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ABSTRACT

AN APPROACH TO FINDING PARKING SPACE USING THE CSI-BASED WIFI

TECHNOLOGY

YUNFAN ZHANG

2018

With ever-increasing number of vehicles and shortages of parking spaces,

parking has always been a very important issue in transportation. It is necessary to

use advanced intelligent technologies to help drivers finding parking spaces quickly.

In this thesis, an approach to finding empty spaces in parking lots using the

CSI-based WiFi technology is presented. First, the channel state information (CSI)

of received WiFi signals is analyzed. The features of CSI data that are strongly

correlated with the number of empty slots in parking lots are identified and

extracted. A machine learning technique to perform multi-class classification that

categorizes the input data into classes representing the number of empty slots is

employed. A prototype system of the proposed approach is developed. Experiments

are performed and it is shown that the system is feasible.

Compared with traditional approaches based on magnetic sensors deployed on

individual parking slots, the proposed approach is non-intrusive as it does not

require to install specialized devices in a parking lot, and is cost-effective since it

utilizes either existing WiFi infrastructure or only a pair of WiFi devices. As a

result, the average classification accuracy of system is 80.8%, and the accuracy is

improved to 93.8% with a tolerance of one empty slot.
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Chapter 1

Introduction

In recent years, the intelligent technology has been widely used in almost all

aspects of transportation. For example, the intelligent vehicle scheduling system can

greatly reduce traffic congestion and the electronic toll collection system can charge

for passing vehicles without parking by using wireless sensor technology. As a part of

transportation, parking has always been a very important issue. On the one hand,

the number of vehicles has increased significantly, but there is no corresponding

increase in parking space. As a result, it is very difficult to find a parking space in

city centers and frequently-visited places. On the other hand, in large parking lots, it

is also difficult for drivers to know exactly where there is a vacant parking space,

which can easily cause drivers mental stress and affect the traffic and even the safety

of pedestrians. It has been reported that 30% of city traffic is due to the drivers

cruising to find parking spaces. In addition, cruising to find parking spaces wastes

drivers time and gas, which lead to economic loss [1]. Therefore, it is necessary to

use various advanced intelligent technologies to help vehicle drivers to find parking

spaces accurately and quickly.

Considering the importance of the parking issue, the problem on finding

parking space has attracted much attention. A number of parking solutions have

been proposed. Most approaches utilize magnetic sensors to monitor parking

occupancy [3, 4, 5, 6]. However, these systems are required to install sensors on the

individual parking slot in order to detect available parking spaces and guide drivers
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to areas with vacancies. Some solutions adopted a camera to improve the accuracy of

the sensor-based approaches [7]. A major issue of these sensor-based solutions is,

however, the high cost to purchase, install, and maintain the sensors and associated

backend systems. Smart solutions have been developed that do not rely on

deployment of a large number of sensors [8, 9, 10]. Parknet utilizes an ultrasonic

rangefinder that is attached to a car to detect the parking occupancy [8]. Other

driver oriented solutions [9, 10] exploited the smartphone sensors to detect empty

parking slots. However, the success of these solutions is substantially dependent on

driver participation since it is an individual driver (i.e., their smartphones) who

notifies other drivers of whether he or she has left the parking lot.

With the increasingly mature and widespread deployment of WiFi,

researchers have been seeking to use WiFi signals for environment sensing beyond a

basic communication service. Especially with the availability of channel state

information (CSI) in common commercial devices, CSI-based environment sensing is

studied and some pioneer works have been proposed. Compared with received signal

strength, CSI is a finer-grained descriptor of the wireless channel, which can

discriminate multipath components,thus holding the potential for more robust and

reliable environment sensing. Utilizing the characteristics of the CSI-based

environment sensing, the CSI-based WiFi technology can provide a feasible solution

to address the issue of finding empty space at parking lots.

In this thesis, we present an approach to finding empty spaces in parking lots

using the CSI-based WiFi technology. This thesis analyzes the channel state
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information (CSI) of received WiFi signals, derives the features of CSI data that are

strongly correlated with the number of empty slots in a parking lot, and adopts a

machine learning technique to perform multi-class classification that categorizes the

input data into classes representing the number of empty slots. We find the

correlation between the phase variance of subcarriers of a WiFi signal and the

number of empty slots, which is caused by the cars obstructing the line of sight

(LOS) path between the transmitter and the receiver, generating higher refractions,

diffractions, and reflections which lead to greater randomness in the phase of

received signals [11]. The experiment shows that it is feasible to use CSI-based WiFi

technology to find the parking space.

In terms of cost, the solution using CSI-based WiFi technology is more

economical. Most indoor parking areas have set up WiFi infrastructure that supports

CSI data collection. Even though for parking lots with no WiFi infrastructure, with

a pair of COTS WiFi devices such as a laptop or any other system, e.g., Raspberry

Pi equipped with a WiFi network interface card, it can be easily implemented.

Although depending on the size of a parking lot, WiFi range extenders, or additional

WiFi devices may be employed, the cost is still very low. For example, considering

the cost of $200 for a transmitter, and about $100 for a WiFi access point, if we need

to deploy 5 pairs of WiFi devices to cover the entire parking lot, the cost will be less

than $1,500. In the Parknet system [8], each parking space needs one ultrasonic

sensor, and each sensor is worth $400. Suppose 10 sensors are required, it will cost

$4, 000, which is much more expensive than the system we designed.
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The proposed approach is non-intrusive as it does not require to install

specialized devices in a parking lot, and is cost-effective since it utilizes either

existing WiFi infrastructure or only a pair of WiFi devices.

To sum up, the contributions of this thesis are summarized as follows.

• The design of a unique WiFi-based system finding parking space is proposed.

• A useful feature that is strongly correlated with the number of empty slots is

identified for effective classification of the number of empty slots.

• A prototype system of the proposed approach is developed.

• Experiments are performed to validate the performance of the proposed

approach, and the classification accuracy is analyzed.
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Chapter 2

Related Work

2.1 Parking Solutions

In this section, the literature specially focusing on parking solutions is

reviewed. Urban street-parking would greatly benefit society by reducing traffic

congestion. In the early parking solutions, most approaches utilized magnetic sensors

to monitor parking occupancy [7, 3, 4, 5]. The key idea is to detect magnetic field

changes when a parking vehicle changes its position. At the same time, advanced

signal processing algorithms or other tools were developed to improve the accuracy of

magnetic sensors [6]. For example, in Streeline Company a camera is utilized to

compensate for the errors in magnetic sensor data [7]. These magnetic-sensor-based

solutions, however, involve high cost, and they are inherently intrusive solutions since

installation of sensors equipped with wireless communication modules at each

parking slot as well as the backend server is required for analysis of the sensor data.

There have been efforts for developing solutions that do not rely on

deployment of a large number of sensors throughout a parking lot [21, 8]. Some

solutions develop specialized equipment for monitoring parking vacancies. For

example, Mathur et al. attached an ultrasonic range finder with a GPS module to a

car to determine the spot occupancy [8]. Collected data were aggregated to build a

map of parking availability [8]. Other solutions utilized smartphone sensors.

