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ABSTRACT

This work investigates the suitability of transformer neural networks
(NNs) for behavioral modeling and the predistortion of wideband power
amplifiers. We propose an augmented real-valued time delay transformer
NN (ARVTDTNN) model based on a transformer encoder that utilizes the
multi-head attention mechanism. The inherent parallelized computation
nature of transformers enables faster training and inference in the hardware
implementation phase. Additionally, transformers have the potential to learn
complex nonlinearities and long-term memory effects that will appear in
future high-bandwidth power amplifiers. The experimental results based on
100 MHz LDMOS Doherty PA show that the ARVTDTNN model exhibits
superior or comparable performance to the state-of-the-art models in terms
of normalized mean square error (NMSE) and adjacent channel power ratio
(ACPR). It improves the NMSE and ACPR up to −37.6 dB and −41.8
dB, respectively. Moreover, this approach can be considered as a generic
framework to solve sequence-to-one regression problems with the transformer
architecture.

Keywords: Digital predistortion, DPD, in-phase and quadrature (I/Q)
components, multi-head attention, transformer-encoder, augmented real-
valued time delay transformer NN, ARVTDTNN
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1 INTRODUCTION

This chapter serves as an introduction to the research problem, which centers around
addressing RF transmitter impairments and the requirement of linearization. The
chapter provides a brief explanation of the DPD technique, along with other methods for
linearization. It also describes the existing problem and proposed solution. Furthermore,
the chapter outlines the contribution of the thesis and provides a brief overview of the
remaining sections.

1.1 RF Transmitter

Modern communication systems are expected to meet a wide range of requirements and
demands, increasing the complexity of the elements in the communication chain [1]. The
radio frequency (RF) transmitter is designed to manage performance metrics such as
linearity, bandwidth, and power efficiency. Linearity is essential for avoiding distortions
that can arise from the analog circuitry. Bandwidth is crucial for achieving higher data
rates, while power efficiency affects infrastructure costs and environmental impact. The
simplified block diagram of the RF transmitter is shown in Figure 1.1, consisting of
data source, baseband signal processing, digital to analog converter (DAC), in-phase and
quadrature (IQ) modulator, mixer, power amplifier (PA), and antenna. The transmitter
converts the baseband signal containing data into a form that can be transmitted through
the channel [2]. Initially, the data undergoes baseband signal processing performed in
the digital domain. The processed data then undergo digital to analog (D/A) conversion.
Next IQ modulator up-converts the complex signal into an intermediate frequency (IF)
or directly to RF. Mixer converts the IF signal to the RF signal. However, a mixer is not
required in zero-IF architectures as the baseband signal is directly converted to the RF
signal. Finally, the PA amplifies the RF signal and is transmitted to the channel via the
antenna.

Figure 1.1. Simplified block diagram of wireless transmitter.

Each hardware component in the transmitter design introduces some imperfection
to the signal, such as frequency response distortions, amplitude distortions, phase
distortions, group delay distortions, direct current (DC) offset, gain, and phase imbalance
[1]. Although various sources contribute to transmitter distortions, significant distortions
are due to the nonlinearity present in the RF PA. Thus, compensation of PA nonlinearity
is an essential aspect of transmitter design.



1.2 Power Amplifier Nonlinearity and Requirement of Linearizers

The PA is a vital component in the RF transmitter as it amplifies the IQ-modulated
radio signal to a higher power level, enabling it to be transmitted through the antenna [3].
There are several classes of amplifier operation, each with different levels of nonlinearities.
Figure 1.2 depicts the standard PA input-output characteristics curve, illustrating the
linear and saturation regions. Usually, the PA is operated close to its saturation point
to achieve maximum efficiency for high peak-to-average power ratio (PAPR) signals.
However, operating near the saturation point can result in significant nonlinearities in
the PA’s output, leading to amplitude and phase distortion. Hence, there’s an inverse
relationship between PA efficiency and linearity, in which more nonlinear PAs can achieve
higher efficiency. However, nonlinearity can cause spectral regrowth, leading to adjacent
channel interference (ACI) and in-band distortions, increasing the bit error rate (BER)
degradation. Spectral regrowth is a significant concern for telecommunication operators
since the allowed frequency ranges are strictly regulated, and interference with other
operators’ frequency bands is not permitted [3].

Figure 1.2. PA input-output power characteristics curve.

The rapid thermal time constants of the active devices, non-flat frequency response
of the matching networks, and variations in the biasing circuit cause memory effects
in the PA output [4]. That effect becomes more dominant as the signal bandwidth
increases. The upcoming 6th generation (6G) standard demands a significant boost in
data transmission rates up to several gigabits per second (Gbps). To support that, signal
bandwidths of several hundred megahertz (MHz) should be employed, which will severely
increase the memory effect impairment of the PA [5]. The memory effect and nonlinearity
of the PA can provoke spectral regrowth, reducing the adjacent channel power ratio
(ACPR) performance. Moreover, modern communication systems utilize orthogonal
frequency division multiplexing (OFDM) due to its tolerance to inter-symbol interference
(ISI) and spectral efficiency. OFDM performs well in multi-path environments with



frequency selective fading and has simple implementation. However, the high PAPR of
OFDM makes it vulnerable to the nonlinearities of the PA [3]. Thus, linearization of PA
is essential in transmitter design to avoid spectral regrowth and in-band distortions.

1.3 Digital Predistortion (DPD) and Other Linearization Techniques

The most straightforward approach to achieve linearization is to back off the input power
level, ensuring that the PA operates entirely within its linear region [4]. However, this
method is associated with a larger size and high cost. Another approach would be the
feedforward technique, which subtracts the distortion from the output. This method
is also highly costly due to requiring an extra RF amplifier and analog combining
networks. Another technique called Linear amplification with non-linear components
(LINC) utilizes two phase-altered nonlinear PAs for linearization. This also has the
disadvantage of requiring a high-power analog combining network [4].

In recent years, DPD has become a popular alternative solution for linearization due
to its simple implementation capabilities [4]. DPD helps to reduce in-band and out-band
distortions while maintaining the operation close to the maximum rated power, and it
also reduces the size and cost significantly.

1.4 Problem Description and Proposed Solution

PAs play a critical role in modern communication systems. However, the existing
behavioral and linearization models for PAs have limitations in addressing the complex
and nonlinear relationships that future high-bandwidth PAs may exhibit. This is
especially problematic given the increasing demand for high data rate requirements in
modern communication systems, which can significantly increase the memory effect of
PAs, leading to more distortions that existing models may not be able to resolve.

Furthermore, the training and inference of recurrent neural network (RNN) and
long short-term memory (LSTM) models, which have been commonly used for PA
behavioral modeling and linearization, present hardware acceleration challenges due to
their sequential nature. As a result, this study proposes a transformer-based deep learning
solution for behavioral modeling and linearization of PAs.

The transformer model structure, introduced in 2017 in the paper "Attention is All
You Need" [6] is designed with an encoder-decoder-based architecture that enables
high computation parallelism in both training and inference phases. The transformer
model can process the entire data sequence in parallel through its self-attention
mechanism, identifying long-term sequence dependencies, and can handle complex time
series dependencies that are challenging for existing sequence models. By utilizing the
full extent of available hardware resources, the transformer-based model potentially
overcomes the limitations of existing models, improving the design of high-bandwidth
PAs for future communication systems.



1.5 Thesis Contribution

• A transformer-based PA behavioral model is introduced to utilize parallel
computation in transformers during the training and inference phases.

• A novel approach is presented to handle sequence-to-one time-series regression
problems by modifying the existing transformer architecture specifically designed
for natural language processing (NLP) tasks.

• A transformer-based DPD architecture is introduced to linearize the PA nonlinear
effects, outperforming most existing state-of-the-art solutions.

1.6 Thesis Outline

The remainder of the thesis is structured as follows:

• Chapter 2: All the necessary theory parts are highlighted, including
PA characteristics, importance of PA linearization and existing linearization
techniques.

• Chapter 3: This chapter provides an overview of state-of-the-art behavioral
modeling and predistortion techniques, with a focus on neural network-based
models.

• Chapter 4: This chapter discusses the use of transformer-based techniques for
behavioral modeling and predistortion, exploring their underlying requirements and
how they effectively linearize complex, nonlinear PAs.

• Chapter 5: The results of the study are presented in this chapter, addressing the
problem using simulation tools and providing comparisons with existing models.

• Chapter 6: In this chapter, we summarise the contribution of our study and
suggest potential areas for further investigation.



2 BACKGROUND ON POWER AMPLIFIER AND
LINEARIZATION TECHNIQUES

This chapter offers a comprehensive overview of the all the necessary theoretical aspects
related to the topic. It delves into the characteristics of the PA and emphasizes the
significance of linearization. Additionally, the chapter discusses the various linearization
techniques that are currently in use.

