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ABSTRACT

YI SONG. Distributed intelligent spectrum management in cognitive radio ad hoc
networks.

(Under the direction of DR. JIANG (LINDA) XIE)

The rapid growth of the number of wireless devices has brought an exponential

increase in the demand of the radio spectrum. However, according to the Federal

Communications Commission (FCC), almost all the radio spectrum for wireless com-

munications has already been allocated. In addition, according to FCC, up to 85%

of the allocated spectrum is underutilized due to the current fixed spectrum alloca-

tion policy. To alleviate the spectrum scarcity problem, FCC has suggested a new

paradigm for dynamically accessing the allocated spectrum. Cognitive radio (CR)

technology has emerged as a promising solution to realize dynamic spectrum access

(DSA). With the capability of sensing the frequency bands in a time and location-

varying spectrum environment and adjusting the operating parameters based on the

sensing outcome, CR technology allows an unlicensed user to exploit the licensed

channels which are not used by licensed users in an opportunistic manner.

In this dissertation, distributed intelligent spectrum management in CR ad hoc

networks is explored. In particular, four spectrum management issues in CR ad hoc

networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2)

distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed

protocol to defend a particular network security attack in CR ad hoc networks; and

4) distributed spectrum handoff protocol in CR ad hoc networks. The research in

this dissertation has fundamental impact on CR ad hoc network establishment, net-

work functionality, network security, and network performance. In addition, many

of the unique challenges of distributed intelligent spectrum management in CR ad

hoc networks are addressed for the first time in this dissertation. These challenges

are extremely difficult to solve due to the dynamic spectrum environment and they
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have significant effects on network functionality and performance. This dissertation

is essential for establishing a CR ad hoc network and realizing networking protocols

for seamless communications in CR ad hoc networks. Furthermore, this dissertation

provides critical theoretical insights for future designs in CR ad hoc networks.
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CHAPTER 1: INTRODUCTION

The rapid growth of the number of wireless devices has brought an exponential

increase in the demand of the radio spectrum. However, according to the Federal

Communications Commission (FCC), almost all the radio spectrum for wireless com-

munications has already been allocated. In addition, according to FCC, up to 85% of

the allocated spectrum is underutilized due to the current fixed spectrum allocation

policy [1]. In order to alleviate the spectrum scarcity problem and to overcome the

imbalance between the increase in the spectrum access demand and the inefficiency

in the spectrum usage, FCC has suggested a new paradigm for dynamically accessing

the allocated spectrum [2].

Cognitive radio (CR) technology has emerged as a promising solution to realize

dynamic spectrum access (DSA) [3]. Since CR networks are overlaid with a legacy

network, there are two types of users in the CR networks: 1) licensed user (or,

primary user) who has a license to operate in a certain spectrum band in the legacy

network and 2) unlicensed user (or, secondary user) who has no spectrum license

to use the spectrum. The access of primary users (PUs) should not be affected

by the operations of any secondary user (SU). With the capability of sensing the

frequency bands in a time and location-varying spectrum environment and adjusting

the operating parameters based on the sensing outcome, CR technology allows a SU to

exploit the licensed channels which are not used by primary users in an opportunistic

manner [4]. SUs can either form a CR infrastructure-based network or a CR ad hoc

network. Recently, CR ad hoc networks have attracted plentiful research attention

due to their various applications [5].
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1.1 Background on CR Networks

Since SUs need to access the licensed spectrum adaptively, new functionalities

are required in CR networks to support this adaptivity [4]. Specifically, the main

functionalities for CR networks can be summarized as follows:

1) Spectrum sensing: SUs can sense the unused spectrum and utilize it without

harmful interference to PUs. It is an important requirement of CR networks to sense

the “spectrum holes”. Detecting PUs is the most efficient way to detect “spectrum

holes”. Spectrum sensing techniques can be classified into three categories: 1) primary

transmitter detection: CRs must have the capability to determine a signal from a

primary transmitter [6], 2) cooperative spectrum sensing: multiple SUs share sensing

information with each other and incorporate for PU detection [7], and 3) interference

based detection [8].

2) Spectrum management: SUs capture the best available spectrum to meet com-

munication requirements while not creating harmful interference to other PUs. CRs

should decide on the best spectrum band to meet the Quality-of-Service (QoS) require-

ments over all available spectrum bands, therefore spectrum management functions

are required for CRs. These management functions can be classified as: 1) spectrum

analysis [4] and 2) spectrum decision.

3) Spectrum mobility: SUs change its operating frequency based on its radio

environment. CR technology aims to use the licensed spectrum in a dynamic manner

by allowing SUs to operate in the best available frequency band, while maintaining

seamless communication requirements during the transition to a better spectrum.

This brings about a new type of handoff called spectrum handoff, which refers to the

process that a SU determines and switches to a new available channel to continue the

transmission when the current spectrum is not available. Based on the moment when

the spectrum handoff is carried out, two types of spectrum mobility are introduced:

1) reactive approach and 2) proactive approach.
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4) Spectrum sharing: SUs provide a fair spectrum scheduling method. One of the

major challenges in open spectrum usage is the spectrum sharing. It can be regarded

as the media access control (MAC) issues in existing wireless networks.

Currently, spectrum sensing and spectrum sharing have been studied extensively

in the research community [4]. However, spectrum management still lacks sufficient

research efforts. In this dissertation, four spectrum management issues in CR ad hoc

networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2)

distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed

protocol to defend a particular network security attack in CR ad hoc networks; and 4)

distributed spectrum handoff protocol in CR ad hoc networks. This dissertation has

fundamental impact on CR ad hoc network establishment, network functionality, net-

work security, and network performance. In addition, many of the unique challenges

of distributed intelligent spectrum management in CR ad hoc networks are addressed

for the first time in this dissertation. These challenges are extremely difficult to solve

due to the dynamic spectrum environment and they have significant effects on net-

work functionality and performance. This dissertation is essential for establishing a

CR ad hoc network and realizing networking protocols for seamless communications

in CR ad hoc networks. Furthermore, this dissertation provides critical theoretical

insights for future designs in CR ad hoc networks.

1.2 Broadcasting in CR Ad Hoc Networks

1.2.1 Distributed Broadcast Protocols in CR Ad Hoc Networks

We first consider the broadcasting issue in CR ad hoc networks. When a CR ad

hoc network is initially deployed, each SU only acquires its local network information

(e.g., its own channel availability information). Before any control information is

exchanged, SUs are unaware of the network information of any other user. However,

many networking protocols in CR ad hoc network, such as unicast routing protocols,

require certain network information in order to be realized. Therefore, SUs need
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to exchange the network information with other nodes. This control information is

often sent out as network-wide broadcasts, messages that are sent to all other nodes

in a network. In addition, some exigent data packets such as emergency messages

and alarm signals are also delivered as network-wide broadcasts [9]. Due to the

importance of the broadcast operation, in this research, we address the broadcasting

issue in multi-hop CR ad hoc networks. Since broadcast messages often need to be

disseminated to all destinations as quickly as possible, we aim to achieve very high

successful broadcast ratio and very short broadcast delay.

The broadcasting issue has been studied extensively in traditional ad hoc networks

[10, 11, 12, 13]. However, unlike traditional single-channel or multi-channel ad hoc

networks where the channel availability is uniform, in CR ad hoc networks, differ-

ent SUs may acquire different sets of available channels. This non-uniform channel

availability imposes special design challenges for broadcasting in CR ad hoc networks.

First of all, for traditional single-channel and multi-channel ad hoc networks, due to

the uniformity of channel availability, all nodes can tune to the same channel. Thus,

broadcast messages can be conveyed through a single common channel which can be

heard by all nodes in a network. However, in CR ad hoc networks, the availability of

a common channel for all nodes may not exist. More importantly, before any control

information is exchanged, a SU is unaware of the available channels of its neighboring

nodes. Therefore, broadcasting messages on a global common channel is not feasible

in CR ad hoc networks.

To further illustrate the challenges of broadcasting in CR ad hoc networks, we

consider a single-hop scenario shown in Figure 1.1(a), where node A is the source

node. For traditional single-channel and multi-channel ad hoc networks, as shown in

Figure 1.1(a), nodes can tune to the same channel (e.g., channel 1) for broadcasting.

Thus, node A only needs one time slot to let all its neighboring nodes receive the

broadcast message in an error-free environment. However, in CR ad hoc networks
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where the channel availability is heterogeneous and SUs are unaware of the available

channels of each other, as shown in Figure 1.1(b), node A may have to use multiple

channels for broadcasting and may not be able to finish the broadcast within one

time slot. In fact, the exact broadcast delay for all single-hop neighboring nodes to

successfully receive the broadcast message in CR ad hoc networks relies on various

factors (e.g., channel availability and the number of neighboring nodes) and it is

random.

C 

B 

A 

(ch1) 

(ch1) 

(ch1) 

(a) Traditional ad hoc
networks.

C 

B 

A 

(ch1,ch3) 

(ch1,ch2) 

(ch2,ch3) 

(b) CR ad hoc networks.

Figure 1.1: The single-hop broadcast scenario.

Furthermore, since multiple channels may be used for broadcasting and the exact

time for all single-hop neighboring nodes to successfully receive the broadcast message

is random, to avoid broadcast collisions (i.e., a node receives multiple copies of the

broadcast message simultaneously) is much more complicated in CR ad hoc networks,

as compared to traditional ad hoc networks. In traditional ad hoc networks, numerous

broadcast scheduling schemes are proposed to reduce the probability of broadcast

collisions while optimizing the network performance [14, 15, 16, 17, 18, 19]. All these

proposals are on the basis that all nodes use a single channel for broadcasting and

the exact delay for a single-hop broadcast is one time slot. However, in CR ad

hoc networks, without the information about the channel used for broadcasting and

the exact delay for a single-hop broadcast, to predict when and on which channel a

broadcast collision occurs is extremely difficult. Hence, to design a broadcast protocol

which can avoid broadcast collisions, as well as provide high successful broadcast ratio

and short broadcast delay is a very challenging issue for multi-hop CR ad hoc networks

under practical scenarios. Simply extending existing broadcast protocols to CR ad
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hoc networks cannot yield the optimal performance.

1.2.2 Analysis of Broadcast Protocols in CR Ad Hoc Networks

In addition, we also study the performance analysis of broadcast protocols in CR

ad hoc networks. Even though the broadcasting issue has been studied extensively

in traditional mobile ad hoc networks (MANETs) [10, 20, 11, 12, 13], research on

broadcasting in multi-hop CR ad hoc networks is still in its infant stage. There

are a few papers addressing the broadcasting issue in multi-hop CR ad hoc networks

[21, 22, 23, 24]. However, these proposals mainly focus on broadcast protocol designs.

The performance analysis of these proposed protocols is simulation-based. Thus, the

analytical relationship between these proposals and their performance is not known.

More importantly, without analytical analysis, the system parameters in these proto-

cols are not designed to achieve the optimal performance. In fact, analytical analysis

is beneficial not only for better understanding the nature of a proposed protocol, but

also for better designing the system parameters of a protocol to achieve the optimal

performance. It can also provide useful insights to guide the future broadcast protocol

designs in CR ad hoc networks. Hence, in this research, we focus on the analytical

analysis of broadcast protocols for multi-hop CR ad hoc networks.

Although a vast amount of analytical works on broadcast protocols in traditional

MANETs exist [25, 26, 27, 28, 29], currently, there is no analytical work on broadcast

protocols in multi-hop CR ad hoc networks. More importantly, all the methods

proposed for traditional MANETs cannot be simply applied to multi-hop CR ad hoc

networks. This is because that in traditional MANETs, the channel availability is

uniform for all nodes, as shown in Figure 1.1(a). However, in CR ad hoc networks,

different secondary users (SUs) may acquire different available channel sets, depending

on the locations and traffic of primary users (PUs), as shown in Figure 1.1(b). This

non-uniform channel availability leads to several significant differences and causes

unique challenges when analyzing the performance of broadcast protocols in CR ad
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hoc networks.

First of all, unlike in traditional MANETs, in CR ad hoc networks, the single-hop

broadcast is not always successful in an error-free environment. The reason can be

illustrated using Figure 1.1. If node A is the source node, in traditional MANETs, all

its neighboring nodes can tune to the same channel to receive the broadcast message.

However, in CR ad hoc networks, such a common available channel for all neighboring

nodes may not exist [30, 31, 32, 33, 34]. As a result, the broadcast may fail. More

severely, even if a common available channel exists between the source node and its

neighboring nodes, they may not be able to tune to that channel at the same time,

which will also result in a failed broadcast. In fact, whether the single-hop broadcast

is successful depends on the channel availability of each SU which is time-varying

and location-varying. Due to the uncertainty of the single-hop broadcast success, the

successful broadcast ratio of a network is usually random. Furthermore, since there

usually exist multiple message propagation scenarios for all the nodes to successfully

receive the broadcast message in a multi-hop CR ad hoc network, it is extremely

challenging to identify every possible message propagation scenario for calculating

the successful broadcast ratio in a complicated network. An example illustrating this

challenge will be given in Section 4.1.1.

Secondly, different from traditional MANETs where the relative locations of the

communication pair do not impact the successful receipt of the message as long as

they are within the transmission range of each other, in CR ad hoc networks, the

probability that a node successfully receives a broadcast message is affected by the

relative locations between the sender and the receiver. This is because that the avail-

able channels of a SU are obtained based on the sensing outcome from the proximity

of the node. Thus, SU nodes that are close to each other have similar available chan-

nels and they may have higher successful broadcast ratio, as compared with the SU

nodes far away from each other whose available channels are often less similar. These
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two differences show that the successful broadcast ratio is affected by various factors

and it is random. Currently, there is no straightforward solution to analyze this issue.

Thirdly, the single-hop broadcast delay is usually more than one time slot in

CR ad hoc networks, while in traditional MANETs, it is always one time slot. As

shown in Figure 1.1(a), node A only needs one time slot to let all its neighboring

nodes receive the broadcast message in an error-free environment. However, in CR

ad hoc networks, due to the non-uniform channel availability, node A may have to use

multiple channels for broadcasting and may not be able to finish the broadcast within

one time slot. In fact, the exact broadcast delay for all single-hop neighboring nodes

to successfully receive the broadcast message in CR ad hoc networks relies on various

factors (e.g., channel availability and the number of neighboring nodes) and it is also

random. Moreover, since there may exist multiple message propagation scenarios,

to identify which node is the last node in a network to receive the message is very

difficult. Thus, the multi-hop broadcast delay is extremely difficult to obtain.

Finally, broadcast collisions are complicated in CR ad hoc networks. Unlike in

traditional MANETs where nodes use a common channel for broadcasting, in CR

ad hoc networks, nodes may use multiple channels for broadcasting. Without the

information about the channel used for broadcasting and the exact delay for a single-

hop broadcast, to predict when and on which channel a broadcast collision occurs

is extremely difficult. Hence, to mathematically analyze broadcast collisions is very

challenging for multi-hop CR ad hoc networks under practical scenarios.

1.3 Optimal HELLO Message Exchange Scheme in CR Ad Hoc Networks

Secondly, we explore the optimal HELLO message exchange issue in CR ad hoc

networks. In CR networks, since secondary users (SUs) can only utilize the spectrum

when primary users (PUs) are absent, several new functionalities are introduced to

increase the spectrum utilization of SUs while avoiding harmful interference to PUs

(e.g., spectrum sensing, spectrum sharing, and spectrum mobility [4]). Currently,
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research on these functionalities is mostly conducted independently. Very little work

has been focused on the interconnection between these functionalities. Figure 1.2

shows how the main functionalities in CR networks are interconnected. One essential

component to link these functionalities: control information exchange between SUs,

such as spectrum availability information and neighborhood information, is often

ignored. However, due to the dynamically changing radio environment of mobile CR

ad hoc networks, control information is crucial for networking designs and should be

updated in a timely manner to avoid it becoming obsolete. Without such control

information update, some networking protocols cannot even be realized. In most

networking protocols, control information is often broadcasted to all the neighboring

nodes of a SU via periodic updates (e.g., periodic HELLO or beacon messages).

Therefore, in this research, we study the design of HELLO message exchange for

updating control information in mobile CR ad hoc networks.

spectrum 

sensing

spectrum 

sharing

spectrum 

mobility

control information 

exchange

control information 

exchange

control information exchange

(channel availability information)

(channel availability) (e.g., selected 

common channel)

Figure 1.2: The interconnection between the main functionalities in CR networks.

HELLO messages (or, beacon messages) are a fundamental component in both

wired and wireless networks. In this research, a HELLO message is not only for

node announcement as in some reactive routing protocols [35], but also a control

packet that contains important control information (i.e., spectrum availability of

SUs, neighborhood relationship, node locations, etc.). In traditional mobile ad hoc

networks (MANETs), periodic HELLO message exchange among neighboring nodes

helps them to establish and maintain up-to-date neighborhood tables and to cope

with any change in the network topology for many networking protocols (e.g., proac-

tive routing protocols [36][37]). However, in mobile CR ad hoc networks, besides the

conventional change in the network topology and neighborhood relationship, changes
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in SU spectrum availability also occur due to either PU traffic or SU mobility. Hence,

the freshness and consistency of the control information has a significant impact on

the realization of many networking protocols in CR ad hoc networks [38, 39, 40, 41].

Currently, there is no existing work on the HELLO message exchange protocol

design either in static or mobile CR ad hoc networks. In this research, we investigate

the optimal HELLO message exchange protocol in mobile CR ad hoc networks. To

address this issue, two questions need to be answered: 1) how often should a SU

broadcast a HELLO message? and 2) how to guarantee all neighboring nodes to

receive the HELLO message from the sender? The second question is related to

channel rendezvous schemes, which can be addressed by existing protocols [42, 31,

30, 33, 34, 24]. Thus, in the rest of this research, we mainly investigate the first

question.

To design a proper HELLO message exchange interval for mobile CR ad hoc

networks is very challenging. If the HELLO message exchange interval is too long,

control information is likely to become out-dated before the next update. Thus, net-

work performance may suffer degradation due to the out-dated control information.

On the other hand, if the HELLO message exchange interval is too short, control

information is always up-to-date. However, the control overhead is essentially in-

creased. Hence, there exists a trade-off between the freshness and consistency of the

control information maintained by each SU and the control overhead. Moreover, this

trade-off is affected by many factors, e.g., PU traffic, SU traffic, SU node speed, and

SU node locations that may also be time-varying, which makes this issue extremely

challenging.

Even though a few papers have addressed the HELLO message exchange issue

in traditional MANETs [43, 44, 45, 46], the methods used in traditional MANETs

cannot be simply applied to mobile CR ad hoc networks because of the following two

reasons. First of all, in traditional MANETs, the channel availability of every node



11

is uniform and fixed. The HELLO message exchange design only needs to consider

changes in the node connectivity and neighborhood relationship affected by node

mobility, but not the channel availability. However, in mobile CR ad hoc networks,

the channel availability of each SU is non-uniform and time-varying. Therefore, in

addition to the node connectivity and neighborhood relationship, any change in the

channel availability of each SU also needs to be considered in the HELLO message

exchange protocol design. More severely, SU node mobility may also cause a change

in the channel availability since a SU may move to an area where some channels are

no longer available due to the presence of PUs, which is also different from traditional

MANETs.

Secondly, in traditional MANETs, since all nodes use a common control channel

(CCC) for control message exchange, the duration for broadcasting a single HELLO

message among neighboring nodes is always one time slot. This duration is often

negligible as compared to the HELLO message exchange interval. Thus, the effect

of the control message broadcast duration is often ignored. However, in mobile CR

ad hoc networks, due to the non-uniform spectrum availability and the lack of a

common control channel, the duration for broadcasting a single HELLO message is

usually more than one time slot [42, 31, 30, 33, 34, 24]. That is, a SU may need to

broadcast a HELLO message multiple times in order to ensure that the message is

successfully received by all its neighbors, which further increases the control overhead.

Thus, this HELLO message broadcast duration could essentially deteriorate network

performance and cannot be ignored in the optimal HELLO message protocol design

in mobile CR ad hoc networks.

1.4 Fighting Against the FCIE Attacks in CRAHNs

Thirdly, after the CR network is established, the security issue is also extremely

important. In the last decade, most of the research efforts in CR networks focus

on pure physical layer or higher layer issues (e.g., spectrum sensing techniques and
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spectrum management schemes) without considering the security aspects. The se-

curity issues in CR networks have drawn the attention of the research community

only in recent years [47][48]. Since CRs can intelligently adapt to their radio environ-

ment, many unique security threats are introduced in CR networks. In [47], based

on the goals of the attack, three types of unique attacks in CR networks are defined:

1) dynamic spectrum access attack: an adversary mimics the signal of a primary

user (PU), causing legitimate secondary users (SUs) to trigger a false positive in the

spectrum sensing algorithm (e.g., the primary user emulation attack [49]); 2) belief

manipulation attack: an adversary reports false information in the network, causing

the learning capability of legitimate SUs to induce disadvantageous decisions (e.g.,

the spectrum sensing data falsification attack [50]); and 3) malicious traffic injection

attack: an adversary injects malicious traffic to deteriorate the performance of CR

networks (e.g., the communication jamming attack [51]).

