860 research outputs found

    Cross-layer topology design for network coding based wireless multicasting

    Get PDF
    This paper considers wireless multicast networks where network coding (NC) is applied to improve network throughput. A novel joint topology and cross-layer design is proposed to miximize the network throughput subject to various quality-of-service constraints, such as: wireless multicast rate, wireless link capacity, energy supply and network lifetime. Specifically, a heuristic NC-based link-controlled routing tree algorithm is developed to reduce the number of required intermediate nodes. The proposed algorithm facilitates the optimization of the wireless multicast rate, data flow of wireless links, energy supply and lifetime of nodes through a novel cross-layer design. The proposed joint topology and cross-layer design is evaluated and compared against other schemes from the literature. The results show that the proposed scheme can achieve up to 50% increase in the system throughput when compared to a classic approach

    Cross-layer topology design for network coding based wireless multicasting

    Get PDF
    This paper considers wireless multicast networks where network coding (NC) is applied to improve network throughput. A novel joint topology and cross-layer design is proposed to miximize the network throughput subject to various quality-of-service constraints, such as: wireless multicast rate, wireless link capacity, energy supply and network lifetime. Specifically, a heuristic NC-based link-controlled routing tree algorithm is developed to reduce the number of required intermediate nodes. The proposed algorithm facilitates the optimization of the wireless multicast rate, data flow of wireless links, energy supply and lifetime of nodes through a novel cross-layer design. The proposed joint topology and cross-layer design is evaluated and compared against other schemes from the literature. The results show that the proposed scheme can achieve up to 50% increase in the system throughput when compared to a classic approach

    Cross-layer optimisation for topology design of wireless multicast networks via network coding

    Get PDF
    One of the main challenges towards reliable multicast transmissions over wireless networks is the dynamics of the wireless links (e.g. wireless errors, fading, interference, collisions, etc.) that can cause retransmissions overhead over the limited available bandwidth. To this end this paper considers the scenario of wireless multicast networks where network coding is applied to improve network throughput. We first propose a novel cross-layer optimisation framework for network topology design in order to optimise the wireless multicast rate, data flow of the wireless links, energy supply and node lifetime. The performance of the proposed solution is evaluated and compared against other solutions from the literature in terms of system throughput, total energy, and network lifetime. The results show that the proposed cross-layer design outperforms the other schemes involved, reaching up to 50% increase in the system throughput

    Cross-layer optimisation for topology design of wireless multicast networks via network coding

    Get PDF
    One of the main challenges towards reliable multicast transmissions over wireless networks is the dynamics of the wireless links (e.g. wireless errors, fading, interference, collisions, etc.) that can cause retransmissions overhead over the limited available bandwidth. To this end this paper considers the scenario of wireless multicast networks where network coding is applied to improve network throughput. We first propose a novel cross-layer optimisation framework for network topology design in order to optimise the wireless multicast rate, data flow of the wireless links, energy supply and node lifetime. The performance of the proposed solution is evaluated and compared against other solutions from the literature in terms of system throughput, total energy, and network lifetime. The results show that the proposed cross-layer design outperforms the other schemes involved, reaching up to 50% increase in the system throughput

    WIMAX Basics from PHY Layer to Scheduling and Multicasting Approaches

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is an emerging broadband wireless technology for providing Last mile solutions for supporting higher bandwidth and multiple service classes with various quality of service requirement. The unique architecture of the WiMAX MAC and PHY layers that uses OFDMA to allocate multiple channels with different modulation schema and multiple time slots for each channel allows better adaptation of heterogeneous user’s requirements. The main architecture in WiMAX uses PMP (Point to Multipoint), Mesh mode or the new MMR (Mobile Multi hop Mode) deployments where scheduling and multicasting have different approaches. In PMP SS (Subscriber Station) connects directly to BS (Base Station) in a single hop route so channel conditions adaptations and supporting QoS for classes of services is the key points in scheduling, admission control or multicasting, while in Mesh networks SS connects to other SS Stations or to the BS in a multi hop routes, the MMR mode extends the PMP mode in which the SS connects to either a relay station (RS) or to Bs. Both MMR and Mesh uses centralized or distributed scheduling with multicasting schemas based on scheduling trees for routing. In this paper a broad study is conducted About WiMAX technology PMP and Mesh deployments from main physical layers features with differentiation of MAC layer features to scheduling and multicasting approaches in both modes of operations