ParkSense is a smartphone app that is specially designed for sensing the event that a
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driver has vacated a parking spot [12]. However, without sufficiently high

participation of drivers, the effectiveness of parking occupancy monitoring is

significantly decreased. Soubam et al. proposed a similar approach that detected the

“parking” and “unparking” event based on identification of the user “walking” and

“driving” states using smart phone sensors [9]. Carnelli et al. developed a sensor

fusion method to detect the parking activity event using the accelerometer and

magnetometer of a smartphone [10]. Kriet et al. solved the same problem and used

all available sensors of a smartphone to maximize the event detection accuracy at the

cost of reduced battery life [13]. In addition, there are other approaches beyond

utilization of smartphone sensors. Crowd sourcing techniques have been proposed to

gauge the parking lot occupancy [14, 15]. Smartphone sensor data are collected

from a crowd of drivers, and parking recommendations are generated to arriving

drivers [24]. Huang et al. improved the precision of parking solutions by applying

machine learning techniques [16]. Other works were focused on finding an effective

trajectory that improves the chance of reaching at an empty parking slot [17, 18].

Unlike the magnetic-based approaches as mentioned above, the approach

presented in this thesis is cost-effective and non-intrusive as it does not demand for

purchase and installation of specialized equipment in a parking lot. In addition,

compared with the smartphone-based and/or crowdsourcing-based methods, the

success of this approach is not dependent on the driver participation rates, and it

does not mandate drivers to install an app for parking lot monitoring. This approach

is in line of recent research trends that leverage the strength of machine learning
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techniques in that it fusions the wireless communication technology with a machine

learning algorithm.

2.2 Environment Sensing Based on CSI

The wireless LAN based on Wi-Fi technology has been widely used in the

room and the services. In addition, it is not limited to information communication.

Many applications such as human detection, indoor localization, through wall

tomography, activity recognition, are emerging in the field of wireless local area

network applications. In the indoor environment, transmitted wireless signals do not

usually reach the receiver along a direct path. In fact, the received signal is usually

the superposition of signals from the furniture, human body, and other obstacles,

and is diffracted and scattered. This phenomenon is known as the multipath effect.

Physical space limits the spread of radio signals. In contrast, the wireless signals can

also be used to sense the physical environment in which they pass. Whether it is an

environmental object (such as a wall, furniture) or a human body, its location and

movement can modulate the wireless signal. Thus a periodic signal or variable signal

is formed. Based on the signal analysis, it can infer perception of the environment.

In fact, the wireless signal environment perception is not novel. The received

signal strength (Received Signal, Strength, RSS) has been used as multiple received

signal average value that can be obtained directly by most existing wireless

equipment. It has been widely used in various sensing applications in the past 20

years. In general, RSS is used to sense channel quality and its coarse granularity and
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high volatility make it unsuitable for the accurate perception of multipath rich

indoor environments, such as the indoor location and human body detection.

Experimental results show that in typical indoor environments, the RSS received by

a stationary receiver may exhibit a fluctuation of 5 dB [19]. For making up the

unreliability of RSS, Wilson and Patwa proposed a RTI (Radio Tomography

Imaging, RTI) concept, which deploys the sensor networks in the target area and

uses the dense deployment of sensor nodes to reduce the multipath effect [20].

Since RSS has only the feature of Medium Access Control (MAC) layer, the

latest technology research has began to shift to more fine-grained wireless channel

features. Traditionally, to implement accurate measurement of the wireless channel

usually require specialized equipment such as vector analyzer or software radio,

which limits its wide application [21, 22, 23]. In recent years, with application of the

orthogonal frequency division multiplexing technology (Orthogonal, Frequency,

Division, Multiplexing, OFDM) in the wireless LAN standards, the sampling of the

spectrum of signal can be easily obtained at present. Specifically, with existing Intel

5300 wireless network card and the modified driver program, the sampled channel

frequency response (Channel Frequency Response, CFR) can be obtained in the form

of the channel state information (Channel State, Information, CSI) [24].

Compared with the RSS, the CSI can distinguish multipath components to a

certain extent. Conceptually, CSI and RSS just like the relationship between

rainbow and white light. In the CSI, the signal components at different wavelengths

are separated [25]. Compared with RSS, the main advantage of CSI is the channel
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information on each subcarrier can be estimated. The characteristics of frequency

selective fading of WiFi channel can be described. In addition, the CSI contains the

amplitude and phase information of each subcarrier. Thus, it can provide more rich

frequency domain information. As a corresponding signal of RSS in physical layer,

CSI is expected to achieve more accurate and reliable environment perception, and

has attracted more and more attention of researchers in the past 5 years. Since 2010,

researchers from Massachusetts Institute of Technology, Stanford University,

University of Washington, Hong Kong University Science Technology, Tsinghua

University, etc. have carried out a lot of relevant research on CSI, and attempt to

develop a context sensing application system based on CSI.

According to the different ways of using CSI, this thesis divides the existing

work into four categories: Human body detection, Indoor localization, Sight path

identification and Activity recognition.

2.2.1 Human Body Detection

Human body detection refers to the process of detecting the presence of an

individual in the target area, which is critical to many applications. These include

security warning, intrusion detection, border detection, and detection of survivors in

fires or earthquakes. In order to obtain higher detection rate and anti-narrowband

interference, Xiao et al. implemented a device independent indoor motion detection

system (Fine-grained device free motion detection, FIMD) [25]. FIMD can extract

better temporal stability from CSI and achieve higher detection rates. FIMD
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constructs a K dimension vector of CFR amplitude histogram as the fingerprint and

uses the Earth Mover’s Distance (EMD) to classify the fingerprints [26]. In a large

number of studies on passive detection, most existing methods used only the

amplitude information of CSI without studying phase information. Therefore, Qian

et al. proposed a PADS system for passive human detection using all the information

(amplitude and phase) of CSI [27]. Because the original phase information obtained

by using commercial equipment is randomly distributed in the feasible region, PADS

firstly makes linear transformations for the original CSI to reduce the influences of

random noise. Thus, it obtains the useful phase information. Then it uses the outlier

filtering method to remove biased observations. Because of using the full information

of CSI, especially the sensitive phase features, the experimental results show that

PADS can detect moving human bodies with different walking speeds, and the

performance is superior to the traditional system based on RSS/CSI. Based on the

deep research on the signal fading caused by human motion, Wu et al. proposed a

unified scheme, DeMan, for non invasive detection of mobile and stationary human

bodies using commercial WiFi devices [23]. DeMan uses both CSI amplitude and

phase information to detect moving individuals and considers human breathing as an

innate indicator of stationary human bodies. Specifically, DeMan calculates the

correlation coefficients matrices of CSI amplitude and phase respectively and

extracts their respective maximum feature values to form two-dimensional features

for inferring the existence of moving human beings
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2.2.2 Indoor Localization

In recent years, the demand for indoor positioning grows with each passing

day, which prompts many researchers dedicate to study on indoor positioning and

many achievements have been obtained. Xiao et al. studied the feasibility of

implementing passive indoor location using fine-grained CSI and designed Pilot

system [29]. Since CSI reflects the frequency diversity characteristic of broadband

channels, Pilot uniquely identifies the user’s location by monitoring the shift of the

CSI characteristic mode. Pilot uses the probabilistic algorithm to match the detected

abnormal CSI with the fingerprint database to estimate the location of the user.