In this research, we focus on a new security threat which belongs to the sec-

ond category called the false channel information exchange (FCIE) attack in CR ad

hoc networks. In a CR ad hoc network, channel availability information is essential

for the realization of many networking protocols (e.g., channel rendezvous protocols

[30, 52, 24] and routing protocols [53]). In these networking protocols, each node

often needs to know its own channel information as well as the channel information

of other nodes. If a malicious SU sends out the false channel information to its neigh-

boring nodes, the victim SUs may make incorrect decisions about other nodes and are

not able to execute these networking protocols properly. For instance, if a channel is

available but claimed to be unavailable by a malicious SU, the victim SUs cannot use

this channel for communications, thus it is wasted. Therefore, the network perfor-

mance of the secondary network suffers significant degradation. On the other hand,

if a channel is unavailable but claimed to be available, transmitting packets on this

channel may cause harmful interference to PUs, which is also disadvantageous to the
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legacy network.

The FCIE attack will not only significantly deteriorate network performance, but

also induce great difficulties to defend against this attack. As discussed above, al-

though the interference to PUs may be observed from failed data transmissions, the

waste of available channels is extremely difficult to realize, which is more destructive

to CR networks. Therefore, a mechanism is needed to identify the existence of the

malicious SUs and fight against this attack. A networking authentication protocol can

only guarantee the identity of an unknown node. However, it cannot distinguish the

authenticity of the information in a packet. In addition, since the channel availability

of SUs in CR networks is non-uniform, which is different from traditional wireless

networks, no prior security schemes to detect false information in traditional wireless

networks can defend against the FCIE attacks in CR networks.

1.5 Spectrum Handoff in CR Ad Hoc Networks

Finally, after the control information is exchanged among SUs, the networking

protocols in CR ad hoc networks can be realized. Then, SUs are able to communi-

cate with each other properly. However, since the spectrum availability dynamically

changes with the behavior of PUs, SUs are required to adaptively adjust its own

operating parameters to handle those spectrum availability changes. As discussed

above, one of the most important functionalities of CR networks is spectrum mobil-

ity, which enables SUs to change the operating frequencies based on the availability

of the spectrum. Spectrum mobility gives rise to a new type of handoff called spec-

trum handoff, which refers to the process that when the current channel used by a

SU is no longer available, the SU needs to pause its on-going transmission, vacate

that channel, and determine a new available channel to continue the transmission.

Compared with other functionalities (spectrum sensing, spectrum management, and

spectrum sharing) [4] of CR networks, spectrum mobility is less explored in the re-

search community. However, due to the randomness of the appearance of PUs, it is
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extremely difficult to achieve fast and smooth spectrum transition leading to min-

imum interference to legacy users and performance degradation of secondary users

during a spectrum handoff. This problem becomes even more challenging in ad hoc

networks where there is no centralized entity (e.g., a spectrum broker [4]) to control

the spectrum mobility.

1.5.1 Proactive Spectrum Handoff Framework in CRAHNs

Based on the moment when SUs carry out spectrum handoff, there are two types

of approaches to solve the spectrum handoff issue. One approach is that SUs per-

form spectrum switching and radio frequency (RF) front-end reconfiguration after

detecting a PU [54, 7, 55, 56, 57], namely the reactive approach. Although the con-

cept of this approach is intuitive, there is a non-negligible sensing and reconfiguration

delay which causes unavoidable disruptions to both the PU and SU transmissions.

Another approach is that SUs predict the future channel availability status and per-

form spectrum switching and RF reconfiguration before a PU occupies the channel

based on observed channel usage statistics, namely the proactive approach. This ap-

proach can dramatically reduce the collisions between SUs and PUs by letting SUs

vacate channels before a PU reclaims the channel. Many predictive models based

on the past channel usage history are proposed for either dynamic spectrum access

[58, 59, 60, 61, 62, 63, 64] or spectrum handoff [65].

However, in the prior proposals, the network coordination and rendezvous issue

(i.e., before transmitting a packet between two nodes, they first find a common chan-

nel and establish a link) is either not considered[55][56][59, 60, 61, 62, 63, 64] or

simplified by using a global common control channel (CCC)[54][7][57][58][65]. A SU

utilizing a channel without coordinating with other SUs may lead to the failure of link

establishment [5]. Therefore, network coordination has a crucial impact on the per-

formance of SUs. Although a global CCC simplifies the network coordination among

SUs [21], there are several limitations when using this approach in CR networks. First
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of all, it is difficult to identify a global CCC for all the secondary users throughout the

network since the spectrum availability varies with time and location. Secondly, the

CCC is influenced by the primary user traffic because a PU may suddenly appear on

the current control channel. For these reasons, IEEE 802.22 [66], the first standard

based on the use of cognitive radio technology on the TV band between 41 and 910

MHz, does not utilize a dedicated channel for control signaling, instead dynamically

choosing a channel which is not used by legacy users [67].

On the other hand, when SUs perform spectrum handoffs, a well-designed channel

selection method is required to provide fairness for all SUs as well as to avoid multiple

SUs to select the same channel at the same time. Even though the channel allocation

issue has been well studied in traditional wireless networks (e.g., cellular networks and

wireless local area networks (WLANs)), channel allocation in CR networks, especially

in a spectrum handoff scenario, still lacks sufficient research. Currently, the channel

selection issue in a multi-user CR network is investigated mainly using game theoretic

approaches [68, 69, 70, 71], while properties of interest during spectrum handoffs,

such as SU handoff delay and SU service time, are not studied. Furthermore, most

of the prior work on channel allocation in spectrum handoffs [55][58] only considers

a two-secondary-user scenario, where a SU greedily selects the channel which either

results in the minimum service time [55] or has the highest probability of being idle

[58]. However, if multiple SUs perform spectrum handoffs at the same time, these

channel selection methods will cause definite collisions among SUs. Hence, the channel

selection method aiming to prevent collisions among SUs in a multi-secondary-user

spectrum handoff scenario is not considered in the prior work.

1.5.2 Analysis of Spectrum Handoff in CR Ad Hoc Networks

As we know, an analytical model is of great importance for performance analysis

because it can provide useful insights on the operation of spectrum handoffs. However,

there have been limited studies on the performance analysis of spectrum handoffs in
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CR networks using analytical models. In [55] and [57], a preemptive resume priority

queueing model is proposed to analyze the total service time of SU communications

for proactive and reactive-decision spectrum handoffs. However, in both [55] and [57],

only one pair of SUs is considered in a network, while the interference and interactions

among SUs are ignored, which may greatly affect the performance of the network.

Additionally, although they are not designed for the spectrum handoff scenario, some

recent related works on analyzing the performance of SUs using analytical models

can be found in [72] and [73]. In [72], a dynamic model for CR networks based on

stochastic fluid queue theory is proposed to analyze the steady-state queue length of

SUs. In [73], the stationary queue tail distribution of a single SU is analyzed using a

large deviation approach. In all the above proposals, a common and severe limitation

is that the authors assume that the detection of PUs is perfect (i.e., a SU transmitting

pair can immediately perform channel switching if a PU is detected to appear on

the current channel, thus the overlapping of SU and PU transmissions is negligible).

However, since the power of a transmitted signal is much higher than the power of the

received signal in wireless medium due to path loss, instantaneous collision detection

is not possible for wireless communications. Thus, even if only a portion of a packet

is collided with another transmission, the whole packet is wasted and need to be

retransmitted. Without considering the retransmission, the performance conclusion

may be inaccurate, especially in wireless communications. Unfortunately, it is not

easy to simply add retransmissions in the existing models. In this research, we model

the retransmissions of the collided packets in our proposed Markov model.

Furthermore, as explained above in the prior proposals, the network coordination

and rendezvous issue (i.e., before transmitting a packet between two nodes, they first

find a common channel and establish a link) is either not considered[55][57][59][60][72][73]

or simplified by using a dedicated common control channel (CCC)[54][58][65]. Since

the CCC is always available, a SU can coordinate with its receiver at any moment
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when there is a transmission request. However, it is not practical to use a CCC in CR

networks because it is difficult to identify a dedicated CCC for all the SUs through-

out the network since the spectrum availability varies with time and location. In this

research, we do not make such assumption. We model the scenario where SUs need

to find an available channel for network coordination. Therefore, in this research, we

consider a more practical distributed network coordination scheme in our analytical

model design.

1.6 Overview of the Proposed Intelligent Spectrum Management
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Figure 1.3: The overview of the proposed intelligent spectrum management mechanisms.

In this research, we investigate intelligent spectrum management designs in CR

ad hoc networks. Figure 1.3 shows the overview of the proposed intelligent spectrum

management mechanisms. We propose two broadcast protocols: 1) a QoS-based

broadcast protocol under blind information and 2) a fully-distributed broadcast pro-

tocol under 2-hop location information in multi-hop CR ad hoc networks. In our

design, we consider practical scenarios: 1) the network topology is not known; 2)

the channel information of other SUs is not known; 3) the available channel sets of

different SUs are not assumed to be the same; and 4) tight time synchronization is
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not required. The performance metrics of our proposed protocol are the successful

broadcast ratio (i.e., the probability that all nodes successfully receive the broadcast

message) and the average broadcast delay (i.e., the average duration from the moment

a broadcast starts to the moment the last node receives the broadcast message).

Secondly, a novel unified analytical model is proposed to analyze the broadcast

protocols in CR ad hoc networks. In our proposed analytical model, an algorithm

for calculating the successful broadcast ratio (i.e., the probability that all nodes in

a network successfully receive a broadcast message) is proposed for CR ad hoc net-

works. The proposed algorithm is a general methodology that can be applied to any

broadcast protocol proposed for multi-hop CR ad hoc networks with any topology. In

addition, an algorithm for calculating the average broadcast delay (i.e., the average

duration from the moment a broadcast starts to the moment the last node in the

network receives the broadcast message) is proposed for CR ad hoc networks under

grid topology.

Furthermore, an optimal HELLO message exchange scheme is proposed in static

and mobile CR ad hoc networks. In our desinged scheme, 1) channel behavior caused

by spatially distributed PUs and its impact on SU traffic is mathematically modeled

for the first time; 2) the trade-off between SU throughput as well as average SU waiting

time and control overhead is investigated analytically for the first time which takes

into consideration the changes in the channel behavior and the impact of the HELLO

message broadcast duration; 3) the impact of node mobility on the SU spectrum

availability and the prompt changes in the identities of PUs is studied; and 4) two

optimal HELLO message exchange protocols based on the modeled trade-off and node

mobility impact are proposed for static and mobile CR ad hoc networks.

Moreover, two distributed security algorithms are proposed to fight against a par-

ticular threats named false channel information exchange (FCIE) attacks in CR ad

hoc networks. We investigate the spatial correlation of the channel availability be-
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tween neighboring nodes. This is because that the channel availability of neighboring

nodes is correlated with the relative locations of these nodes. Using this relationship,

the malicious node that sends the false channel information can be identified.

In addition, we designed a proactive spectrum handoff framework for CR ad hoc

networks without the existence of a CCC. We consider more practical coordination

schemes instead of using a CCC to realize channel rendezvous. We incorporate two

types of channel rendezvous and coordination schemes into the spectrum handoff

design and compare the performance of our proposed spectrum handoff protocol and

the reactive spectrum handoff approach under different coordination schemes. We

propose proactive spectrum handoff criteria and policies for SUs using a probability-

based prediction method. SUs equipped with the prediction capability can proactively

predict the idleness probability of the spectrum band in the near future. Thus,

harmful interference between SUs and PUs can be diminished and SU throughput is

increased. In addition, by considering channel rendezvous and coordination schemes,

we propose a proactive spectrum handoff protocol for SUs based on our proposed

handoff criteria and policies. Instead of only considering one pair of SUs in a network,

we consider multiple pairs of SUs contending the spectrum band. With the aim of

eliminating collisions among SUs and achieving short spectrum handoff delay, we

propose a novel distributed channel selection scheme especially designed for multi-

user spectrum handoff scenarios.

Finally, we also study the performance of SUs in the spectrum handoff scenario

in a CR ad hoc network where multiple SUs compete for the spectrum access. A

novel three dimensional Markov model to characterize the process of spectrum hand-

offs and analyze the performance of SUs. The interference and interactions among

multiple SUs are considered in our proposed model. Since instantaneous collision

detection is not feasible for wireless communications, we consider the retransmissions

of the collided SU packets in spectrum handoff scenarios. We apply three different



20

channel selection schemes in the proposed Markov model and study their effects on

the performance of SUs in spectrum handoff scenarios. We consider the spectrum

sensing delay and its impact on the network performance. This feature can be easily

implemented in our proposed Markov model.



CHAPTER 2: RELATED WORK

In this chapter, the related work in the proposed distributed intelligent spectrum

management is introduced.

2.1 Existing Broadcast Protocols in CRNs

Currently, research on broadcasting in multi-hop CR ad hoc networks is still in its

infant stage. There are only limited papers addressing the broadcasting issue in CR ad

hoc networks [21, 22, 23]. However, in [21] and [22], the global network topology and

the available channel information of all SUs are assumed to be known. Additionally,

in [22], a common signaling channel for the whole network is employed which is also

not practical. These two papers adopt impractical assumptions which make them

inadequate to be used in practical scenarios. In [23], a Quality-of-Service (QoS)-based

broadcast protocol under blind information is proposed. However, this scheme does

not consider optimizing the network performance. Moreover, it ignores the broadcast

collision issue. Other proposals aiming to locally establish a common control channel

may also be considered for broadcasting [74, 75, 34, 32]. However, these proposals

need a-priori channel availability information of all SUs which is usually obtained via

broadcasts. In addition, although some schemes on channel hopping in CR networks

can be used for finding a common channel between two nodes [30, 31, 33], they

still suffer various limitations and cannot be used in broadcast scenarios. In [30]

and [31], the proposed channel hopping schemes cannot guarantee rendezvous under

some special circumstances. In addition, one of the proposed schemes in [30] only

works when two SUs have exactly the same available channel sets. Furthermore,

in [33], a jump-stay based channel hopping algorithm is proposed for guaranteed

rendezvous. However, the expected rendezvous time for the asymmetric model (i.e.,
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different users have different available channels) increases exponentially when the

total number of channels increases. Thus, it is unsuitable for broadcast scenarios

in CR ad hoc networks where channel availability is usually non-uniform and short

broadcast delay is often required. Other channel hopping algorithms explained in

[42] require tight time synchronization which is also not feasible before any control

information is exchanged.

2.2 Existing Analytical Model for Broadcast Protocols in CRNs

Currently, no existing work on CR ad hoc networks addresses these challenges.

Moreover, due to the above explained differences, the analytical methodology for

broadcast protocol analysis in tradition MANETs cannot be extended to CR ad hoc

networks. Specifically, the existing performance analytical papers on broadcasting

in traditional multi-channel ad hoc networks cannot reflect the unique features (e.g.,

non-uniform channel availability and channel rendezvous schemes) in multi-hop CR

ad hoc networks because: 1) a common control channel is used for broadcasting [76,

77, 78, 79, 80]; 2) only single-hop scenario is considered [76][78][81]; 3) a centralized

entity is needed to schedule the broadcast [81]; and 4) multiple radios are used [82].

2.3 Background on HELLO Message Exchange

In traditional MANETs, since a CCC is used for exchanging control information,

every node can broadcast HELLO messages on the CCC and any idle node can suc-

cessfully receive the HELLO message on the CCC. However, in CR ad hoc networks,

due to the non-uniform channel availability of SUs, a CCC may not exist [4]. Hence,

SUs need to find a common available channel to broadcast the message. Different

channel rendezvous schemes have been proposed for finding a common channel be-

tween two SUs [42, 31, 30, 33, 34, 24]. In these channel rendezvous schemes, SUs

are required to follow well-designed channel hopping sequences so that a SU sender

and receiver are guaranteed to hop on the same channel at the same time within a

finite time. These channel rendezvous schemes can be used for exchanging HELLO
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messages in CR ad hoc networks.

Next, we introduce the periodic HELLO message exchange scenario considered in

this research and show how the main functionalities of CR networks are interconnected

by the periodic HELLO message exchange. We assume that an arbitrary spectrum

sensing and an arbitrary channel rendezvous scheme are used. Assume that a time

slotted system is adopted. First of all, every SU follows the channel hopping sequence

defined in the channel rendezvous scheme to hop through channels from one time slot

to another, when it is not communicating with others. If a SU needs to perform

a HELLO message update, it first conducts spectrum sensing to obtain the latest

channel availability information. Then, it broadcasts a HELLO message on each

channel it hops on according to the channel hopping sequence for a duration so that

the neighboring SUs who may hop through channels following a different sequence

can receive the control information within that duration. The durations used for

spectrum sensing and HELLO message broadcast are determined by the spectrum

sensing and channel rendezvous scheme used, which are usually fixed. Figure 2.1

shows the considered periodic HELLO message exchange scenario, where the interval

between two rounds of HELLO message update is α. The durations of spectrum

sensing and HELLO message broadcast are denoted as Ts and Tm, respectively. The

total duration for one HELLO message update (denoted as Tb) is the sum of these

two parts (i.e., Tb = Ts + Tm).

α

Tm time

HELLO message broadcastspectrum sensing

Ts

Tb

SU hops through channels or 

transmits data

Figure 2.1: The periodic HELLO message exchange protocol.

Then, if a SU wants to transmit a data packet, it uses the channel information

obtained from the previous HELLO message update and sends out a request-to-send
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(RTS) packet on each available channel of the receiver using the channel rendezvous

scheme. After receiving the RTS, the receiver replies with a clear-to-send (CTS)

packet on the same channel if it is idle. Then, the transmitting pair can either stay

on the current rendezvous channel or select a new available channel (depends on the

particular spectrum sharing protocol) to start a data transmission. If a SU is currently

active with a data transmission when the periodic HELLO message broadcast moment

arrives, the SU continues the data transmission and does not perform the update at

that moment. Moreover, if a PU packet arrives in the middle of a SU transmission.

A collision occurs and the current SU transmission fails. Because the two SUs do not

know the current channel availability of each other, they stay on the same channel

until the next HELLO message update. Then, the two SUs switch to a new channel

based on the received latest channel availability information from the update (i.e.,

spectrum mobility) and retransmit the collided packet after the HELLO message

update.

2.4 Existing Security Schemes to Defend FCIE Attacks in CRNs

Currently, no security proposal in CR ad hoc networks can defend against the

FCIE attack. In [50][83, 84, 85, 86], another attack which also belongs to the second

category called the spectrum sensing data falsification (SSDF) attack is addressed.

Although in both SSDF and FCIE attacks, malicious nodes report false informa-

tion to other nodes, these two types of attacks are totally different on the following

three aspects. First of all, the goal of SSDF attacks is to trick legitimate users to

have incorrect spectrum sensing outcomes in a cooperative spectrum sensing system.

However, for FCIE attacks, every SU has already obtained its own correct spectrum

sensing results. The goal of FCIE attacks is to obstruct the networking protocol from

being realized by broadcasting false channel information. Secondly, in SSDF attacks,

sensing results are sent to a centralized entity called the fusion center to determine

a correct spectrum sensing decision. However, in FCIE attacks, channel information
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is sent as broadcasts to all neighboring nodes. Each node needs to determine the

authenticity of the channel information by itself in a distributed fashion. Thirdly, in

SSDF attacks, since all SUs sense the same area, the sensing results for legitimate

SUs are often the same. Thus, malicious nodes often report the most distinct results,

as compared with legitimate nodes. However, in FCIE attacks, since each SU obtains

the channel information based on the sensing outcome from its proximity, different

legitimate SUs often have different channel information. In addition, the false chan-

nel information sent by malicious nodes may be the same as the legitimate channel

information of their neighboring nodes, which is also different from the SSDF attacks.

2.5 Existing Spectrum Handoff Protocols in CRNs

Currently, there are only limited studies addressing the spectrum handoff issue.

One approach is that SUs perform spectrum switching and radio frequency (RF)

front-end reconfiguration after detecting a PU [54, 7, 55, 56, 57], namely the reactive

approach. Although the concept of this approach is intuitive, there is a non-negligible

sensing and reconfiguration delay which causes unavoidable disruptions to both the

PU and SU transmissions. Another approach is that SUs predict the future channel

availability status and perform spectrum switching and RF reconfiguration before

a PU occupies the channel based on observed channel usage statistics, namely the

proactive approach. This approach can dramatically reduce the collisions between

SUs and PUs by letting SUs vacate channels before a PU reclaims the channel. Many

predictive models based on the past channel usage history are proposed for either

dynamic spectrum access [58, 59, 60, 61, 62, 63, 64] or spectrum handoff [65].

In addition, a (CCC) is used for supporting the network coordination and channel

related information exchange among SUs. In the prior proposals of the above two

spectrum handoff approaches, the network coordination and rendezvous issue (i.e.,

before transmitting a packet between two nodes, they first find a common channel

and establish a link) is either not considered[55][56][59, 60, 61, 62, 63, 64] or simplified
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by using a global common control channel (CCC)[54][7][57][58][65]. A SU utilizing a

channel without coordinating with other SUs may lead to the failure of link estab-

lishment [5].

