocorrelation function Ckt(t) = σ2

ω exp(−γt).
Thus the elimination rate (k2

t ) will be χ2-distributed with mean E[k2
t ] = k̄2+σ2

ω.
In Figure 15 a simulation of the model is shown. Since the elimination rate in
Figure 15(b) is always non-negative, the concentration curve will be monotonely
decreasing towards zero as would be expected in real life.
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Figure 15: Simulation of an extended one-compartment SDE model that fulfills
some basic physiological constraints.

6.1.3 Case study: Advantages of using SDEs

In order to illustrate the advantages of modelling using SDEs a small simulation
study will be performed.

It is assumed that the drug of interest is eliminated based on the model
in (57) and (58). That is, the concentration is assumed to follow a first order

26



elimination with an elimination rate that varies in a non-deterministic way. The
optimal model is thus naturally the SDE model that generates the data, since
the non-deterministic variations of the elimination rate cannot be modelled any
further. However, the example will focus on illustrating the errors that are
introduced if the data is modelled using the simple ODE model shown in (48).
The residual error will be assumed to be independently log-normally distributed
as defined in (52). Combining this the state space model used for generating
data contains two states and one response variable and is thus given by

dxt = −k2
t xt dt (59)

dkt = −γ(kt − k̄)dt +
√

2σ2
ωγdωt (60)

log yj = log xj + ej (61)

which will in short be denoted the SDE model. The parameters used for the
simulation are k̄ = 0.05, γ = 0.40 and σω = 0.15, which gives an expected
elimination rate of E[k2

t ] = 0.025 min−1 and an expected half-life of 28 minutes.
The measurement variation is ej ∼ N(0, S) where S = 0.202. Dose is 100mg
and volume of distribution is 10L giving an initial concentration of 100mg/L.
The individual is sampled with 5 minute intervals up to 100 minutes giving 21
observations. The simulated data is shown in Figure 16(a).

The data is modeled both using the original SDE model and an ODE model
where the stochastic part is removed. The ODE model is thus a standard one-
compartment model with first order elimination. The ODE model is defined
as

dxt = −kxt dt (62)
log yj = log xj + ej (63)

which is equivalent to the SDE model with σω = 0. Both the ODE model and
SDE models are fitted using the maximum likelihood method, where the like-
lihood function is evaluated using the Kalman Filter. The estimation method
is explained in more detail in Section 6.3. The estimate of the two states (con-
centration and elimination rate) in the SDE model can be found based on the
estimated parameters using the so-called Kalman smoothing estimate. The re-
sults of the two model fits as given by the estimated concentration profiles are
shown in Figure 16(b) and 16(c).

In order to judge the model fits the residuals for the ODE and SDE models
are shown in Figure 16(d) and 16(e) and the auto-correlation functions for the
residuals are shown in Figure 16(f) and 16(g).

The first obvious observation of the difference between the fits is that the
simple ODE model cannot capture the time varying elimination rate which gives
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Figure 16: Comparison of fitted ODE and SDE models.
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rise to persistence in time of the residuals. This is not the case for the SDE
model, which assumes a stochastic elimination rate and estimates it based on
the model and data. The result is that the residuals are uncorrelated in time
for SDE model whereas they are strongly auto-correlated for the ODE model.
This in effect falsifies the ODE model in this case, as both models are based on
an assumption of uncorrelated measurement error.

The problem is also apparent from the parameter estimates them selves. The
estimates of the measurement variation in the two models are ŜODE = 0.392

and ŜSDE = 0.222 which should be compared to the true value of S = 0.202.
This shows that the time variation of the elimination rate has been included in
the measurement error in the ODE model, since this is the only place it allows
variation to enter, and hence a wrong interpretation of the measurement error
is provided by the ODE model.

It is of interest to see if the estimate in the SDE model of the time varying
behavior of the elimination rate (k2

t ) is accurate. Figure 17 shows the outcome
of the elimination rate process from the simulation compared to the Kalman
smoothing estimate from the SDE model and also the constant estimate from
the ODE model. Generally it appears that the Kalman smoothing estimate is
fairly close to the true elimination rate, but the accuracy will naturally always be
dependent on the kind of measurement noise, sampling rate and appropriateness
of the assumed model.
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Figure 17: Comparison of estimated elimination rates.