Abdel-Nasser et al. proposed an accurate WLAN location system called MonoPHY,

which is based on single stream and device-independent [30]. MonoPHY mainly

contains two operation stages: offline training stage and online positioning stage. In

the online training stage, MonoPHY records the user’s CSI at different locations. In

addition, Sabek et al. proposed a WLAN location system called MonoStream based

on a device-independent and single stream [31]. MonoStream modeled the passive

location problem as an object recognition problem. It regards the CSI files in

different locations as different images and extracts features that can reflect the

location of users

2.2.3 Activity Recognition

Recognizing people’s indoor activities is not just the location of people, and it

is more practical to be used other tasks, such as health monitoring and health
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management. By utilizing the widely deployed WiFi infrastructure and fine grained

CSI, Wang et al. designed a device-independent and location oriented activity

identification system called E-eyes [34]. Since a number of important indoor

activities occur at specific locations such as cooking in the kitchen, dining at table,

etc., E-eyes only needs to collect CSI files for specific activities that take place at

these locations. The basic idea of E-eyes is to match the acquired CSI features with

the existing active files. The core modules include the activity identification module,

the file construction module, and update module. Specifically, E-eyes first uses

mobile variance threshold technique to distinguish walking and standing activities,

and segment the CSI trajectory by using mobile variance, and finally recognize

activities by computing the similarity of each CSI segment and the pre-constructed

activities documents.

Han et al. designed a device-independent passive fall detection system WiFall,

which is based on time stability and frequency diversity of CSI [35]. Since the static

human body does not cause temporal changes of wireless signals, WiFall uses

anomaly detection algorithms based on LOF (Local Outlier Factor, LOF) to detect

human motion and isolate the corresponding abnormal patterns. Since the anomaly

detection module labels various human movements such as walking, standing and

falling, WiFall uses single class support vector machines(SVM) to classify the features

in the abnormal modules. Xi et al. proposed the use of CSI for population statistics,

and designed a device independent population count system FCC [36]. The concept

of FCC comes from the high sensitivity of CSI to environmental change. The main
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problem that the FCC needs to solve is to find metrics that can accurately describe

the monotonic relationship between CSI changes and the number of moving people.
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Chapter 3

Preliminaries

3.1 Real-time LOS and NLOS Identification

Line-of-sight (LOS) propagation is a characteristic of electromagnetic

radiation or acoustic wave propagation, which means waves which travel in a direct

path from the source to the receiver. Electromagnetic transmission includes light

emissions traveling in a straight line. The rays or waves may be diffracted, refracted,

reflected, or absorbed by the atmosphere and obstructions with material and

generally cannot travel over the horizon or behind obstacles.

When the transmitter and the receiver are due to furniture, walls and other

obstacles no apparent path, the wireless signal reaches the receiving end after

scattering, diffraction and reflection. Different paths have different time delays,

phases and amplitudes. This phenomenon is called NLOS (Non-line-of-sight, NLOS).

NLOS are radio transmissions across a path that is partially obstructed, usually by a

physical object in the innermost Fresnel zone. Fig. 3.1 shows the difference between

LOS and NLOS.

3.2 Channel State Information

Currently, the orthogonal frequency division multiplexing (OFDM)

modulation scheme is employed in the physical layer of WiFi standards. According

to OFDM, a high data-rate stream is divided into close-spaced subcarriers, which
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Figure 3.1: Illustration of LOS and NLOS

makes it robust against frequency selective fading. At present, most WiFi systems

adopt Received Signal Strength Indicator (RSSI) and CSI as receiving signals. RSSI

and CSI refer to the characterization of these OFDM subcarriers. CSI has been

increasingly utilized for various applications, e.g., human activity recognition

[37, 38], localization [39], and traffic monitoring [40].

Figure 3.2: The Component of WiFi CSI

Recently, some common IEEE 802.11n standard commercial wireless cards
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(such as Intel 5300) can provide detailed amplitude and phase information for

different subcarriers in the form of CSI as shown in Fig. 3.2 [49] and Fig. 3.3. CSI

is better than RSSI because it includes much more information. CSI represents the

properties of the channel as follows [16]:

y = H · x+ n (3.1)

Here x is the transmitted signal; y is the received signal; n is the channel noise; and

H is a matrix that represents the frequency responses for subcarriers of all streams.

For example, given M receiver antennas, N transmitter antennas, and W

subcarriers, the dimension of matrix H would be M ×N ×W . Matrix H can be

viewed as a vector of subcarrier groups:

H = [H1, H2, ..., Hw] (3.2)

The i− th subcarrier group Hi contains a set of channel state information for the

i− th subcarrier signals received via different transmitter-receiver antenna pairs.

Let’s denote the CSI of the i− th subcarrier received via the receiver antenna

m and the transmitter antenna n by CSI imn. CSI imn can be defined as follows.

CSI imn = |h|ejφ (3.3)

Here |h|, and φ are the amplitude and the phase information of the i− th subcarrier
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signal between the receiver antenna m and the transmitter antenna n.

Figure 3.3: Channel State Information.

3.3 Channel Impulse Response

In the practical wireless channel, the wireless signal is disturbed by vehicles,

walls, the other obstacles, and terrain material, which makes the signal occur

reflection, diffraction and be scattered by the receiver so that there is a plurality of

signal transmission paths between the transmitter and the receiver. Different paths

of the signal have different time delays, attenuations and frequency dispersions as

shown in Fig. 3.4. The total distortion generated at receiver by the superimposed

signal is called as multipath effects.

Figure 3.4: Total Distortion at the Receiver by Multipath Effects
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Due to the time-varying of channel, the channel multipath effect will change

with time delays. Hence, the channel can be described by time delays generated on

all paths, frequency fading and Doppler frequency shift, which can be presented as

the channel impulse response (Channel Impulse Response, CIR). In the indoor

wireless communication, IEEE 802.11 wireless communication using burst

transmission.

CFR is the frequency domain form of CIR. It is the ratio of the frequency

spectrum of the received signal and the spectrum of transmitted signals, including

the amplitude and phase frequency response. In the known spectrum of received

signal and transmit signal conditions, it can be calculated to reflect the multipath

characteristics of CFR. Then through an inverse Fourier Transform Inverse (IFT) the

response of CIR can be calculated, where CSI is the sampling version of CIR/CFR in

the specific protocol.

By the modification of Linux kernel, CSItools can make the common WiFi

device which is equipped with Intel 5300 network adapter (Network Interface Card,

NIC) can obtain a version with 30 CFR samples in the form of CSI. Use a wireless

card which is compatible to IEEE802.11 a/g/n to extract a set of CSI from each

receiving data packet. Each group CSI represents amplitudes and phases of an

Orthogonal Frequency Division Multiplex (OFDM).

For CFR under bandwidth of WiFi, sampling N points will get a set of CSI

information, which is the sampling interval between the different subcarrier

frequencies. Inte15300 wireless network cards work in high throughput model of
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20MHz (HT mode). According to the IEEE802.11n protocol, the channel is divided

into 56 subcarriers. The CSItools samples the 56 CFR OFDM subcarriers for 30

times. It works in group mode 2.

3.4 Multi-Input and Multi-Output Technology

Currently, the spectrum resource is becoming increasingly scarce. The use of

multiple antennas and the multi-input and mult-output (MIMO) technology are the

key features that the device based on 802.11n standard is different from the early

802.11 a/g equipment. MIMO technology uses multiple antennas to increase data

throughput and transmission distance and not need to increase bandwidth and

transmission power.

In the MIMO system, both the transmitter and receiver have multiple

antennas and each receiver antenna and transmit antenna combination can be

considered as a stream. All the streams of CSI can be represented as:

A =



H11 H12 · · · H1M

H21 H22 · · · H2M

...
...

. . .
...

HN1 HN2 · · · HNM


(3.4)

M and N indicate the number of transmit antennas and receive antennas

respectively. Hij represents the CSI between the i− th receiving antenna and the

j − th transmitting antenna. Because the paths of different flows are different in
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indoor environment, the CSI received by different antennas is different too.