2.6 Existing Analytical Models for Spectrum Handoff in CRNs

Related work on spectrum handoffs in CR networks falls into two categories based

on the moment when SUs carry out spectrum handoffs. In the first category, SUs per-

form channel switching after detecting the reappearances of PUs, namely the reactive

approach [54, 55, 57]. In the other category, SUs predict the future PU channel ac-

tivities and perform spectrum handoffs before the disruptions with PU transmissions,

namely the proactive approach [58, 59, 60, 65]. With the exception of [55] and [57],

the performance analysis of all prior works on spectrum handoffs is simulation-based.

Moreover, in [55] and [57], a preemptive resume priority queueing model is pro-

posed to analyze the total service time of SU communications for proactive and

reactive-decision spectrum handoffs. However, in both [55] and [57], only one pair of

SUs is considered in a network, while the interference and interactions among SUs

are ignored, which may greatly affect the performance of the network. Additionally,

although they are not designed for the spectrum handoff scenario, some recent related

works on analyzing the performance of SUs using analytical models can be found in

[72] and [73]. In [72], a dynamic model for CR networks based on stochastic fluid

queue theory is proposed to analyze the steady-state queue length of SUs. In [73], the

stationary queue tail distribution of a single SU is analyzed using a large deviation

approach. In all the above proposals, a common and severe limitation is that the

authors assume that the detection of PUs is perfect (i.e., a SU transmitting pair can

immediately perform channel switching if a PU is detected to appear on the current

channel, thus the overlapping of SU and PU transmissions is negligible). However,

since the power of a transmitted signal is much higher than the power of the re-

ceived signal in wireless medium due to path loss, instantaneous collision detection
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is not possible for wireless communications. Thus, even if only a portion of a packet

is collided with another transmission, the whole packet is wasted and need to be

retransmitted. Without considering the retransmission, the performance conclusion

may be inaccurate, especially in wireless communications. Unfortunately, it is not

easy to simply add retransmissions in the existing models. In this proposal, we model

the retransmissions of the collided packets in our proposed model.

Furthermore, in the prior proposals, the network coordination and rendezvous is-

sue (i.e., before transmitting a packet between two nodes, they first find a common

channel and establish a link) is either not considered[55][57][59][60][72][73] or simpli-

fied by using a dedicated common control channel (CCC)[54][58][65]. Since the CCC

is always available, a SU can coordinate with its receiver at any moment when there

is a transmission request. However, it is not practical to use a CCC in CR networks

because it is difficult to identify a dedicated CCC for all the SUs throughout the net-

work since the spectrum availability varies with time and location. In this proposal,

we do not make such assumption. We model the scenario where SUs need to find an

available channel for network coordination. Therefore, in this research, we consider

a more practical distributed network coordination scheme in our analytical model

design.



CHAPTER 3: DISTRIBUTED BROADCAST PROTOCOLS IN CRAHNS

In this chapter, the broadcasting issue in CR ad hoc networks is explored. Two

novel distributed broadcast protocols in CRAHNs are proposed. A quality-of-service

(QoS)-based broadcast protocol named QB2IC is proposed in Section 3.3. In addition,

a fully distributed broadcast protocol with collision avoidance named BRACER is

presented in Section 3.6.

3.1 Network Model

In this research, we consider a CR ad hoc network where N SUs and K PUs

co-exist in an L×L area, as shown in Figure 3.1. PUs are distributed within the area

under the probability density function (pdf) fG(g). For simplicity, in this research,

we consider that PUs are evenly distributed. The SUs opportunistically access M

licensed channels. In Figure 3.1, the solid circle represents the transmission range of

a SU with a radius of rc. Other SUs within the transmission range are considered

as the neighboring nodes of the corresponding SU. That is, only when a SU receiver

is within the transmission range of a SU transmitter, the signal-to-noise ratio (SNR)

at the SU receiver is considered to be acceptable for reliable communications. In

addition, the dashed circle represents the sensing range of a SU with a radius of rs.

That is, if a PU is currently active within a sensing range, the corresponding SU is able

to detect its presence. Since the sensing ranges of different SUs at different locations

may include different PUs, their acquired available channels may be different [23][87].

In addition, because the available channels of a SU are obtained based on the sensing

outcome within the sensing range, each SU is not allowed to communicate with other

SUs outside its sensing range since it may mistakenly use an occupied channel by a

PU, which results in interference to the PU. Therefore, in this research, we assume
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that rc ≤ rs. Additionally, we assume that a time-slotted system is adopted for SUs

[88], where the length of a slot is long enough to transmit a broadcast packet.
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Figure 3.1: The network model of the broadcast scenario in a multi-hop CR ad hoc
network.

In addition, in this research, we model the PU channel activity as an ON/OFF

process, where the length of the ON period is the length of a PU packet. We assume

that each PU randomly selects a channel from the spectrum band to transmit a

packet. Therefore, the packets on the same channel do not necessarily belong to the

same PU. This is a more practical scenario, as compared to some papers which assume

that each channel is associated with a different PU. Under such practical scenario,

the number of active PUs is not necessarily the number of occupied channels but

depends on the total number of PUs in the network and the PU traffic intensity.

3.2 Exploring Broadcast Design in CRNs

To explore the broadcast design in CR ad hoc networks, we first investigate two

straightforward broadcast schemes in multi-hop CR ad hoc networks under blind

information. We observe that both broadcast schemes have drawbacks which make

them unsuitable to be used in CR ad hoc networks. In the rest of the research, we

use the term “sender” to indicate a SU source node or a SU who has just received a

message and will rebroadcast the message. In addition, we use the term “receiver”

to indicate a SU who has not received the message.
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3.2.1 Random Broadcast Scheme

The first broadcast scheme is called the random broadcast scheme. Since a SU

is unaware of the channel availability information of other SUs before broadcasts are

executed, a straightforward action for a SU sender is to randomly select a channel

from its available channel set and broadcasts a message on that channel in a time slot.

In addition, as stated in Section 1, each SU sender needs to broadcast the message

for multiple time slots. We denote the number of time slots that each SU sender

broadcasts as S. Accordingly, for a SU receiver, without the channel availability

information of the sender, it cannot constantly stay on one channel during the whole

broadcast procedure since this channel may not be in the available channel set of the

sender, which leads to a definite failure of the broadcast. Thus, the only fair action

for the receiver is to randomly select an available channel to listen in each time slot.

If the channel selected by the receiver is the same as the channel selected by the

sender, the broadcast message can be successfully received. This broadcast scheme is

easy to be implemented in CR ad hoc networks under blind information. However,

it cannot guarantee channel rendezvous (i.e., the sender and the receiver stay on the

same channel at the same time and establish a link). In other words, in each time

slot, the sender tries its luck to broadcast to its neighboring nodes. Clearly, when

the number of channels is large, since the probability that the sender and receiver

select the same channel is low, the probability that a broadcast is successful under

the random broadcast scheme is fairly low.

Figure 3.2 shows the simulation results of the random broadcast scheme under

different number of channels when N = 9, K = 20, and S = 20. The SUs form a

3 × 3 grid network. We assume that the PU traffic is discrete-time, where the PU

packet inter-arrival time X follows the biased-geometric distribution [89]. Addition-

ally, other parameters are listed as follows: 1) Side length of the simulation area

L=10 (unit length); 2) Radius of the sensing range rs=2 (unit length); 3) Radius of
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the transmission rage rc=2 (unit length); 4) The normalized PU arrival rate λp=0.5;

5) The PU packet length Lp=10 (time slots); As mentioned in Section 1, the success

rate is defined as the probability that all nodes in a network successfully receive the

broadcast message and the average broadcast delay is defined as the average duration

from the moment a source node starts a broadcast until the moment the last node in

the network receives the broadcast message. It is shown in Figure 3.2 that the ran-

dom broadcast scheme leads to very low success rate when the number of channels

is large, which is not suitable to be used in multi-hop CR ad hoc networks when the

number of channels is large.

3.2.2 Full Broadcast Scheme

The second broadcast scheme is called the full broadcast scheme under which each

SU visits all the available channels in the spectrum. Unlike the random broadcast

scheme where the channel in each time slot is randomly selected by a SU, in the full

broadcast scheme, a SU sender broadcasts on all its available channels sequentially.

Similarly, a SU receiver listens to its available channels sequentially. In addition, we

use three different channel hopping sequences for the full broadcast scheme: 1) the

channel hopping sequence under which the order for each SU to visit all the available

channels is random (denoted as Full broadcast I); 2) the channel hopping sequence

under which each SU visits all the available channels sequentially (denoted as Full

broadcast II); and 3) the jump-stay channel hopping sequence [33] (denoted as Full

broadcast III). The jump-stay channel hopping sequence can be constructed under

blind information with guaranteed rendezvous. Furthermore, similar to the random

broadcast scheme, each SU sender also broadcasts for a finite number of time slots,

S.

Figure 3.2 shows the simulation results of the full broadcast scheme using different

channel hopping sequences under different number of channels when N = 9, K =

20, and S = 20. Compared with the random broadcast scheme, the full broadcast
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scheme using the first two channel hopping sequences also suffers a low success rate

when the number of channels is large. This is because that these channel hopping

sequences in the full broadcast scheme also cannot guarantee channel rendezvous.

Moreover, the Full broadcast II scheme leads to an extremely low success rate when

the number of channels is large, as compared to the Full broadcast I scheme. In

addition, both the random broadcast scheme and the full broadcast scheme using the

first two hopping sequences have a long average broadcast delay when the number

of channels is large. On the other hand, the Full broadcast III scheme leads to

a high success rate, as compared to other schemes. However, from Figure 3.2(b),

this scheme has an extensively long average broadcast delay (almost as twice as the

average broadcast delay in other scenarios). Hence, it is not suitable for broadcast

scenarios where short broadcast delay is often required. Due to the low success rate

in Full broadcast II and the long broadcast delay in Full broadcast III, in the rest of

the research, we only use the random broadcast scheme and the Full broadcast I as

the benchmarks to compare with our proposed schemes.
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Figure 3.2: Success rate and average broadcast delay of the random and full broadcast
schemes under different number of channels when N = 9, K = 20, and S = 20.

3.2.3 Remarks

From the above discussion, it is known that these straightforward broadcast

schemes have limitations to be used in multi-hop CR ad hoc networks. By investi-
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gating these broadcast schemes, we gain two useful insights for designing an efficient

broadcast protocol in multi-hop CR ad hoc networks. First of all, from Figure 3.2,

it is shown that the first three schemes suffer a very low success rate when the num-

ber of channels is large because these schemes cannot guarantee channel rendezvous.

Thus, a channel hopping sequence that can guarantee channel rendezvous without

the channel availability information of other SUs is required to achieve a high success

rate. Secondly, all these broadcast schemes are quite costly in terms of the average

broadcast delay when the number of channels is large, which is not desirable for ef-

ficient broadcasts. This is because that a SU needs to use all the available channels

in the spectrum for broadcasting in these schemes. If a SU only uses a subset of its

available channels for broadcasting, the broadcast delay may be reduced. However,

since fewer channels are used, the success rate may also be affected. Therefore, given

that the success rate is not sacrificed, properly reducing the number of channels for

broadcasting can result in shorter average broadcast delay.

3.3 The Basic QB2IC Scheme

In this section, we present the basic scheme of our proposed QB2IC protocol.

As mentioned in Section 3.2, the straightforward broadcast schemes are not suitable

for CR ad hoc networks. Therefore, based on the insights that we gain from these

schemes, the main idea of our proposed QB2IC protocol is to intelligently design the

channel hopping sequences for both the SU sender and the SU receiver to guarantee

channel rendezvous, given that the sender and the receiver have at least one channel

in common. In addition, the SU sender broadcasts on a subset of its available channels

in order to reduce the average broadcast delay.

3.3.1 The Single-hop Scenario

First of all, we consider the single-hop broadcast scenario. We propose a novel

channel hopping strategy for SUs to guarantee channel rendezvous. There are several

existing work on single-hop channel rendezvous for CR networks [34, 30, 31, 33]. A
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common feature of these prior proposals is that all SUs in a network have to follow the

same mechanism to construct the channel hopping sequence for rendezvous regardless

of transmitters or receivers. However, as stated in Section 1, in [34, 30, 31], the pro-

posed channel hopping schemes cannot guarantee channel rendezvous in all scenarios

under blind information. In [33], even though the proposed channel hopping sequence

in the asymmetric model can guarantee channel rendezvous within 6MP (P −G) time

slots, where P is the smallest prime number larger than M and G is the number of

common channels between two SUs, 6MP (P−G) is usually a very large number when

M is large. Therefore, this scheme may lead to very long broadcast delay when M is

large. In fact, the communication pair can follow different mechanisms to construct

the channel hopping sequences for channel rendezvous, which is ignored in all prior

proposals. Thus, in this chapter, we use the channel hopping sequences generated by

different methods for the sender and the receiver to guarantee channel rendezvous.

Compared with the previous proposals in [34, 30, 31, 33], our proposed channel hop-

ping sequences can guarantee rendezvous in all scenarios under blind information

within M2 time slots, which is more favorable in broadcast scenarios. Under our

proposed basic QB2IC scheme, a SU sender first randomly selects n channels from

its available channel set. Then, it hops and broadcasts periodically on the selected

n channels for S time slots. This channel hopping sequence with a length of S time

slots is named as the broadcast sequence. The values of n and S are determined by

the QoS requirements of the network. On the other hand, for each receiver, it first

forms a random sequence that consists of its every available channel with a length

of n time slots for each channel, namely the receiving sequence. Then, it hops and

listens following the receiving sequence periodically. Denote the number of available

channels of SUi as mi. Hence, the length of the receiving sequence of SUi is n×mi.

Figure 3.3 shows an example of the proposed QoS-based broadcast protocol. If the

available channel set of the sender is {1, 2, 3, 6}, it randomly selects two channels
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(e.g., {3, 6}) to broadcast for S slots (i.e., n = 2). Each receiver listens for two time

slots on each available channel of its available channel set (e.g., {1, 2, 6}) periodically.

Thus, if S = 12, the broadcast sequence for the sender is {3, 6, 3, 6, 3, 6, 3, 6, 3, 6, 3, 6}.

In addition, the receiving sequence for the receiver is {1, 1, 2, 2, 6, 6, · · · }. Hence, a

successful broadcast is performed when both SUs hop on channel 6.

3 6 3 6 3 6

1 1 2 2 6 6

Tx

Rx

3 6 3 6 3 6

1 1 2 2 6 6

S

n × mi

Figure 3.3: An example of the QoS-based broadcast protocol.

Based on the above rules, if the SU sender selects all its available channels and

the length of the broadcast sequence S is equal to n ×M , the channel rendezvous

is guaranteed within S time slots when the sender and each receiver have at least

one channel in common. Therefore, the broadcast is ensured to be successful in the

single-hop scenario. Thus, if n is sufficiently large, the probability that at least one

channel selected by the sender are also in the available channel set of each receiver is

high. However, on the other hand, since each SU is only equipped with one radio, it

cannot broadcast on n (n> 1) channels simultaneously. Hence, it takes a long time

to finish broadcasting on all n channels when n is large.

From the above analysis, there exists a trade-off between the success rate and

the average broadcast delay for different values of n and S. Figure 3.4 shows the

simulation and analytical results of the success rate and the average broadcast delay

for a single-hop broadcast scenario whenK = 40 under various values of n and S. The

PU traffic and other parameters are the same to generate Figure 3.2. It is illustrated

that higher success rate often indicates longer average broadcast delay. Therefore,

if the QoS requirements (i.e., the minimum required success rate and the maximum

allowed average broadcast delay) are given, proper n and S can be selected.
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Figure 3.4: The trade-off between the success rate and average broadcast delay under
different n and S.

3.3.2 The Multi-hop Scenario

Next, we investigate the basic scheme of the proposed protocol in the multi-hop

broadcast scenario. We consider two 4-SU networks as shown in Figure 3.5. The

first topology of the 4-SU network is a single-hop scenario where SU1 is the source

node. The second topology is a multi-hop scenario evolved from the first topology

when SU1 moves away from SU4. Since we want to consider the broadcast collision

issue, the multi-hop scenario is studied in such a grid topology instead of a simple

chain topology, as shown in Figure 3.5. Without loss of generality, we assume that

SU1 is the source node and other nodes are by default receivers. Each receiver first

follows the proposed receiving sequence to hop through and listen on the channels.

When a receiver successfully receives the broadcast message, it becomes a sender who

needs to rebroadcast the message. Therefore, it follows the rules of the senders and

generates the proposed broadcast sequence to rebroadcast.

2 3 

4 

1 2 

3 

4 1 

Single-hop scenario Multi-hop scenario 

Figure 3.5: Two different topologies of two 4-SU networks.
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Our proposed QB2IC protocol has special advantages when applied to multi-hop

scenarios in CR networks, as compared to traditional ad hoc networks. In traditional

ad hoc networks, if a node (e.g., SU4) receives multiple copies of a message from its

parent nodes (e.g., SU2 and SU3) simultaneously, a broadcast collision occurs and all

copies of the message are discarded. Unfortunately, in traditional ad hoc networks,

such broadcast collision is unavoidable in multi-hop scenarios if the parent nodes

broadcast at the same time. However, under our proposed QB2IC protocol, since the

receiver can only listen to one channel at a time, as long as the parent nodes do not

select the same channel to broadcast, such broadcast collision can be avoided. In

fact, when the number of channels is large and different SUs obtain different available

channels, the probability that two parent nodes select the same channel at the same

time is fairly low.

In addition, under our proposed QB2IC protocol, the success rate of the broadcast

for the whole network can be improved in the multi-hop scenario. This is because

that a SU may not only receive the broadcast message from its parent node, but

also receive the message from its child node (e.g., SU2 can receive the message from

SU4 if SU4 receives the message from the path SU1→ SU3→ SU4). This is usually

different from the broadcast schemes in traditional MANETs where nodes receive

broadcast messages from their parent nodes. More importantly, if the channels used

for broadcast in different paths are different, the probability that one of the channels

is in the available channel set of the receiver is increased, as compared to the scenario

where a SU only receives the message from its parent nodes. Thus, by utilizing

the diversity of users and channels, the success rate of the whole network can be

increased. Figure 3.6 shows the performance comparison between the single-hop

scenario and the multi-hop scenario shown in Figure 3.5 when n = 1. It is illustrated

that the improvement of the success rate under the multi-hop scenario is up to 30%,

while the multi-hop scenario only costs up to 20% additional average broadcast delay.
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Therefore, under our proposed QB2IC protocol, the success rate is benefited in the

multi-hop scenario due to the diversity of users and channels.
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Figure 3.6: Comparison between the single-hop and the multi-hop scenarios.

3.4 The Enhanced QB2IC Scheme

In this section, we first conduct an analysis on the channel availability of different

SUs. Then, based on the results of this analysis, an enhanced QB2IC scheme for

multi-hop CR ad hoc networks is presented.

3.4.1 Analysis of the Channel Availability

Based on the considered network model, the available channels of a SU are de-

termined by the active PUs within its sensing range. Thus, first of all, we derive the

average number of available channels of a SU. The size of the simulation area and the

sensing range is denoted as AL and AS, respectively. Since PUs are evenly distributed

in the considered simulation area, the probability that p PUs are in a sensing range

is

Pr(p) =

(
K

p

)(
AS

AL

)p(
AL−AS

AL

)K−p

, (3.1)

where
(
K
p

)
represents the total combinations of K choosing p. In addition, we denote

the probability that a PU is active as ρ. Therefore, given that there are p PUs in a
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sensing range, the probability that there are b PUs active is

Pr(b|p) =
(
p

b

)

ρb(1− ρ)p−b. (3.2)

Furthermore, given that there are p PUs and b active PUs within a sensing range,

the probability that there are c available channels is denoted as Pr(c|p, b). Since

the number of available channels is only related to the number of active PUs, c is

independent of p. In addition, since an active PU randomly selects a channel from

M channels in the spectrum, Pr(c|p, b) is equivalent to the probability that there are

exactly c empty boxes given that b distinguishable balls are randomly put into a total

of M distinguishable boxes and a box can have more than one ball (because we do

not limit a channel to only one PU). Thus, Pr(c|p, b) can be expressed as:

Pr(c|p, b)=
(
M
c

)
(M−c)!S(b,M−c)

M b
, c∈ [max(0,M−b),M ], (3.3)

where S(b,M−c) is the Stirling number of the second kind. In addition, S(b,M−c)

is defined as

S(b,M−c) = 1

(M−c)!

M−c∑

i=0

(−1)i
(
M−c

i

)

(M−c−i)b. (3.4)

Thus, the probability that there are c available channels and there are p PUs and

b active PUs in the sensing range of a SU is the product of (3.1), (3.2), and (3.3).

Then, the average number of available channels of a SU, E[c], is written as

E[c] =

K∑

p=0

p
∑

b=0

M∑

c=max(0,M−b)

c
(
M
c

)
(M−c)!S(b,M−c)

M b

(
p

b

)

ρb(1− ρ)p−b

(
K

p

)(
AS

AL

)p(
AL −AS

AL

)K−p

.

(3.5)

In addition, another important parameter is the average number of common chan-

nels between two neighboring SUs. Figure 3.7 illustrates an example of two neighbor-

ing SUs whose sensing ranges overlap, where d is the distance between the two SUs.
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Assume that SUi and SUj can hear each other. As shown in Figure 3.7, the sensing

ranges of the two SUs are divided into three areas. A3 (the dark area) represents

the area of the overlapping part, while A1 (the white area) and A2 (the gray area)

represent the areas of the sensing ranges of SUi and SUj without A3, respectively.