2.1 Input-Output Power Characteristics

As discussed in Chapter 1, the PA is inherently a nonlinear device, meaning that its input-
output characteristics are nonlinear, as depicted in Figure 1.2 [1]. The region where the
output of the PA behaves linearly is known as the linear region, which is observed at
low input power values. However, beyond a certain input power level, gain compression
starts to appear until it gets saturated, and it is known as the saturation region. Gain
is the slope of the Pin vs. Pout graph when both powers are denoted in Watts. The 1 dB
compression point measures the PA’s linearity. It refers to the point at which the output
power deviates from its linear value by 1 dB. In other words, the 1 dB compression point
is the input power level at which the amplifier’s output power starts to saturate and no
longer increases linearly with the input power. This characteristic is important because
it affects the signal quality being amplified. PA with a high compression point can handle
high-power signals without distorting them [1].

2.2 AM/AM and AM/PM Characteristics

Input-output power characteristic curve does not provide a comprehensive illustration
of the PA behavior. Thus, a much better meaningful representation is provided by
amplitude modulation to amplitude modulation (AM/AM) and amplitude modulation
to phase modulation (AM/PM) characteristics. Generally, the nonlinear transmitters can
be described by AM/AM, AM/PM, PM/AM, and PM/PM characteristics. However, PA
distortion only depends on amplitude-modulated (AM) signals, and thus AM/AM and
AM/PM characteristics are sufficient to realize the PA behavior. AM/AM and AM/PM
distortions are generated by the nonlinearity of the PA, while PM/AM and PM/PM
distortions occur by gain and phase imbalances in the frequency up-conversion [1].

Let xin and xout be the baseband complex input and output signals of the PA. Then
the magnitude and phase of the instantaneous complex gain of the PA can be expressed
as

|G| = |xout|2

|xin|2
,

∠G = ∠xout − ∠xin

(1)

under the assumption that PA does not exhibit PM/AM and PM/PM distortions.
As shown in Figure 2.1a, AM/AM characteristic curve is then obtained by plotting
the magnitude of instantaneous gain against input power in dB. Similarly, AM/PM



characteristic curve is obtained by plotting the phase of instantaneous gain along with
input power, as shown in Figure 2.1b [1].

(a) AM/AM characteristics. (b) AM/PM characteristics.

Figure 2.1. Sample AM/AM and AM/PM characteristics of a PA.

2.3 PA Performance Metrics

Various performance metrics are employed to evaluate the performance of the PA [7].
Efficiency (ηP A) is one of the crucial metrics of the PA, which measures the amount of
power dissipated during the amplification process. High efficiency indicates that the PA
is effective in minimizing power dissipation, which results in longer battery life. Ideally,
unity efficiency is the best expectation, but it is not feasible in practical implementations.
Efficiency can be calculated as

ηP A = Pout

Psource

(2)

where Pout refers to the power delivered to the load and Psource denotes the power that
PA draws from the power supply. Efficiency may provide misleading results in certain
cases; thus, power-added efficiency (PAE) is defined, and it can be obtained as

PAE = Pout − Pin

Psource

∗ 100% (3)

where Pin is the power at PA input. PAE is always smaller than ηP A, and higher amplifier
gain indicates a higher PAE [2].

The other main performance metric of PA is nonlinearity, which can be evaluated using
several methods, including the third-order input intercept point (IIP3), total harmonic
distortion (THD), ACPR, and error vector magnitude (EVM). ACPR and EVM are
commonly used metrics to evaluate nonlinearity, with ACPR measuring out-of-band
distortion and EVM measuring in-band distortion [2].



2.4 Inter-Modulation Distortion (IMD) and Spectral Regrowth

The nonlinearity of the PA causes the generation of unwanted frequency components at
the output, known as inter-modulation distortion (IMD) [1]. IMD can be mathematically
illustrated with a two-tone signal, and the same principle applies to wideband signals with
a continuous spectrum. Let xin and xout be the input and output of the PA, respectively,
and the nonlinearity order (P ) as two. Then, xout can be modeled with a second-order
polynomial as

xout = axin + bx2
in (4)

where a and b are the model coefficients. Let the input signal be a two-tone signal having
amplitudes of A1, A2 and angular frequencies ω1 and ω2 where ω2 > ω1. Then xin can be
written as

xin = A1cos(ω1t) + A2cos(ω2t). (5)
By substituting xin to (4) and simplifying, xout can be expressed as

xout = [aA1cos(ω1t) + aA2cos(ω2t)] + b(A2
1 + A2

2)
2 + bA1A2cos(ω2 − ω1)t

+bA2
1

2 cos(2ω1t) + bA1A2cos(ω1 + ω2)t + bA2
2

2 cos(2ω2t).
(6)

In (6), first two terms with ω1 and ω2 frequencies show the intended amplified versions of
the input signal. All other terms are unintended and generated due to the nonlinearity
of the PA. Some unintended frequencies are close to the useful signal, while others are
far away. The frequencies that are far away can be removed through filtering. Figure 2.2
shows the frequency domain interpretation of the transmitter output signal, highlighting
the undesired frequency components. This mathematical interpretation can be extended
to the N th-order nonlinear model, which would result in the presence of N th-order
harmonics and N th-order mixing terms in the output signal. Since the practical input
signals are continuous, IMD is observed as a spectrum regrowth around the channel.
Hence, the nonlinear effect of the PA results in a considerable amount of spectrum
regrowth, which leads to generating interference in adjacent channels [1].

Figure 2.2. Frequency domain of a nonlinear transmitter driven by a two-tone signal.



2.5 Distortion Impact on Variable Amplitude Signals

Since the nonlinearity of the PA compresses the signals, carrying information on
amplitude may cause problems [2]. The nonlinear impact can cause significant deviations
in the constellation points from their ideal positions and even enter a different decision
region. This increases the in-band distortion with a high BER. The Figure 2.3 illustrates
the compression impact of the nonlinear PA for a 16QAM modulated signal. Corner
constellation points show greater deviation as they carry high power, and can be
misinterpreted in a wrong decision region.

Figure 2.3. Compression impact of the nonlinear PA for a 16QAM signal.

2.6 Adjacent Channel Power Ratio (ACPR)

ACPR measures the nonlinearity of PA in the frequency domain, also known as the
adjacent channel leakage ratio (ACLR) [8]. It is defined as the ratio between the mean
power of the main channel and the filtered mean power in adjacent channels. ACPR can
be expressed as

ACPR = 10log

∣∣∣∣∣
∫

main S(f)df∫
adj_l S(f)df +

∫
adj_r S(f)df

∣∣∣∣∣ (7)

where S(f) denotes the power spectral density (PSD) of the output signal. The numerator
represents the mean power of the main channel, while the denominator represents the
filtered mean power in both the left and right adjacent channels. ACPR is a crucial metric
for measuring ACI that cannot be removed through filtering. Hence, it is important to
minimize the power leakage to adjacent channels, and each communication standard
includes an ACPR threshold to control that, commonly referred to as the spectrum
mask [1].



Figure 2.4 illustrates the main channel across the signal bandwidth centered around
0 frequency. The lower and upper adjacent channels are defined based on an offset
frequency between the center of the main channel and that of the considered adjacent
channel. Typically, the first and second adjacent channels are defined for both the left
and right sides. The transition bands are introduced to reduce ISI [1].

Figure 2.4. Graphical illustration of adjacent channels.

2.7 Error Vector Magnitude (EVM)

EVM is another metric used to measure the nonlinear in-band distortions caused by the
PA, calculated based on the deviation in the constellation domain [1]. Figure 2.5 shows
the reference constellation point obtained with no distortions and the actual constellation
point. The phase error is defined as the angle between the actual signal vector and the
reference signal vector, while the magnitude error is the difference in magnitude between
the two. In general, transmitters could introduce either phase error, magnitude error,
or a combination of both. Each communication standard specifies threshold values for
EVM to maintain quality, and EVM is typically expressed as a percentage. EVM can be
written as a root mean square (RMS) value as follows:

EV M(%) =

√√√√ 1
N

∑N
i=1 |Sref,i − Sact,i|2
1
N

∑N
i=1 |Sref,i|2

(8)

where N is the total number of constellation points and Sref,i, Sact,i are the reference and
actual constellation points for the ith symbol, respectively.



Figure 2.5. Graphical illustration of error vector.

