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Abstract

This article offers a thorough analysis of the machine learning classifiers approaches for the collected Received 
Signal Strength Indicator (RSSI) samples which can be applied in predicting propagation loss, used for 
network planning to achieve maximum coverage. We estimated the RMSE of a machine learning classifier 
on multivariate RSSI data collected from the cluster of 6 Base Transceiver Stations (BTS) across a hilly terrain 
of Uttarakhand-India. Variable attributes comprise topology, environment, and forest canopy. Four machine 
learning classifiers have been investigated to identify the classifier with the least RMSE: Gaussian Process, 
Ensemble Boosted Tree, SVM, and Linear Regression. Gaussian Process showed the lowest RMSE, R- Squared, 
MSE, and MAE of 1.96, 0.98, 3.8774, and 1.3202 respectively as compared to other classifiers.
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I. Introduction

Wireless Networks have developed rapidly during the last 2-3 
decades.1G arrived in the late 1980s which worked on analog 

signals and supported voice calls only. 2G arrived during the 1990s 
and was used for voice calls and data transmission having a bandwidth 
of 64kps.In 2000, 3G was launched with a bandwidth of 1Mbps to 
2Mbps and supported not only voice calls but also video calls and 
conferencing.4G came into existence in 2009 with its data transmission 
speed of 100Mbps - 1Gbps.4G network was expanded world-wide and 
found its industrial applications also. Advance wireless technology is 
evolving very rapidly with the implementation of the 5G-NR network 
until 2020 [1]-[3]. Features of a High-speed next-generation 5G-NR 
network are high density (1 million nodes per Km2), high capacity 
(10Tbps per Km2), high data rates (Multi Gbps peak rates), low latency 
(1 ms), high reliability (1 out of 100 million packets lost), low energy 
(10 + years of battery life), low complexity, and high speed of 1 Gbps. 
With the establishment of this new technology, it may bring some 
challenges and difficulties like security, privacy, etc. Millimeter (MM) 
waves required for 5G propagation have a limitation of their effects on 
human cells and tissues, getting absorbed during transmission, require 
a small size antenna and cause unpredictable loss of signal during 
propagation [4]-[6].

In advanced wireless networks remarkable enhancement in 
information is observed [7]-[9]. Manual extraction of relevant 
information from an enormous amount of data is not possible, and if 
done, it will be prone to inevitable flaws. For capturing such big data 

companies no longer limit themselves to surveys and questionnaires 
rather big data capturing devices are deployed which include smart 
phone’s, cameras, online browsing, etc. Machine learning seems to hold 
a promising solution for the analysis of big data [10]-[13]. Generally, 
data patterns are learned using information hidden in the big data, 
and then effective predictions can be proposed depending upon the 
final analysis. There are many Machine Learning algorithms available 
out of which appropriate selection of machine learning algorithms can 
be done using the hit and trial method [14]-[16]. We briefly describe 
the content in the following sections of the paper. In Section II and 
III a literature review and an outline of Machine learning algorithms 
is given respectively. In Section IV we describe measurement setup 
with data collection methodology. Finally, in Section V and VI, we 
report experimental results, discussions, conclusions, and future scope 
which clearly show the usefulness of the machine learning approach 
in predicting signal coverage. 

