914 research outputs found

    Improving acoustic vehicle classification by information fusion

    No full text
    We present an information fusion approach for ground vehicle classification based on the emitted acoustic signal. Many acoustic factors can contribute to the classification accuracy of working ground vehicles. Classification relying on a single feature set may lose some useful information if its underlying sound production model is not comprehensive. To improve classification accuracy, we consider an information fusion diagram, in which various aspects of an acoustic signature are taken into account and emphasized separately by two different feature extraction methods. The first set of features aims to represent internal sound production, and a number of harmonic components are extracted to characterize the factors related to the vehicle’s resonance. The second set of features is extracted based on a computationally effective discriminatory analysis, and a group of key frequency components are selected by mutual information, accounting for the sound production from the vehicle’s exterior parts. In correspondence with this structure, we further put forward a modifiedBayesian fusion algorithm, which takes advantage of matching each specific feature set with its favored classifier. To assess the proposed approach, experiments are carried out based on a data set containing acoustic signals from different types of vehicles. Results indicate that the fusion approach can effectively increase classification accuracy compared to that achieved using each individual features set alone. The Bayesian-based decision level fusion is found fusion is found to be improved than a feature level fusion approac

    Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence

    Get PDF
    Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%

    Evaluation of Data Mining Techniques and Its Fusion with IoT Enabled Smart Technologies for Effective Prediction of Available Parking Space

    Get PDF
    After experiencing the hard times of pandemic situations we learned that if we could have a smart system that can help us in automatic parking of the vehicles then it could be a great help to society. This idea motivated us to carry out this current work. Though, nowadays, in almost every application domain, IoT techniques are the buzzword. IoT techniques can also be used to achieve efficacy in predicting free available parking space in advance. But the biggest challenge with IoT techniques is that they generate numerous data, which makes its analysis intangible. It was realized that if IoT techniques can be fused with outperforming data mining techniques, more efficient predictions can be performed. Thus, for this purpose, the main objective of our paper is to firstly, select the most appropriate data mining technique, based on performance evaluation, and then to perform prediction of available parking space in advance by fusing it with IoT techniques. Due to the busy schedule, the drivers need to get information about free parking spaces in advance by using smart phones. With the help of this information, it will be easy for the drivers to park their vehicle in the exact location without wasting their precious time and will maintain social distancing in crowded areas too. Data mining techniques can play an important role in the prediction of available parking space, by extracting only relevant and important information when applied to the given dataset. For this purpose, a comparative analysis of five data mining techniques such as the Support Vector Machine, K- Nearest approach, Decision Tree, Random Forest, and Ensemble learning approaches are applied on PK lot data set by using Python language. For calculation of result anaconda (spyder) is used as a supportive tool. The main outcome of the paper is to find the technique that will give better results for the prediction of the available space and if we fused data mining techniques with IoT technologies results are improvised. Evaluation parameters that are used for finding the best technique are precision, recall, accuracy, and F1-Score. For numerical calculation of the results, the k-fold cross-validation method is used. As the empirical results are calculated using the Pk lot dataset, the decision tree outperformed the best among all the techniques that are selected for analysis

    Leveraging the Channel as a Sensor: Real-time Vehicle Classification Using Multidimensional Radio-fingerprinting

    Full text link
    Upcoming Intelligent Transportation Systems (ITSs) will transform roads from static resources to dynamic Cyber Physical Systems (CPSs) in order to satisfy the requirements of future vehicular traffic in smart city environments. Up-to-date information serves as the basis for changing street directions as well as guiding individual vehicles to a fitting parking slot. In this context, not only abstract indicators like traffic flow and density are required, but also data about mobility parameters and class information of individual vehicles. Consequently, accurate and reliable systems that are capable of providing these kinds of information in real-time are highly demanded. In this paper, we present a system for classifying vehicles based on their radio-fingerprints which applies cutting-edge machine learning models and can be non-intrusively installed into the existing road infrastructure in an ad-hoc manner. In contrast to other approaches, it is able to provide accurate classification results without causing privacy-violations or being vulnerable to challenging weather conditions. Moreover, it is a promising candidate for large-scale city deployments due to its cost-efficient installation and maintenance properties. The proposed system is evaluated in a comprehensive field evaluation campaign within an experimental live deployment on a German highway, where it is able to achieve a binary classification success ratio of more than 99% and an overall accuracy of 89.15% for a fine-grained classification task with nine different classes

    An Approach to Finding Parking Space Using the CSI-based WiFi Technology

    Get PDF
    With ever-increasing number of vehicles and shortages of parking spaces, parking has always been a very important issue in transportation. It is necessary to use advanced intelligent technologies to help drivers find parking spaces, quickly. In this thesis, an approach to finding empty spaces in parking lots using the CSI-based WiFi technology is presented. First, the channel state information (CSI) of received WiFi signals is analyzed. The features of CSI data that are strongly correlated with the number of empty slots in parking lots are identified and extracted. A machine learning technique to perform multi-class classification that categorizes the input data into classes representing the number of empty slots is employed. A prototype system of the proposed approach is developed. Experiments are performed and it is shown that the system is feasible. Compared with traditional approaches based on magnetic sensors deployed on individual parking slots, the proposed approach is non-intrusive as it does not require to install specialized devices in a parking lot, and is cost-effective since it utilizes either existing WiFi infrastructure or only a pair of WiFi devices. As a result, the average classification accuracy of system is 80.8%, and the accuracy is improved to 93.8% with a tolerance of one empty slot

    Machine Learning Classifier Approach with Gaussian Process, Ensemble boosted Trees, SVM, and Linear Regression for 5G Signal Coverage Mapping

    Get PDF
    This article offers a thorough analysis of the machine learning classifiers approaches for the collected Received Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers

    High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework

    Get PDF
    High-accuracy distributed information exploitation plays an important role in sensor networks. This dissertation describes a mobile-agent-based framework for target detection and classification in sensor networks. Specifically, we tackle the challenging problems of multiple- target detection, high-fidelity target classification, and unknown-target identification. In this dissertation, we present a progressive multiple-target detection approach to estimate the number of targets sequentially and implement it using a mobile-agent framework. To further improve the performance, we present a cluster-based distributed approach where the estimated results from different clusters are fused. Experimental results show that the distributed scheme with the Bayesian fusion method have better performance in the sense that they have the highest detection probability and the most stable performance. In addition, the progressive intra-cluster estimation can reduce data transmission by 83.22% and conserve energy by 81.64% compared to the centralized scheme. For collaborative target classification, we develop a general purpose multi-modality, multi-sensor fusion hierarchy for information integration in sensor networks. The hierarchy is com- posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi-modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also takes into account energy efficiency. Experimental results based on two field demos show constant improvement of classification accuracy over different levels of the hierarchy. Unknown target identification in sensor networks corresponds to the capability of detecting targets without any a priori information, and of modifying the knowledge base dynamically. In this dissertation, we present a collaborative method to solve this problem among multiple sensors. When applied to the military vehicles data set collected in a field demo, about 80% unknown target samples can be recognized correctly, while the known target classification ac- curacy stays above 95%

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers
    corecore