2.8 Memory Effects of PA

Memory effects refer to systems in which the current output is not only influenced
by the current input but also by one or more previous inputs [1]. Memory depth is
defined as the number of input samples affecting the output. Energy-storing memory
systems inherently exhibit this effect. PA systems can have multiple energy-storing
circuits or other elements contributing to the system’s memory effect. These elements
may include capacitive/inductive elements, matching network elements, and transistor
junctions. Memory effects can be classified into two main categories based on their
correlation with the nonlinearity of the PA: linear memory effects and nonlinear memory
effects. Linear memory effects are uncorrelated with the PA nonlinearity and can be
mathematically interpreted as a linear combination of time-shifted input signals as

y(t) =
∑

i

hix(t − τi). (9)

Nonlinear memory effects include the nonlinear behavior of the PA. They can be
mathematically represented by including a nonlinear term that accounts for the nonlinear
memory effects of PA and the linear memory effects as

y(t) =
∑

i

hix(t − τi) + f [x(t − τ1), ..., x(t − τN)] (10)

where f is the nonlinear function. Memory effects can be classified based on their
origins into two categories: electrothermal memory effects and electrical memory effects.
Electrothermal memory effects arise from temperature variations in active devices and
have long-term memory impacts. Electrical memory effects are caused by capacitive
elements and impedance-matching networks present in the PA and have short-term
impacts. While memory effects may not cause significant degradation of linearity, they



can still significantly impact the performance of the linearizer. Thus, proper analysis of
memory effects is required for behavioral modeling and linearization of PA [1].

2.9 PA Linearization Techniques

Linearization techniques aim to mitigate the nonlinear effects of PAs by modifying
either the input or output waveform and can be categorized into two types: circuit-level
techniques and system-level techniques [9]. Circuit-level techniques involve modifications
made at the device level and are typically more applicable to the user equipment, while
system-level techniques utilize both digital and analog methods and are better suited for
base station transmitters. Harmonic termination, harmonic injection, transconductance
gain compensation, and thermal compensation methods are some of the main circuit-
level techniques. On the other hand, power back-off, feedback, LINC, feed-forward, and
predistortion are among the primary system-level techniques. Some techniques are briefly
discussed below.

2.9.1 Power Back-off

The PA exhibits linearity for input signals with small power, and this phenomenon is
utilized by the back-off technique [9]. The operation point of the PA is backed off from the
saturation point to enable the output signal to swing fully while maintaining linearity.
The back-off level should be higher than the PAPR of the waveform to preserve the
linearity. PAPRdB of the waveform is defined as

PAPRdB = 10 × log10
Pmax,W

Pavg,W

(11)

where Pmax and Pavg are the maximum and average power levels of the waveform in Watts.
Modern communication systems have PAPR ranging from 10−13 dB [1]. Typically, back-
off is achieved by reducing the input power to the PA. The back-off technique enables
the PA to avoid operating in the nonlinear region. However, increasing the back-off level
leads to a decrease in efficiency. In digital modulation, the back-off level is usually around
6 − 8 dB below the 1 dB compression point. PA output power back-off (OPBOdB) can
be expressed as

OPBOdB = 10log10
Pout

Pout,sat

(12)

where Pout and Pout,sat are the operating output power and saturation output power of
the PA, respectively. However, the back-off technique does not attempt to overcome the
trade-off between efficiency and linearity [1].

2.9.2 Feedback Linearization

The general idea of feedback linearization is to use the output of a nonlinear system and
apply a transformation to it, such that the resulting signal behaves more linearly [9].



This can typically involve adding a scaled and phase-shifted version of the output signal
to itself, to cancel out nonlinear effects and produce a more linear response. This concept
can be incorporated in RF, IF, and baseband frequencies. The main challenge associated
with feedback linearization is the stability problems due to the delay between input
and output. Hence, this technique is less common in wideband communication systems.
Multiple techniques are available for linearization using feedback, including RF feedback,
polar loop feedback, cartesian loop feedback, envelope elimination and restoration, and
LINC linearization.

RF feedback is achieved by subtracting the output RF from the input RF directly to
linearize a specific section of the transmitter. Polar loop feedback is a technique where
the AM/AM and AM/PM transfer functions of the PA are corrected using separate loops,
which are typically implemented in the IF stage. However, it is also possible to do so in
the RF stage. Cartesian loop feedback is implemented in RF, where the PA output is
demodulated and generates two I/Q samples to feed into the modulator for linearization.
Another linearization method is envelope elimination and restoration [9].

2.9.3 Envelope Elimination and Restoration

The main concept behind the envelope elimination and restoration linearization technique
is to separate the amplitude and phase information of the signal. First, the amplitude
information is removed from the signal with the help of a limiter, which allows only
the phase information to pass through the PA. Then, the envelope detector extracts the
amplitude information from the signal simultaneously and which is then supplied to the
power supply. The bias of the PA is then adjusted to restore the envelope to the carrier.

However, the delay difference between the two paths is a major concern. Therefore, it
is crucial to synchronize the amplitude and phase signals before imposing them on the
RF carrier. This is typically achieved by delaying the phase information to compensate
for the delay between the two paths [9].

2.9.4 Feedforward Linearization

The primary difference between feedback and feedforward methods is the location at
which the error signal is compared [10]. In feedforward, the error signal is compared at
the output of the system, while in feedback, the error signal is compared at the input.
The undistorted input is delayed and compared with the attenuated output of the PA.
This allows for measuring the introduced amplitude and phase distortion by the PA. Then
the compared signal is passed through an error amplifier and compared with a delayed
version of distorted PA output. By doing so, the distortion can be removed. To ensure
the effective removal of distortion, it’s essential to design the delay lines accurately. This
involves matching the group delays of the PA and the error amplifier.

The feedforward architecture requires another PA, called the error amplifier. Unlike
the main PA, the error amplifier doesn’t compensate for tracking or gain errors.
Consequently, it’s important that this PA be linear. In addition, the error amplifier
must be sufficiently robust to handle coupling at the output combiner of the overall PA.



These criteria typically result in the error amplifier being sized similarly to the main PA,
which raises cost and efficiency concerns that must be addressed [10].

2.9.5 Predistortion

Predistortion is a widely used technique in modern communication systems [9]. The
main idea behind this technique is to introduce distortion to the input of the PA so
that the output of the PA becomes linearized. The main challenge of the predistortion
technique is determining the appropriate distortion for the input signal to achieve the
desired linearization of the PA output. The predistorter is placed immediately before the
PA.

The predistorter is designed to have the inverse nonlinear characteristics of the PA,
with the aim of achieving an overall linear output [10]. Figure 2.6 provides a graphical
representation of the predistortion principle. It shows the AM/AM characteristics of the
PA and predistorter, exhibiting an inverse relationship between each other. In modern
broadband systems, higher bandwidths are utilized, leading to a significant memory effect
in PAs. Therefore, the use of adaptive predistortion is necessary.

Figure 2.6. Graphical illustration of predistortion principle.

The predistortion concept can be illustrated mathematically with a few equations [10].
If the PA has a nonlinear gain function of G(x), then output y(t) can be expressed as

y(t) = G(x(t)) = K ′.x(t) + nonlinear_terms (13)
where the input signal to the PA is represented as x(t), and the linear gain of the PA is
denoted by K ′. The objective is to eliminate the nonlinear terms of the PA, which can be
achieved through the use of a predistorter having a nonlinear gain function represented
by F (x) as

y(t) = G(F (x(t))) = K ′.x(t). (14)
For the overall system to have a linear relationship, the nonlinear gain function
represented by F must be the inverse of the nonlinear gain function represented by
G.

The predistortion function can be implemented in either the analog or digital domains
as either fixed or adaptive functions [10]. Analog predistortion is a technique that



involves using circuits composed of diodes and transistors. This technique is used in
various applications, including space-borne communications and cellphone headsets. The
nonlinearity of junction diodes is commonly utilized in analog predistortion techniques to
modify the input signal, which is especially popular in RF domain analog predistortion.
On the other hand, DPD systems are implemented using digital components, which
makes them more flexible and versatile than analog ones. This is widely used in modern
communication systems due to their simplicity and robustness in parameter changes.
The Cartesian feedback architecture is the foundation for DPD. In technique, the output
signal from the PA is first down-converted and demodulated into I/Q streams, which are
then digitized using a high-resolution Analog-to-Digital Converter (ADC). The digitized
output signal is then compared with the input I/Q data, and the predistorter is adjusted
accordingly to minimize any distortions [10].

To assess the performance of DPD applications, various metrics are employed, including
ACPR and EVM. These metrics can be computed for the linearized system output.
While AM/AM and AM/PM characteristics can also be used to evaluate performance,
they tend to yield qualitative results rather than numerical values. They offer a visual
representation of the degree of linearization achieved, allowing for comparing different
curves produced by various predistortion techniques to assess their performance [1].



3 STATE-OF-THE-ART BEHAVIORAL MODELING AND
PREDISTORTION TECHNIQUES OF PA

This chapter provides a thorough overview of the current state-of-the-art in behavioral
modeling and predistortion techniques, with a primary focus on models that utilize
neural networks. Additionally, the chapter highlights the progression of predistortion
techniques from memory-less models to more sophisticated models that incorporate
adaptive memory-based approaches.