II. Literature Review

Hajar El Hammouti et al. [17] proposed a signal mapping model 
based on field measured data which is applied for predicting signal 
coverage in an outdoor network by utilizing an S-shaped sigmoid 
function. Effectively modeled neural networks provide a better 
approximation of coverage mapping. Amir Ghasemi [18] presented a 
crowd-sourced analysis of the Long-Term Evaluation (LTE) network to 
build a wireless coverage predictive model of the radio access network 
(RAN). Janne Riihijarvi et al. [19] explored signal coverage mapping 
with machine learning algorithms using a data set derived from an 
extensive drive test and analyzed that Random Forest, Exponential 
smoothing of time series, and Gaussian Process are machine 
learning methods that produce better results for signal coverage. It 
improves the Quality of user experience and concurrently reduces 
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the operational cost. H. Braham et al. [20] analyzed that accurate 
evaluation of coverage gives better coverage optimization by utilizing 
the Fixed Rank Kringing (FRK) algorithm which further provides 
an accurate prediction of signal coverage of the locations where 
field measurements are not easily accessible. FRK frames a coverage 
map from geo located measurement by interpolating them spatially. 
Carlos Oroza et al. [21] estimated the performance of a machine 
learning based signal loss model for different terrain and vegetation 
environments. Four major machine learning algorithms were explored 
with minimum error value: K-Nearest-Neighbor, Adaboost, Random 
Forest, and Neural Networks. Random Forest outperforms among 
them with the least error. Machine learning model accomplishes a 
37% reduction in average prediction error. Many researchers [22]-
[23] executed exhaustive field signal measurement on Received Signal 
Strength Indicator (RSSI) transmission multiband channel to get 
the maximum signal coverage and angular power arrival. A hybrid 
approach adopting sub 6-G and Millimeter (mm) wave bands was 
found to be promising. In [24]-[25] authors proposed Backtracking 
Spiral Algorithm (BSA) information detection and recognition of 
cellular coverage using the big-data method. The distribution potential 
of the individual cell was diagnosed in a small granular geographical 
grid. The high efficiency and detection capability of the proposed 
algorithm validate it over other existing algorithms. Aldebaro Klautau 
et al. [26] represented 5G scenarios by creating channel realizations 
using ML applied to the PHY layer. Tadilo Endeshaw et al. [27] studied 
the deployment of AI by combining machine learning, NLP, and 
data analytics techniques for increasing the competence of wireless 
networks. Deussom Djomadji et al. [28] tuned the propagation models 
using Particle Swarm Optimization. Data is collected using the 
network navigation tool IX EVDO rev B. Comparison of RMSE has 
been done for the optimized model and the Okumura Hata model and 
it was concluded that an optimized model using PSO performs better 
than Okumura Hata model. Chao-Kai Wen et al. [29] estimated the 
wireless channel based on Sparse Bayesian Learning techniques. 

III. Outdoor Path Loss Prediction 

5G Network planning consists of outdoor propagation modeling 
required to predict the outdoor signal loss. Outdoor channel models 
consider the effect of diffraction, reflection, scattering, and refraction 
of EM waves, when traveling in free space between transmitter and 
receiver [38], [47]-[49]. Different channel models have been designed 
to consider the interference effect due to terrain, the height of a 
building, vegetation, rain, terrain, etc. Ideal path loss is predicted 
using the free-space path loss equation. Path loss models have been 
classified into canonical, empirical, deterministic, and stochastic 
propagation models [30]-[32].

A. Free Space Path Loss Model
It is based on the Friis transmission equation and one of its simplest 

kinds of first-order approximation connectivity models. EM waves 
travel without any interference in Line of Sight (LOS) in free space. 
Receive Signal Strength (RSS) decreases as the square of the distance 
between Tx-Rx increases with a single path after neglecting the 
ground effect [33]-[35].

The free space path loss model is expressed in equation (1):

 (1)

where,

Pt = transmitted power (dB)
Pr = power received by receiver (dB)
Gr = gain of receiving antenna

Gt = gain of transmitting antenna

λ = signal wave length (m)
d = distance between Tx-Rx

L = system loss factor (L=1 for FSL)

Channel loss (dB) can also be expressed using equation (2).

 (2)

B. Machine Learning Algorithms
Machine learning algorithms are classified as [36], [39]-[42]:

Supervised Learning: This algorithm learns from the specimen 
data and related results to predict the correct result when given new 
data similar to specimen data.

Unsupervised Learning: This algorithm learns from the specimen 
data without any related results where the algorithm itself has to 
determine underlying data patterns and groups or cluster data based 
on some kind of similarity in their features.

Reinforcement Learning: This algorithm learns from specimen 
data that lack labels where the result or outcome is rewarded or 
penalized. It is like learning by trial & error.

The below described algorithms are supervised learning algorithms.

1. Linear Regression
Linear regression is the most suitable machine learning algorithm 

for prediction[18].In linear regression, a set of independent input 
parameters(x) are considered to determine the output parameter(y) and 
there exists an association between the input and output parameter 
which is expressed in the form of the linear equation as:

y = wx + ϵ
Where ϵ = intercept on y-axis

w = slope of the line

The linear regression algorithm tries to find the best fit line by 
minimizing the root mean square error (RMSE) between true and 
predicted value.