3.5 Environment Sensing Technology Based on Fingerprint Information

We know that the signal characteristics corresponding to different positions

are different. For example, the CSI values are not the same at different locations. A

lot of research is based on this point, using the RSS as a feature of the location

fingerprint information. The positioning technology based on fingerprint information

includes two procedures: training and positioning processes.

The training process completes the establishment of the fingerprint feature

library. The positioning process uses the signal data that collected by the points to

be measured to estimate the location of the points to be measured by matching

algorithm or regression function. Typical fingerprint matching algorithms include

Bias algorithm, KNN matching algorithm, and SVM matching algorithm.

At present, the positioning systems using SVM matching algorithm are

mostly based on CSI. The basic principle is to use the CSI value of each anchor node

as a training sample and to model them. Then, a separating hyperplane can be

found, which can be denoted as formula 3.5:

w · x+ b = 0 (3.5)

where w is the weight vector and b is a hyperplane offset constant. To implement
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positioning, the following decision function must be passed.

f(X) = sgn{
n∑
i=1

YiaiXiX + b0} (3.6)

Among them, Yi is the class label of support vector Xi; ai and b0 are the parameters

that are determined by the optimal SVM algorithm automatically. The signal

strength of a given point to be measured X is used as the fingerprint input and

substituted into formula 3-6. If the result is greater than zero, the point to be

measured belongs to the area where it is located; otherwise it does not belong to the

area where it is located. At last, the coordinate of the area where it is located is the

coordinate of the points to be measured.
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Chapter 4

System Design

4.1 Methodology

In 3.3, we introduce that the CSI signal contains a lot of information,

including CFR amplitude, CFR phase and CIR, by means of which the desired

fingerprint characteristics can be obtained. Hence, the CSI signal is one of the key

issues we need to study.

It is well known that when the number of parking spaces changes, the signal

strength received will change. The change is corresponded to the amplitude and

phase of the received signal. In addition, there is a certain relation between the

received signal energy and the location of known AP nodes. If X(f, t) is denoted as

the frequency domain of the transmitting signal, and Y (f, t) as the frequency domain

of the receiving signal, we can use the formula 4-1 to present the relationship.

Y (f, t) = H(f, t)×X(f, t) (4.1)

In formula 4-1, H(f, t) is a CFR in time domain, which contains phase and amplitude

signals. The physical basis for statistical features is that the spatial randomness of

LOS and NLOS paths differs. NLOS paths typically involve richer reflections,

diffractions and refractions. Therefore, signals transmitting through NLOS paths

often behave more randomly, which manifests in both signal amplitudes and phases.

In this thesis, we investigate the phase information for two potential reasons.
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First, as most amplitude based features implicitly assume certain distributions (e.g.

Rician distribution [43]); large numbers of measurements are necessary for accurate

distribution parameter estimation. Second, LOS/NLOS propagation is not the only

factor that determines the extent of randomness in received amplitudes. Both the

obstacle blockage of NLOS conditions and the long propagation distance can

substantially attenuate signal amplitudes [44]. In contrast, phase shifts change

periodically over propagation distances. As a result, the phase is more robust.

In above Section 2.2.2, it is introduced when people move indoors the phase

variance of the CSI signal will become large. This thesis considers that this

phenomenon is also one of the characteristics of parking spaces. How to use this

feature to build the fingerprint characteristics of a parking query system is one of the

contents we need to study. We know that the variance is an important tool for

depicting data volatility. The greater the variance is, the greater the volatility of the

data. Therefore, the phase variance of CSI is employed to characterize the

fluctuations of CSI signal in different parking space conditions. The specific process

is shown in equation 4.2.

[V ar1, V ar2, · · · , V arn] = std([CSI1, CSI2, · · · , CSIn]) (4.2a)

V ar =
1

n

n∑
i=1

V ari (4.2b)

where CSIi is the CSI data of the i-th channels.Through getting the standard

deviation and mean of CSI data of each channel, the CSI variance can be obtained.
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It can be observed when the vacancy changes, because of the large fluctuation of the

CSI signal, the phase variance of CSI will also fluctuate greatly.

With the change of empty spaces of vehicle sequence in the parking lot, the

phase of CSI signal that received by the receiver is not same. By calculating the

phase variance, we can preliminary estimate the number of the empty space. The

system principle is shown in Fig. 4.1. Assume that there are transmitter T and

receiver R and the T never stops the CSI signal transmission. If the vacancy state of

vehicle parking lot changes from A to B, the signal propagation distance has an

obvious difference between them. The CSI that received by the receiver also has

different phase shifts. As a result, the phase that received is different, which is as

shown in Fig. 4.1. Therefore, calculating the received phase variance of different

subcarriers can be used to estimate the parking lot space.
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Figure 4.1: Phase shifts of CSI.

This thesis specifically focuses on the phase information based on the

observation of unique phase variance of subcarriers depending on the number of

vehicles obstructing the line of sight (LOS) path between the WiFi transmitter and

the receiver. More specifically, the phase variance of subcarriers is employed as the

major feature for training a model that classifies an input CSI data sequence into

different classes representing the number of empty slots.

4.2 System Overview

In this section, an overview of the proposed approach is presented and then

each system component is detailed.
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Figure 4.2: Illustration for Approach Overview

The proposed approach consists of five main components as shown in Fig.

4.2: CSI collection, phase preprocessing, feature extraction, training, and testing.

The CSI collection component collects the original CSI information from

receivers. The phase pre-processing component obtains the phase information from

the CSI data of a received WiFi signal, and performs a linear transformation to

reduce the random noise. The primary task of the feature extraction module is to

extract appropriate features from the preprocessed phase data and to organize the

extracted features into an input file. Then the input file is sent to either the training

module, or the testing module depending on the operation mode (i.e., training mode

or testing mode). The Training module is used to train a classification model that
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Table 4.1: Hardware Configuration

Name Number Configuration Use
Laptop 1 HP Elite 8730w Transmitting WiFi packets
Laptop 1 HP Elite 8730w Receiving WiFi packets

Network Interface Card 2 Intel 5300 Receive CSI data
Two Chairs 2 Folding Chair Supporting laptops

Laptop 1 iMac Analysis for data
Software 1 MATLAB Constructing system

classifies the input data into classes representing the number of empty parking slots

(e.g., classes for 0 empty slot, ..., n empty slots).

More specifically, the phase variance of subcarriers is identified as a major

feature based on the observation that vehicles interfering with the LOS path between

the transmitter and receiver cause signal refractions, diffractions, and reflections,

resulting in varying arrival times of subcarriers. Consequently, based on the

generated classification model, the testing module can identify whether there is any

empty parking slot or not. It also finds the number of empty parking slots.

4.3 CSI Collection

4.3.1 Hardware Configuration

The hardware configuration is as shown in Table 4.1.

A HP Elite 8730w model laptop is needed, which is equipped with the

2.53GHz Intel Core Extreme CPU Q9300 processer and 4GB RAM. This laptop is

integrated with an Intel 5300 WiFi NIC and can transmit WiFi packets at a rate of

2500 packets/sec. It can run Ubuntu 14.04.04 with kernel version of Ubuntu 4.2.0-27.



28

Another laptop with the same configuration above is used to receive packets,

to save the CSI data of the packets, and to perform classification of the number of

empty parking slots. A parking lot is needed to perform experiments. A single row

with 10 parking slots is occupied by the prototype system.

4.3.2 Comparison Between Two Modes

In this section, the effects of different positions of the transmitter and receiver

on the system performance are investigated as follows.