3.1 Behavioral Model

The behavioral model of an RF PA is a nonlinear dynamic model designed to emulate
the PA behavior based on the knowledge of input and output signals [1]. It strives
to capture the input-output relationship of the RF PA, and it can be expressed
mathematically or through other means. The process of deriving a behavioral model
is similar to predistortion, and most model structures can be used for both applications.
Nevertheless, the performance evaluation approach differs between behavioral modeling
and predistortion. As shown in Figure 3.1, in behavioral modeling, performance
evaluation is typically based on comparing the output of the model to the output of
the actual PA when the same input is applied to both. The signals yactual(t) and ymodel(t)
are compared and assessed the performance based on their similarity either in the time
domain or frequency domain. Then the parameters are adjusted through a feedback path
to the model [1].

Figure 3.1. Behavioral model performance evaluation.

RF PA systems typically have highly complex internal circuitry, making it difficult
to interpret each phenomenon and develop a model mathematically [10]. However, one
of the primary advantages of behavioral modeling is that it requires very little or no
knowledge of the internal circuitry to construct the model. In addition, behavioral
modeling is essentially a mapping between inputs and outputs, which means that it
can help protect the intellectual property (IP) of the device. The main considerations
of behavioral modeling are the simulation speed and the level of accuracy required for
the given application. Some internal features are willingly sacrificed to improve the



simulation time, such as temperature dependency, frequency response, average power
level, electromagnetic interactions, and load sensitivity [10].

Over the last few decades, various behavioral modeling methods have been introduced.
Behavioral models can be classified into three types based on their memory effect:
memoryless nonlinear, quasi-memoryless nonlinear, and nonlinear with memory [9].
Memoryless nonlinear models are characterized by their AM/AM characteristics, while
quasi-memoryless nonlinear models are characterized by their AM/AM and AM/PM
characteristics. When the memory effect is considered, the model’s behavior depends on
the envelope of the input signal and its frequency. This approach has become increasingly
common in modern communication systems due to high bandwidths. Subsequently,
models considering memory effects, such as the Volterra series, memory polynomial,
and generalized memory polynomial models, have been investigated. However, these
models have faced challenges in improving the modeling performance due to the high
correlation between polynomial bases. As a result, in recent years, neural network (NN)
based predistortion techniques have gained popularity.

3.2 Conventional Memoryless and Memory Nonlinear Models

The evolution of conventional nonlinear models up to NN-based nonlinear modeling is
presented in this section. The journey starts with memoryless models such as the Saleh
model, Ghorbani model, and polynomial models without memory. These models lack
the ability to capture dynamic behaviors and are limited in their applications. Then the
memory models were developed, including Volterra based models, memory polynomials,
and Wiener-Hammerstein models. These models have the ability to capture dynamic
behaviors and memory effects, making them suitable for a wider range of applications.

3.2.1 Saleh Model

The Saleh model was a commonly used PA modeling technique in earlier days, which
modeled the AM/AM and AM/PM characteristics of the PA [9]. The Saleh model was
specifically designed and optimized for traveling wave tube amplifiers (TWTAs), and,
therefore may not be well-suited for modeling solid-state PAs (SSPAs) [2]. The Saleh
model can be expressed in either polar or Cartesian form [1]. The polar form is directly
related to the AM/AM and AM/PM characteristics which can be expressed as

GA(A) = αa

1 + βaA2 (15)

ϕG(A) = αϕA2

1 + βϕA2 (16)

where GA(A) and ϕG(A) denote the AM/AM and AM/PM characteristics of the PA,
respectively, and αa, βa, αϕ and βϕ denote the amplitude and phase coefficients of the
model. On the other hand, the cartesian form is related to the I/Q nonlinearities and
can be expressed as

GI(A) = αI

1 + βIA2 (17)



GQ(A) = αQA2

(1 + βQA2)2 (18)

where GI(A) and GQ(A) denote the in-phase and quadrature nonlinearities of the PA,
respectively, and αI , βI , αQ and βQ denote the I/Q coefficients of the model.

3.2.2 Ghorbani Model

The Ghorbani model is an analytically based model designed for SSPAs [1]. It describes
the AM/AM distortion GA(A) and AM/PM distortion ϕG(A) as

GA(A) = x1A
x2−1

(1 + x3Ax2) + x4 (19)

ϕG(A) = y1A
y2

(1 + y3Ay2) + y4A (20)

where A is the magnitude of the input signal. The model parameters x1, x2, x3, x4 are for
the AM/AM distortion, and y1, y2, y3, y4 are for the AM/PM distortion. The Ghorbani
model is well suited for modeling field effect transistor (FET) PAs and low amplitude
nonlinearities [2].

3.2.3 Rapp Model

The Rapp model is a memoryless nonlinearity model, especially in the design and analysis
of SSPAs. The input-output characteristics of the Rapp model can be expressed as

y(t) = Gss

[1 +
∣∣∣ x(t)

xsat

∣∣∣2σ
] 1

2σ

(21)

where the signals input to the model are denoted by x(t), while the output signals are
represented by y(t). The input saturation value is referred to as xsat, and Gss is the gain
for small signals. Additionally, a positive scaling factor is represented by σ.

3.2.4 Memoryless Polynomial Model

AM/AM and AM/PM characterizing complex nonlinearities are commonly used
nonlinear PA models [1]. The typical way is to measure them in a static method.
However, dynamic AM/AM and AM/PM measurements can obtain more accurate
results. The complex input envelope, x(t), and complex output envelope, y(t) can be
expressed as

y(t) = x(t)G(A) (22)
where A = |x(t)| and G(A) is the complex gain of PA, which can be expressed in a
complex polynomial power series of finite order N as

G(A) =
N∑

k=1
ak|x(t)|k−1 (23)



where ak are the complex coefficients of the model. Then the model output can be
expressed as

y(t) =
N∑

k=1
ak|x(t)|k−1x(t). (24)

3.2.5 Volterra Series Model

As explained in previous chapters, PAs can have memory effects due to multiple factors
associated with operating signals and PA characteristics. The memory effects in PAs can
be classified into two main categories: electrical memory effects, which are dependent on
the signal bandwidth, and thermal memory effects, which are dependent on the power
dissipation of the PA [1]. Narrowband signals exhibit minimal electrical memory effects
because the PA response remains relatively constant across the signal bandwidth. Hence,
electrical memory effects can generally be disregarded for signals with a bandwidth lower
than 10 MHz. Similarly, the thermal memory effects can be ignored if the junction
temperature variation is a few degrees. If thermal and electrical memory effects can
be neglected, the PA can be represented using a memoryless nonlinear static model.
However, with the higher bandwidths of modern communication systems, memory impact
can not be ignored in PA modeling. Volterra series can accurately model the nonlinearity
and different types of memory effects, and its input-output relation can be expressed as

y(n) =
P∑

p=1

M∑
i1=0

...
M∑

ip=0
hp(i1, ..., ip)

p∏
j=1

x(n − ij) (25)

where x(n) and y(n) represent the input and output of the model, respectively. The
kernels of the model are denoted by hp(i1, . . . , ip), with a memory depth of M and a
nonlinearity order of P . The Volterra model is considered a complete model because
it captures all possible forms of memory effects and nonlinearities. However, a major
drawback of the model is that it requires a large number of coefficients, which increases
exponentially with both the nonlinearity order and memory depth. Hence, the Volterra
series is used to model lower memory depths and nonlinearity orders. To address the
issue of complexity, several modifications have been proposed to the Volterra model.
These modifications aim to reduce the number of coefficients required for the model
while preserving its ability to capture memory effects and nonlinearities.

3.2.6 Wiener, Hammerstein and Wiener-Hammerstein Models

These models are introduced to simplify the complexity of the Volterra series, by
separating the memory component from the memoryless nonlinearity [1]. The Wiener
model consists of a filter to capture the memory effect, followed by a memoryless
nonlinearity. In contrast, the Hammerstein model has a memoryless nonlinearity followed
by a filter. The Wiener-Hammerstein model combines these two approaches, with a
memoryless nonlinearity sandwiched between two filters. Due to this structure, these
models reduce the number of required coefficients significantly. The structure of these
models allows for a significant reduction in the number of required coefficients. They do



not require coefficients for many cross-product terms, instead relying only on the filter
and memoryless model parameters. However, there are still some limitations that need
to be addressed. One of the main drawbacks is that separating memory and nonlinearity
does not accurately reflect real-world situations. Additionally, these approaches do not
take into account the filtering impact on different power levels.