S
0

S
i

A
1

A
2

A
3

Figure 3.7: Two neighboring SUs whose sensing ranges overlap.

Define A∗ = A1+A2+A3. Therefore, based on basic geometry, A∗ can be obtained

as follows:

A∗ = (2π − 2α)r2s + d

√

r2s −
(
d

2

)2

, (3.6)

where α = cos−1 d
2rs

. Thus, the channels that are used by the active PUs within A∗

are those that cannot be used by either SUi or SUj. In other words, the common

channels between two neighboring SUs are those that are not used by the active PUs

within A∗. Thus, similar to the derivation process for E[c], the average number of

common channels between two neighboring SUs, E[u], is obtained from

E[u] =

K∑

y=0

y
∑

z=0

M∑

u=max(0,M−z)

u
(
M
u

)
(M−u)!S(z,M−u)

Mz

(
y

z

)

ρz(1−ρ)y−z

(
K

y

)(
A∗

AL

)y (
AL −A∗

AL

)K−y

,

(3.7)

where y and z are the number of PUs and active PUs within A∗, respectively.

Then, we define the ratio of the average number of common channels between two

neighboring SUs to the average number of available channels of a SU as

Pc =
E[u]

E[c]
, (3.8)

Pc measures the similarity of the available channel sets between two neighboring
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SUs. If Pc=1, this means that the available channels between two neighboring SUs

are exactly the same. On the other hand, if Pc = 0, this means that the available

channels between two neighboring SUs are completely different. Figure 3.8 shows the

simulation and analytical results of Pc when rc= rs and both SUs are at the border

of each other’s sensing range. Since the sensed available channels of two SUs might

be the most distinct when they are apart the most, Figure 3.8 shows the lower bound

of Pc. Figure 3.8 indicates that the simulation and analytical results coincide and

also implies that even though the available channels of different SUs are different, the

similarity of available channels between neighboring SUs is high (> 85%).
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Figure 3.8: The ratio of the average number of common channels between two neigh-
boring SUs to the average number of available channels of one SU when ρ = 0.9.

3.4.2 The Enhanced QB2IC Scheme

The above analysis of the channel availability indicates that neighboring SUs have

very similar available channel sets. Thus, inspired by this observation, we propose an

enhanced QB2IC scheme to further improve the performance.

The main idea of our enhanced scheme is that each SU selects the first θ channels

from its available channel set based on the indexes of the channels to form a new

available channel set. Based on the downsized available channel set, each SU follows

the basic scheme to broadcast. Since the available channel sets of neighboring SUs

are similar, the downsized available channel sets of neighboring SUs are also similar.
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In this way, if the threshold θ is properly selected, the success rate does not degrade

significantly. However, since the number of the channels that each receiver needs to

listen is reduced, the average broadcast delay can be greatly reduced.

However, there again exists a trade-off between the success rate and the average

broadcast delay when selecting the threshold θ. As shown in Figure 3.9, when θ

increases, the success rate increases but the average broadcast delay also increases.

Thus, if the QoS requirements are given, a proper θ can be selected.
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Figure 3.9: Success rate and average broadcast delay of the proposed enhanced QB2IC
scheme under various θ.

3.5 Performance Evaluation

In this section, we evaluate the performance of the proposed QB2IC protocol.

Since there is no existing comparable broadcast scheme under blind information for

multi-hop CR ad hoc networks, we compare our proposed broadcast schemes with

the random broadcast scheme and the full broadcast scheme with the first channel

hopping sequence introduced in Section 3.2. As mentioned in Section 3.2, we also

assume that the PU traffic is discrete-time, where the PU packet inter-arrival time

X follows the biased-geometric distribution whose probability mass function (pmf) is

given by [90]:

Pr(X=x) =







0 x < l

λp(1−λp)
(x−l) x ≥ l,

(3.9)
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where x is the number of time slots between packet arrivals, l ≥ 0 represents the

minimum number of time slots between two adjacent packets, and λp is the probability

that a PU packet arrives during one time slot (i.e., λp is the normalized arrival rate of

PU packets). Thus, the probability that a PU is active can be written as ρ = Lp

Lp+
1−λp
λp

,

where Lp is the fixed PU packet length. It is noted that the PU traffic model is used

to obtain simulation results. In fact, our proposed QB2IC broadcast protocol does

not rely on specific PU traffic models. In addition, denote σ as the probability that

a transmission is successful. That is, if σ = 1, it means that there is no transmission

error and a transmission is always successful. Moreover, the default parameters used

to obtain the simulation results are listed in Table 3.1. For the topology of the CR

ad hoc network, we assume that SUs form a 4 × 4 grid network with the distance

between two adjacent SUs equal to rc.

Table 3.1: Simulation Parameters
Number of SUs N 16

Number of PUs K 40

Number of channels M 20

Side length of the simulation area L 10 (unit length)

Radius of the sensing range rs 2 (unit length)

Radius of the transmission rage rc 2 (unit length)

Number of selected channels n 1

The normalized PU arrival rate λp 0.5

The PU packet length Lp 10 (time slots)

The probability of a successful transmission σ 1

Figure 3.10 depicts the performance results of the two proposed QB2IC schemes

(for the enhanced scheme, θ = 10), the random broadcast scheme, and the full broad-

cast scheme under different S when K = 40, M = 20, n = 1, and σ = 1. It is shown

that when S is large (e.g., S = 19), the basic scheme outperforms the other three

broadcast schemes in terms of higher success rate. However, the enhanced scheme

can greatly reduce the average broadcast delay while obtaining satisfactory success

rate. Both the proposed QB2IC schemes outperform the random broadcast scheme

and the full broadcast scheme in terms of higher success rate and shorter average



44

broadcast delay.
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Figure 3.10: Success rate and average broadcast delay of the proposed QB2IC schemes
with the random and full broadcast schemes under various S.

3.5.1 The Impact of the Number of SUs and PUs

Figure 3.11 and 3.12 show the impact of the number SUs and the number of

PUs on the network performance, respectively, where the secondary network is a grid

network when S = 20. On the other hand, Figure 3.13 depicts the impact of the

number of SUs on the network performance where the secondary network is not a

grid network. In Figure 3.11, SUs form a 2×2 network for N=4 and a 3×3 network

for N = 9. It is shown that the average broadcast delay increases as the number of

SUs in the network increases. This is because that the increase of the number of

hops leads to a longer broadcast delay. However, the success rate of the basic QB2IC

scheme does not decrease significantly when the number of SUs increases. This is

because that the multi-hop scenario benefits the success rate due to the diversity of

channels. On the other hand, as shown in Figure 3.12, the success rate decreases when

the number of PUs increases. This is because that the number of common channels

between neighboring nodes decreases when the total number of PUs increases, which

leads to a lower success rate.

We also investigate the impact of the number of SUs on the network performance
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Figure 3.11: The impact of the number of SUs on the network performance where
the secondary network is a grid network.
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Figure 3.12: The impact of the number of PUs on the network performance.

where the secondary network is not a grid network. Figure 3.13 shows the results of

the basic broadcast scheme where the SUs are randomly distributed in the simulation

area. In Figure 3.13(a), it is shown that when the number of SUs increases, the

success rate of the whole network also increases. This is because that if the number

of SUs within the same area is large, the diversity of senders and channels increases.

Thus, the number of potential senders of a SU increases. Therefore, in our proposed

QB2IC protocol, the probability that one of the channels used by these senders is in

the available channel set of the receiver is increased. Hence, the probability that all

nodes in the network can successfully receive the broadcast message also increases.
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Due to the same reason, in Figure 3.13(b), it is shown that the average broadcast

delay does not increase significantly when the number of SUs increases. That is, when

the number of SUs increases by 10 times, the average broadcast delay only increases

by 40% for the basic scheme and 51% for the enhanced scheme. To sum up, it is

shown that our proposed basic and enhanced broadcast schemes are scalable when

the CR ad hoc network size increases.
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Figure 3.13: The impact of the number of SUs on the network performance where
the secondary network is not a grid network.

3.5.2 The Impact of the Number of Channels

Figure 3.14 shows the impact of the number of channels on the network perfor-

mance when K = 30 and N = 9. For the length of the broadcasting sequence, we

set S = 2M . In addition, for the enhanced scheme, we let θ = M/2. As stated in

Section 3.3, the number of channels leads to a trade-off in terms of the success rate

and broadcast delay. On one hand, a large M ensures that the probability that two

parent nodes select the same channel at the same time is low. Therefore, as shown in

Figure 3.14(a), expect the full broadcast scheme, the success rate of the other three

broadcast schemes increases as the number of channels increases. In addition, both

our proposed basic and enhanced schemes have very similar and high success rates

(i.e., ¿0.95). However, the random and full broadcast schemes result in relatively low

success rates. On the other hand, a large M also leads to a long broadcast delay.
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Hence, as shown in Figure 3.14(b), the average broadcast delay of all four schemes

increases as the number of channels increases. Moreover, our proposed enhanced

scheme outperforms other the three broadcast schemes in terms of shorter average

broadcast delay.
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Figure 3.14: The impact of the number of channels.

3.5.3 The Impact of the Channel Availability Variation

In this section, we study the impact of the channel availability variation on the

network performance. Note that during a broadcast process, the channel availability

of the sender and receiver may change due to either PU activity (i.e., a new PU may

claim one of the available channels during a broadcast) and PU mobility (i.e., a new

active PU may move into the sensing range of a SU). This channel availability change

may also affect the network performance. Therefore, the robustness of the proposed

broadcast scheme against the channel availability variation needs to be investigated.

Figure 3.15 depicts the impact of the channel availability change due to PU activity

on the basic broadcast scheme when n = 2, S = 40 and M = 20. We let the PU

packet arrival rate change from 5pkt/s to 50pkt/s and the PU packet length is 50

slots. This means that the probability that a PU is active, ρ, varies from 0.35 to 0.85.

It is shown that the impact of the PU activity on the network performance is quite

limited. When PUs are very densely deployed (i.e., 40 PUs within a 10 × 10 area)

and PU traffic is very heavy (i.e., ρ = 0.85), the decrease of the success rate is only
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up to 5% and the increase of the average broadcast delay is only up to 9%.
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Figure 3.15: The impact of the channel availability change due to PU activity.

In addition, Figure 3.15 depicts the impact of the channel availability change due

to PU mobility. We use the Random Waypoint Mobility Model to characterize the

movement pattern for PUs [91]. Under this model, a PU begins by staying in a

location for a certain period of time (e.g., a pause time which is uniformly distributed

between [0, 4s]). Once the pause period expires, the PU randomly selects a speed

that is uniformly distributed between [0, vmax] and moves for a random time that is

uniformly distributed between [0, 4s]. Upon its arrival, the PU pauses for a random

time period before starting the movement again. Figure 3.16 depicts the impact of the

channel availability change due to PU mobility on the network performance. Similar

to the impact of PU activity on the network performance, it is shown that the impact

of the PU mobility is also quite trivial. When PUs are very densely deployed (i.e.,

40 PUs within a 10× 10 area) and PUs move very fast (i.e., the maximum PU speed

is 40m/s), the decrease of the success rate is only up to 1% and the increase of the

average broadcast delay is only up to 2%.

3.5.4 The Impact of Transmission Errors

In this section, we investigate the impact of transmission errors on the network

performance. It is known that various factors (e.g., transmission contention, channel
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Figure 3.16: The impact of the channel availability change due to PU mobility.

quality, etc.) can lead to transmission errors. These transmission errors may cause

failed broadcasts. However, as stated in Section 1, due to the ACK implosion problem,

ACK messages are not feasible to be used to prevent failed broadcasts in CR ad

hoc networks. Even though ACKs are not applied to solve the transmission error

problem, our proposed QB2IC protocol can still be used in a radio environment where

transmission errors exist. By increasing the number of channels selected by the sender

(i.e., n) or increasing the number of times that the sender broadcasts the message

(i.e., S), the probability that a sender and a receiver have a channel rendezvous

increases. Therefore, our proposed QB2IC protocol can still achieve satisfactory QoS

requirements. Figure 3.17 shows the simulation results of the basic scheme of the

proposed QB2IC protocol when N = 4 under various n, S, and σ, where SUs form

a 2 × 2 grid network. It is shown that by increasing n or S, our proposed QB2IC

protocol can still achieve satisfactory performance.

3.6 The Proposed BRACER Protocol

In this section, we introduce the proposed broadcast protocol for multi-hop CR

ad hoc networks, BRACER. There are three components of the proposed BRACER

protocol: 1) the construction of the broadcasting sequences; 2) the distributed broad-

cast scheduling scheme; and 3) the broadcast collision avoidance scheme. We assume
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Figure 3.17: Success rate and average broadcast delay of the basic scheme of the
proposed QB2IC protocol when N = 4 under various n, S, and σ.

that a time-slotted system is adopted for SUs, where the length of a time slot is long

enough to transmit a broadcast packet [88]. We also assume that each SU knows the

locations of its all 2-hop neighbors. We claim that this is a more valid assumption

than the knowledge of global network topology. We provide a detailed discussion

on this issue in Section 3.8. In the rest of the chapter, we use the term “sender”

to indicate a SU who has just received a message and will rebroadcast the message.

In addition, we use the term “receiver” to indicate a SU who has not received the

message. The notations used in our protocol design are listed in Table 3.2.

Table 3.2: Notations used in the Protocol
N(v) The set of the neighboring nodes of node v

N(N(v)) The set of the neighbors of the neighboring nodes of node v
d(v, u) The Euclidean distance between node v and u
rc The radius of the transmission range of each node
| · | The number of elements in a set
Lv The downsized available channel set of node v
w(v) The size of the downsized available channel set of node v
C The set of the initial w of intermediate nodes

BSv The broadcasting sequence for a sender v
RSv The broadcasting sequence for a receiver v
DSv The default sequence of a sender v
stv The starting time slot of a sender v
rtv The time slot that a receiver v receives the message
Rv The random number assigned to a receiver v by its sender
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3.6.1 Construction of the Broadcasting Sequences

The broadcasting sequences are the sequences of channels by which a sender and

its receivers hop for successful broadcasts. First of all, we consider the single-hop

broadcast scenario. Due to the non-uniform channel availability in CR ad hoc net-

works, a SU sender may have to use multiple channels for broadcasting in order to

let all its neighboring nodes receive the broadcast message. Accordingly, the neigh-

boring nodes may also have to listen to multiple channels in order to receive the

broadcast message. Hence, the first issue to design a broadcast protocol is which

channels should be used for broadcasting. One possible method is to broadcast on

all the available channels of the SU sender. However, this method is quite costly in

terms of the broadcast delay when the number of available channels is large. There-

fore, we propose to select a subset of available channels from the original available

channel set of each SU. First, the available channels of each SU are ranked based

on the channel indexes. Then, each SU selects the first w channels from the ranked

channel list and forms a downsized available channel set. The value of w needs to

be carefully designed to ensure that at least one common channel exists between the

downsized available channel sets of the SU sender and each of its neighboring nodes.

The detailed derivation process to obtain a proper w is given in Section 3.7. Based

on the derivation process, each SU can calculate the value of w of its own and its

1-hop neighbors before a broadcast starts.

On the other hand, the second issue is the sequences of the channels by which

a sender and its receivers hop for successful broadcasts. In this chapter, we design

different broadcasting sequences for a SU sender and its receivers to guarantee a

successful broadcast in the single-hop scenario as long as they have at least one

common channel. The sender hops and broadcasts a message on each channel in a

time slot following its own sequence. On the other hand, the receiver hops and listens

on each channel following its own sequence. The pseudo-codes for constructing the
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broadcasting sequences are shown in Algorithm 1 and 2.

Algorithm 1: Construction of the broadcasting sequence BSv for a SU sender v.

Input: w(v), Lv.

Output: BSv.

randomize the order of elements in Lv;

BSv ← ∅;

i← 1

while i ≤ w(v)2 do

BSv(i)← Lv((i mod w(v)) + 1);

i← i+ 1;

Return BSv;

Algorithm 2: Construction of the broadcasting sequence RSv for a SU receiver v.

Input: w(v), Lv.

Output: RSv.

randomize the order of elements in Lv;

RSv ← ∅;

i← 1

while i ≤ w(v) do

j ← 1;

while j ≤ w(v) do RSv((i− 1)w(v) + j)← Lv(i);

j ← j + 1;

i← i+ 1 Return BSv;

From Algorithm 1 and 2, for a SU sender, it hops periodically on the w available

channels for w periods (i.e., w2 time slots). For each receiver, it stays on one of the w

available channels for w time slots. Then, it repeats for every channel in the w avail-
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able channels. Figure 3.18 gives an example to illustrate the construction of the broad-

casting sequences for SU senders and receivers. In Figure 3.18, the downsized available

channel set of a sender and a receiver is {1, 2} and {2, 3, 4}, respectively. Based on

Algorithm 1, the broadcasting sequence of the sender is {2, 1, 2, 1}. Similarly, based

on Algorithm 2, the broadcasting sequence of the receiver is {4, 4, 4, 3, 3, 3, 2, 2, 2}.

Since a sender usually does not know the length of the broadcasting sequence of the

receiver, it broadcasts the message following its broadcasting sequence for ⌊M2

w2 ⌋+1

cycles, where M is the total number of channels. In this way, the total length of

time slots that the sender broadcasts is bound to be longer than one cycle of the re-

ceiver’s broadcasting sequence. As shown in Figure 3.18, the shaded part represents

a successful broadcast.

2 1 2 1 2 1Tx

Rx

2 1

4 4 4 3 3 3 2 2 2

...

1 cycle

1 cycle

Figure 3.18: An example of the broadcasting sequences.

Since every SU calculates the initial value of w based on its local information

and the derivation process in Section 3.7, different SUs may obtain different values

of w. We further denote ws and wr as the w used by the sender and the receiver to

construct their broadcasting sequences, respectively. Note that ws and wr may not

necessarily be the same as the initial w calculated by each SU. They also depend on

the initial w of its neighboring nodes. The following theorem gives an upper-bound

on the single-hop broadcast delay.

Theorem 1: If ws≤wr, the single-hop broadcast is a guaranteed success within w2
r

time slots as long as the sender and the receiver have at least one common channel

between their downsized available channel sets.

Proof. Based on Algorithm 1, a SU sender broadcasts on all the channels in its down-
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sized available channel set in ws consecutive time slots. Based on Algorithm 2, a SU

receiver listens to every channel in its downsized available channel set for wr consec-

utive time slots. If ws ≤wr, during the wr consecutive time slots for which the SU

receiver stays on the same channel, every channel of the SU sender must appear at

least once. Thus, as long as the SU sender and the receiver have at least one common

channel, there must exists a time slot that the sender and the receiver hop on the

same channel during one cycle of the broadcasting sequence of the receiver (i.e., w2
r).

Since we let the total length of time slots that the sender broadcasts be longer than

one cycle of the receiver’s broadcasting sequence, the broadcast is guaranteed to be

successful.

Then, how to determine ws and wr? From Theorem 1, ws ≤ wr is a sufficient

condition of a single-hop successful broadcast. Therefore, in order to satisfy this

condition, a proper wr needs to be selected by any SU who has not received the

broadcast message to ensure the reception of the broadcast message sent from any

potential neighbor. Since wr depends on ws and a SU receiver usually does not know

which neighboring node is sending until it receives the broadcast message, it selects

the largest initial w of all its 1-hop neighbors as its wr. That is, for a SU receiver

v, wr(v) = max{w(u)|u ∈ N(v)}. On the other hand, the sender uses its calculated

initial w as ws to broadcast. Therefore, the ws selected by the actual sender is bound

to be smaller than or equal to this wr. Thus, according to Theorem 1, the single-hop

broadcast is a guaranteed success as long as the sender and its receiver have at least

one common channel between their downsized available channel sets.

To illustrate the above discussed operation, we consider a multi-hop scenario

shown in Figure 3.19. The initial w calculated by each SU before the broadcast

starts based on its local information are shown. Every node also calculates the initial

w of its 1-hop neighbors. Without loss of generality, node A is assumed to be the

source node. Based on Theorem 1, the values of wr employed by each receiver can
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be obtained. For instance, since node B knows the initial w of its neighbors (i.e.,

w(A)=3, w(D)=4, and w(F )=4), it selects the largest initial w as its own wr (i.e.,

wr(B)=4). Similarly, we have wr(C)=4, wr(D)=3, wr(E)=4, and wr(F )=5. Then,

all nodes except node A use their wr to construct the broadcasting sequences based on

Algorithm 2. On the other hand, since each sender uses its calculated initial w as ws,

we have ws(A)=3, ws(B)=3, ws(C)=5, ws(D)=4, ws(E)=2, and ws(F )=4. Then,

if a node needs to broadcast a message, it uses its ws to construct the broadcasting

sequence based on Algorithm 1.

C 

B A 

w(B)=3 

    

F 

D E 

w(C)=5 

w(F)=4 

w(D)=4 w(E)=2 

w(A)=3 

Figure 3.19: A multi-hop broadcast scenario.