• Out-mode

In this mode, the path of transmitter and receiver is the LOS. The transmitter

and receiver are placed on the outer side of vehicle sequence as the Fig. 4.3.

Figure 4.3: Illustration for Out-mode.

• In-mode

In this mode, both transmitter and receiver are placed at both sides of the

vehicle arrangement. The path is NLOS. The signals from a transmitter pass

through vehicles and arrive at the receiver. The distances between the vehicle and
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the transmitter, and the receiver, are different, which are 3m, 6m, and 10m

respectively as shown in the Fig. 4.4.

Figure 4.4: Illustration for In-mode.

After analyzing the collected data, we found that in the condition of using

phase variance as the feature, Out-mode has more obvious differences than In-mode.

In the In-mode, the data sampling rate is significantly lower than in the Out-mode.

This is because in the Out-mode, the signal passes through the vehicle aslant, which

will lead to stronger refraction and diffraction. Therefore, the change of phase

variance is more obvious for different parking spaces. In the In-mode, if the distance

is too near, such as 3m distance between the transmitter and the vehicle, the packet

loss rate is greatly increased and the sampling rate decline as the vehicle made from

metal has a strong shielding effect on the WiFi signal. If the distance is too far, for

example, the receiver is 10m far from the vehicle; it is difficult to distinguish between

different feature spaces. Although the sampling rate is not changed, the effect of

refraction, diffraction and reflection is not obvious. Therefore, in the presented

system, we place above instruments using Out-mode.

Sometimes the driver may park the vehicle not normally. For example, the

vehicle is parked over the line of the parking space. In that condition, the signal will
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be blocked by the vehicle and the out-mode will become in-mode. It will reduce the

accuracy of the system. To avoid that situation, we placed the equipment 1 meter

and 0.3 meter away from the border line of the parking lots. The figure 4.5 above

shows the location of placement.

Figure 4.5: Special case of Out-mode

4.4 Pre-processing of WiFi CSI Data

The noise processing of CSI signal is a technical difficulty in this thesis. The

CSI signal provided by existing commercial WiFi devices has very high noise. Fig.

4.6 illustrates the CSI signal collected with Intel 5300 NIC at the sampling rate of

2.5kHz. It can be seen from Fig. 4.6 that the signal graph has many burrs and is

not smooth, which will have a great impact on the accuracy of positioning. It is

necessary to remove noise from the collected CSI data.

4.4.1 De-noising Processing

Through the analysis of the parking lot CSI signal, we found that the

background noise is mainly concentrated in the high phase part and the low pass
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filter can remove high-frequency noise. Therefore, we consider using (Butterworth)

low-pass filter to remove noise from the CSI signal. From the de-noising results as

shown in Figure. 4.7, we can see that after filtering the CSI waveform is smoother

than the original waveform. In addition, the local burrs are also reduced. However,

there is still a noise pulse, which indicates that only using low pass filter, all noises in

the CSI signal can’t be eliminated because the CSI signal contains the impulse noise

with high energy and high bandwidth. Hence, the low-pass filter’s band-pass needs to

be less than 1/20 of sampling rate so that it can make the noise energy of the filtered

CSI signal negligible. When the sampling rate is not high enough, the residual noise

of the CSI signal will still make signal distortion after low pass filtering [45].

In order to solve the above problems, we further deal with the CSI signal after

low-pass filtering.

4.4.2 Phase Pre-processing

One of the main sources of noise in the CSI signal is caused by the conversion

of the internal state of WiFi NIC. It produces impulse noise and burst noise in the

CSI signal.

Reducing random noises of the CSI data is crucial for achieving high

classification performance. Since the phase information of the CSI data is used as a

primary feature for identifying empty parking slots, the accuracy of the phase

information needs to be paid attention. Hence, this section explains the details on

how to mitigate the impact of random noises contained in the phase information of
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CSI data.

Figure 4.6: A raw phase diagram.

Figure 4.7: After low-pass filter phase diagram.

The measured phase of subcarrier f can be written as the following formula

4.3:

φ̂f = φf − 2π
kf
N
δ + β + Z (4.3)

Here φf is the genuine phase, kf is the subcarrier index, N is the Fast Fourier

Transform size. There are two major sources of noise: δ is the time lag at the

receiver, and β represents an unknown phase offset. Z is some measurement noises.
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Based on [47], a linear transformation is performed to reduce the random

noise. More specifically, the phase information of a subcarrier can be obtained

according to the following calculation:

a =
φ̂f − φ̂1

2πF
(4.4)

b =
1

F

∑
1≤f≤F

φ̂f (4.5)

where F is the last subcarrier index (In this experiment, F is 30 as Intel 5300 NIC

exports 30 subcarriers). And then, a simple linear transformation, i.e., removes the

timing offset at the receiver , and the unknown phase offset .

And then, a simple linear transformation, i.e.,φf = φ̂f − af − b removes the

timing offset at the receiver δ and the unknown phase offset β.

Figure 4.8: Comparison between the raw phase and pre-processed phase.

Fig. 4.8 shows the raw phase and the pre-processed phase of a subcarrier

that was measured for 1 second at a rate of 2,500 samples/sec. As shown, the
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random noises of the phase information have been effectively mitigated.

Once random noises are eliminated, phase values are normalized into the

range of [0, 1]. The feature extraction from CSI data collected from varying scenarios

with different number of empty slots can be implemented.

4.4.3 Processing Procedures

The pre-processing of CSI data proceeds according to following four

procedures:

(1) Import to Matlab

Firstly, by using a toolkit called linux-80211n-csitool-supplementary provided

by WiFi CSI tool the CSI data are imported into MATLAB cells. MATLAB is

employed to process CSI data.

Then, use the function read bf file of linux-80211n-csitool-supplementary to

extract the CSI data from csi trace. The data of the csi trace are shown in Fig. 4.9

Figure 4.9: The data of a csi trace
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The csi trace is a cell that contains a lot of information. We only need CSI

information. Hence, we need to use get scaled csi function to extract the CSI

information into a new matrix so that we can process CSI data. The get scaled csi

function is also included in the linux-80211n-csitool-supplementary. Parts of codes

using get scaled csi function are shown as Fig. 4.10.

Figure 4.10: Parts of codes of Using get scaled csi function

(2) Set time We need to set a time for analysis the data. As mentioned above

Section, the receiver receives 2500 packets every second. If we want to analysis the

data of 2 seconds, we need to set time to 2500*2=5000 because the time is the

number of packets. The code of setting time procedures is as shown in Fig. 4.11.

Figure 4.11: Codes of setting time

(3) Set Filters

The raw CSI data has a lot of noise and we need to reduce them. We will use
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the method we discussed above to reduce the noise.

The codes of setting filters is as shown in Fig. 4.12:

Figure 4.12: Codes of setting filters

4.5 Feature Extraction

4.5.1 Extraction Principles

Fundamentally constrained by the time resolution of COTS WiFi devices, it is

infeasible to identify features by relying on only one channel snapshot and CIR based

LOS. In this section, we extract distinctive statistical features from the basically

unexplored phase information.

The physical foundation for statistical features is the difference of the spatial

randomness of LOS and NLOS paths. NLOS paths typically involve abundant

reflections, diffractions and refractions. Therefore, the signals transmitting through

NLOS paths often behave more randomly, which reflects in both signal amplitudes

and phases.

CSI measurements can provide phase information for each carrier. To
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mitigate the impact of random noises, we first perform a linear transformation on the

raw phases, as recommended in section 4.4.2.