3.2.7 Memory Polynomial

The memory polynomial model is derived from the Volterra series model by eliminating
the diagonal terms [1]. Thus, the memory polynomial output y(n) can be expressed in
terms of baseband input x(n) as

y(n) =
M∑

m=0

K∑
k=1

amkx(n − m)|x(n − m)|k−1 (26)

where K represents the nonlinearity order and M represents the memory depth, and amk

denotes the coefficients of the model. The same equation can be interpreted with matrix
notation as

y(n) = X(n) · A (27)
where X(n) and A are denoted as

X(n) =



x(n)
...

x(n)|x(n)|K−1

x(n − 1)
...

x(n − 1)|x(n − 1)|K−1

...
x(n − M)|x(n − M)|K−1



T

(28)

A =
[
a01 . . . a0K a11 . . . a1K . . . aMK

]T
. (29)

3.2.8 Generalized Memory Polynomial Model

The generalized memory polynomial (GMP) model is derived by including additional
basis functions to the memory polynomial model [1]. It introduces cross terms resulting
in a complex signal including leading and lagging terms and can be expressed as

y(n) =
Ma∑

m=0

Pa∑
p=1

ampx(n − m)|x(n − m)|p−1 +
Mb∑

m=0

Pb∑
p=2

P ′∑
p′=1

bmpp′x(n − m)|x(n − m − p′)|p−1

+
Mc∑

m=0

Pc∑
p=2

Q∑
q=1

cmpqx(n − m)|x(n − m + q)|p−1

(30)



where x(n) and y(n) denote the input and output of the model. The GMP model consists
of three polynomial functions. The first function time aligns the input samples with a
memory depth of Ma and a nonlinearity order of Pa. The second function uses the input
samples and lagging values of its envelope with a memory depth of Mb and a nonlinearity
order of Pb. The third function uses the input samples and leading values of its envelope
with a memory depth of Mc and a nonlinearity order of Pc.

3.3 Neural Network-based Models

Current literature investigates numerous NN-based approaches, including shallow NNs
[11], [12], [13], and deep NNs [14] with multiple hidden layers. The shallow NNs comprise
a simple network structure and a simple training process. The authors in [11] introduced
a shallow NN called the real-valued time-delay NN (RVTDNN) model. Since it has
one or two hidden layers, additional computations are required in the hidden layers to
learn complex nonlinear and memory effects of the PA. To overcome that, augmented
radial basis function NN (ARBFNN) [13] and augmented real-valued time delay NN
(ARVTDNN) [12] architectures were introduced, including the envelope-dependent terms
in the input along with the I/Q components of current and past signals. However, as the
bandwidth increases, the number of memory taps also increases, resulting in a high input
dimension. The suitability of deep NN (DNN) is studied in [14] experimenting over three
hidden layers. This study shows that it can approximate intricate nonlinear relationships
with relatively low complexity.

Nevertheless, the excessive signal processing resources for high bandwidth situations
is still a concern. To address the complexity issue in wideband PAs, [5] introduced a
real-valued time delay convolutional NN (RVTDCNN) model with image input data.
This approach was refined in [15] by replacing the two-dimensional (2D) convolution
kernel with a couple of consecutive one-dimensional (1D) convolution kernels to enhance
the computational complexity. The authors in [16] included an analysis of the average
power consumption and ambient temperature variation impact on the performance of the
same CNN architecture. Another hardware-friendly modular 1D-CNN architecture was
proposed in [17] for real-time DPD. Due to the time series nature of the input signal,
RNN and LSTM based NNs are introduced to capture the memory effects of PA [18–20].
The vanilla LSTM structure is used in [18] consisting of one LSTM layer and a couple
of fully connected layers. Then it is further improved in [20] by including a CNN layer
followed by the LSTM layer to build an LSTM-CNN architecture. Sequence-to-sequence
modeling nature of LSTM is utilized in [19] using a bidirectional LSTM (BiLSTM) model.
Each NN-based model is briefly described below.

3.3.1 Real-Valued Time Delay Neural Network (RVTDNN)

The RVTDNN model takes complex I/Q input data as a real-valued vector, including
time-delayed versions [11]. The model is based on a feed-forward NN (FFNN) and tapped
delay lines (TDLs), as Figure 3.2 illustrates. The model uses Iin, Qin of current and past
baseband input samples to predict the current baseband output Iout, Qout. TDLs are
utilized to capture the previous input samples, which reflect the short-term memory



effect of the PA. p past baseband input Iin and q past baseband input Qin samples are
used in the estimation of the output value. The input of the model Xn can be expressed
as

Xn = [Iin(n), Iin(n − 1), ..., Iin(n − p),
Qin(n), Qin(n − 1), ..., Qin(n − q)].

(31)

Figure 3.2. RVTDNN model architecture.

3.3.2 Augmented Real-Valued Time Delay Neural Network (ARVTDNN)

The ARVTDNN model incorporates both the I and Q components, including the
amplitudes of the envelope terms and their nonlinear versions [12]. Additionally, the
current and previous input samples are used to reflect the memory effect as shown in
Figure 3.3. The utilization of envelope-dependent nonlinear terms has been shown to
enhance both the convergence speed and overall performance of the model. The model
input Xn can be expressed as

Xn = [Iin(n), Iin(n − 1), ..., Iin(n − M),
Qin(n), Qin(n − 1), ..., Qin(n − M),
|xin(n)|, |xin(n − 1)|, ..., |xin(n − M)|,
|xin(n)|2, |xin(n − 1)|2, ..., |xin(n − M)|2,
|xin(n)|3, |xin(n − 1)|3, ..., |xin(n − M)|3]

(32)

where xin(n) is the current input baseband sample such that xin(n) = Iin(n) + jQin(n).
M is the memory depth.

3.3.3 Augmented Radial Basis Function Neural Network (ARBFNN)

In previous models, I and Q data are separated and fed into the model as real values [13].
However, in the ARBFNN model, the complex baseband input is fed in its complex form,



Figure 3.3. ARVTDNN model architecture.

incorporating both current and previous samples, as well as envelope-dependent terms.
The model consists of a single hidden layer, and both the input samples and resulting
output are in complex form. The input of the model Xn can be expressed as

Xn = [xin(n), xin(n − 1), ..., xin(n − M),
|xin(n)|, |xin(n − 1)|, ..., |xin(n − M)|,
|xin(n)|2, |xin(n − 1)|2, ..., |xin(n − M)|2,
|xin(n)|3, |xin(n − 1)|3, ..., |xin(n − M)|3].

(33)

3.3.4 Deep Neural Network-based Digital Predistorter (DNN-DPD)

The models previously discussed featured only one or two hidden layers [14]. However,
in this DNN-based model, additional hidden layers are incorporated to evaluate the
linearization performance. The DNN model shares similarities with the RVTDNN model,
except for having more hidden layers as shown in Figure 3.4. The input of the DNN model
is the same as that of the RVTDNN model.



Figure 3.4. DNN model architecture.

3.3.5 Real-Valued Time Delay Convolutional Neural Network
(RVTDCNN)

The RVTDCNN model employs a convolutional NN to efficiently extract crucial features
[5]. It comprises an input layer, a convolutional layer, a fully connected layer, and
an output layer. The diagram of the RVTDCNN model is shown in the accompanying
Figure 3.5. One of the primary benefits of this model is its ability to maintain comparable
performance while significantly reducing complexity. Moreover, it is an excellent solution
for high-bandwidth PAs with more extended memory effects. The input of the model
is a 2D matrix with current and previous input I and Q samples along with envelope-
dependent nonlinear terms. It can be expressed as

Xn =


Iin(n) Iin(n − 1) . . . Iin(n − M)
Qin(n) Qin(n − 1) . . . Qin(n − M)
|xin(n)| |xin(n − 1)| . . . |xin(n − M)|
|xin(n)|2 |xin(n − 1)|2 . . . |xin(n − M)|2
|xin(n)|3 |xin(n − 1)|3 . . . |xin(n − M)|3

 . (34)

3.3.6 Power-Temperature Inclusive Digital Predistortion (PTI-DPD)

The behavior of the PA is sensitive to the average power variation and the ambient
temperature [16]. Hence, the PTI-DPD is designed to incorporate those parameters to
increase accuracy and robustness. The PTI-DPD model shares the same model structure
as the RVTDCNN, with the exception that its input matrix includes an additional row
containing temperature and power data. The model input can be expressed as



Figure 3.5. RVTDCNN model architecture.

Xn =



Iin(n) Iin(n − 1) Iin(n − 2) . . . Iin(n − M)
Qin(n) Qin(n − 1) Qin(n − 2) . . . Qin(n − M)
P (n) T (n) P (n) . . . P (n)

|xin(n)| |xin(n − 1)| |xin(n − 2)| . . . |xin(n − M)|
|xin(n)|2 |xin(n − 1)|2 |xin(n − 2)|2 . . . |xin(n − M)|2
|xin(n)|3 |xin(n − 1)|3 |xin(n − 2)|3 . . . |xin(n − M)|3


(35)

where P and T denote the average power and temperature.