3.6.2 The Distributed Broadcast Scheduling Scheme

Next, we consider the broadcast scheduling issue in the multi-hop broadcast sce-

nario. The goal of the proposed distributed broadcast scheduling scheme is to intel-

ligently select SU nodes for rebroadcasting in order to achieve the shortest broadcast

delay.
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Figure 3.20: The single-hop broadcast delay when ws=wr=w.

First, from the simulation results shown in Figure 3.20, we can observe that the

single-hop broadcast delay increases when w increases. Therefore, in a multi-hop
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broadcast scenario, if there are multiple intermediate nodes with the same child node,

the intermediate node with the smallest w is selected to rebroadcast. If there are more

than one intermediate node with the smallest w, all these nodes should rebroadcast

and a broadcast collision avoidance scheme (which is explained in detail in Section

3.6.3) is executed before they rebroadcast the message. The pseudo-code of the

proposed scheduling scheme is shown in Algorithm 3, where node v has just received

the broadcast message from node q and needs to decide whether to rebroadcast. Node

q includes the calculated initial w of its 1-hop neighbors in the broadcast message.

Algorithm 1 indicates that each SU should know the locations of its 1-hop neighbors

(in order to obtainN(v)) and its 2-hop neighbors (in order to obtainN(q) and d(u, k)).

Once a node receives the message, it executes Algorithm 1 to decide whether it should

rebroadcast or not. If it needs to rebroadcast, it uses its calculated initial w as ws

to construct the broadcasting sequence based on Algorithm 3. Thus, as illustrated in

Figure 3.19, the message deliveries are shown by the arrows.

Algorithm 3: The pseudo-code of the broadcast scheduling scheme for a SU sender v.

Input: q,N(v), N(N(v)), {w(u)|u ∈ N(q)}.

Output: Decision of rebroadcasting.

C ← {w(v)};

if {k|k ∈ (N(v)−N(v) ∩N(q))} 6= ∅ then

foreach k do

if {u|u ∈ N(q), d(u, k) ≤ rc, u 6= v} 6= ∅ do

foreach u do

C ← {C,w(u)};

if w(v)=minC and |{e|e=minC}| = 1 then

return TRUE;

else if w(v)=minC and |{e|e=minC}| > 1 then

run Algorithm 4;
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return TRUE;

else

return FALSE;

return TRUE;

else

return FALSE;

From the above design, it is noted that each SU (either sending or receiving)

follows the same rules and no centralized entity or prior information about the sender

is required. Thus, the proposed broadcast scheduling scheme is fully distributed.

In addition, since the node with the smallest w is selected for rebroadcasting, the

broadcast delay is the shortest. Moreover, because only a subset of intermediate nodes

are selected to rebroadcast, the number of intermediate nodes that need to forward

the message is reduced. Thus, the probability that multiple senders broadcasting

to the same receiver simultaneously can be reduced. Hence, the proposed broadcast

scheduling scheme also contributes to the broadcast collision avoidance.

3.6.3 The Broadcast Collision Avoidance Scheme

C 

B 

A 

w(B)=3 

D 

w(C)=3 

Figure 3.21: The broadcast scenario where a broadcast collision may occur.

From Algorithm 1, if there are multiple intermediate nodes with the same child

node, only the intermediate node with the smallest w should rebroadcast. However,

if more than one intermediate node with the same smallest w, all these intermediate

nodes should rebroadcast and a broadcast collision may occur if these nodes deliver

the messages on the same channel at the same time. For instance, in the example
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shown in Figure 3.21 where node A is the source node, node B and C have the same

w, which may lead to a broadcast collision when they rebroadcast simultaneously.

Most broadcast collision avoidance methods in traditional ad hoc networks assign

different time slots to different intermediate nodes to avoid simultaneous transmis-

sions. However, these methods cannot be applied to CR ad hoc networks because the

exact time for the intermediate nodes to receive the broadcast message is random. As

a result, to assign different time slots for different intermediate nodes is very challeng-

ing. In addition, since the intermediate nodes use multiple channels for broadcasting,

the channel on which the broadcast collision occurs is also unknown. To the best of

our knowledge, no existing collision avoidance scheme can address these challenges in

CR ad hoc networks.

In this research, we propose a broadcast collision avoidance scheme for CR ad

hoc networks. The main idea is to prohibit intermediate nodes from rebroadcasting

on the same channel at the same time. Our proposed broadcast collision avoidance

scheme works in a scenario where the intermediate nodes have the same parent node,

as shown in Figure 3.21. The procedure of the proposed broadcast collision avoidance

scheme is summarized as follows:

Step 1 Generating a Default Sequenc: When a source node (e.g., node A in Figure

3.21) broadcasts the message, it includes its own original available channel set in the

message. Hence, if an intermediate node receives the message, it obtains the original

available channel information of its parent node. Then, the intermediate node uses

the first w available channels of its parent node to generate a default sequence, where

w is its own calculated initial w (which may not be the same as the initial w of its

parent node). If a channel in the default sequence is not available for this intermediate

node, a void channel is assigned to replace the corresponding channel. For instance,

if node B and C both obtain w=3 and the original available channels of node A, B,

and C are {1, 2, 3, 4, 5}, {2, 3, 4, 5}, and {1, 3, 4, 6}, respectively, node B and C only
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use the first three available channels of node A to generate their default sequences.

Therefore, the default sequence of node B is {0, 2, 3} and the default sequence of node

C is {1, 0, 3}, where 0 means a void channel. A node does not send anything on a

void channel.

Step 2 Circular Shifting the Default Sequence with a Random Number: Apart

from the available channel set, the source node also includes a distinctive integer for

each intermediate node v randomly selected from [1, w(v)]. If there are more than

w(v) intermediate nodes, the parent node randomly selects w(v) of them and assigns

a random integer. Only those intermediate nodes that acquire the random integer

will rebroadcast the packet. Then, each intermediate node generates a new sequence

from its default sequence using circular shift and the random integer. If we denote the

default sequence as DS and the random integer as R, the intermediate node performs

circular shift on the DS for R times (there is no difference of right-shift or left-shift).

For instance, if node B and C get 3 and 1 as their random integers, respectively, the

new sequences they generate from left-handed circular shift are {0, 2, 3} and {0, 3, 1},

respectively.

Step 3 Forming the Broadcasting Sequence: Denote the starting time slot of the

source node’s broadcasting sequence as st and the time slot when an intermediate

node receives the broadcast message as rt. The source node includes its st in the

broadcast message. Then, the intermediate node performs circular shift on the new

sequence generated from Step 2 for another (rt−st+1) times. It repeats that sequence

for w(v) times to form a cycle of its broadcasting sequence.

The pseudo-code of the broadcast collision avoidance scheme is shown in Algo-

rithm 4, where q is the source node and Circshift() is the function of circular shift. To

further elaborate the scheme, Figure 3.22 shows an example of the proposed broadcast

collision avoidance scheme. Without loss of generality, the starting time slot of the

source node is 1. When node B and C do not receive the broadcast message, they hop
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through the channels based on the broadcasting sequences generated from Algorithm

2. Then, node B and C receive the broadcast message at time slot 4 and 1, respec-

tively. Based on Algorithm 4 and if the random integers for node B and C are 3 and

1, respectively, node B forms the broadcasting sequence as {2, 3, 0, 2, 3, 0, 2, 3, 0} and

node C forms the broadcasting sequence as {3, 1, 0, 3, 1, 0, 3, 1, 0}. Then, they start

rebroadcasting from time slot 5 and 2 using the broadcasting sequences, respectively.

The underlined channels are those a node hops on if it starts from time slot 1.

Algorithm 4: The pseudo-code of the broadcast collision avoidance scheme for SU v.

Input: q, Lq, Lv, stq, rtv, Rv, w(v).

Output: BS ′
v.

BS ′
v ← ∅;

i← 1;

l ← 1;

while i ≤ w(v) do

j ← 1;

while j ≤ w(v) do

if Lv(i) = Lq(j) then

DSv(j)← Lq(j);

Tv ← Circshift(DSv, Rv);

while l ≤ w(v)2 do

BS ′
v(l)← Tv(l+(rtv−stq)+1 mod w(v));

l ← l + 1;

Return BS ′
v;

Therefore, by constructing the broadcasting sequences from the same channel set

(the channel set of the common parent node, node A) but circular shifting different

times for different nodes, the intermediate nodes are guaranteed not to send on the
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same channel at the same time. Thus, broadcast collisions can be avoided. A trade-off

of the proposed broadcast collision avoidance scheme is that less available channels

are used for broadcasting because some void channels may be assigned. However, the

benefit (e.g., the increase of the successful broadcast ratio) gained from eliminating

broadcast collisions is greater than the loss of a very few number of channels. Hence,

the only issue left is the derivation of the initial w, which is introduced in Section

3.7.

1 2 1 2 1 2Tx

Rx

1 2Node A

Node B 4 4 4 2 2 2 3 3 3

0 2 3 0 2 3 0 2 3Tx 0 2 3 0

RxNode C 1 1 1 3 3 3 4 4 4

0 3 1 0 3Tx 1 0 3 1 0

time slot 1 2 3 4 5 6 7 8 9 10 11 12 13

...

Figure 3.22: An example of the proposed broadcast collision avoidance scheme.

3.6.4 Protocol Flow Chart

In this section, we summarize the procedure of the proposed BRACER protocol.

Figure 3.23 illustrates the flow chart of the proposed broadcast protocol. As shown in

Figure 3.23, before a broadcast starts, every SU node first calculates its own initial w

and the initial w of its 1-hop neighboring nodes using the 2-hop location information

and the derivation process given in Section 3.7. If this node is the source node, it

uses its own initial w as its ws and constructs the broadcasting sequence based on

Algorithm 1. Then, it hops and broadcasts a message on each channel during one time

slot following its sequence. On the other hand, if this node is not the source node, it

is by default a receiver. Then, it uses the maximum w of its 1-hop neighboring nodes

as its wr and constructs the broadcasting sequence based on Algorithm 2. It hops

and listens on each channel during one time slot following its sequence. If the node

receives the broadcast message from a sender, it runs the broadcast scheduling scheme
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based on Algorithm 3 to determine whether it needs to rebroadcast this message. If

it needs to rebroadcast and there is only one smallest w, it uses its own w as ws and

runs Algorithm 1 to rebroadcast. If it needs to rebroadcast and there are more than

one smallest w, it runs the broadcast collision avoidance scheme based on Algorithm

4 to rebroadcast the message.
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Figure 3.23: The flow chart of the proposed BRACER protocol.

3.7 The Derivation of the Value of w

In this section, we first introduce a network model we consider. Then, based on

this model, we present the derivation process of the size of the downsized available

channel set w.

3.7.1 The Network Model

In this chapter, we consider a CR ad hoc network where N SUs and K primary

users (PUs) co-exist in an α×α area. PUs and SUs are distributed based on the model

in Chapter 3.1. In addition, apart from the broadcast collision, other factors may also

contribute to the packet error (e.g., channel quality, modulation schemes, and coding

rate). However, in this chapter, we only consider broadcast collisions as the reason

for the packet error. We claim that this is a valid assumption in most broadcast
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scenarios [10, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22]. In addition, we consider that since

PUs at different locations can claim any channels for communications, the packets on

the same channel do not necessarily belong to the same PU. This is a more practical

scenario, as compared to some papers which assume that each channel is associated

with a different PU. Under such a practical scenario, only those PUs that are within

the sensing range of a SU and are active during the broadcast process contribute to

the unavailable channels of the SU [23].

3.7.2 The Derivation of the Value of w

The value of w is essential to ensure a successful single-hop broadcast. Denote

the probability of a successful single-hop broadcast as Psucc(w), where Psucc(w) is a

function of w. Our goal is to obtain an appropriate w that satisfies the condition:

Psucc(w) ≥ 1− ǫ, where ǫ is a small pre-defined value. From Theorem 1, the condition

that at least one common channel exists between the downsized available channel sets

of a SU pair is a necessary condition for a successful single-hop broadcast. Therefore,

if we denote the source SU of a single-hop broadcast as S0 and the neighbors of S0

as {S1, S2, · · · , SH}, where H is the number of neighbors, Psucc(w) is equal to the

probability that there is at least one common channel between S0 and each of its

neighbors in their downsized available channel sets.

   S0 Si 

A1 A2 

A3 

(a) The single-pair scenario.

   S0 Si 

Sj 

(b) The multi-pair scenario.

Figure 3.24: The single-hop broadcast scenario.
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3.7.2.1 The single-pair scenario

We first calculate the probability that there is at least one common channel be-

tween the downsized available channel sets of S0 and one of its neighbors Si. The

relative locations of the two SUs and their sensing ranges are shown in Figure 3.24(a).

As illustrated in Figure 3.24(a), sensing ranges are divided into three areas: A1, A2,

and A3. Note that PUs in different areas have different impact on the channel avail-

ability of the two SUs. For instance, if a PU is active within A3, the channel used by

this PU is unavailable for both SUs. However, if a PU is active within A1, the channel

used by this PU is only unavailable for S0. Thus, we first calculate the probability

that a channel is available within each area, Pk, k ∈ [1, 2, 3]. The size of the total

network area is denoted as AL (i.e., AL = α2). Since the locations of PUs are evenly

distributed, the probability that p PUs are within Ak is

Pr(p) =

(
K

p

)(
Ak

AL

)p(
AL−Ak

AL

)K−p

, (3.10)

where
(
K
p

)
represents the total combinations of K choosing p. In addition, we define

the probability that a PU is active, ρ, as:

ρ =
E[ON duration]

E[ON duration] + E[OFF duration]
, (3.11)

where E[·] represents the expectation of the random variable. Therefore, given that

there are p PUs within Ak, the probability that there are b PUs active is

Pr(b|p) =
(
p

b

)

ρb(1− ρ)p−b. (3.12)

Furthermore, given that there are p PUs and b active PUs within Ak, the probability

that there are c available channels is denoted as Pr(c|p, b). Since the number of

available channels is only related to the number of active PUs, c is independent of p.
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In addition, since an active PU randomly selects a channel from M channels in the

band, Pr(c|p, b) is equivalent to the probability that there are exactly c empty boxes

given that b balls are randomly put into a total of M boxes and a box can have more

than one ball (because we do not limit a channel to only one PU). Thus, Pr(c|p, b)

can be expressed as:

Pr(c|p, b) =
(
M
c

)(
b−1

b−M+c

)

(
b+M−1

b

) , c ∈ [max(0,M−b),M ]. (3.13)

Hence, the probability that there are c available channels and there are p PUs and b

active PUs within Ak is the product of (3.10), (3.12), and (3.13). Then, the probability

that a channel is available within Ak is obtained from (3.14).

Pk =
1

M

K∑

p=0

p
∑

b=0

M∑

c=max(0,M−b)

c
(
M
c

)(
b−1

b−M+c

)

(
b+M−1

b

)

(
p

b

)

ρb(1− ρ)p−b

(
K

p

)(
Ak

AL

)p(
AL −Ak

AL

)K−p

.

(3.14)

Next, we consider the relationship between the downsized available channel sets of

the two SUs. In our derivation, we only consider the scenario where the sender and

its receiver have the same w (i.e., ws=wr). If wr > ws, the channels after the first ws

channels do not affect the number of common channels. Thus, the derivation process

is the same. Figure 3.25 shows an example of the channel availability status of two

SUs when w(S0) = 3, where a shaded square indicates an idle channel and a white

square indicates a busy channel. A square with a cross means that a channel can be

either idle or busy. Since each SU only selects the first w available channels to form a

downsized available channel set, the availability status of the channels after the first

w available channels is not specified. Then, without loss of generality, we denote t

and h as the index of the last available channel in the downsized available channel

sets of S0 and Si, respectively. We first assume that t ≤ h. Hence, from channel 1 to

t, there are four possible scenarios of every channel in terms of its availability for the
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two SUs. They are: 1) the channel is available for both SUs (denoted as C1); 2) the

channel is unavailable for both SUs (denoted as C2); 3) the channel is only available

for S0 (denoted as C3); and 4) the channel is only available for Si (denoted as C4).

In addition, from channel t + 1 to h (if t < h), there are two possible scenarios: 1)

the channel is available for Si but it can be any status for S0 (denoted as C5) and

2) the channel is unavailable for Si but it can be any status for S0 (denoted as C6).

Based on Figure 3.24(a), the probabilities of the above six scenarios can be obtained:

1) PC1 = P1P2P3; 2) PC2 = (1− P3) + (1− P1)(1− P2)P3; 3) PC3 = P1P3(1− P2); 4)

PC4 = (1− P1)P2P3; 5) PC5 = PC1 + PC4; and 6) PC6 = PC2 + PC3.

S0

Si

h

t

M

Figure 3.25: An example of the channel availability status when w(S0) = 3.

Denote Z(0, i) as the number of common channels between S0 and Si in their

downsized available channel sets. In order to obtain Pr(Z(0, i) = z), we need to

consider all the combinations of the channel status for every channel from channel 1

to h. There are two possible cases: 1) t=h and 2) t<h. For the first case, channel

h is a common channel between the two SUs. In addition, from channel 1 to channel

h−1, there must be z−1 channels in scenario C1; h−2w+z channels in C2, and w−z

channels in C3 and C4, respectively. Since t=h, no channel is in scenario C5 or C6.

Thus, the probability that there are z(z>0) common channels in the first case is

P ′(h)=

(
h−1
z−1

)(
h−z
w−z

)(
h−w
w−z

)

P z
C1P

h−2w+z
C2 Pw−z

C3 Pw−z
C4 . (6)

For the second case, since t<h, the common available channels can only be between

channel 1 to t. We denote the number of available channels for Si from channel 1 to t

as x. Thus, from channel 1 to t, similar to the first case, there are z channels in C1;
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t−w−x+z channels in C2; w−z channels in C3; and x−z channels in C4. In addition,

from channel t+1 to h, there are w−x channels in C5 and h−t−w+x channels in C6.

Therefore, the probability that there are totally z common channels is obtained from

(7). If we switch S0 and Si in Figure 3.25, we can obtain the probability for the dual

case. Hence, the probability that there are z common channels in the second case is

expressed in (3.7).

P ′′
1 (h) =P z

C1P
w−z
C3

∑h−1
t=w

∑t−w
x=max(0,w+t−h)

(
t−1
w−1

)(
w
z

)(
t−w
x−z

)(
h−t−1
w−x−1

)
P x−z
C4 P

(t−w−x+z)
C2 (PC1+PC4)

(w−x)

(PC2+PC3)
(h−t−w+x). (3.6)

P ′′(h) = P z
C1P

w−z
C3

∑h−1
t=w

∑t−w
x=max(0,w+t−h)

(
t−1
w−1

)(
w
z

)(
t−w
x−z

)(
h−t−1
w−x−1

)
P x−z
C4 P

(t−w−x+z)
C2

(PC1+PC4)
(w−x)(PC2+PC3)

(h−t−w+x) + P z
C1P

w−z
C4

∑h−1
t=w

∑t−w
x=max(0,w+t−h)

(
t−1
w−1

)

(
w
z

)(
t−w
x−z

)(
h−t−1
w−x−1

)
P x−z
C3 P

(t−w−x+z)
C2 (PC1+PC3)

(w−x)(PC2+PC4)
(h−t−w+x). (3.7)

Therefore, the probability that there are z common channels for the first w avail-

able channels for each SU is

Pr(Z(0, i)=z) =
M∑

h=2w−z

P ′(h) + P ′′(h). (3.8)

Thus, the probability of a successful single-hop broadcast from S0 to Si is

Psucc(w) = 1− Pr(Z(0, i)=0). (3.9)

Figure 3.26 shows the analytical and simulation results of Psucc(w) in the single-

pair scenario under various w and different M . To obtain these results, the number

of PUs K = 40 and the probability that a PU is active ρ=0.9. In addition, the side

length of the network area α=10 (unit length) and two neighboring SUs are at the
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border of each other’s sensing range where rs=2 (unit length). As shown in Figure

3.26, the simulation results match extremely well with the analytical results.
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Figure 3.26: Analytical and simulation results of Psucc(w) in the single-pair scenario
under various w and different M .

3.7.2.2 The multi-pair scenario

we extend the above results to a multi-pair scenario, as shown in Figure 3.24(b)

where Si and Sj are two neighbors of S0. Based on the knowledge of combina-

tion mathematics, the probability of a successful broadcast in the multi-pair scenario

shown in Figure 3.24(b) is

Psucc(w)=1−Pr(Z(0, i)=0)−Pr(Z(0, j)=0)

+Pr(Z(0, i, j)=0),

(3.10)

where Pr(z(0, i, j) = 0) is the probability that both Si and Sj do not have any common

channel in the downsized available channel sets with S0. Since the other two terms

in (3.10) (i.e., Pr(Z(0, i) = 0) and Pr(Z(0, j) = 0)) can be obtained from (3.8), we

only need to calculate Pr(Z(0, i, j) = 0).

To calculate Pr(Z(0, i, j)=0), we use the same idea from the single-pair scenario.