Similar to the principle of amplitude based features, the extent of randomness

can be revealed in statistics describing certain order of deviation. For real-time

operations, we employ variances calibrating phases as candidate features due to its

simplicity.

Although we cannot obtain the true phase except a calibrated measurement

φ̂f , we can demonstrate that the variances of filtered phases differ from true phases

which are only related a multiple of frequency dependent constants. In addition,

although it cannot be a distinctive feature of LOS recognition, the variance of phases

does exhibit different trends under the LOS/NLOS propagation. Inspired by the

preliminary measurements, we explore more conspicuous phase variance.

Thirty subcarriers of the WiFi signal are emitted at different positions in all

directions. After a lot of reflection, diffraction and refraction, the phases of different

subcarriers accepted by the receiver are different. Due to the different arrangement

of vehicles in the parking lot, the degree of reflection, diffraction and refraction is

also different. We can find the relationship between the phase variance and the

parking space vacancy by the distribution of the phase variance of each packet.

4.5.2 Phase Variance For Different Empty Parking Slots

The challenge for developing the feature extraction module is to identify

features that can effectively characterize and distinguish the number of empty slots
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in a parking lot.

The key idea comes from the observation that more obstacles obstructing the

line of sight (LOS) path will generate higher refractions, diffractions, and reections.

As a result, the phase received causes greater randomness [44]. The feature

extraction module exploits the strong correlation between the number of vehicles

(i.e., the number of empty slots) obstructing the LOS and the variance of phase, and

selects it as a primary feature for classification.

Fig. 4.13 shows the phase variance of 400 WiFi packets for a parking lot with

9 empty slots, and for the same parking lot with 10 empty slots.

Figure 4.13: Variances of phase for parking lots with 9 empty slots and 10 empty

slots
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Figure 4.14: Variances of phase for parking lots with 1 empty slots and 0 empty slots

Fig. 4.14 shows the phase variance for 400 WiFi packets for a parking lot

with 0 empty slot and for the same parking lot with 1 empty slot.

The phase variance is the feature to classify the empty space of parking lots.

After getting the filtered phase information, we need to calculate the variance of

them. The phase variance is the variance of 30 subcarriers of one packet. We can use

the MATLAB function to implement this calculation.

1) Filtering of phase of CSI is as follow:

2) Drawing graph

After the phase variance has been calculated, we can use scatter function to
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draw a scatter graph so that we can find the difference intuitively. In order to

identify the difference of features more obviously, we also create a 3D scatter graph

so that we can find the difference of phase variance very clearly. In general, a large

amount of data is selected to find the feature more obviously. The code of drawing

the scatter graph is as follows:

Fig. 4.15 shows that the phase variance of no empty slot and 4 empty slots is

different very obviously. To find the difference more effectively, we draw a 3D graph

as shown in Fig. 4.16.

Figure 4.15: The scatter graph of phase variances
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Figure 4.16: The 3D scatter graph of phase variances

Taking a parking lot with 9 empty slots and a parking lot with 10 empty slots

as an example, we can observe their variances of phase in Fig. 4.11. The

distributions of phase variance for the two scenarios are not clearly separated. On

the other hand, mainly considering the phase variance values, it can be viewed that

the phase variance of the scenario with 10 empty slots is smaller than that with 9

empty slots.

This particular observation demonstrates that using an individual value of

phase variance as a feature is not appropriate; rather, the distribution patterns of a

group of phase variance values collected over a period of time are used as features,

which can obtain a better classification accuracy.
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4.5.3 Distribution patterns of phase variance

We have analyzed all the cases and drawn two 3D scatter graphs as shown in

Fig. 4.17 and 4.18. We find that the phase variance increases when the empty space

of vehicle become more. The more the empty space is, the wider the distribution of

phase variance is. The total distribution of phase variance presents a ladder type

The CDF graph of phase variance for varying numbers of empty slots is

shown in Fig. 4.19, which is extracted from larger data sets (collecting CSI data of

270 seconds for each case. The total amount of samples is 6,750,000 samples). An

interesting observation is that although the phase variances for the two classes of

similar numbers of empty slots are very close to each other, distinctive patterns are

found that allow us to use it for training a model with a group of phase variances.

Given the observations that indicate the effectiveness of the phase variance as

a feature for classification, we determined to use it as the primary feature for running

a machine learning algorithm, which will be explained in the following section.
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Figure 4.17: Phase variances of all cases

Figure 4.18: All case phase variances
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Figure 4.19: CDF of phase variance for varying numbers of empty slots

4.6 Training and Testing

4.6.1 Methodology

Obviously, using threshold-based approach will not work effectively for

classification since the phase variances for different numbers of empty slots are not

clearly separated. It is also because that the pattern of phase variances is used as a

major indicator to distinguish from varying numbers of empty slots rather than using

individual values of phase variance. Consequently, a machine learning approach is

employed for more effective classification given the characteristics of the selected

feature. More specifically, we adopt the Support Vector Machine (SVM) in training a
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classification model that classifies an input data sequence consisting of a group of

phase variance values into an appropriate class that represents different numbers of

empty slots. The following will introduce some concepts on SVM.

(1) SVM

In machine learning, support vector machines (SVMs) are supervised learning

models with associated learning algorithms that analyze data used for classification

and regression analysis. Given a set of training samples, each marked as belonging to

one or the other of two categories, an SVM training algorithm builds a model that

assigns new samples to one category or the other, making it a non-probabilistic

binary linear classifier.

An SVM model is a representation of the samples as points in space, mapped

so that the samples of the separate categories are divided by a clear gap that is as

wide as possible. New samples are then mapped into that same space and predicted

to belong to a category based on which side of the gap they fall.

In addition to performing linear classification, SVMs can efficiently perform a

non-linear classification using what is called the kernel trick, implicitly mapping their

inputs into high-dimensional feature spaces.

When data are not labeled, supervised learning is not possible, and an

unsupervised learning approach is required, which attempts to find natural clustering

of the data to groups, and then map new data to these formed groups. The

clustering algorithm which provides an improvement to the support vector machines

is called support vector clustering and is often used in industrial applications either
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when data are not labeled or when only some data are labeled as a preprocessing for

a classification pass.

(2) LIBSVM

In creating a classification model and predicting the class, LIBSVM and

LIBLINEAR are usually used as an integrated software tool [46], which are two

popular open source machine learning libraries for support vector classification,

regression and distribution estimation. They support multi-class classification and

were developed at National Taiwan University with C++ language.

LIBSVM implements the SMO(Sequential minimal optimization)algorithm for

kernelized support vector machines, supporting classification and regression.

LIBLINEAR implements linear SVMs and logistic regression models trained using a

coordinate descent algorithm.

The SVM learning code from both libraries is often reused in other open

source machine learning toolkits, including GATE, KNIME, Orange and scikit-learn.

Many bindings to it exist for programming languages such as Java, MATLAB and

Ruby.

(3) Standard Cross-validation Technique

To obtain better classification results, the two parameters, i.e., C and γ, are

needed, which are usually decided by the standard cross-validation technique [47].

To train SVM problems, users must specify some parameters. LIBSVM

provides a simple tool to check a grid of parameters. For each parameter setting,

LIBSVM obtains Cross-Validation (CV) accuracy. Finally, the parameters with the
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highest CV accuracy are returned.

The parameter selection tool assumes that the RBF (Gaussian) kernel is used

although extensions to other kernels and SVM can be easily made. The RBF kernel

takes the form. Hence, (C, γ ) are parameters to be decided. Like formula 4.6.

k(xi, xj) = e−γ‖xi−xj‖
2

(4.6)

Users can provide a possible interval of C (or γ ) with the grid space. Then, all grid

points of (C, γ ) are tried to find the one giving the highest CV accuracy. Users then

use the best parameters to train the whole training set and generate the final model.