3.3.7 Long Short-Term Memory (LSTM) based Digital Predistortion
(LSTM-DPD)

In general, LSTM models can capture time series dependencies [18]. Therefore, the model
uses the LSTM layer to capture and leverage the memory effects of the PA. This model
comprises an input layer, an LSTM layer, a couple of fully connected layers, and an
output layer. The model’s input is identical to that of the RVTDNN input, whereby it
takes the current and previous I and Q components of the baseband input samples.



4 TRANSFORMER NEURAL NETWORK-BASED
BEHAVIORAL MODELING AND PREDISTORTION

In this chapter, the use of transformer-based techniques for behavioral modeling
and predistortion is thoroughly examined. The chapter delves into the underlying
requirements of these techniques and highlights how they are successful in linearizing even
the most complex, nonlinear PAs that would appear in future communication systems.

4.1 Limitations of State-of-the-art Models and Benefits of
Transformer-Based Models

The state-of-the-art PA behavioral and linearization models have limitations in
addressing the intricate and long-term nonlinear relationships that future high-bandwidth
PAs may exhibit. Meeting the high data rate requirements of modern communication
systems has become a key concern, and it is expected that future systems will utilize
several hundreds of bandwidth systems. The high bandwidths associated with modern
communication systems can significantly increase the memory effect of PAs, leading to
more distortions that existing models may not be able to resolve.

Moreover, the training and inference of RNN and LSTM models are sequential
computational processes that arise challenges in hardware acceleration with graphical
processing units (GPUs) and field programmable gate arrays (FPGAs) [21]. In other
words, the sequential nature of processing makes it impossible to fully utilize multiple
computational resources, even if they are available. These limitations made the
foundation for investigating the suitability of transformer-based deep learning solutions
for behavioral modeling and linearization of the PA.

The transformer architecture was introduced in 2017 in the paper "Attention is All You
Need," enabling high computation parallelism in the training and inference phases [6].
The transformer model structure is designed with encoder-decoder-based architecture.
The existing LSTM encoder-decoder architecture presents challenges in terms of training
due to its susceptibility to the vanishing gradient problem. The transformer processes
the entire data sequence in parallel through the self-attention mechanism, identifying
long-term sequence dependencies [21]. Due to the parallel processing, available hardware
resources can be utilized to the full extent, which was challenging on LSTM-based models.

In addition to its parallel processing capabilities, transformer-based models can handle
complex time series dependencies that are challenging for existing sequence models
[22]. Motivated by these capabilities, this study proposes behavioral modeling and
linearization of the PA based on the transformer architecture, potentially overcoming
the limitations of existing models and improving the design of high-bandwidth PAs for
future communication systems.

4.2 Transformer Architecture

This section offers an in-depth explanation of the transformer architecture, providing a
comprehensive overview of the entire model. It first presents an overview of the model



and then delves into each section of both the encoder and decoder components, providing
a detailed explanation of their functions and interactions.

4.2.1 Overall Structure

The transformer architecture is based on the self-attention mechanism, allowing the
model to process input data in parallel and learn long-term dependencies more effectively
than previous models. This mechanism works by computing the attention weights of each
input element based on its similarity to all other elements in the sequence. By weighting
the importance of each element based on its relevance to the others, the transformer can
capture complex patterns and relationships within the input data.

The transformer model is structured as an encoder-decoder architecture, where the
encoder maps the input sequence to an abstract continuous representation, and the
decoder generates the output sequence based on this representation. The model
architecture is illustrated in Figure 4.1. This architecture is highly adaptable and can be
applied to a wide range of sequence-to-sequence problems beyond NLP, including image
captioning, speech recognition, music generation, and wireless communication.

The encoder of the transformer consists of multiple layers of self-attention and FFNNs.
Each layer of self-attention allows the encoder to focus on different parts of the input
sequence, while the FFNNs process the output of the self-attention layers to produce the
final encoded representation. The decoder of the transformer also consists of multiple
layers of self-attention and FFNNs. The decoder uses the encoded representation from
the encoder, along with the previously generated output, to generate the next output
in the sequence. The transformer architecture represents a significant improvement
over previous models in its ability to learn complex patterns and relationships within
sequences, and its highly parallelized structure makes it well-suited for use on modern
hardware accelerators. Below is a brief explanation of each submodule of the transformer
model.

4.2.2 Input/Output Embedding

NN models cannot directly process words as inputs, therefore, these words are first
transformed into a vector representation before being fed into the model. This process
can be thought of as a look-up table (LUT), where each word is assigned a vector
containing continuous values. This transformation should be applied in both the encoder
and decoder sides.

4.2.3 Positional Encoding

Unlike RNN or LSTM, transformers do not have a built-in recurrence mechanism.
Instead, the entire sequence is processed simultaneously, and positional information is
incorporated into the embeddings using the positional encoding technique. This approach



Figure 4.1. Transformer model structure.

involves adding a unique value to represent the position of an element in the sequence.
In [6], the authors used a sine and cosine-based scheme, which can be expressed as:

PE(pos,2i) = sin(pos/10000(2i/dmodel))
PE(pos,2i+1) = cos(pos/10000(2i/dmodel)).

(36)

4.2.4 Attention Mechanism

The attention mechanism maps a query and a set of key-value pairs to an output [6].
The objective is to compute a weighted average of the features of multiple elements in
the sequence, with the weights dynamically calculated based on their values. In other



words, the attention mechanism dynamically determines which elements in the sequence
require more attention than others, and it comprises four parts: the query, key, value,
and score function.

The query serves as the feature vector that describes the information of interest within
the sequence, whereas the keys correspond to the feature vectors characterizing the input
elements and their potential importance. The values refer to the feature vectors that are
to be averaged over, while the score function determines the attention weight assigned
to each query-key pair, often relying on a straightforward similarity metric.

4.2.5 Scaled Dot-Product Attention

The scaled dot-product attention uses the attention mechanism such that any element
in the sequence can attend to any other element in the sequence while maintaining
computational efficiency. The matrix form of a set of queries, keys, and values is
represented by Q ∈ RT ×dk , K ∈ RT ×dk , and V ∈ RT ×dv , respectively, and is used as inputs.
Here, T denotes the sequence length, and dk and dv represent the hidden dimensions of
queries/keys and values, respectively. The scaled dot product attention can be expressed
mathematically as

Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V. (37)

The dot product between each possible query-key pair is calculated through the QKT

matrix multiplication. Each row of the resulting matrix QKT represents the relationships
between each element in the sequence and all the other elements in the sequence.

The QKT matrix multiplication computes the dot product for each query-key pair
in a sequence. The rows of QKT represent the relationship between each element in
the sequence and every other element in the sequence. The result of this multiplication
is then divided by

√
dk to maintain an appropriate variance of attention values after

initialization. The output is passed through a softmax function to obtain a weight for
each element in the sequence, which is then multiplied with its corresponding value vector
to calculate the weighted mean. This process is illustrated in [6] as in Figure 4.2. The
masking block is an optional component that is needed when working with sequences of
variable lengths.

4.2.6 Multi-Head Attention

As shown in Figure 4.3, the multi-head attention mechanism is an extension of the scaled
dot product attention that uses multiple attention heads. This is necessary because
complex sequences often require attending to different aspects of the sequence elements.
By using multiple heads, the model can learn multiple weighted averages, allowing it to
attend to different parts of the sequence simultaneously.

In the multi-head attention mechanism, the initial query, key, and value matrices are
divided into h sub-matrices or heads, and each head is used to compute a separate
attention vector. Specifically, each sub-query, sub-key, and sub-value matrix is used in
a scaled dot product attention block to calculate a corresponding sub-attention vector.



Figure 4.2. Scaled dot-product attention.

Figure 4.3. Multi-head attention mechanism.

The resulting sub-attention vectors are then concatenated and passed through a linear
layer to obtain the final output. The mathematical representation can be denoted as

Multihead(Q, K, V ) = concat(head1, head2, ..., headh)W O (38)



headi = Attention(QW Q
i , KW K

i , V W V
i ) (39)

where W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and W O ∈ Rhdv×dmodel are

projection matrices with learnable parameters.

4.2.7 Feed Forward Network

This refers to an FFNN that is fully connected, comprising two linear layers and a rectified
linear unit (ReLU) function in between. The network operates independently on each
position, and its mathematical notation can be expressed as

FFN(x) = max(0, xW1 + b1)W2 + b2x = LayerNorm(x + FFN(x)) (40)
where W1, b1 and W2, b2 are the weight and bias matrices of the first and second linear
layers, respectively.

4.2.8 Transformer Encoder

The transformer was originally designed for NLP-related tasks, particularly machine
translation, and utilizes an encoder-decoder-based structure. The encoder generates an
attention-based representation of the input sequence in the source language, which is
then attended to by the decoder to generate the translated output in an autoregressive
manner. However, the architecture is not limited to NLP tasks and can be applied to
any sequence-to-sequence modeling task with an autoregressive decoding component. In
fact, some models have been developed using just the encoder component, such as the
BERT family and the vision transformer.