That is, we consider Si and Sj together as one new neighboring node. The sensing

range of the new neighboring node is the union of the sensing ranges of the two

original nodes (i.e., the shaded area in Figure 3.24(b)). Therefore, we can obtain
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new P1, P2, and P3 for the multi-pair scenario based on the new size of the sensing

range. Moreover, the probabilities of every scenario of the channel status can also be

obtained accordingly. Therefore, by using (6)-(3.8), we can calculate Pr(Z(0, i, j) =

0). Then, given the locations of the H neighbors, each SU can get the probability of

a successful single-hop broadcast by performing the same procedure iteratively for H

times. Finally, by letting Psucc(w) ≥ 1− ǫ, a proper w can be acquired for S0.

3.8 Discussion on the Proposed BRACER Protocol

It is noted that our proposed BRACER protocol is particularly designed for broad-

cast scenarios in multi-hop CR ad hoc networks without a common control channel.

There are two implementation issues that are essential to the performance of our

proposed distributed broadcast protocol: 1) the 2-hop location information; and 2)

the time synchronization. In this section, we provide a further discussion on these

two issues.

3.8.1 2-hop Location Information

It is known that in our proposed BRACER protocol, every SU node needs the

location information of its 2-hop neighboring nodes in order to calculate the size of

the downsized available channel sets of its 1-hop neighboring nodes. Even though

the localization issue for CR ad hoc networks is out of the scope of this paper, we

hereby introduce several solutions to obtain the 2-hop location information in detail.

Generally speaking, the location information for a traditional ad hoc network can be

obtained either from external positioning techniques (e.g., Global Positioning System

(GPS) [92]) or from some localization algorithms without external positioning tech-

niques [93, 94, 95]. Hence, GPS is an option to obtain the location information of

the 2-hop neighboring nodes in CR ad hoc networks. However, GPS requires addi-

tional hardware and consumes extra energy, which may not be efficient in CR ad hoc

networks where cost and power constraints are often needed.

On the other hand, a number of localization algorithms that do not rely on GPS
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for CR ad hoc networks have been proposed [96, 97, 98, 99]. In these works, the

legacy localization algorithms proposed for traditional ad hoc networks, such as time-

of-arrival (TOA)-based, angle-of-arrival (AOA)-based, and received-signal-strength

(RSS)-based methods are improved and adopted in CR ad hoc networks. These

localization algorithms often require the assistance from certain special nodes with

known location information (named reference nodes). However, all these algorithms

ignore the control message exchange issue between the reference nodes and the reg-

ular nodes in CR ad hoc networks. The control message exchange issue is either

not considered or simplified by using a common control channel. It is known that

transmitting messages on a global common channel without any additional control

information is not feasible in CR ad hoc networks. Therefore, in order to receive

the control message containing the location information from the reference nodes, a

communication mechanism that does not rely on any other control information (i.e.,

under blind information) between the reference nodes and the regular nodes is needed.

As mentioned before, in [23], a QoS-based broadcast protocol under blind informa-

tion is proposed. We can use this scheme as the communication scheme between

the reference nodes and the regular nodes to obtain the 2-hop location information.

Since the broadcast protocol proposed in [23] can only support QoS provisioning, the

successful broadcast ratio and average broadcast delay of this scheme for the whole

network are not optimized. Therefore, this scheme is suitable to be used in the early

stage of a broadcast procedure. After every node in the network acquires the 2-hop

location information, the proposed BRACER protocol can be executed.

3.8.2 Time Synchronization

It is known that an advantage of our proposed BRACER protocol is that it does

not require tight time synchronization. This special advantage is essential since tight

time synchronization is extremely difficult to achieve in a real ad hoc network system.

In this chapter, we define tight time synchronization as the scenario where time slots
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of different nodes are precisely aligned. This means that the proposed BRACER

protocol can guarantee the successful reception of a whole broadcast message even

if the time slots of the sender and the receiver have an offset. Denote the length

of the offset as δ. Without the loss of generality, δ is less than a time slot. Based

on Theorem 1, in order to guarantee a successful single-hop broadcast, ws must be

smaller than or equal to wr. Thus, we consider the time synchronization issue under

the following two scenarios.

3.8.2.1 Scenario I

ws is strictly smaller than wr. If ws < wr and the sender and the receiver have at

least one common channel between their downsized available channel sets, we have

the following theorem:

Theorem 2: If ws < wr, the single-hop broadcast is a guaranteed success within

w2
r time slots even if the time slots of the sender and the receiver have an offset.

Proof. Similar to the proof of Theorem 1, if ws < wr, during the wr consecutive time

slots for which the receiver stays on the same channel, every channel of the sender

must appear at least once. More importantly, since δ is less than a time slot, at least

a whole time slot of the common channel between the sender and the receiver must

be completely covered by the wr consecutive time slots of the common channel. That

is, the receiver can hear a whole time slot of the common channel when the sender

broadcasts the message. Thus, a successful single-hop broadcast is guaranteed.

2 1 2 1 2 1Tx

Rx

2 1

4 4 4 3 3 3 2 2 2

...2 1

Figure 3.27: An example of Scenario I when time slots are unsynchronized.

Figure 3.27 shows an example of Scenario 1 where ws < wr. We assume that the

time slots of the sender are ahead of the receiver with an offset of δ. As illustrated

in Figure 3.27, on the 9-th slot of the sender’s broadcasting sequence, the sender and
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the receiver are on the same channel (i.e., channel 2). In addition, this time slot is

completely covered by the 3 consecutive time slots when the receiver is on channel 2.

Hence, the broadcast message can be successfully received by the receiver.

3.8.2.2 Scenario II

ws is equal to wr. If ws = wr, there are two sub-cases: 1) Case 1 : a time slot of the

common channel is completely covered by the wr consecutive time slots of the receiver

on the same channel; and 2) Case 2 : a time slot of the common channel is partially

covered by the wr consecutive time slots of the receiver on the same channel. Figure

3.28 shows an example of Case 1 in Scenario II. Similar to Scenario I, the broadcast

message can still be successfully received even if an offset exists.

2 1 3 2 1 3Tx

Rx

2 1

4 4 4 3 3 3 5 5 5

...3 2

Figure 3.28: An example of Case 1 in Scenario II when time slots are unsynchronized.

On the other hand, Figure 3.29 shows an example of Case 2 in Scenario II. This

case occurs when the time slot of the common channel of the sender is partially

covered by the first and the last time slot of the wr consecutive time slots of the

receiver. From the communication theory, it is known that if a node only receives a

part of a packet, it cannot decode this packet correctly and will drop it at the physical

(PHY) layer. Thus, even if the sender and the receiver have a common channel, the

receiver cannot successfully receive the broadcast message within w2
r time slots in

Case 2.

3 2 1 3 2 1Tx

Rx

3 2

4 4 4 3 3 3 5 5 5

...1 3

Figure 3.29: An example of Case 2 in Scenario II when time slots are unsynchronized.

We provide two simple modifications of our proposed BRACER protocol for this

case. The first way is that the receiver always shift the whole cycle of the broadcasting
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sequence one slot forward or one slot backward after it hops for one cycle (i.e., w2
r

time slots) and has not received the broadcast message. At the same time, the total

length of time slots that the sender broadcasts needs to be longer than three cycles

of the receiver’s broadcasting sequence. That is, the sender broadcasts the message

following its broadcasting sequence for ⌊3×M2

w2
s
⌋+1 cycles. In this way, Case 2 becomes

Case 1. Then, even if the receiver may not receive the message within one cycle, it

can still successfully receive the message in the following cycle, as shown in Figure

3.30.

3 2 1 3 2 1Tx

Rx

3 2

4 4 4 3 3 3 5 5 5

1

5 4 4 4 3 3 3 5 5

3 2 1 3 2 1 3 2 1

shift one slot backward

Figure 3.30: An example of the first way of modification for Case 2 in Scenario II
when time slots are unsynchronized.

On the other hand, the second way is that the receiver v selects wr(v) to be

max{w(u)|u ∈ N(v)} + 1, where N(v) is the set of the neighboring nodes of the

receiver v. Therefore, the wr of the receiver is always larger than the ws used by the

sender. In this way, Case 2 becomes Scenario I. Based on Theroem 2, the successful

broadcast is guaranteed within w2
r time slots, as shown in Figure 3.31. To sum up,

from the above analysis, it is known that our proposed BRACER protocol can be

used in an environment where tight time synchronization is not required.

3 2 1 3 2 1Tx

Rx

3 2

4 4 4 4 3 3 3 3 5

1

5 5 5 6 6 6 6
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Figure 3.31: An example of the second way of modification for Case 2 in Scenario II
when time slots are unsynchronized.

3.9 Performance Evaluation

In this section, we evaluate the performance of the proposed broadcast proto-

col. We consider two types of PU traffic models in the simulation [89]. The first
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PU traffic model is discrete-time, where the PU packet inter-arrival time follows the

biased-geometric distribution [90]. The second PU traffic model is continuous-time,

where the PU packet inter-arrival time follows the Pareto distribution [90]. We as-

sume that the probability that a PU is active is fixed (i.e., ρ = 0.9). In addition,

the side length of the network area α=10 (unit length). We assume that the ra-

dius of the sensing range and the transmission range are the same (i.e., rs = rc = 2

(unit length)). In this chapter, we mainly investigate the following two performance

metrics: 1) successful broadcast ratio: the probability that all nodes in a network suc-

cessfully receive the broadcast message and 2) average broadcast delay: the average

duration from the moment a broadcast starts to the moment the last node receives

the broadcast message. In addition, we compare our proposed broadcast protocol

with five other schemes: 1) Random+Flooding: each SU randomly selects a channel

to hop and uses flooding (i.e., a SU is obligated to rebroadcast once receiving the

message); 2) Sequence+Flooding (1/3 of our design): each SU downsizes its avail-

able channel set and constructs broadcasting sequences based on our scheme and uses

flooding; 3) Sequence+Schedule (2/3 of our design): each SU constructs broadcasting

sequences based on our scheme and uses our broadcast scheduling scheme; 4) Basic

QoS Scheme: each SU uses the basic scheme of the QoS-based broadcast protocol

to broadcast [23]; and 5) JS+Flooding: each SU uses the jump-stay scheme [33] to

construct the broadcasting sequences and uses flooding.

3.9.1 Successful Broadcast Ratio

Since the single-hop successful broadcast ratio depends on w which is related to

a pre-defined value ǫ, we define ǫ = 0.001. In fact, ǫ can be an arbitrary small value.

Thus, based on Section 3.7, each SU calculates a proper w before the broadcast

starts in our scheme, the Sequence+Flooding scheme, and the Sequence+Schedule

scheme. Table 3.3 and 3.4 show the simulation results of the successful broadcast

ratio under different number of SUs and PUs, where the value in the upper cell is for
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the discrete-time PU traffic and the lower cell is for the continous-time PU traffic.

In Table 3.3, M = 20 and K = 40. In Table 3.4, M = 20 and N = 20. As shown

in Table 3.3 and 3.4, the successful broadcast ratio is higher than 99% under our

proposed broadcast protocol in all scenarios. In addition, the proposed broadcast

protocol outperforms other schemes in terms of higher successful broadcast ratio.

Since the jump-stay scheme requires that the i-th available channel in the available

channel set is also channel i, it cannot utilize the technique in our scheme to downsize

the original available channel set. In addition, the jump-stay scheme can guarantee

rendezvous within 6MP (P−G), where P is the smallest prime number larger than

M and G is the number of common channels between two SUs. Thus, in order to

ensure a successful broadcast, each SU broadcasts the message for 6MP (P−G) slots.

However, 6MP (P −G) is usually a very large number when M is large. Hence, to

better illustrate the trade-off between the successful broadcast ratio and broadcast

delay, we compare our scheme with JS+Flooding in Section 3.9.2.

Table 3.3: Successful broadcast ratio under different number of SUs
N=5 N=10 N=15 N=20 N=25

Random+Flooding
0.8801 0.8180 0.8100 0.8726 0.8821
0.8630 0.9148 0.9075 0.8698 0.8708

Sequence+Flooding
0.9849 0.9839 0.9828 0.9823 0.9863
0.9762 0.9769 0.9777 0.9773 0.9719

Sequence+Schedule
0.9859 0.9864 0.9823 0.9857 0.9855
0.9812 0.9845 0.9849 0.9876 0.9861

Basic QoS Scheme
0.8915 0.9022 0.8543 0.9314 0.9317
0.8739 0.8386 0.8952 0.8498 0.8624

Proposed Scheme
0.9991 0.9973 0.9969 0.9982 0.9909
0.9994 0.9959 0.9954 0.9967 0.9951

3.9.2 Average Broadcast Delay

Table 3.5 and 3.6 show the simulation results of the average broadcast delay

under different number of SUs and PUs. Similarly to the successful broadcast ratio,

in Table 3.5, M = 20 and K = 40. In Table 3.6, M = 20 and N = 20. As shown

in Table 3.5 and 3.6, the proposed broadcast protocol outperforms other schemes in
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Table 3.4: Successful broadcast ratio under different number of PUs
K=20 K=30 K=40 K=50 K=60

Random+Flooding
0.8189 0.8326 0.8842 0.9208 0.8907
0.7980 0.8738 0.9191 0.9139 0.8849

Sequence+Flooding
0.9866 0.9863 0.9823 0.9819 0.9871
0.9742 0.9765 0.9773 0.9711 0.9797

Sequence+Schedule
0.9868 0.9872 0.9857 0.9881 0.9872
0.9874 0.9885 0.9876 0.9833 0.9850

Basic QoS Scheme
0.9502 0.9167 0.9314 0.8222 0.7884
0.8950 0.8921 0.8498 0.8792 0.8463

Proposed Scheme
0.9978 0.9976 0.9982 0.9951 0.9921
0.9946 0.9941 0.9967 0.9977 0.9969

terms of shorter average broadcast delay. Furthermore, Figure 3.32 and 3.33 show

the average broadcast delay under different number of channels when N = 10 and

K = 40. As explained in Section 3.9.1, besides our proposed scheme, we also compare

with JS+Flooding and our scheme without downsizing the available channel set (i.e.,

w=M). It is shown that even though the successful broadcast ratio is similar, the

broadcast delay under JS+Flooding is much longer than our proposed scheme.

Table 3.5: Average broadcast delay under different number of SUs
Delay (unit: slots) N=5 N=10 N=15 N=20 N=25

Random+Flooding
19.781 26.483 28.003 29.252 31.203
20.981 23.765 27.686 33.153 32.883

Sequence+Flooding
8.458 11.168 12.744 14.243 15.909
7.712 11.799 12.903 14.534 17.257

Sequence+Schedule
7.811 10.995 13.324 13.896 15.823
7.155 11.457 13.553 14.551 15.078

Basic QoS Scheme
15.576 19.642 26.447 22.745 24.599
16.093 23.164 21.698 26.834 32.078

Proposed Scheme
7.066 10.532 12.259 13.353 15.198
6.545 11.097 12.786 13.639 14.801

To sum up, our proposed broadcast protocol outperforms Random+Flooding in

terms of higher successful broadcast ratio and shorter broadcast delay. It also out-

performs JS+Flooding in terms of shorter broadcast delay. In addition, even with

the trade-off in our proposed broadcast collision avoidance scheme as explained in
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Table 3.6: Average broadcast delay under different number of PUs
Delay (unit: slots) K=20 K=30 K=40 K=50 K=60

Random+Flooding
29.189 31.459 25.737 25.361 24.243
34.547 30.629 27.617 28.424 26.399

Sequence+Flooding
13.918 14.886 14.243 14.649 14.259
14.413 13.958 14.534 14.867 14.389

Sequence+Schedule
12.747 14.206 13.896 14.361 14.014
13.652 14.086 14.551 14.521 14.237

Basic QoS Scheme
25.148 25.187 22.745 27.182 28.533
29.111 24.931 26.834 24.639 24.907

Proposed Scheme
12.322 13.555 13.352 14.279 13.597
13.249 13.401 13.639 13.335 13.471

Section 3.6.3 and limited overhead, our proposed scheme and the schemes that use

a part of our design (e.g., Sequence+Flooding) can still achieve better performance

results than Random+Flooding for both metrics and JS+Flooding for the broadcast

delay.
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Figure 3.32: Successful broadcast ratio under different number of channels.
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Figure 3.33: Average broadcast delay under different number of channels.

3.9.3 The Impact of Unsynchronized Time Slots

From the discussion in Section 3.8.2, it is known that our proposed BRACER pro-

tocol has an advantage that tight time synchronization is not required. Accordingly,

we provide two modifications of our proposed protocol when time slots are unsyn-
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chronized. In this section, we evaluate the impact of the unsynchronized time slots

on the performance of the proposed BRACER protocol.

Figure 3.34 and 3.35 show the single-hop successful broadcast ratio and the av-

erage broadcast delay under different scenarios. In the first modification, we let

ws=wr =w, whereas in the second modification, we let ws=w and wr =w+1. It is

shown that unsynchronized scenarios usually lead to lower successful broadcast ratio

and longer average broadcast delay than the synchronized scenario. However, with

the modifications of our proposed protocol, the low successful broadcast ratio can

be significantly improved. From the figures, we may see that the second modifica-

tion outperforms the first modification in terms of higher successful broadcast ratio.

However, it also results in longer average broadcast delay than the first modification.

Furthermore, when w> 5, the performance of the two modifications is very close to

the unsynchronized scenario without modification. This is because that when w is

large enough, more than one common channels exist between the sender and the re-

ceiver. Thus, there is at least one time slot on the common channel that is completely

covered by the wr consecutive time slots. Hence, the receiver can successfully receive

the message without any modification.
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Figure 3.34: The impact of unsynchronized time slots on the single-hop successful
broadcast ratio.

Figure 3.36 and 3.37 show the multi-hop successful broadcast ratio and average

broadcast delay under different scenarios. It is illustrated in Figure 3.36 that when
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Figure 3.35: The impact of unsynchronized time slots on the single-hop average broad-
cast delay.
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Figure 3.36: The impact of unsynchronized time slots on the multi-hop successful
broadcast ratio.
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the number of SUs is small (e.g., N<20), the synchronized scenario outperforms all

the unsynchronized scenarios in terms of higher successful broadcast ratio. This is

because when N is small, each SU usually selects small w for broadcasting. Thus,

from Figure 3.34, the successful broadcast ratio of the unsynchronized scenarios is

lower than the synchronized scenario. However, when N is large (e.g., N > 20),

the unsynchronized scenarios with both modifications outperform the synchronized

scenario in terms of higher successful broadcast ratio. This is because when N is large,

a receiver often has more than one senders. These senders broadcast the message on

different channels to the receiver. Thus, the impact of unsynchronized time slots is

diminished. Additionally, both modifications increase the probability that a receiver

receives the broadcast message by either extending the broadcasting sequence or

increasing the downsized available channel set. Therefore, the successful broadcast

ratio of the unsynchronized scenarios with modifications is higher than that of the

synchronized scenario. From Figure 3.36 and 3.37, the modifications can achieve

up to 4% improvement on the successful broadcast ratio but cost up to 5% longer

average broadcast delay as compared to the scenario without modification. The first

modification even achieves shorter average broadcast delay when N =5. Therefore,

it is worthy to use the modifications when time slots are unsynchronized.

3.9.4 Broadcast Collision Analysis

In this section, we evaluate the performance of broadcast collisions for our pro-

posed BRACER protocol. Since broadcast collisions usually lead to the waste of

network resources, they should be efficiently avoided to save network resources. In

this chapter, we use the average number of broadcast collisions in a broadcast proce-

dure per SU node as the performance metric.

Figure 3.38 shows the average number of broadcast collisions under different num-

bers of channels. It is illustrated that the Proposed Scheme outperforms the Se-

quence+Flooding and Sequence+Schedule schemes in terms of fewer broadcast col-
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lisions on average. This means that the broadcast collision avoidance scheme in

the Proposed Scheme can effectively avoid broadcast collisions. In addition, the

Proposed Scheme also incurs fewer broadcast collisions than the Random+Flooding

scheme when M ≤ 20. That is, the Random+Flooding scheme performs better

than the Proposed Scheme only when M is very large. This is because that in the

Random+Flooding scheme, each sender randomly selects an available channel in the

band to broadcast. If the number of channels is large, the probability that two

senders select the same channel is fairly low. However, when M is small, the Ran-

dom+Flooding scheme leads to the highest number of broadcast collisions among the

four schemes (e.g., M=5). Even though the Random+Flooding scheme causes the

fewest broadcast collisions whenM is large, the successful broadcast ratio and average

broadcast delay of the Random+Flooding scheme are not acceptable, as shown in Ta-

ble 3.3∼3.6. Additionally, the Sequence+Schedule scheme performs better than the

Sequence+Flooding scheme, as shown in Figure 3.38. This means that our proposed

distributed broadcast scheduling scheme also contributes to the collision avoidance.
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Figure 3.38: Average number of broadcast collisions under different numbers of chan-
nels when N = 10.

3.9.5 Overhead Analysis

Overhead is an important metric to evaluate the efficiency of a broadcast protocol.

To evaluate the impact of overhead, we use normalized overhead as the performance

metric [100, 101, 102]. Normalized overhead is defined as the ratio of the total broad-
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cast packets (in bits) propagated by every node in the network to the total broadcast

packets (in bits) received by the receivers [100, 101, 102].