We do not consider more advanced parameter selection methods because for

only two parameters (C and γ ), the number of grid points is not too large. Further,

because SVM problems under different (C, γ ) , parameters are independent.

LIBSVM provides a simple tool so that jobs can be run in a parallel (multicore,

shared memory, or distributed) environment.

For multiclass classification, under a given (C, γ ), LIBSVM uses an

one-against-one method to obtain the CV accuracy. Hence, the parameter selection

tool suggests the same (C, γ ) for all k(k - 1)/2 decision functions.

4.6.2 MATLAB-SVM Classifier

MATLAB (matrix laboratory) is a multi-paradigm numerical computing

environment. A proprietary programming language developed by MathWorks,
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MATLAB allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing with

programs written in other languages, including C, C++, Java, Fortran and Python.

MATLAB provides many classifiers. To current understanding, classifiers of

MATLAB include: K nearest neighbor classifier, Random forest classifier, Naive

Bayesian, Ensemble learning method, Discriminant analysis classifier, and Support

vector machine. In this thesis, we select SVM as the classifier to implement

identification of empty parking slots.

MATLAB has a SVM classifier. In this thesis, we mainly use the following

two functions to complete the classification tasks.

svmtrain function svmtrain is a function of training classification model. Its

function format is as follow:

SVMStruct = svmtrain (Training, Group, Name, Value).

The input parameters are training data, training data corresponding group

attribute, optional parameter name, optional parameter value. The output is a

structure defined by MATLIB.

There are many optional parameters. Here we introduce two optional input

parameters that following examples will use.

(1) kernel-function (kernel function): Optional kernel function includes:

linear, quadratic, polynomial, RBF, MLP, @kfun, etc. If the type of kernel functions

is not set, the linear kernel function is selected as the default kernel function.

(2) showplot (drawing): showplot is a Boolean value to indicate whether to
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draw categorical data (here is the training data) and the line of classification, but

this drawing function only supports the drawing of data with two eigenvalues, that

is, two-dimensional point data (default value is false).

In svmtrain function, if showplot is set to true, the program will

automatically draw two classes of points in the training data and the classification

line obtained by the training data and marking which point is the support vector in

different colors. The Fig. 4.20 is the graphs drawn by the application of showplot

after a set of training data have been trained by the svmtrain function.

Among them, the red mark “+” represents the data in training set 1, and the

green asterisk represents the data in training set 2. Support vectors are circled by

mark “O”.

Figure 4.20: The graph drawn by using SVM

The Fig. 4.21 shows the process of training and test the CSI Data from two

different classes. After the training and testing process has been done, an accurate

pattern model has been created for the classification in the future.
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Figure 4.21: The process of training and testing data with SVM

4.6.3 Multiple Classification Problems in LIBSVM

Although SVM is a binary classifier, SVM can also be used to implement

multi classification. The main method is to train multiple binary classifiers.

Given m classes, m binary classifiers are needed to need to be trained, in

which the classifier i is to set the i class data as class 1 (positive), and all other m-1

classes except i class are commonly set as class 2 (negative). For each class, a binary

classifier is needed to be trained. At last, we can have m classifiers.

The Fig. 4.22 shows the algorithm of the multiple classifications with SVM. If

CSI match the trained module, the classifier will output 1, otherwise it will output 0.
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Figure 4.22: The Algorithm of Multiple Classifications

For data x that needs a classification, its category is determined by voting

methods. For example, when the classifier i predicts the data x, if the positive result

is obtained, it shows that the result of using classifier i to classify x is: x belongs to

the class i. As a result, i won one. If the negative result is obtained, it shows that x

belongs to other class except class i. Then, every class except i won one. The class

which won the most votes will be the class attribute of X.

The following introduce the linear and Non-linear SVM

(1) Linear SVM

Linear SVM is used for two classification problems by finding a classification

line (e.g. 2D straight line, three-dimensional plane, multidimensional hyperplane),

which can divide the data into two categories. Using the linear function

f(x) = w ∗ x+ b the classifier can be constructed. The classification is a

two-dimensional line as shown in Fig. 4.23.
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Figure 4.23: Illustration for classification using Linear SVM

(2) Non-linear SVM

For linear separable case as mentioned above, a linear function

f(x) = w ∗ x+ b can be used to construct a classifier. The classification of data can

be completed by finding a classification line (or surface) with maximum distance

from the edge line to the nearest data point. However, we will encounter another

problem, that is, if the data is not linearly separable, a two-dimensional linear,

three-dimensional plane or multidimensional hyper plane cant classify them into two

classes.

For the linear non-separable problem, the method of SVM is to convert the

original linear inseparable data to a high dimensional space, so that it becomes
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linearly separable. As shown in Fig. 4.25, some data are linearly inseparable. If they

are converted into a high dimensional space, for example as indicated in the Fig.

4.24, converted from two-dimensional data into 3D, these data can classify into

different categories. Therefore, the linear inseparable data needs to be mapped to

the high dimension so that they can be linearly separable. Then, the linear SVM

method is used to complete the classification.

The codes of mapping the 2D data to 3D data using kernel function are as

follows:

Nevertheless, in the high dimensional transformation process, SVM doesnt

actually implement high dimensional mapping. In fact, the maximum edge

classification plane which is called the kernel function is found by a technique and

applied to the original input data. Firstly, this technique allows us dont need to

know what is the mapping function. Only need to apply the selected kernel function

on the original input data. Secondly, all the calculations are done on the low

dimensional space of the original input data to avoid the high dimension operation.

For this kernel function, there are several options, including Gauss polynomial kernel

function, RBF kernel function, S kernel function and so on.

Through the analysis of the accuracy, we found that using nonlinear SVM has

higher precise than using linear SVM. Hence, we will use nonlinear SVM in this

thesis.
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Figure 4.24: Map 2D data to 3D data with Kernel function

Figure 4.25: Non-linear SVM
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4.6.4 Setting the Training Data and Test Data

Using SVM to implement the classification needs to train the selected SVM at

first. It is necessary to set a group of train data and a group of test data to train the

selected SVM. The train data include the train group and train label. The train label

is the expected answer. The codes of setting train data and test data are as follows

(1) Training Data

(2) Training Label

We use svmtrain function to train the train data and train label, and use

kernel-function and non-linear classification. Matlabs LIBSVM tool is employed to

analyze and classify the data. The result is shown on Fig. 4.26
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Figure 4.26: The Figure after using SVM

(3) Classification Precision

After the data is classified by SVM.It need to find the precision of finding

empty. All outputs are all stored in the matrix classification. Hence, we need to

count the occurrence of the correct output for precision.

The code of Find Precision:

The result shows that the precision is 0.8422.



57

Chapter 5

Experiments

5.1 Experimental Setup

The experimental system is configured as follows:

(1) A transmission device for CSI signals.

A HP Elite 8730w type laptop is needed, which is equipped with the 2.53GHz

Intel Core Extreme CPU Q9300 processer and 4GB of RAM. A Intel 5300 WiFi NIC

is integrated to transmit WiFi packets at a rate of 2500 packets/sec. The laptop run

Ubuntu 14.04.04 with kernel version of Ubuntu 4.2.0-27.

(2) A receiving device for CSI signals.

A laptop with the same configuration as above is used to receive packets, save

the CSI data of the packets, and perform classification of the number of empty

parking slots.