2. Support Vector Machine (SVM)
Support Vector Machine (SVM) can perform both classification and 

regression of the data. The data is classified into one of the groups by 
finding a hyperplane that divides the input instances into two classes. 
The input vectors located on the hyperplane are the support vectors. 
In cases where the input data is not linearly separable, suitable kernel 
functions are applied which map data into higher dimensions where 
data can be easily classified. 

3. Gaussian Process
Gaussian regression process is a non-parametric Bayesian approach 

that computes the probability distribution over permissible functions 
in the data [29]. The posterior probability is deduced from the prior 
distribution and the data. For a linear function 

y = wx + ϵ
The posterior probability is obtained using Baye’s rule, equation (3):

 (3)

To make predictions at some random point x* one needs to 
calculate the predictive probability where a weighted measure of all 
the posterior probability distribution is evaluated using equation (4).
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Predictive probability is computed from posterior probability so 
that uncertainty measurements on the predictions can be provided by 
calculating their mean and variance.

4. Ensemble Learning 
Sometimes a single machine learning algorithm is not able to 

provide the desired results, the expected result can be obtained by 
combining available algorithms [43]. The final result can be calculated 
by voting or averaging the result of individual algorithms. Major 
ensemble algorithms used are Bagging and Boosting.

a) Ensemble Bagging Tree with Random Forests 
In Bagging firstly initial data set is utilized to reproduce a replica 

of the training set by using the Bootstrap sampling method. The 
bootstrap sampling method is used to create random samples from 
the initial data set where the sample size used as a training set is the 
same as the initial data set [44]. The random sample is generated 
from initial data by duplicating some sets of data multiple times and 
some records are not even considered once. The test data set is the 
initial and random sample sets that are used as the training data set. 
Secondly, multiple models are built from the training sets when the 
same algorithm is applied to them. Random Forests is a very good 
example to represent bagging benefits. In Random Forests, the best 
feature is selected for classification that converges the algorithm 
faster to a unique result. When the same data set is used a similar tree 
structure with associated prediction is obtained. Whereas the random 
forest after every split, bagging provides a random set of features for 
classification that probably result in the negligible association among 
classifications from sub-models.

b) Ensemble Boosting Tree with AdaBoost
AdaBoost implies Adaptive Boosting. Bagging works on ‘simple 

voting’ where each model is developed independently to provide 
an outcome [45]. The final result is obtained after analyzing the 
majority outcomes of the parallel ensemble. Boosting works on 
‘weighted voting’ where each model provides an outcome that is 
based on majority selection. The final result is obtained by generating 
a sequential ensemble where greater weights are designated to the 
instances of preceding models that are misclassified. In every iteration, 
a model is built by rectifying the misclassification of the preceding 
model until no further corrections are required [46].

IV. Experimental Setup and Data Collection

This research has been carried out in Dehradun, Uttarakhand- 
India which lies in the Himalayan ranges. Its geographical coordinates 
are within latitude 78.0322° E, longitude 30.3165° N. Uttarakhand 
is often regarded as a terrain full of the tree canopy and suburban 
environment with a combination of mountain, forest, residential 
building, commercial complex(2 to 6 storied), and free space. Since 
2018 exhaustive field measurement has been carried out at fringe areas 
of Uttarakhand to measure the effect of the tree, forest, mountain, 
snow, and buildings on propagation loss.4 clusters (6 BTS each) were 
identified, covering a 36 Km2 area shown in Fig. 1. These BTS are 
strategically chosen to cover RSSI to the tree canopy and mountain 
canopy. At each test point, exhaustive measurements were carried out 
repeatedly to calculate changing average RSSI signal variation due to 
environmental conditions. Hours of driving and route tracking were 
carried out around identified BTS to collect RSSI samples using CATIA 
and TEMS navigation tools as shown in Fig. 3. When the dense forest 
area started, RSSI samples became inaccessible.

Fig. 1. The 4 clusters (6 BTS each) in the Dehradun,Uttarakhand-India. 

