87 research outputs found

    Quality of service provision in mobile multimedia - a survey

    Full text link
    The prevalence of multimedia applications has drastically increased the amount of multimedia data. With the drop of the hardware cost, more and more mobile devices with higher capacities are now used. The widely deployed wireless LAN and broadband wireless networks provide the ubiquitous network access for multimedia applications. Provision of Quality of Service (QoS) is challenging in mobile ad hoc networks because of the dynamic characteristics of mobile networks and the limited resources of the mobile devices. The wireless network is not reliable due to node mobility, multi-access channel and multi-hop communication. In this paper, we provide a survey of QoS provision in mobile multimedia, addressing the technologies at different network layers and cross-layer design. This paper focuses on the QoS techniques over IEEE 802.11e networks. We also provide some thoughts about the challenges and directions for future research

    Multimedia Streaming through Wireless Networks

    Full text link
    An overview of wireless networks, cross-layer optimization techniques, and advances in wireless LAN technologies is presented. This paper presents a scalable and adaptive system-level approach to wireless multimedia in the emerging, Proactive Enterprise computing environment. A Distributed Network Information Base with Service Agents at each node is proposed to enable network-wide, proactive adaptation with adaptive routing and end-to-end Quality of Service (QoS) management. The paper suggests that a combination of technological advancements in emerging wireless networks, node-level cross-layer optimizations, and the proposed distributed cross-node system-level architecture are all required to efficiently scale and adapt wireless multimedia in the current market

    An improved medium access control protocol for real-time applications in WLANs and its firmware development

    Get PDF
    The IEEE 802.11 Wireless Local Area Network (WLAN), commonly known as Wi-Fi, has emerged as a popular internet access technology and researchers are continuously working on improvement of the quality of service (QoS) in WLAN by proposing new and efficient schemes. Voice and video over Internet Protocol (VVoIP) applications are becoming very popular in Wi-Fi enabled portable/handheld devices because of recent technological advancements and lower service costs. Different from normal voice and video streaming, these applications demand symmetric throughput for the upstream and downstream. Existing Wi-Fi standards are optimised for generic internet applications and fail to provide symmetric throughput due to traffic bottleneck at access points. Performance analysis and benchmarking is an integral part of WLAN research, and in the majority of the cases, this is done through computer simulation using popular network simulators such as Network Simulator ff 2 (NS-2) or OPNET. While computer simulation is an excellent approach for saving time and money, results generated from computer simulations do not always match practical observations. This is why, for proper assessment of the merits of a proposed system in WLAN, a trial on a practical hardware platform is highly recommended and is often a requirement. In this thesis work, with a view to address the abovementioned challenges for facilitating VoIP and VVoIP services over Wi-Fi, two key contributions are made: i) formulating a suitable medium access control (MAC) protocol to address symmetric traffic scenario and ii) firmware development of this newly devised MAC protocol for real WLAN hardware. The proposed solution shows signifocant improvements over existing standards by supporting higher number of stations with strict QoS criteria. The proposed hardware platform is available off-the-shelf in the market and is a cost effective way of generating and evaluating performance results on a hardware system

    Efficient Transmission of H.264 Video over Multirate IEEE 802.11e WLANs

    Get PDF
    The H.264 video encoding technology, which has emerged as one of the most promising compression standards, offers many new delivery-aware features such as data partitioning. Efficient transmission of H.264 video over any communication medium requires a great deal of coordination between different communication network layers. This paper considers the increasingly popular and widespread 802.11 Wireless Local Area Networks (WLANs) and studies different schemes for the delivery of the baseline and extended profiles of H.264 video over such networks. While the baseline profile produces data similar to conventional video technologies, the extended profile offers a partitioning feature that divides video data into three sets with different levels of importance. This allows for the use of service differentiation provided in the WLAN. This paper examines the video transmission performance of the existing contention-based solutions for 802.11e, and compares it to our proposed scheduled access mechanism. It is demonstrated that the scheduled access scheme outperforms contention-based prioritized services of the 802.11e standard. For partitioned video, it is shown that the overhead of partitioning is too high, and better results are achieved if some partitions are aggregated. The effect of link adaptation and multirate operation of the physical layer (PHY) is also investigated in this paper

    PERFORMANCE EVALUATION OF CROSS-LAYER DESIGN WITH DISTRIBUTED AND SEQUENTIAL MAPPING SCHEME FOR VIDEO APPLICATION OVER IEEE 802.11E

    Get PDF
    The rapid development of wireless communication imposes several challenges to support QoS for real-time multimedia applications such as video stream applications. Researchers tackled these challenges from different points of view including the semantics of the video to achieve better QoS requirements. The main goal of this research is to design a UDP protocol to realize a distributed sequential mapping scheme (DSM) with a cross-layer design and evaluate its accuracy under different network conditions. In DSM, the perceived quality of a multi-layer video is addressed by mapping each video layer into channel resources represented as queues or access categories (ACs) existing in IEEE 802.11e MAC layer. This research work further investigates the efficiency of this scheme with actual implementation and thorough simulation experiments. The experiments reported the efficiency of this scheme with the presence of different composite traffic models covering most known traffic scenarios using Expected Reconstructed Video Layers (ERVL) and packet loss rate as accuracy measures. This research work also investigates the accuracy of calculating the ERVL compared to its value using actual readings of layers drop rate. The effect of changing the ACs queue size on the ERVL is studied. The use of this scheme shows zero-drop in the base layer in almost all scenarios where no ongoing traffic is presented except that the testing video sessions between nodes. In these experiments, the ERVL continuously reported high values for the number of expected reconstructed video layers. While these values dramatically vary when introducing ongoing different composite traffic models together with the testing video sessions between nodes. Finally, a 40% increase in the ACs queue size shows significant improvement on ERVL while an increase of the queue size beyond this value has very little significance on ERVL

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the di¿erent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modi¿cations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks
    corecore