6.1.4 Discussion of SDEs

The previous example in Section 6.1.3 has illustrated some of the issues that
arise in a case where an ODE model provides an insufficient error structure.
The estimate of the measurement variation was seen to be to high since it also
included the stochastic variation of the system, and it resulted in auto-correlated
residuals. Such situations calls for the use of an SDE model. In other situations
an SDE model may be justified by a need to capture variation in the states
introduced by actual stochastic behavior or a too simple deterministic part of a
model or by variation caused by measurement error from the input process.
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For estimation in the previous example both models were used in a maximum
likelihood frame work. From a likelihood perspective, the failure of the ODE
model occurs since it is not able to give a sufficient description of the ’true’
likelihood function. Such an error cannot be ignored, as it in turn will invalidate
e.g. likelihood ratio tests for model reduction and other classical statistical tests
that may be used.

In many ways modeling using SDEs seems like an intuitive choice, since it
facilitates a way to include dynamic biological variation in the model. Often
however, the need for an SDE model is hidden by a sparse sampling scheme with
few and distant observations, since it can be hard to detect residual autocorre-
lation in these situations. This may however change in the future with increas-
ing use of modern frequent-sampling equipment within many areas, which very
likely will reveal residual auto-correlation when using standard ODE models.

An example has been shown by Overgaard et al. (2007) using a PK/PD
model of effects on thermo-regulation in monkeys. In this case an ODE model
is shown to be insufficient, and only a model based on SDEs is able to provide
a proper description of the error structure. Due to this the SDE model is able
to give realistic simulations and predictions as opposed to the ODE model.
Generally, in cases where the model should also be used for control purposes it
is important that the model has realistic prediction properties. An example of
an application for control of a biological system could be a model for controlling
the insulin secretion rate in diabetic patients.

Another application of SDEs in modelling biological systems is to use it as
a tool for model development. In this context SDEs can be used as a tool to
extract information from data about the appropriate model in situations with a
complex underlying deterministic model structure. In Kristensen et al. (2005)
a framework is presented for using an SDE model to allow tracking of time
variations of parameters to reveal new functional relationships. Although this
use aims at improving the deterministic part of a model, it may still result
a final model based on SDEs if all stochastic components cannot replaced by
deterministic relationships.

6.2 Multiple individuals

A typical data set for PK/PD modelling consists of data from several individuals
who all have been exposed to a similar trial. The previous section has been
concerned with modelling a single individual, but it is natural to include all
individuals in the same model.

A mixed-effects model allows this by assuming the same model for each
individual and by further assuming that the parameters in this model can vary
between individuals. The general structure for data in a mixed-effects model is
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yij , i = 1, ..., N, j = 1, ..., ni (64)

which is an extension of the data structure in (45). The response yij is a vector
of measurements at time tij for individual i, N is the number of individuals and
ni is the number of measurements for individual i.

In a mixed-effects model the variation is split into intra-individual variation
and inter-individual variation, which is modelled by a first and second stage
model. The first stage model is the (stochastic) state space model and the
second stage model is given by

φi = g(θ, ηi, Zi) (65)

where φi are the individual parameters for the first stage model. The random
effects ηi have the distribution ηi ∼ N(0,Ω), θ are the fixed effects (also called
population parameters) and Zi are possible covariates. The second stage model
will often look like φ = θ+η or φ = θ ·exp η giving either a normal or log-normal
distribution of parameters between individuals.

6.3 Estimation

Parameter estimation in the mixed effects model is most often facilitated by the
maximum likelihood method. The population likelihood function is based on
the distribution functions for the first and second stage models denoted p1 and
p2, respectively. The distribution function for the second stage model is simply
the normal distribution. For the first stage model based on the stochastic state
space model the likelihood function can be evaluated by using the Kalman filter
(Overgaard et al. 2005). The population likelihood function for the fixed effects
are found by integration over the random effects. This is given as

L(θ) =
N∏

i=1

∫
p1(Yini |θ, ηi)p2(ηi|Ω)dηi =

N∏
i=1

∫
exp(li)dηi (66)

where Yini are all observations for individual i and li is the a posteriori log-
likelihood function for the ith individual. The population likelihood function
in (66) can not be evaluated analytically, and therefore li is approximated by a
second-order Taylor expansion, where the expansion is made around the value
η∗

i that maximizes li(ηi) in the value l∗i . At this optimum the first derivative
∇li

∣∣
η∗

i

= 0 and the population likelihood function therefore reduces to

L(θ) ≈
N∏

i=1

∣∣∣∣−∆l∗i
2π

∣∣∣∣
− 1

2

exp(l∗i ) (67)
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as shown in Appendix A. The approximation of the 2nd derivative at the
optimum ∆l∗i is obtained using the First-Order Conditional Estimation (FOCE)
method, which is defined as

∆l∗i ≈ −
ni∑

j=1

(
∇εT

ijR
−1
i(j|j−1)∇εij

)
− Ω−1 , ∇εij =

∂

∂ηi

εij

∣∣∣
η∗

i

.