4.2.9 Transformer Decoder

The primary objective of the decoder is to generate text sequences. The decoder has
similar sub-layers present in the encoder, such as two multi-head attention layers, a point-
wise feedforward layer, and residual connections and layer normalization. However, the
first multi-head attention layer in the decoder is referred to as the masked multi-head
attention layer, and it has slightly different functionality than the second one. As the
decoder generates the output sequence in an autoregressive manner, one word at a time,
it is necessary to mask the future tokens when generating the current token to ensure
that the model only has access to information available at the current time step. The
remaining sub-layers perform the same function as they do in the encoder.

The decoder operates in an autoregressive manner, starting the sequence generation
with a special token called < sos >, which denotes the "start of the sequence". Using
this token and the attention information from the encoder’s output, the decoder produces
the next possible word. The generated output is then considered an input in the next
iteration to produce the subsequent output, and this process repeats until the decoder
generates the < eos > token, which denotes the "end of the sequence".



4.3 Proposed Transformer Based Model

The transformers were originally designed for NLP tasks, thus modifications were
necessary to handle time series regression data. As a result, a new model called
the augmented real-valued time delay transformer neural network (ARVTDTNN) was
proposed. This model consists of four layers: an input layer, a transformer layer, a
transformer encoder layer, a fully connected layer, and an output layer, as illustrated in
Figure 4.4. The functionality of each layer is as follows:

Figure 4.4. Architecture of the proposed ARVTDTNN model.

4.3.1 Input Layer

The input layer processes each I and Q data to generate the input sequence for the
transformer layer. The input sequence denoted as Xin consists of the I/Q components
and the envelope-dependent terms of current and past signals. Xin is a 2D matrix where
the columns represent features, and the rows represent the temporal variation of the
sequence. This can be expressed as follows:

Xin =



Iin(n − M) . . . Iin(n − 1) Iin(n)
Qin(n − M) . . . Qin(n − 1) Qin(n)
|x(n − M)| . . . |x(n − 1)| |x(n)|
|x(n − M)|2 . . . |x(n − 1)|2 |x(n)|2

... . . . ... ...
|x(n − M)|P . . . |x(n − 1)|P |x(n)|P



T

, (41)

where Iin(n) and Qin(n) represent the I/Q components of the complex envelope x(n) of
the current PA input signal, respectively; |x(n)| represents the amplitude of the signal;
Iin(n − m), Qin(n − m), and |x(n − m)|, ∀m where {m ∈ Z|1 ≤ m ≤ M} denote the
corresponding past samples, respectively; M and P represent the memory depth and
nonlinearity order, respectively.



4.3.2 Transformer Layer

For a simple illustration, input embedding, positional encoding, and transformer encoder
modules are integrated into the transformer layer, as shown in Figure 4.4. The input
to this layer is the preprocessed data sequence Xin ∈ RT ×din where T (= M + 1) is the
sequence length and din(= P + 2) is the number of features. Each sequence goes through
the transformer layer and outputs another sequence with dimension dmodel × T , where
dmodel is the dimension used inside the transformer encoder.

Input embedding and positional encoding

The input embedding block uses time embedding where each time instance vector in
the sequence Xin is transformed into a dmodel dimensional vector using an FC layer.
Embedding output Xemb ∈ RT ×dmodel can be written as

Xemb = XinWemb, (42)
where Wemb ∈ Rdin×dmodel is the weight matrix of the FC layer. The positional encoding is
done similarly to that described in [6], using sine and cosine-based schemes to represent
each position and dimension combination. The positional encoder adds PE(i,j) to the
(i, j)th element of the Xemb, to obtain the (i, j)th element of Xpos ∈ RT ×dmodel

PE(i,j) =
sin(i/10000(2j/dmodel)), j is even,

cos(i/10000(2j/dmodel)), j is odd,
(43)

X(i,j)
pos = X

(i,j)
emb + PE(i,j). (44)

Transformer encoder

The transformer encoder employed in this study has the same functionality as the one
detailed in [6]. It comprises a multi-head attention block, a fully connected FFN, layer
normalization blocks, and residual connections, as illustrated in Figure 4.5. The multi-
head attention function concatenates multiple parallel streams of scaled dot product
attention outputs. Then it projects it to dmodel dimensional space to get the final result,
as shown in Figure 4.5. The query (Q), key (K), and value (V ) matrices can be obtained
as follows:

Q = XposW
Q, (45)

K = XposW
K , (46)

V = XposW
V , (47)

where W Q, W K , W V ∈ Rdmodel×dmodel and Q, K, V ∈ RT ×dmodel . Then, these matrices are
split and fed into each attention head, as expressed below:

Qi = QW Q
i , (48)

Ki = KW K
i , (49)

Vi = V W V
i , (50)



Figure 4.5. Architecture of transformer encoder and multi-head attention.

where W Q
i , W K

i , W V
i ∈ Rdmodel×dmodel/h. Now, ith attention head output, headi can be

computed using the scaled dot product and softmax function as below:

headi = softmax( QiK
T
i√

dmodel/h
)Vi. (51)

The multi-head output (MH) is obtained by aggregating the individual outputs of the
scaled dot product attention operation across all heads (headi) and then passing the
resulting combined output through a linear layer as

MH(Xpos) = concat(head1, ..., headh)W O, (52)
where W O ∈ Rdmodel×dmodel is the projection matrix of linear output layer. Multi-head
attention output and positional encoded output are added with a residual connection
and normalized through layer normalization [23] to obtain the input to the feed-forward
network (FFN). It can be expressed as

Xffn = LN(Xpos + MH(Xpos)) (53)
where LN is the layer normalization, as defined in [23]. Then Xffn goes to the FFN
comprising two linear transformations with a ReLU activation in between. FFN output
can be written as follows:

FFN(Xffn) = ReLU(XffnW1 + b1)W2 + b2, (54)
ReLU(x) = max(0, x), (55)

where Wi and bi are the weight and bias matrices of the ith linear layer. The residual
connections and layer normalization follow the same procedure as before to obtain the
final output of the transformer encoder as

Xenc = LN(Xffn + FFN(Xffn)), (56)
where Xenc ∈ RT ×dmodel is the final output of the transformer layer. Then the last time-
step of this sequence (X−1

enc) is selected and fed to the FC network.



4.3.3 Fully Connected Layer and Output Layer

The FC layer is included to improve the performance further. Input to the FC can be
denoted as X−1

enc = [t1, t2, t3..., tdmodel
]T where ti is the ith element of the last time step of

transformer layer output. Then jth neuron output of the FC layer (j = 1, 2, 3, ..., J) can
be expressed as

fcj = ReLU

dmodel∑
i=1

wfc
ij ti + bfc

i

 , (57)

where wfc
ji and bfc

j are the weights and biases of FC layer. The output layer is an FC
layer consisting of two neurons with no activation function, which maps the final network
output into two I and Q values as

Ipred(n) =
J∑

j=1
wout

1j fcj + bout
1 , (58)

Qpred(n) =
J∑

j=1
wout

2j fcj + bout
2 , (59)

where wout
1j , wout

2j and bout
1 , bout

2 are the weights and biases of output layer.

4.4 Training of the ARVTDTNN Model

The proposed model is trained using the PA measurement dataset provided by
MathWorks, Inc., MATLAB version 2022a [24]. It was generated using NXP Airfast
LDMOS Doherty PA operating at a frequency range of 3.6 − 3.8 GHz with a gain of
29 dB. The input signal was a 100 MHz 5G-like OFDM waveform, with each subcarrier
carrying a 16-QAM symbol. The training, validation, and testing data are normalized to
have zero mean and unity standard deviation to improve the network convergence. Adam
optimization algorithm is chosen to train the model and minimizes the mean square error
(MSE) between the measured and ARVTDTNN predicted output. MSE is represented
as

E = 1
2N

N∑
n=1

[(Ipred(n) − Iout(n))2 + (Qpred(n) − Qout(n))2], (60)

where N is the number of data points in the training set. Ipred(n), Qpred(n) and
Iout(n), Qout(n) denote the predicted and measured I, Q values, respectively. The Adam
optimization algorithm is set with the training parameters; β1 = 0.9, β2 = 0.999, µ0 =
0, ν0 = 0, ϵ = 10−8 and learning_rate = 10−3. A learning rate scheduler is employed,
reducing the learning rate by 0.95 times every two epochs. The maximum number of
training epochs is 200, and the batch size is 128. Training performance is evaluated
using the validation set for every four epochs, and the training loop terminates if
the performance fails to improve for five consecutive iterations. Finally, the model’s
coefficients are updated with the values that result in the lowest validation loss.



