31 research outputs found

    Channel acquisition and routing system for real-time cognitive radio sensor networks

    Get PDF
    The need for efficient spectrum utilization and routing has ignited interest in the Cognitive Radio Sensor Network (CRSN) paradigm among researchers. CRSN ensures efficient spectrum utilization for wireless sensor network. However, the main challenge faced by CRSN users have to deal with is the issue of service quality in terms of interference when using channels and degradation in multi-hop communication. This thesis proposes to overcome the interference due to contention and routing issues through the design of an efficient Channel Acquisition and Reliable routing System (CARS). CARS is designed to reduce carrier sense multiple access contention and enhance routing in CRSNs. CARS comprises of Lightweight Distributed Geographical (LDG), and Reliable Opportunists Routing (ROR) modules. LDG is a medium access control centric; cross-layer designed protocol to acquire a common control channel for signalling to determine the data channel. ROR is a network-centric cross-layer designed protocol to decide on a path for routing data packets. The result shows that LDG significantly reduces the overhead of media access contention and energy cost by at an average of 70% and 80% respectively compared to other approaches that use common control channel acquisition like Efficient Recovery Control Channel (ERCC) protocol. In addition, LDG achieves a 16.3% boost in the time to rendezvous on the control channel above ERCC and a 36.9% boost above Coordinated Channel Hopping (CCH) protocol. On the other hand, the virtual clustering framework inspired by ROR has further improved network performance. The proposed ROR significantly increases packet received at the sink node by an average of over 20%, reduces end-to-end latency by an average of 37% and minimizes energy consumption by an average of 22% as compared to Spectrum-aware Clustering for Efficient Multimedia routing (SCEEM) protocol. In brief, the design of CARS which takes the intrinsic characteristics of CRSNs into consideration helps to significantly reduce the energy needed for securing a control channel and to guarantee that end-to-end, real-time conditions are preserved in terms of latency and media content. Thus, LDG and ROR are highly recommended for real-time data transmission such as multimedia data transfer in CRSN

    DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS

    Get PDF
    The rapid growth of the number of wireless devices has brought an exponential increase in the demand of the radio spectrum. However, according to the Federal Communications Commission (FCC), almost all the radio spectrum for wireless com- munications has already been allocated. In addition, according to FCC, up to 85% of the allocated spectrum is underutilized due to the current fixed spectrum alloca- tion policy. To alleviate the spectrum scarcity problem, FCC has suggested a new paradigm for dynamically accessing the allocated spectrum. Cognitive radio (CR) technology has emerged as a promising solution to realize dynamic spectrum access (DSA). With the capability of sensing the frequency bands in a time and location- varying spectrum environment and adjusting the operating parameters based on the sensing outcome, CR technology allows an unlicensed user to exploit the licensed channels which are not used by licensed users in an opportunistic manner. In this dissertation, distributed intelligent spectrum management in CR ad hoc networks is explored. In particular, four spectrum management issues in CR ad hoc networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2) distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed protocol to defend a particular network security attack in CR ad hoc networks; and 4) distributed spectrum handoff protocol in CR ad hoc networks. The research in this dissertation has fundamental impact on CR ad hoc network establishment, net- work functionality, network security, and network performance. In addition, many of the unique challenges of distributed intelligent spectrum management in CR ad hoc networks are addressed for the first time in this dissertation. These challenges are extremely difficult to solve due to the dynamic spectrum environment and they have significant effects on network functionality and performance. This dissertation is essential for establishing a CR ad hoc network and realizing networking protocols for seamless communications in CR ad hoc networks. Furthermore, this dissertation provides critical theoretical insights for future designs in CR ad hoc networks

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN)

    Get PDF
    Industrial wireless sensor network (IWSN) applications are mostly time-bound, mission-critical and highly delay sensitive applications therefore IWSN defines strict, stringent and unique QoS requirements such as timeliness, reliability and availability. In IWSN, unlike other sensor networks, late arrival of packets or delay or disruption to an on-going communication are considered as critical failure. Also, because IWSN is deployed in the overcrowded industrial, scientific, and medical (ISM) band it is difficult to meet this unique QoS requirements due to stiff competition for bandwidth from other technologies operating in ISM band resulting in scarcity of spectrum for reliable communication and/or disruption of ongoing communication. However, cognitive radio (CR) provides more spectral opportunities through opportunistic-use of unused licensed spectrum while ensuring minimal interference to licensed users. Similarly, spectrum handoff, which is a new type of handoff in cognitive radio, has the potential to offer increase bandwidth, reliable, smooth and interference-free communication for IWSNs through opportunistic-use of spectrum, minimal switching-delays, and efficient target channel selection strategies as well as effective link recovery maintenance. As a result, a new paradigm known as cognitive radio industrial wireless sensor network (CR-IWSN) has become the interest of recent research efforts. In this paper, we highlight and discuss important QoS requirements of IWSN as well as efforts of existing IWSN standards to address the challenges. We discuss the potential and how cognitive radio and spectrum handoff can be useful in the attempt to provide real-time reliable and smooth communication for IWSNs.The Council for Scientific and Industrial Research (CSIR), South Africa [ICT: Meraka].http://www.elsevier.com/locate/jnca2018-11-01hj2017Electrical, Electronic and Computer Engineerin
    corecore