A drive test was conducted to measure the data. As shown in Fig. 
2 and Fig. 3 drive test tools consist of drive vehicle, laptop, Garmin 
(GPS) global position system, sockets, test cables, Sony mobile handset 
equipped with TEMS navigation software, MapInfo or Deskcat, and 
drive test route [35],[28].

Ba�ery and charger

Inverter and Terminal

GPS (Ext Antenna and Data Cable)

Fig. 2. 3D Drive test tool. 

Fig. 3. Drive test route. Each BTS site is identified by a 3-letter codename.

GPS was mounted on a vehicle and a Sony Ericsson mobile handset 
was used.RSS measurements were recorded at each test point around 
the selected base stations (BS) covering all roads, forests, mountains, 
and populated areas.
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A. Dataset
42,500 RSSI samples of field measurement dataset are utilized for 

applying the machine learning approach on signal coverage prediction.

Fig. 4 shows the architecture of 3D channel modeling and the 
complete procedure of real-time data collection.

Fig. 4. Illustration of 3D Channel Modeling Architecture.

TABLE I. Features of Wireless Network

Features Value

Coverage Objective RSRP (dBm) -106.6

Cluster Sectors I-UW-GGLT-ENB-9004-0 (A)

Coverage Overshooting Radius (m) 4095

Band 850,2300,1800

Antenna Longitude 10

Antenna Latitude 50

Antenna Height (m) 37

Antenna Azimuth 10

Antenna Tilt Electrical 8

Antenna Tilt Mechanical 3

Table I illustrates features of wireless network which affect network 
planning and required for optimum signal coverage. The received 
signal is a combination of signals coming from different directions due 
to reflection, diffraction, and scattering.

RSSI signal strength is measured 360 degrees around each BTS in 3 
sectors alpha, beta, and gamma to analyze the maximum coverage of 
signal within a cell. The coverage threshold values of the network in 3 
sectors are summarizes in Table II. 

TABLE II. Coverage Objective Threshold Value in Alpha, Beta, Gamma 
Sectors

Coverage Objective Threshold Sector Alpha, Beta, 
Gamma

Coverage Objective RSRP (dBm) -106.6

Coverage Objective Percentile (%) 80

Coverage Overshooting Radius (m) 4095

Coverage Overshooting RSRP (dBm) -91.6

Coverage Overshooting Percentile (%) 10

Coverage Swap Percentile (%) 50

Coverage SideLobe Percentile (%) 30

Coverage Radius Inner Percentile (%) 10

V. Experimental Results and Discussions

In this section, the performance of Machine learning classifiers 
is evaluated using data collected from the experimental setup. The 
validation scheme has been chosen before tuning to estimate the 
performance of the model on new data. Validation also helps to 
examine the predictive accuracy of the fitted models and avoids over 
fitting. 3 types of validation schemes were available: 

a) Cross-Validation is used for small data sets and uses a full portion 
of the data set.

b) Hold out Validation is used for large data sets and uses some 
portion of the data set.

c) No Validation signifies no protection against overfitting. 

5 fold cross-validation was used to divide the original data set into 5 
disjoint sets as by using 5 fold cross-validation, the predictive accuracy of 
trained models was well estimated on the entire data set where each fold: 

a) Trains a model 

b) Evaluate the performance of model 

c) Calculates average test error

A. Predicted Vs Response Plot
The Predicted Vs Response plot analyzed the performance of 

classifiers by evaluating the efficiency of the regression model by 
investigating the prediction for varying response values. The predicted 
response of models was laid against the true response. An efficient 
regression model had a predicted response nearly identical to the true 
response, therefore response values lay close to the diagonal line. The 
perpendicular separation between the diagonal line to each point was 
the deviation of the prediction for the point under consideration. An 
efficient classifier has minimum errors and points distributed roughly 
identical about the diagonal line.
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Fig. 5. Predicted Vs True response of Ensemble Boosted Tree.

Fig. 5 depicted RMSE value for Ensemble was 4.692 with R Squared 
value of 0.89. MSE was 22.015, MAE 3.88209, prediction speed 1800 
obs/Sec, and training time of 32.441 Sec.