In cases where the fist stage model is non-linear as in the state space model
in (53) and (54) the combined model is called a non-linear mixed effects model.
When working with SDEs there are only a few software tools available that are
able to estimate parameters in this class of models. These tools are listed below.

6.3.1 NONMEM

NONMEM is a software package developed at University of California, San
Francisco (UCSF) for use in population PK/PD modelling (Beal and Sheiner
2004). It first appeared in 1979 and its name is an acronym for non-linear
mixed effects modeling. NONMEM has become the defacto standard software
tool used for PK/PD modelling as it is a very flexible tool and well tested
throughout many years of development. NONMEM is however only intended
for modelling based on ODEs but it is possible to make it estimate models based
on SDEs as shown by Tornøe et al. (2005). This is basically done by including
the Kalman filter into the model definition, but the Kalman filter has to be
derived and implemented for every new model that is created, and it is thus
cumbersome to work with and only feasible for simple models.

6.3.2 CTSM

CTSM is a program for performing estimation of state space models based on
SDEs (Kristensen and Madsen 2003, Kristensen et al. 2004). The program is
intended for single subject modelling but also handles multiple subjects based
on a pooled likelihood without random effects. It has been developed at DTU
Informatics. CTSM has previously been used for PK/PD modelling using SDEs
in e.g. Tornøe et al. (2004a, 2004b) and Kristensen et al. (2005).

6.3.3 PSM

PSM in an acronym for Population Stochastic Modelling and is a software pack-
age developed at DTU Informatics (Mortensen et al. 2007, Klim et al. 2008). It
is like NONMEM aimed at non-linear mixed effects modelling but it is focused
on modelling using SDEs and as opposed to NONMEM it also directly handles
a multivariate response. PSM supports a typical PK data structure with dosing
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information, co-variates and also missing observations. PSM is freely available
as an extension package for R, which is a free software environment for statis-
tical computing. Instructions for download and installation in R can found at
http://www.imm.dtu.dk/psm.

Appendix

A NLME log-likelihood function

The Non-linear mixed effects likelihood function is defined as

L(θ|YNni) =
N∏

i=1

∫
p1(Yini |θ, ηi)p2(ηi|Ω)dηi (68)

=
N∏

i=1

∫
Li(ηi)dηi (69)

where Li is the individual a posteriori likelihood function. In most cases the
integral cannot be evaluated analytically. For a general evaluation the individual
a posteriori likelihood function can be approximated by a second order Taylor
series expansion of log(Li) around the value η∗

i which maximizes log(Li(ηi)).
Also li = log(Li), L∗

i = exp(l∗i ) = Li(η∗
i ), ∇l∗i = ∂

∂ηi
li

∣∣∣
η∗

i

, ∆l∗i = ∂2

∂ηi∂ηT
i

li

∣∣∣
η∗

i

.

It follows that

li(ηi) ≈ l∗i + ∇l∗T
i (ηi − η∗

i ) +
1
2
(ηi − η∗

i )
T∆l∗i (ηi − η∗

i ) (70)

≈ l∗i +
1
2
(ηi − η∗

i )
T ∆l∗i (ηi − η∗

i ) (71)

Li(ηi) ≈ L∗
i exp

(
−1

2
(ηi − η∗

i )
T (−∆l∗i )(ηi − η∗

i )
)

(72)

since ∇li = 0 at η∗
i . Based on the approximation the integral can now be

evaluated by moving constants such that the integral is over a Gaussian density
with mean η∗

i and co-variance (−∆l∗i )−1 . The result is
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∫
Li(ηi)dηi ≈

∫
L∗

i exp
(
−1

2
(ηi − η∗

i )
T (−∆l∗i )(ηi − η∗

i )
)

dηi (73)

≈ L∗
i

∣∣∣∣ 2π

−∆l∗i

∣∣∣∣
1
2

∫ ∣∣∣∣ 2π

−∆l∗i

∣∣∣∣
− 1

2

exp
(
−1

2
(ηi − η∗

i )
T (−∆l∗i )(ηi − η∗

i )
)

dηi

≈ L∗
i

∣∣∣∣ 2π

−∆l∗i

∣∣∣∣
1
2

(74)

≈ L∗
i

∣∣∣∣−∆l∗i
2π

∣∣∣∣
− 1

2

(75)

where the step in Eq. (75) is taken to avoid a matrix inversion of the Hessian.
The NLME log-likelihood function can now be approximated by

L(θ|YNni) ≈
N∏

i=1

L∗
i

∣∣∣∣−∆l∗i
2π

∣∣∣∣
− 1

2

. (76)
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