4.5 Extension to DPD

The DPD model aims to overcome the nonlinearity and memory effects of the PA; thus,
it has the inverse function of the PA’s nonlinear characteristics. The indirect learning
approach is utilized in this study to determine the DPD function, with the output of the
PA serving as the input for the DPD and the input of the PA being used as the output
of the DPD during the modeling process. Then, the main path DPD is updated using
the trained DPD to linearize the PA, as shown in Figure 4.6. The input matrix (XDP D

n )
and label vector (Y DP D

n ) of the DPD model can be represented as follows:

XDP D
n =



Iout(n − M) . . . Iout(n − 1) Iout(n)
Qout(n − M) . . . Qout(n − 1) Qout(n)
|y(n − M)| . . . |y(n − 1)| |y(n)|
|y(n − M)|2 . . . |y(n − 1)|2 |y(n)|2

... . . . ... ...
|y(n − M)|K . . . |y(n − 1)|K |y(n)|K



T

, (61)

Y DP D
n = [Iin(n) Qin(n)]T , (62)

where Iout(n) and Qout(n) denote the I/Q components of the complex envelope y(n) of
the current PA output signal, respectively.

Figure 4.6. Indirect learning architecture.



5 RESULTS AND DISCUSSION

In this chapter, the findings of the research are presented, which involve the utilization of
simulation tools to address the research problem and compare the proposed model with
existing ones. The primary focus of the chapter is to present the results obtained from
the ARVTDTNN model, particularly in terms of its performance in behavioral modeling
and linearization.

5.1 Behavioral Modeling Performance

The ARVTDTNN model is used to obtain the behavioral model of the PA, which was
illustrated in Figure 4.4. The measured input and output I/Q samples are used to
train the ARVTDTNN model. Figure 5.1 depicts the behavioral modeling performance
of the ARVTDTNN model, displaying the normalized power spectrum of the measured
and modeled PA output. The comparison between the measured output and the output
predicted by the ARVTDTNN model indicates that the model is highly accurate in
predicting the behavior of the PA for 5G-like OFDM signals.
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Figure 5.1. Behavioral modeling performance of ARVTDTDNN.

Thus, the proposed ARVTDTNN model is a highly effective approach for the behavioral
modeling of PAs in 5G-like OFDM signals. The accuracy of the model is affirmed by
the close match between the measured and modeled PA output, indicating that the
transformer NNs are capable of accurately predicting the behavior of the PA for this type
of signal. These findings have important implications for the design of communication
systems, as accurate behavioral modeling of PAs along with faster inference and training
time.



The behavioral ARVTDTNN model is obtained with the parameters dmodel = 8, h = 4,
and J = 10. These parameters define the size and complexity of the model, and they
are chosen to optimize the accuracy and efficiency of the ARVTDTNN model. The
transformer behavioral model is important because it allows the ARVTDTNN model to
accurately capture the behavior of the transformer used in the model, which is critical
for the accurate prediction of the PA output.

5.2 DPD Linearization Performance

The experimental setup involves evaluating the impact of linearization on the
performance of DPD models by cascading different models before the ARVTDTNN
behavioral PA model. The assessment of each DPD model’s linearization performance is
carried out by computing the normalized mean square error (NMSE) between the input
to the DPD and the output of the PA, as well as the ACPR at the PA output. ACPR
measures the ratio of interfering power in the adjacent channels to the signal power in
the main channel.

To visually evaluate the improvement in linearization and the reduction in spectral
regrowth, the normalized power spectrum of the PA output is used. The ARVTDTNN
model and other state-of-the-art models are constructed using the PyTorch framework.
The DPD models utilized in the experiment include LSTM, ARVTDNN, DNN,
RVTDCNN, and ARVTDTNN. Table 5.1 provides a summary of the specific parameters
for each model, all of which have a memory depth of four and two output layer neurons.

Table 5.2 presents a comparison between the proposed ARVTDTNN model and other
state-of-the-art models with respect to their linearization performance in terms of NMSE
and ACPR, as well as their complexity in terms of the number of coefficients. The
results reveal that the ARVTDTNN model outperforms most existing DPD models, with
a significant improvement in both NMSE and ACPR. Specifically, the ACPR is enhanced
from −26.8 dB to −41.8 dB, while the NMSE is reduced from −22.3 dB to −37.6 dB.
These findings demonstrate the effectiveness of the proposed ARVTDTNN model in
linearizing the PA.

The comparison also indicates that the ARVTDTNN model offers superior performance
and complexity when compared to other existing DPD models. It is worth noting that the
performance of the ARVTDTNN model is comparable to that of the RVTDCNN model.
Moreover, the parallel computation nature of transformers offers an advantage in training
and inference times for complex non-linear problems, as is typical in 6G transmitters,
compared to existing solutions.

Figure 5.2 illustrates a comparison of the normalized power spectrum of the linearized
PA output obtained using different DPD models. The results demonstrate that the
proposed ARVTDTNN DPD model is highly effective in reducing the spectral regrowth
induced by the nonlinearity of the PA when compared to other existing models.

Specifically, the plot corresponding to the ARVTDTNN model shows a significant
reduction in spectral regrowth compared to the other models, indicating that the model
is highly effective in linearizing the PA. Moreover, the plot for the ARVTDTNN model
appears to be following that of the RVTDCNN model, indicating that the ARVTDTNN
model’s performance is comparable to that of the RVTDCNN model.



Table 5.1. Comparison of performance and complexity.

Model Parameter Value
LSTM Input features I, Q

Number hidden state features 10
Number neurons in FC layers [12 10]
FC layers’ activation ReLU

ARVTDNN Input features I, Q, |x|, |x|2 . . . |x|4
Number neurons in FC layer 17
FC layer’s activation Tanh

DNN Input features I, Q
Number neurons in FC layers [17 17 17]
FC layers’ activation ReLU

RVTDCNN Input features I, Q, |x|, |x|2 . . . |x|4
Number conv. out channels 5
Kernel size 3 × 3 × 1
Number neurons in FC layer 10
Conv. & FC layers’ activation Tanh

ARVTDTNN Number features in transformer 8
Number attention heads 4
FFN dimension 16
Number neurons in FC layer 10
FC layers’ activation ReLU

Figures 5.3 and 5.4 provide a comparison of the gain and phase variations of the PA
output obtained with and without the proposed ARVTDTNN DPD model. The results
clearly demonstrate that the ARVTDTNN model is highly effective in reducing both gain
and phase distortions in the PA.

In Figure 5.3, the gain variations of the PA output are plotted for both cases, with and
without the ARVTDTNN DPD model. The plot for the PA output without the DPD
model shows significant gain variations, whereas the plot for the PA output with the
DPD model shows a much smoother curve with reduced gain variations. This indicates
that the proposed ARVTDTNN DPD model effectively reduces gain distortions in the
PA.

Similarly, in Figure 5.4, the phase variations of the PA output are plotted for both cases,
with and without the ARVTDTNN DPD model. The plot for the PA output without
the DPD model shows significant phase distortions, whereas the plot for the PA output
with the DPD model shows a much smoother curve with reduced phase distortions.
This indicates that the proposed ARVTDTNN DPD model effectively reduces phase
distortions in the PA.



Table 5.2. Comparison of performance and complexity.

ACPR (dB) NMSE(dB) Number of
(-/+ 25MHz) model coefficients

Without DPD -26.57/-27.03 -22.35 N/A
LSTM -39.54/-39.17 -34.22 849
ARVTDNN -41.48/-39.63 -36.38 563
DNN -41.72/-40.17 -36.69 835
RVTDCNN -42.79/-41.25 -37.58 682
ARVTDTNN -42.49/-41.19 -37.61 768
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Figure 5.2. Normalized power spectrum comparison with state-of-the-art models.



Figure 5.3. AM/AM characteristics of PA with and without the proposed DPD.

Figure 5.4. AM/PM characteristics of PA with and without the proposed DPD.



6 CONCLUSION AND FUTURE WORK

In this study, we proposed a transformer NN-based behavioral model and DPD linearizer
for wideband PAs. This approach utilizes the multi-head attention mechanism to
parallelize the computation and model complex nonlinearities and memory effects
introduced by the PA. ARVTDTNN is tested with 5G-like 100 MHz OFDM signal,
exhibiting an improvement in NMSE and ACPR of up to −37.6 dB and −41.8 dB,
respectively. Based on the comparison, ARVTDTNN outperforms most state-of-the-
art solutions and delivers comparable results to the RVTDCNN. Additionally, the
computation parallelism nature of the transformer mechanism can improve the training
and inference time during FPGA implementation. The ability of transformer NNs
to model highly complex nonlinear problems and long-term dependencies makes them
suitable for solving complex challenges in the upcoming high-bandwidth applications.
Our future work aims to replace the PA behavioral model with a real PA to validate
the simulation performance. Additionally, we plan to implement our DPD model on an
FPGA to assess its linearization performance on actual hardware.
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