We denote the length of the original broadcast packet as Lb. Extra information

needs to be added in the original broadcast packet in order to realize the proposed

BRACER protocol. The extra information in a broadcast packet mainly consists of

three parts. First of all, as mentioned in Section 3.6.2, the sender should include

the calculated initial w of its 1-hop neighbors in the broadcast message. Secondly,

as described in Section 3.6.3, the sender should include its own channel availability

information and the starting time slot of its broadcasting sequence in the message.

Thirdly, the sender should include random integers for the intermediate nodes who

need to rebroadcast to the same node. Thus, if we define the length of the initial w,

the starting time slot, and the random integer as 8 bits, the length of the total extra

information in a broadcast packet in bits for a node is

Θ = 8Na +M + 8 + 8Nb, (3.11)

where Na is the number of the 1-hop neighbors of the node and Nb is the number of

the intermediate nodes who need to rebroadcast to the same node. Therefore, the

total length of a broadcast packet of the proposed BRACER protocol is Lb +Θ.

Figure 3.39 shows the normalized overhead under different lengths of the original

broadcast packet. We set the range of the original broadcast packet length as [50, 500]

bits. Since broadcast packets are control packets which are often very short, they

mainly fall in this range. In addition, we compare our proposed scheme with the Se-

quence+Flooding and Sequence+Schedule schemes. The Random+Flooding scheme

does not require the 2-hop location information, so we exclude it for fair comparison.

The length of the extra information in a broadcast packet for the Sequence+Flooding

and Sequence+Schedule schemes are Θ=0 and Θ=8Na, respectively. Thus, the Pro-

posed Scheme has the longest broadcast packets among the three schemes. Even
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though the Proposed Scheme has the longest extra information in a packet, it out-

performs the other two schemes in terms of lower normalized overhead, as shown in

Figure 3.39.
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Figure 3.39: Normalized overhead under different lengths of the original broadcast
packet.

Figure 3.40 shows the normalized overhead under different numbers of SUs. We

use the AODV route request (RREQ) packet as a typical original broadcast packet

(i.e., Lb = 192 bits) [35]. From Figure 3.40, it is shown that the proposed BRACER

broadcast protocol outperforms the other two schemes in terms of lower normalized

overhead under various numbers of SUs. More importantly, when the number of SUs

increases by 400%, the normalized overhead of the Proposed Scheme only increases

by 115%. Thus, the scalability of the proposed BRACER protocol is satisfactory.
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CHAPTER 4: ANALYTICAL MODEL FOR BROADCASTS IN CRAHNS

In CR ad hoc networks, control information exchange among nodes, such as chan-

nel availability and routing information, is often sent out as network-wide broadcasts

(i.e., messages that are sent to all other nodes in a network) [5]. Such control in-

formation exchange is crucial for the realization of most networking protocols. In

addition, some exigent data packets such as emergency messages and alarm signals

are also delivered as network-wide broadcasts [9]. Therefore, broadcast is an essential

operation in CR ad hoc networks.

As stated in Chapter 1, due to the randomness of the single-hop successful broad-

cast ratio and broadcast delay, the broadcast performance of a multi-hop CR ad hoc

network is extremely challenging to analyze. Therefore, in this chapter, we study

the performance analysis of broadcast protocols for multi-hop CR ad hoc networks.

A novel unified analytical model is proposed to analyze the broadcast protocols in

CR ad hoc networks with any topology. Specifically, in this chapter, we propose to

decompose an intricate network into several simple networks which are tractable for

analysis. We also propose systematic methodologies for such decomposition. The

main contributions of this chapter are given as follows:

1) An algorithm for calculating the successful broadcast ratio (i.e., the probability

that all nodes in a network successfully receive a broadcast message) is proposed for

CR ad hoc networks. The proposed algorithm is a general methodology that can be

applied to any broadcast protocol proposed for multi-hop CR ad hoc networks with

any topology. 2) An algorithm for calculating the average broadcast delay (i.e., the

average duration from the moment a broadcast starts to the moment the last node

in the network receives the broadcast message) is proposed for CR ad hoc networks
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under grid topology. 3) The derivation methods of the single-hop performance met-

rics, successful broadcast ratio, average broadcast delay, and broadcast collision rate

(i.e., the probability that a single-hop broadcast fails due to broadcast collisions), for

three different broadcast protocols in CR ad hoc networks under practical scenarios

(e.g., no dedicated common control channel exists and the channel information of any

other SUs is not known) are proposed. 4) A hardware system is developed to im-

plement different broadcast protocols in multi-hop CR ad hoc networks and validate

our proposed unified analytical model. To the best of our knowledge, this is the first

analytical work on the performance analysis of broadcast protocols for multi-hop CR

ad hoc networks.

4.1 Calculating the Successful Broadcast Ratio

In this section, we present the proposed algorithm for calculating the successful

broadcast ratio of a broadcast protocol in multi-hop CR ad hoc networks. We first

introduce a unique challenge of calculating the successful broadcast ratio. Then,

the details of the proposed algorithm are presented. In addition, an example is

given to show the process of the proposed algorithm. For simplicity, we assume that

the wireless channels are error-free (i.e., the white noise of the channels is ignored).

However, the probability that a broadcast fails due to the channel noise can be easily

added in our analysis, if necessary. In the rest of the chapter, we use the term “sender”

to indicate a SU who has just received a broadcast message and will rebroadcast the

message. In addition, we use the term “receiver” to indicate a SU who has not

received the broadcast message yet.

4.1.1 The Unique Challenge

Let G(V,E) denote the topology of a CR ad hoc network, where V is the set

of all SU nodes in the network and E is the set of all links in the network. The

problem of calculating the successful broadcast ratio is described as: given a CR ad

hoc network G(V,E), from the source node vs, every other node follows a certain rule
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to rebroadcast (e.g., simple flooding or the broadcast scheduling algorithm used in

the distributed broadcast scheme in [24]), what is the successful broadcast ratio of

G(V,E)?

The single-hop successful broadcast ratio may not always be one in CR ad hoc

networks due to various reasons. Therefore, a SU may not be able to receive the

broadcast message from its direct parent node. However, during the broadcast proce-

dure, it may receive the message from other nodes via different paths in the network.

This is different from the broadcast schemes in traditional MANETs, where nodes

usually receive broadcast messages from their parent nodes. This feature imposes a

special challenge of calculating the successful broadcast ratio for the whole CR ad

hoc network. That is, there exist multiple message propagation scenarios for all the

nodes to successfully receive the message. The overall successful broadcast ratio is the

sum of the successful broadcast ratio of all these propagation scenarios. However, it

is extremely challenging to calculate the successful broadcast ratio for every message

propagation scenario when the network topology is complicated.

C 

B A 

D 

p1 

p2 p3 

p4 

(a) A 2×2 grid net-
work.
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(b) A 2× 3 grid network.

Figure 4.1: An example for showing the unique challenge when calculating the suc-
cessful broadcast ratio.

To further illustrate this challenge, we consider a simple 2×2 grid network shown

in Figure 4.1(a), where node A is the source node. There are four links in the network,

where the successful broadcast ratio over each link is given. The single-hop successful

broadcast ratio depends on the specific broadcast protocol used. The method to ob-

tain the single-hop successful broadcast ratio may be different for different protocols.

We will explain the methods for calculating the single-hop successful broadcast ratio
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for various protocols in Section 4.3. If simple flooding is used to propagate the mes-

sage, there are totally seven different scenarios for all nodes to successfully receive

the message. They are: 1) A→B→D→C; 2) A→B→D and A→C; 3) A→B

and A→ C →D; 4) A→ C →D→ B; 5) A→ B→D, A→ C →D and B, C do

not have a collision at D; 6) A→ C → D → B, A→ B and A, D do not have a

collision at B; and 7) A→B→D→C, A→C and A, D do not have a collision at C.

Accordingly, since the broadcast events to different SU nodes are independent, the

successful broadcast ratio for these seven scenarios is: p1(1−p2)p3p4, p1p2p3(1−p4),

p1p2(1−p3)p4, (1−p1)p2p3p4, p1p2p3p4−pq1, p1p2p3p4−pq2, and p1p2p3p4−pq2, where

pq1 is the probability that B and C fail to broadcast to D due to broadcast collisions

and pq2 is the probability that A and D fail to broadcast due to broadcast collisions.

The probability that two nodes have a collision also depends on the specific broad-

cast protocol used. Therefore, the overall successful broadcast ratio is the sum of the

successful broadcast ratio of these seven scenarios, that is,

Psucc=p1(1−p2)p3p4+p1p2p3(1−p4)+p1p2(1−p3)p4+

(1−p1)p2p3p4+(p1p2p3p4−pq1)+2(p1p2p3p4−pq2).
(4.1)

Then, we increase the dimension of the grid network to 2× 3, as shown in Figure

4.1(b). If simple flooding is used, the total number of message propagation scenarios is

40. The overall successful broadcast ratio is the sum of the successful broadcast ratio

of all these 40 message propagation scenarios. Note that although only 2 additional

nodes and 3 additional links are added, the total number of propagation scenarios

increases significantly. Moreover, if the grid network size is 2 × 4, the total number

of message propagation scenarios is 252. If we further increase the dimension of

the grid network to 3 × 3, it is almost impossible to obtain the successful broadcast

ratio of every possible message propagation scenario. Therefore, when the number

of nodes and links increases in a CR ad hoc network, the total number of message
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propagation scenarios increases exponentially. It is extremely challenging to identify

every possible message propagation scenario and calculate the successful broadcast

ratio for each scenario in a complicated network.

4.1.2 The Proposed Algorithm

We develop an iterative algorithm to address the above challenge. The main

idea of the proposed algorithm is to decompose a complicated network into a few

simpler networks so that the successful broadcast ratio of these simpler networks is

straightforward to obtain and the complexity of the original network can be reduced.

Then, the successful broadcast ratio of the overall network can be acquired. The

notations used in the proposed algorithm are listed in Table 4.1. The pseudo-codes

of the proposed algorithm for calculating the successful broadcast ratio is shown in

Algorithm 1.

Table 4.1: Notations used in the Proposed Algorithm 1
E(v) The set of all the links that connect to node v

e(v, u) The link that connects node v and u

P (v, u) The successful broadcast ratio from node v to u

P (G(V,E)) The successful broadcast ratio of the network G(V,E)

Pq(v, u, k)
The probability that node v and u fail to broadcast to
node k due to broadcast collisions

| · | The number of elements in a set

Algorithm 1: The proposed algorithm for calculating the successful broadcast ratio.

Input: The topology of the network G(V,E), the source node vs.

Output: P (G(V,E)).

if |V | > 2 then

if |E(vs)| > 1 do

E1 ← E; V1 ← V ;

E2 ← E; V2 ← V ;

Randomly select e(vs, vi) ∈ E(vs);

foreach vk, e(vi, vk) ∈ E(vi) do
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E1 ← E1 + e(vs, vk);

if e(vs, vk) ∈ E(vs) then

P (vs, vk)← 1−(1−P (vi, vk))(1−P (vs, vk))−Pq(vs, vi, vk);

else

P (vs, vk)← P (vi, vk);

E1 ← E1 − E(vi); V1 ← V1 − vi; E2 ← E2 − e(vs, vi);

P (G(V,E))← P (vs, vi)P (G1(V1, E1)) + (1−P (vs, vi))P (G2(V2, E2));

return P (G(V,E));

else if |E(vs)| = 1 then

E1 ← E; V1 ← V ;

select e(vs, vi) ∈ E(vs)

foreach vk, e(vi, vk) ∈ E(vi) do

E1 ← E1 + e(vs, vk); P (vs, vk)← P (vi, vk);

E1 ← E1 − E(vi); V1 ← V1 − vi

P (G(V,E))← P (vs, vi)P (G1(V1, E1));

return P (G(V,E));

else if |V | = 2 then select e(vs, vi) ∈ E(vs);

P (vs, vi);

Under the proposed algorithm, at each iteration round, a link that connects to

the source node is randomly selected. Based on whether the broadcast over this link

is successful or not, the network is decomposed into two simpler networks. If the

broadcast over this link is successful, all links that connect to the other node of the

selected link will connect to the source node. If the broadcast over this link fails, this

link is simply removed from the network. The successful broadcast ratio over each

remaining link is updated accordingly after each iteration. The process terminates

when only two nodes are left in the remaining networks.
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4.1.3 An Illustrative Example

v1 

vs 

v2 

v3 

p1 p2 

p3 

p4 p5 

(a) The original net-
work.

v1 

vs 

v3 

1 

p4 

p5 

(b) Link e(vs, v2) is suc-
cessful.

v1 

vs 

v2 

v3 

p1 

p3 

p4 p5 

(c) Link e(vs, v2) is
failed.

vs 

v3 

5 

(d) Link e(vs, v1) is suc-
cessful after 4.2(b).

v1 

vs 

v3 
p4 

p5 

(e) Link e(vs, v1) is
failed after 4.2(b).

vs 

v2 

v3 

p3 

p4 

p5 

(f) Link e(vs, v1) is suc-
cessful after 4.2(c).

Figure 4.2: The process of the proposed Algorithm 1 for a 4-node CR ad hoc network.

We use an example to illustrate the process of the proposed Algorithm 1. As

shown in Figure 4.2(a), the original CR ad hoc network consists of 4 nodes and 5

links. Based on Algorithm 1, since the source node vs has two links, we randomly

select one of these two links (e.g., link e(vs, v2)). In the first iteration, if the broadcast

over the link e(vs, v2) is successful, all nodes that are originally connected to v2 are

connected to the source node, as shown in Figure 4.2(b). In addition, the successful

broadcast ratios of the new links are updated. That is, P (vs, v3) = P (v2, v3) = p5

and p′1=1−(1−p1)(1−p3)−Pq(vs, v2, v1) because the message propagation scenarios

in the original network for v1 to successfully receive the message directly from vs or

v2 are: 1) vs → v1 only; 2) vs → v2 → v1 only; and 3) vs → v1, vs → v2 → v1 and

vs, v2 do not have a collision at v1. The probability (1−p1)(1−p3) in calculating

p′1 is the probability that both vs and v2 fail to broadcast to v1. In addition, the

probability that node vs and v2 fail to broadcast to node v1 due to broadcast collisions
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Pq(vs, v2, v1) will be calculated in Section 4.3. On the other hand, if the broadcast

over the link e(vs, v2) fails, this link is simply removed from the network, as shown in

Figure 4.2(c). The successful broadcast ratio of the original network can be obtained

from the successful broadcast ratio of the two simpler networks, as shown in Figure

4.2(b) and 4.2(c). In the second iteration, these two simpler networks can be further

decomposed following the same procedure. For the network shown in Figure 4.2(b),

assume that we select the link e(vs, v1). Similar to the process of the first iteration,

this network is further decomposed into two networks, as shown in Figure 4.2(d) and

4.2(e), where p′5=1−(1−p4)(1−p5)−Pq(vs, v1, v3). Then, the successful broadcast ratio

of the network shown in Figure 4.2(b) can be obtained from the successful broadcast

ratio of these two new networks shown in Figure 4.2(d) and 4.2(e). For the network

shown in Figure 4.2(c), since the source node has only one link, this link must be

successful for other nodes to receive the message. Thus, this network is reduced to

the network shown in Figure 4.2(f) and the successful broadcast ratio of this network

can be obtained from the successful ratio of the network shown in Figure 4.2(f).

Therefore, if we repeat this process, the complexity of the networks from the second

iteration can be further reduced. Finally, the original network can be decomposed

into several single-hop networks. Then, the procedure of the proposed Algorithm 1

terminates. Therefore, the successful broadcast ratio of the original network can be

expressed as

Psucc=p2{[1−(1−p1)(1−p3)−Pq(vs, v2, v1)][1−(1−p4)

(1−p5)−Pq(vs,v1,v3)]+[(1−p1)(1−p3)+Pq(vs,v2,v1)]p4p5}

+(1−p2)p1{p3[1−(1−p4)(1−p5)−Pq(vs,v2,v3)]+(1−p3)p4p5}.

(4.2)

4.2 Calculating the Average Broadcast Delay

In this section, we introduce the proposed algorithm for calculating the average

broadcast delay of a broadcast protocol. Similar to the previous section, we first
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present the unique challenge of calculating the average broadcast delay for a CR ad

hoc network. Then, the detailed algorithm is given. Furthermore, an example is

shown to illustrate the process of the proposed algorithm.

4.2.1 The Unique Challenge

Since the single-hop broadcast delay depends on various factors, such as the chan-

nel availability of the communication pair and specific broadcast protocol, the single-

hop broadcast delay is random. Figure 4.3 illustrates the randomness of the single-

hop broadcast delay in CR ad hoc networks. In Figure 4.3, node A is the sender and

broadcasts the message on each available channel sequentially. In addition, node B

is the receiver and constantly listens on the channel shown in the bold font. Since

node B does not have any information about the sender before a broadcast starts, the

channel it stays on is randomly selected. It is shown that, even though the channel

availability of node B is the same in the two scenarios shown in Figure 4.3(a) and

4.3(b), the single-hop broadcast delay is quite different (i.e., it takes 1 time slot for

a successful broadcast in Figure 4.3(a), while it takes 5 time slots for a successful

broadcast in Figure 4.3(b)). Hence, due to this randomness, to obtain the single-hop

broadcast delay in CR ad hoc networks is challenging. Moreover, if the number of

senders and receivers is larger than one, it is even more difficult.

B A 

(1,2,3,4,5) (1,2,4,5,6) 

(a) B is on channel 1.

B A 

(1,2,3,4,5) (1,2,4,5,6) 

(b) B is on channel 5.

Figure 4.3: An example for showing the randomness of the single-hop broadcast delay
in CR ad hoc networks.

4.2.2 The Proposed Algorithm

Since to obtain the closed form expression of the average broadcast delay for

arbitrary network topology is extremely complicated, in this chapter, we focus on the

grid topology. However, the proposed methodology can be applied to any network

topology. We define the level of SUs as h if they are h hops to the source node



93

(denoted as L = h). Figure 4.4 shows an example of an 8-node CR ad hoc network

with the levels of SUs where A is the source node. Then, the original network is

decomposed into Hm levels, where Hm is the distance from the source node to the

furthest node in the network. To make the derivation process tractable, we first make

two assumptions. First of all, we assume that the broadcast message is propagated

from the source node to the furthest node sequentially based on the relative distance

to the source node. This means that, we assume that the nodes who are closer to the

source node receive the message sooner than the nodes who are farther away from the

source node. Based on this assumption, we categorize the SUs based on their relative

distances to the source node. We further justify this assumption using simulation.

We apply the broadcast protocol proposed in [23] to the network shown in Figure

4.4. Figure 4.5 shows the simulation results of the average delay for different nodes

to receive the broadcast message in the network shown in Figure 4.4. It is shown that

nodes at a higher level (e.g., nodes D and E at the second level) receive the broadcast

message later than the nodes at a lower level on average (e.g., nodes B and C at the

first level), which justifies our first assumption. The second assumption is that only

the nodes that are at the highest level or have a path leading to the furthest node

(excluding the source node) contribute to the overall average broadcast delay. Other

nodes will be removed from the network for calculating the average broadcast delay.

This assumption is straightforward since those nodes are independent of the message

propagation path to the nodes at the highest level. For instance, in Figure 4.4, nodes

G and H do not contribute to the message propagation to node F . Thus, they can

be removed when calculating the average broadcast delay of the network.

The main idea of the proposed algorithm is that the overall average broadcast

delay is the sum of the average broadcast delay at each level. At each level, it is a

simple network whose average broadcast delay can be obtained. That is, Γ =
∑Hm

i Di,

where Γ is the overall average broadcast delay and Di is the average broadcast delay
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Figure 4.4: An example of a 8-node CR ad hoc network with the levels of SUs.
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Figure 4.5: The average delay for different nodes to receive the broadcast message in
the network shown in Figure 4.4.

of the nodes at level i.

Then, we calculate the average broadcast delay at level i, Di. Based on the

number of parent nodes, there exist only two scenarios of the single-hop broadcast in

a grid topology network. The first scenario is that a SU only has one parent node

(denoted as Scenario I, as shown in Figure 4.6(a)), while the second scenario is that

a SU has two parent nodes (denoted as Scenario II, as shown in Figure 4.6(b)). We

further prove that the maximum number of parent nodes for a node in grid topology

networks is two. The proof is: if there are more than two parent nodes (say, three),

these three nodes should be at the same level. However, for any node that is the

parent node of any two of those parent nodes (exactly 1-hop away), it needs more

than two hops to reach the third parent node. That is, these three nodes cannot be

at the same level. Therefore, only the two single-hop broadcast scenarios shown in

Figure 4.6 exist. We assume that for the nodes at the same level, there are α Scenario

I and β Scenario II.
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B A 

(a) Scenario I.

B A 

C 

(b) Scenario II.

Figure 4.6: Two single-hop broadcast scenarios in a grid topology network.

If the current level, level i, is not the highest level, the average broadcast delay

at level i is the mean of the single-hop average broadcast delay of the nodes at level

i. That is, Di = (ατ1+βτ2)/(α+β), where τ1 and τ2 are the single-hop average

broadcast delay of Scenario I and II, respectively. Denote the probabilities that the

single-hop broadcast is successful at time slot k as PI(k) and PII(k) for Scenario I

and II, respectively. PI(k) and PII(k) can be obtained based on a specific broadcast

protocol, which is explained in Section 4.3. Given a successful broadcast, we first

obtain the conditional probability that the single-hop broadcast is successful at time

slot k for the two scenarios:

P1(k) =
PI(k)
∑

j PI(j)
,

P2(k) =
PII(k)
∑

j PII(j)
. (4.3)

Therefore, we have τ1 =
∑Tm

k=1 kP1(k) and τ2 =
∑Tm

k=1 kP2(k), where Tm is the maxi-

mum length of time slots the sender uses for broadcasting.