(3) A parking lot is used as the experimental site

Considering parking and convenience, we selected a parking lot in front of our

department building as the experimental site. At the parking lot, a single row with

10 parking spots was selected as the testing object.

5.2 Experimental Scheme

The laptop is placed at one end of each parking row and is approximately

50cm far from the parked car. In order to facilitate reliable packet reception the
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laptop is situated about 40cm above the ground. When the parking slots change, the

phase difference caused by parking cars between the transmitter and the receiver can

be obtained. Fig. 5.1 shows the experimental scheme.

We collected 90 seconds of CSI data for each empty slot, i.e., containing

225,000 samples.

Figure 5.1: Snapshot of experimental setting at department parking lot

We repeated the data collection for 5 times for each empty slot. Thus, a total

of 450 seconds of CSI data containing 1,125,000 phase variance values were

incorporated to define a class that represents a certain number of empty slot.

Fig. 5.2 and Fig. 5.3 show the operation interface of transmitter and

receiver. On the transmitter total 450000 packets every 400s are transmitted. The

size of a packet is 213 bytes. On the receiver, the laptop receives the signal and store

in a log file.
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Figure 5.2: Transmitter Interface

Figure 5.3: Receiver Interface

In particular, another 90 seconds of CSI data for each empty slot were

collected and used as the test data set. Collecting the full CSI data set for all empty

slots was challenging. We had to wait until the desired number of empty slots was

available since we did not have the control over the vehicles coming in and out of the

parking lot.

In creating a classification model and predicting the class, the lib SVM was

used [18]. In order to collect the CSI data efficiently, we also write a script so that

we can reduce the time for inputting complex instruction. The script is as follows:
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(1) Monitor script:

(2) Injection script:

5.3 System Interface

Figure 5.4: System Interface

The Fig. 5.4 above shows the interface of the prototypical WiFi parking

space finding system. Firstly, you need to input the test CSI data and choose
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classifier. Then click compare button. The figure on the left shows the train model

which is the classifier that you selected. The right figure shows the comparison

between the test data and trained model. If the testing datas pattern matches the

trained model, the classifier of system will output 1 and the number of empty space

will output. Otherwise, it will output 0. Each time, the system will begin from

classifier 0. If the output of classifier is 0, the system will change to next classifier

automatically until the output is 1.

If the scale of the parking lot is very large, for example, it has 100 empty

parking lots. The amount of empty cases will be very large, if the code of each

classifier is fixed, the work load will be very high and it will increase the cost. So in

the future, we will develop a dynamic coding system to create classifier dynamically

to reduce the cost and work load of the system

And also, we will study the rules of the phase variance between different

empty space. For example, we will find the relationship between phase variance of 1

empty and 2 empty so that we can imply the other amount of empty space by this

relationship. The cost will be reduced significantly by this approach.
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Chapter 6

Result Analysis

In this section, the performance of the proposed approach is evaluated and

the experimental results are analyzed. Our main task is to find empty parking slots.

Hence, the classification accuracy for varying numbers of empty slots is important.

The following will discuss on the classification accuracy in detail. In addition, the

effect of using different receiver antennas is also discussed.

6.1 Classification Accuracy

The classification accuracy of this approach is presented in the form of a

confusion matrix as shown in Fig. 6.1

The x-axis of the confusion matrix represents the actual class, and the y-axis

indicates the predicted class. For example, a matrix entry at position (x, y) means

the number of cases in percentage that input CSI data is classified into class y when

the actual class is x.

First of all, it can be observed from the confusion matrix as shown in Fig. 6

that we can calculate the average classification accuracy by adding matrix entries at

positions (x, x), 0 ≤ x ≤ 10 and dividing the result by 11, which is 80.8. The

obtained average accuracy is not much impressive, compared with magnetic

sensor-based approaches which have reported the average accuracy of 95% ∼ 98%

[5]. However, if we consider the high cost of the sensor-based methods, this approach

is still a competitive solution especially for small businesses who may not be able to
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afford the huge investment for parking lot management.

Furthermore, the results show that this approach is actually a very powerful

solution if a tolerance of only a single empty slot is permitted. More specifically, we

can observe from the results that this approach does not generate errors that are too

much deviated from the ground truth. For example, while the accuracy for the class

of 0 empty slot was just 70%, the majority of errors (i.e., 22%) were associated with

only differences of one or two empty slots compared with the ground truth. Fig. 6.2

exhibits the classification accuracy when errors of a single empty slot are tolerated.

Figure 6.1: Confusion matrix that represents classification accuracy
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Figure 6.2: Classification accuracy with and without a tolerance of one empty slot

As shown, the average accuracy spiked up to 93.8%, which is quite

comparable even with the sensor-based approach. In addition, the results suggest

that if the operator is interested to provide only the information about whether the

parking lot is full or not, the average accuracy is increased much higher up to 95.7%.

We attribute the low classification accuracy for certain number of empty slots

to surrounding obstacles and moving objects that were present during CSI data

collection. We suggest to address this problem by employing a directional antenna

with a more strategic deployment of the transmitter receiver pair.

6.2 Effects of Receiver Antenna

The Intel 5300 WiFi NIC is equipped with three receiver antennas and one

transmitter antenna, allowing for 2, 500× 3 samples to be collected with a single

WiFi packet transmission assuming the sample rate of 2,500 samples/sec.



65

The question is whether or not to integrate all the samples received via the

three antennas in training the classification model. Assuming the negligible distance

between receiver antennas, theoretically, we should obtain very similar results

regardless of receiver antennas.

Figure 6.3: Classification accuracy for different receiver antenna

In our experiments, however, we found that aggregating the CSI data of all

receivers resulted in lower classification accuracy, and that the average classification

accuracy was different by up to 4.7% depending on which receiver antenna we used

(as shown in Fig. 6.3).

We attribute the reason for the varying classification accuracy to the different

hardware conditions of the receivers, potentially an issue specific to our equipment.

Consequently, we used the CSI data received via the receiver antenna1.
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Chapter 7

Conclusion

In this thesis, a new approach to finding empty parking slots is presented,

which is a WiFi-based parking solution. The unique feature of WiFi CSI data for

discerning the number of empty parking slots has been identified, which then was

used to build a classification model for a machine learning algorithm that effectively

detects parking occupancy. This approach demonstrates the potential of exploiting

ubiquitous WiFi signals to implement a transportation tool leading to dramatically

reduced cost without requiring development of specialized equipment nor intrusive

deployment of it.

In addition, this research warrants a number of interesting future works. For

example, the accuracy can be improved by using the directional antenna in order to

minimize the impact of surrounding obstacles and moving objects. The classifier can

be generated dynamically. An analysis on the effect of deployment position and

posture of the WiFi transmitter and the receiver will be an interesting topic. Other

useful features in addition to the phase variance can be identified to further improve

the classification accuracy.

The future work will discover a compound features such as phase amplitude

based features and signal intensity based features like RSS. Analyze the performance

of these new features and apply these features on the future system to improve the

accuracy of finding the number empty spaces.

Another important future work is to test the performance of this approach in
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the real word .By testing more different and abnormal cases such as vehicle type,

weather conditions to evaluate the robustness of this approach.

At last, the presented system will be integrated in the mobile device like

smartphone. The driver can download the app of this system to receive the condition

of empty spaces in parking lots by their smartphone. The information of empty

spaces in parking lots is collected by the WiFi equipment in the parking lots and

transmits to the main server by cellular mobile network. The main server will

analysis and transmit the parking lots condition to smartphones.
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