    Improving Multicast Communications Over Wireless Mesh Networks

    Get PDF
    In wireless mesh networks (WMNs) the traditional approach to shortest path tree based multicasting is to cater for the needs of the poorest performingnode i.e. the maximum permitted multicast line rate is limited to the lowest line rate used by the individual Child nodes on a branch. In general, this meansfixing the line rate to its minimum value and fixing the transmit power to its maximum permitted value. This simplistic approach of applying a single multicast rate for all nodes in the multicast group results in a sub-optimal trade-off between the mean network throughput and coverage area that does not allow for high bandwidth multimedia applications to be supported. By relaxing this constraint and allowing multiple line rates to be used, the mean network throughput can be improved. This thesis presents two methods that aim to increase the mean network throughput through the use of multiple line rates by the forwarding nodes. This is achieved by identifying the Child nodes responsible for reducing the multicast group rate. The first method identifies specific locations for the placement of relay nodes which allows for higher multicast branch line rates to be used. The second method uses a power control algorithm to tune the transmit power to allow for higher multicast branch line rates. The use of power control also helps to reduce the interference caused to neighbouring nodes.Through extensive computer simulation it can be shown that these two methods can lead to a four-fold gain in the mean network throughput undertypical WMN operating conditions compared with the single line rate case

    Network coding for transport protocols

    Get PDF
    With the proliferation of smart devices that require Internet connectivity anytime, anywhere, and the recent technological advances that make it possible, current networked systems will have to provide a various range of services, such as content distribution, in a wide range of settings, including wireless environments. Wireless links may experience temporary losses, however, TCP, the de facto protocol for robust unicast communications, reacts by reducing the congestion window drastically and injecting less traffic in the network. Consequently the wireless links are underutilized and the overall performance of the TCP protocol in wireless environments is poor. As content delivery (i.e. multicasting) services, such as BBC iPlayer, become popular, the network needs to support the reliable transport of the data at high rates, and with specific delay constraints. A typical approach to deliver content in a scalable way is to rely on peer-to-peer technology (used by BitTorrent, Spotify and PPLive), where users share their resources, including bandwidth, storage space, and processing power. Still, these systems suffer from the lack of incentives for resource sharing and cooperation, and this problem is exacerbated in the presence of heterogenous users, where a tit-for-tat scheme is difficult to implement. Due to the issues highlighted above, current network architectures need to be changed in order to accommodate the users¿ demands for reliable and quality communications. In other words, the emergent need for advanced modes of information transport requires revisiting and improving network components at various levels of the network stack. The innovative paradigm of network coding has been shown as a promising technique to change the design of networked systems, by providing a shift from how data flows traditionally move through the network. This shift implies that data flows are no longer kept separate, according to the ¿store-and-forward¿ model, but they are also processed and mixed in the network. By appropriately combining data by means of network coding, it is expected to obtain significant benefits in several areas of network design and architecture. In this thesis, we set out to show the benefits of including network coding into three communication paradigms, namely point-topoint communications (e.g. unicast), point-to-multipoint communications (e.g. multicast), and multipoint-to-multipoint communications (e.g. peer-to-peer networks). For the first direction, we propose a network coding-based multipath scheme and show that TCP unicast sessions are feasible in highly volatile wireless environments. For point-to-multipoint communications, we give an algorithm to optimally achieve all the rate pairs from the rate region in the case of degraded multicast over the combination network. We also propose a system for live streaming that ensures reliability and quality of service to heterogenous users, even if data transmissions occur over lossy wireless links. Finally, for multipoint-to-multipoint communications, we design a system to provide incentives for live streaming in a peer-to-peer setting, where users have subscribed to different levels of quality. Our work shows that network coding enables a reliable transport of data, even in highly volatile environments, or in delay sensitive scenarios such as live streaming, and facilitates the implementation of an efficient incentive system, even in the presence of heterogenous users. Thus, network coding can solve the challenges faced by next generation networks in order to support advanced information transport.Postprint (published version

    Optimizing Network Coding Algorithms for Multiple Applications.

    Get PDF
    Deviating from the archaic communication approach of treating information as a fluid moving through pipes, the concepts of Network Coding (NC) suggest that optimal throughput of a multicast network can be achieved by processing information at individual network nodes. However, existing challenges to harness the advantages of NC concepts for practical applications have prevented the development of NC into an effective solution to increase the performance of practical communication networks. In response, the research work presented in this thesis proposes cross-layer NC solutions to increase the network throughput of data multicast as well as video quality of video multicast applications. First, three algorithms are presented to improve the throughput of NC enabled networks by minimizing the NC coefficient vector overhead, optimizing the NC redundancy allocation and improving the robustness of NC against bursty packet losses. Considering the fact that majority of network traffic occupies video, rest of the proposed NC algorithms are content-aware and are optimized for both data and video multicast applications. A set of content and network-aware optimization algorithms, which allocate redundancies for NC considering content properties as well as the network status, are proposed to efficiently multicast data and video across content delivery networks. Furthermore content and channel-aware joint channel and network coding algorithms are proposed to efficiently multicast data and video across wireless networks. Finally, the possibilities of performing joint source and network coding are explored to increase the robustness of high volume video multicast applications. Extensive simulation studies indicate significant improvements with the proposed algorithms to increase the network throughput and video quality over related state-of-the-art solutions. Hence, it is envisaged that the proposed algorithms will contribute to the advancement of data and video multicast protocols in the future communication networks
    • …
    corecore