RMSE for Support Vector Machine was 3.9823 with R Squared value 
of 0.92, MSE 15.858, MAE 3.1148, prediction speed 11000 obs/Sec, and 
training time of 38.888Sec as shown in Fig. 6.

RMSE value for Linear Regression was 4.2946 with R Squared value 
of 0.91, MSE 18.444, MAE 3.5477, prediction speed 4000 obs/Sec, and 
training time of 25.623 Sec as shown in Fig. 7.

Fig. 8 shows RMSE value for Gaussian Process was 1.9691 with R 
Squared value of 0.98, MSE 3.8774, MAE 1.3202, prediction speed 8600 
obs/Sec, and training time of 38.888 Sec.
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Fig. 6. Predicted Vs True response of Support Vector Machine.
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Fig. 7. Predicted Vs True response of Linear Regression.
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Fig. 8. Predicted Vs True response of Gaussian Process.

B. Comparison of Residual Plot Outlier
The residuals plot from Fig.9 to Fig. 12 displayed the deviation 

between the predicted and true responses. The predicted response 
variable was chosen among true response, predicted response, record 
number, or one of the predictors to plot on the x-axis. The efficient 
model had residuals distributed roughly symmetrically around 0. Fig.10 
showed that the residual plot of Gaussian Process scattered roughly 
symmetrically around 0 and also clear patterns in the residuals are 
observed.
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Fig. 9. Residual plot of Ensemble.
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Fig. 10. Residual plot of Linear Regression.
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Fig. 12. Residual plot of SVM.

C. Comparison of Response Plot Outlier
A regression model result was viewed in the response plot 

that displayed the prediction response against the record number. 
Predication error was displayed as vertical lines between predicted 
and new responses.
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Fig. 13. Response plot of Gaussian Process.

Gaussian Process model performance was also evaluated using the 
residual plot after the model was trained. The difference between true 
and predicted response was displayed by a residual plot in Fig. 13. A 
variable predicted response had been plotted on the x-axis. For a good 
model, residuals had been scattered approximated identical around 0 
and it changed considerably in size from left to right.

VI. Conclusion and Observation

The performance evaluation of machine learning algorithms on 
training data is tabulated in Table III.

We observed that the lowest value of RMSE was obtained from 
the Gaussian Process classifier, depicting the probability to correctly 
predict the propagation loss, while the highest value of RMSE (4.692%) 
was observed with the Ensemble boosted tree. However, SVM and 
linear regression classifiers hold intermediate values of RMSE 3.9823%, 
and 4.2946%, respectively. The lowest value of RMSE (1.9691%) was 
estimated by the Gaussian Process classifier. MSE and MAE for 
Gaussian Process are also a minimum of 3.8774 and 1.3202. Response 
plot Outlier curves for the proposed Gaussian Process classifier and 
other state-of-the-art algorithms are shown in Fig. 13 where residuals 
have been scattered approximately identical around 0. It is analyzed 

that the Empirical signal coverage models which are univariate cannot 
predict signal coverage by using only one network parameter for 
coverage prediction, however machine learning-based signal coverage 
prediction model is multivariate and it could be designed on field RSSI 
measurement by considering two or more network parameters, hence 
predict signal coverage more accurately. Signal coverage prediction 
using the machine learning model requires training of best-fit 
machine learning classifier by hit and trial method and shortlisting 
machine learning classifiers with minimum RMSE error on RSSI field 
dataset. To validate it practically, the classifier-based signal mapping 
approach was applied to a real-time wireless network at the fringe 
area of Uttarakhand-India. However, the results of this application 
could encourage practitioners and researchers to validate further 
the practicality of the approach for similar real fringe area wireless 
networks.

TABLE III. Performance Evaluation of Machine Learning Algorithms 
on Training Data

Coverage Objective 
Threshold

Gaussian 
Process

Ensemble 
Boosted Trees

SVM Linear 
Regression

 RMSE 1.9691 4.692 3.9823 4.2946

R Squared 0.98 .89 0.92 0.91

 MSE 3.8774 22.015 15.858 18.444

MAE 1.3202 3.8209 3.1148 3.5477

Prediction Speed 
(obs/Sec)

8600 1800 11000 4000

Training Time (Sec) 38.888 32.441 26.495 25.623
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