If the current level is the highest level, the calculation method for Di is different.

Since the probability that the broadcast is successful at time slot k is different in

the two broadcast scenarios, we need to consider two cases: the last SU node at

level i successfully receives the broadcast message is under Scenario I or Scenario II.

Therefore, we first assume that the last SU node successfully receives the broadcast

message at time slot d is under Scenario I and no other SU receives the message

at time slot d under Scenario II. Thus, we have the probability that the single-hop
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broadcast delay is d at level i as

P ′(Di=d)=

(
α

1

)

P1(d)

[
d∑

k=1

P1(k)

]α−1[d−1∑

k=1

P2(k)

]β

. (4.4)

Next, we assume that the last SU node successfully receives the broadcast message

at time slot d under Scenario II and no other SU node receives the message at time

slot d under Scenario I. Thus, we obtain

P ′′(Di=d)=

(
β

1

)

P2(d)

[
d−1∑

k=1

P1(k)

]α[ d∑

k=1

P2(k)

]β−1

. (4.5)

Last, we assume that under both scenarios, at least one node receives the broadcast

message at time slot d. Hence, we have

P ′′′(Di=d)=

(
α

1

)(
β

1

)

P1(d)P2(d)

[
d−1∑

k=1

P1(k)

]α−1[d−1∑

k=1

P2(k)

]β−1

. (4.6)

Therefore, the probability that the single-hop broadcast delay is d at level i can be

written as

Pr(Di=d)=P ′(Di=d)+P ′′(Di=d)+P ′′′(Di=d). (4.7)

Then, the average broadcast delay at level i is

Di =
Tm∑

d=1

dPr(Di=d). (4.8)

4.2.3 An Illustrative Example

We use the example shown in Figure 4.4 to illustrate the proposed algorithm for

calculating the average broadcast delay. From Figure 4.4, there are three levels of

nodes in the network. As explained above, according to our second assumption, we

first remove nodes G and H for the consideration of average broadcast delay. Then,

at the first level, since both nodes B and C are under Scenario I, for D1, we have
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D1= τ1 =
Tm∑

k=1

kPI(k)
∑

j PI(j)
. (4.9)

That is, the average broadcast delay at level 1 is the same as the single-hop broadcast

delay under Scenario I. At the second level, nodes D and E are under different

scenarios. Therefore, we have

D2=
τ1+τ2

2
=
1

2

[
Tm∑

k=1

kPI(k)
∑

j PI(j)
+

Tm∑

k=1

kPII(k)
∑

j PII(j)

]

. (4.10)

Finally, for D3, since this is the highest level, D3 can be obtained using (4.8), where

α = 0 and β = 1. That is,

D3 =
Tm∑

d=1

d
PII(d)
∑

j PII(j)
. (4.11)

By summing up the average broadcast delay of these three levels, the overall average

broadcast delay for the network shown in Figure 4.4 can be written as Γ =
∑3

i=1 Di.

4.3 Broadcasting in CR Ad Hoc Networks

In this section, we first introduce several existing broadcast designs, i.e., the ran-

dom scheme and the schemes proposed in [23][24], for CR ad hoc networks under

practical scenarios. Since the broadcast schemes proposed in [21] and [22] are based

on impractical assumptions (i.e., a dedicated common control channel for the whole

network is employed and the available channel information of all SUs are assumed to

be known), we exclude these proposals in this research. In addition, we propose the

derivation methods to calculate the single-hop broadcast performance metrics (i.e.,

successful broadcast ratio, average broadcast delay, and broadcast collision rate) for

each protocol.

4.3.1 Random Broadcast Scheme

The first broadcast scheme is called the random broadcast scheme. Since a SU

is unaware of the channel availability information of other SUs before broadcasts are

executed, a straightforward action for a SU sender is to randomly select a channel
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from its available channel set and broadcasts a message on that channel in a time

slot. If the channel selected by the receiver is the same as the channel selected by

the sender, the broadcast message can be successfully received. Figure 4.7 illustrates

the procedure of the random broadcast scheme, where the shaded part represents a

successful broadcast.

1 3 4 1 5 4

3 1 2 4 3 2

Tx

Rx

3 4 5 3 5 2

1 2 4 3 2 1

Figure 4.7: An example of the random broadcast scheme.

4.3.1.1 Single-hop Successful Broadcast Ratio for the Random Broadcast Scheme

We first calculate the single-hop successful broadcast ratio for the random broad-

cast scheme. Without loss of generality, in the rest of the chapter, the sender and

the receiver of the single-hop link is denoted as A and B. We further denote the

numbers of available channels for the single-hop communication pair as NA and NB,

respectively. The number of common channels between A and B is ZAB. Therefore,

the probability that the single-hop broadcast is successful in a time slot is

pr =

(
ZAB

1

)
1

NA

1

NB

=
ZAB

NANB

. (4.12)

Therefore, if the length of the time slots that the sender uses for broadcasting is Sr,

the single-hop successful broadcast ratio for the random broadcast scheme is

Prand = 1−
(

1− ZAB

NANB

)Sr

. (4.13)

4.3.1.2 Single-hop Average Broadcast Delay for the Random Broadcast Scheme

Next, we calculate the single-hop average broadcast delay for the random broad-

cast scheme. In this chapter, since we focus on grid topology for the broadcast delay,

we only need to consider the two single-hop broadcast scenarios shown in Figure
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4.6. For Scenario I, since the sender and the receiver randomly select a channel in a

time slot, the probability that the single-hop broadcast is successful at time slot k is

PI(k) = (1−pr)k−1pr, where pr is given in (4.12). For scenario II, since there are two

senders, we denote the other sender as C and the number of available channels of C

is NC . In addition, the number of common channels between B and C is ZBC . Thus,

similar to (4.12), the probability that the single-hop broadcast is successful between

C and B in a time slot is pm = ZBC

NBNC
. Hence, the probability that the single-hop

broadcast is successful under Scenario II in a time slot is pr2 = [1−(1−pr)(1−pm)]−pq1,

where pq1 is the probability that nodes A and C have a broadcast collision at node B

in a time slot. The derivation of pq1 is given in Section 4.3.1.3. Hence, the probability

that the single-hop broadcast is successful at time slot k can be expressed as

PII(k) = (1−pr2)k−1pr2. (4.14)

Then, based on (4.3), given the single-hop broadcast is successful, the conditional

probability that the receiver successfully receives the broadcast message at time slot

k for both scenarios under the random broadcast scheme, P1(k) and P2(k), can be

obtained.

PI(k) =







∑y∗∗

y=y∗
(ZAB

y )(NA−ZAB
n−y )

(NA
n )

(NB−⌊ k−1
n ⌋−1

y−1 )
n(NB

y )
, if k ≤ n(NB−y)

∑y∗∗

y=y∗
(ZAB

y )(NA−ZAB
n−y )

(NA
n )

1

n(NB
y )

, if n(NB−y) < k ≤ n(NB−y + 1)

0, if k > n(NB−y + 1).

(4.15)

PII(k) =







∑y∗∗

y=y∗

∑x∗∗

x=x∗

∑q∗

q=0

(ZAB
y )(NA−ZAB

n−y )
(NA

n )
(NB−⌊ k−1

n
⌋−1

2y−2q−1
)

n( NB
2y−2q)

Pr(x) Pr(q), if k≤n(NB−2y+2q)

∑y∗∗

y=y∗

∑x∗∗

x=x∗

∑q∗

q=0

(ZAB
y )(NA−ZAB

n−y )
(NA

n )
1

n( NB
2y−2q)

Pr(x) Pr(q),

if n(NB−2y+2q)<k≤n(NB−2y+2q+1)

0, if k>n(NB−2y+2q+1).

(4.16)
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4.3.1.3 Single-hop Broadcast Collision Rate for the Random Broadcast Scheme

Next, we calculate the single-hop broadcast collision rate for the random broadcast

scheme. We first derive the probability that nodes A and C have a broadcast collision

at node B in a time slot, pq1. pq1 is equivalent to the probability that all the three

nodes select the same channel. Denote the number of common channels among the

three nodes as ZABC . Thus, we have

pq1 =
ZABC

NANBNC

. (4.17)

Since the length of the time slots that the sender uses for broadcasting is Sr,

the probability that a single-hop broadcast fails due to broadcast collisions for the

random broadcast scheme can be written as

Pq(A,C,B) =
Sr∑

l=1

(
Sr

l

)

plq1 [(1−pr)(1−pm)]Sr−l , (4.18)

where l is the number of time slots when nodes A and C have a broadcast collision

at node B.

4.3.2 QoS-based Broadcast Scheme

The second scheme is called the QoS-based broadcast scheme [23][103]. The main

idea of the QoS-based broadcast scheme is to let the sender broadcast on a subset

of its available channels in order to reduce the broadcast delay. In addition, the

channel hopping sequences of both the sender and the receiver are designed for guar-

anteed rendezvous, given that the sender and the receiver have at least one channel in

common in their hopping sequences. Figure 4.8 shows an example of the QoS-based

broadcast scheme. For each sender, it randomly selects n channels from its available

channel set. Then, it hops and broadcasts periodically on the selected n channels for

S time slots. The values of n and S are determined by the QoS requirements of the

network (i.e., the successful broadcast ratio and the average broadcast delay). On
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the other hand, for each receiver, it first forms a random sequence that consists of its

every available channel with a length of n time slots for each channel. Then, it hops

and listens following this sequence periodically.

3 6 3 6 3 6

1 1 2 2 6 6

Tx

Rx

3 6 3 6 3 6

1 1 2 2 6 6

S

n × mi

Figure 4.8: An example of the QoS-based broadcast scheme.

4.3.2.1 Single-hop Successful Broadcast Ratio for the QoS-based Broadcast Scheme

We continue to use the notations for calculating the single-hop performance met-

rics in the random broadcast scheme for the QoS-based broadcast scheme. Denote

the number of channels in the n channels selected by node A which are also in the

available channel set of node B as y. We assume that the length of time slots that

the sender uses for broadcasting, S, is a multiple of n. Thus, the single-hop successful

broadcast ratio for the QoS-based broadcast protocol is

Pqos =

y∗∗
∑

y=y∗

H(y), (4.19)

where y∗ = max(1, n+ZAB−NA), y
∗∗ = min(n, ZAB), and H(y) is written as

H(y)=







(ZAB
y )(NA−ZAB

n−y )
(NA

n )
(NB

y )−(
NB−S

n
y )

(NB
y )

, if y<NB− S
n

(ZAB
y )(NA−ZAB

n−y )
(NA

n )
, if y≥NB− S

n
,

(4.20)

where
(ZAB

y )(NA−ZAB
n−y )

(NA
n )

is the probability that there are y common channels between

the sender and the receiver in the selected n channels by the sender. (4.20) indicates

that when S is large enough (the case when y ≥NB− S
n
), the single-hop successful

broadcast ratio is independent of S.



102

4.3.2.2 Single-hop Average Broadcast Delay for the QoS-based Broadcast Scheme

Secondly, we calculate the single-hop average broadcast delay for the QoS-based

broadcast scheme. Similar to the random broadcast scheme, we first calculate the

probability that the single-hop broadcast is successful at time slot k. Based on the

broadcast protocol shown in Figure 4.8, one cycle of the broadcasting sequence of

the receiver consists of NB sections, where each section includes the same channel

repeated for n times. If the channel in a section is the first appearing common

available channel of nodes A and B, the single-hop broadcast is successful within

that section. Denote the sections of one cycle of the broadcasting sequence of the

receiver as [f1, f2, · · · , fNB
]. We calculate the probability that for a particular y, the

channel in fi is the first appearing common available channel, Pr(fi), i ∈ [1, NB−y+1].

This probability is equal to the probability that the first ball is in the i-th box if y balls

are randomly put in NB boxes. Therefore, Pr(fi) =
(NB−i

y−1 )
(NB

y )
. Since time slot k is in the

(⌊k−1
n
⌋ + 1)-th section, the probability that the single-hop broadcast is successful in

f⌊ k−1
n

⌋+1 is
(NB−⌊ k−1

n ⌋−1

y−1 )
(NB

y )
. On the other hand, given that the first appearing common

available channel is in f⌊ k−1
n

⌋+1, since the channels in the broadcasting sequence of

the sender is evenly distributed, the conditional probability that the broadcast is

successful in time slot k is 1
n
. Therefore, for Scenario I, the probability that the

single-hop broadcast is successful at time slot k is expressed in (4.15).

For Scenario II, for simplicity, we assume that both the two senders have the

same number of common available channels with the receiver (i.e., ZAB = ZBC).

In addition, the numbers of channels that are also available for the receiver in the

PII(k) =







∑w

z1=1

∑w

z2=1

∑z∗

x=0

∑q∗

q=0

(w−⌊ k−1
w

⌋−1

z1+z2−2q−1
)

w( w
z1+z2−2q)

Pr(z1)Pr(z2)G(x)U(q), if k≤w(w−z1+z2+2q)
∑w

z1=1

∑w
z2=1

∑z∗

x=0

∑q∗

q=0
1

w( w
z1+z2−2q)

Pr(z1)Pr(z2)G(x)U(q),

if w(w−z1+z2+2q)<k≤w(w−z1+z2+2q+1)

0, if k>w(w−z1+z2+2q+1).

(4.21)
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selected n channels by the two senders are the same (denoted as y). Denote the

number of channels in the available channel sets of the two senders that are also

available for all three nodes as x. Therefore, the probability that there are x channels

that are available for all three nodes in their selected available channel sets is Pr(x) =
(

ZABC

ZAB

)x (

1− ZABC

ZAB

)y−x

, where ZABC is the number of channels that are available for

all three nodes. Therefore, the probability that the single-hop broadcast is successful

at time slot k under Scenario II is written in (4.16), where Pr(q) is the probability

that there are q channels out of x channels appearing in the same time slots. In

addition, x∗ =max(0, y−ZAB+ZABC), x
∗∗ =min(y, ZABC), and q∗ =min(x, y − 1).

Thus, Pr(q) is written as

Pr(q)=







(xq)[(n−q)!−
∑x−q

j=1 (−1)(j+1)(x−q
j )(n−q−j)!]

n!
, if 0≤q<x

(n−q)!
n!

, if q=x.

(4.21)

Then, based on (4.3), given the single-hop broadcast is successful, the conditional

probability that the receiver successfully receives the broadcast message at time slot

k for both scenarios under the QoS-based broadcast scheme, P1(k) and P2(k), can be

obtained.

4.3.2.3 Single-hop Broadcast Collision Rate for the QoS-based Broadcast Scheme

Then, we calculate the single-hop broadcast collision rate for the QoS-based broad-

cast scheme. The probability that two senders have a broadcast collision is equivalent

to the probability that all the common channels selected by the two senders appear

in the same time slots. Therefore, using (4.22), the probability that a single-hop

broadcast fails due to broadcast collisions for the QoS-based broadcast scheme is

Pq(A,C,B)=

y∗∗
∑

y=y∗

(
ZAB

y

)(
NA−ZAB

n−y

)(
ZABC

y

)

(
NA

n

)(
ZAB

y

)2

(n− y)!

n!
. (4.22)
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4.3.3 Distributed Broadcast Scheme

The third broadcast scheme considered in this chapter is called the distributed

broadcast scheme [24][104]. In this scheme, all SU nodes in the network intelligently

select a subset of available channels from the original available channel set for broad-

casting. The size of the downsized available channel set is denoted as w. The value

of w needs to be carefully designed to ensure that at least one common channel ex-

ists between the downsized available channel sets of the SU sender and each of its

neighboring nodes. Figure 4.9 gives an example of the broadcasting sequences of the

distributed broadcast scheme. For a SU sender, it hops periodically on the w available

channels for w cycles (one cycle consists of w2 time slots). For each receiver, it stays

on one of the w available channels for w time slots. Then, it repeats for every channel

in the w available channels.

2 1 2 1 2 1Tx

Rx

2 1

4 4 4 3 3 3 2 2 2

...

1 cycle

1 cycle

Figure 4.9: An example of the broadcasting sequences of the distributed broadcast
scheme.

4.3.3.1 Single-hop Successful Broadcast Ratio for the Distributed Broadcast Scheme

Similar to the previous schemes, we first calculate the single-hop successful broad-

cast ratio for the distributed broadcast scheme. As discussed above, the size of the

downsized available channel set, w, has significant impact on the performance of

the distributed broadcast scheme. If w is given, the single-hop successful broad-

cast ratio is equivalent to the probability that the sender and the receiver have at

least one channel in common in their downsized available channel sets. That is,

Pdist = 1−Pr(Z(0, i)=0), where Pr(Z(0, i)=0) is the probability that the sender and

the receiver do not have any common channel in their downsized available channel

sets. The derivation process of Pr(Z(0, i)=0) is the same as the method proposed in
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[24].

4.3.3.2 Single-hop Average Broadcast Delay for the Distributed Broadcast Scheme

Then, we calculate the single-hop average broadcast delay for the distributed

broadcast scheme. For simplicity, we assume that the w obtained by the receiver

is the same as the w of the sender. In addition, we denote the number of common

channels between the sender and the receiver as z. We calculate the probability that

the single-hop broadcast is successful at time slot k under Scenario I. Based on the

broadcast protocol proposed in [24], the broadcasting sequence of a receiver consists of

w sections where each section includes the same channel repeated for w times. Similar

to the QoS-based broadcast scheme, the probability that for a particular z, the channel

in t⌊ k−1
w

⌋+1 is the first appearing common available channel in the downsized available

channel set of the sender is expressed as Pr(t⌊ k−1
w

⌋+1) =
(w−⌊ k−1

w ⌋−1

z−1 )
(wz)

.

In addition, given that the first appearing common available channel is in (⌊k−1
w
⌋+

1)-th section, the conditional probability that the broadcast is successful in time slot

k is 1
w
. Therefore, for Scenario I, the probability that the single-hop broadcast is

successful at time slot k is expressed as

PI(k)=







∑w
z=1

(w−⌊ k−1
w ⌋−1

z−1 )
w(wz)

Pr(z), if k≤w(w−z)
∑w

z=1
1

w(wz)
Pr(z), if w(w−z)<k≤w(w−z+1)

0, if k>w(w−z+1),

(4.23)

where Pr(z) is the probability that there are z common channels in the downsized

available channel sets between the sender and the receiver. The derivation process of

Pr(z) is given in [24].

Then, for Scenario II, denote the numbers of common available channels that the

two senders have with the receiver in the downsized available channel sets as z1 and z2,

respectively. In addition, denote the number of channels in the downsized available
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channel sets of the two senders that are available for all three nodes as x. Since the

available channels are evenly distributed in the spectrum band, the probability that

there are x channels that are available for all three nodes in their downsized available

channel sets is G(x) =
(
z∗

x

)
P x
A(1−PA)

z∗−x, where PA is the probability that a channel

is available for all three nodes and z∗ = min(z1, z2). In addition, PA can be obtained

from [24]. Therefore, similar to the QoS-based broadcast scheme, the probability that

the single-hop broadcast is successful at time slot k under Scenario II is expressed

in (4.21), where U(q) is the probability that there are q channels out of x channels

appearing at the same time slots. In addition, q∗=min(x, z∗− 1). Using (4.22), U(q)

can be written as

U(q)=







(xq)[(w−q)!−
∑x−q

j=1 (−1)(j+1)(x−q
j )(w−q−j)!]

w!
, if 0≤q<x

(w−q)!
w!

, if q=x.

(25)

Then, based on (4.3), given the single-hop broadcast is successful, the conditional

probability that the receiver successfully receives the broadcast message at time slot

k for both scenarios under the distributed broadcast scheme, P1(k) and P2(k), can be

obtained.

4.3.3.3 Single-hop Broadcast Collision Rate for the Distributed Broadcast Scheme

Finally, we calculate the single-hop broadcast collision rate for the distributed

broadcast scheme. Note that in [24], a broadcast collision avoidance scheme is pro-

posed. If this scheme is used, broadcast collisions can be avoided. However, it involves

significant changes to the broadcasting sequences of the senders shown in Figure 4.9.

To make the analysis tractable, in this chapter, we do not consider the broadcast

collision avoidance scheme. Therefore, similar to the QoS-based broadcast scheme,

the probability that a single-hop broadcast fails due to broadcast collisions for the

distributed broadcast scheme is
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Pq(A,C,B) =
w∑

z=1

(w − z)!

w!
P z
A Pr(z). (4.26)

4.4 Performance Evaluation

In this section, we validate our proposed unified analytical model using both

hardware implementation and simulation in order to prove its correctness.

4.4.1 Validating Analysis using Hardware Implementation

The considered broadcast schemes have been implemented in embedded wireless

radios. Each radio contains a Qualcomm Atheros IEEE 802.11 a/b/g chipset, and

MADWIFI is used as the medium access control (MAC) driver. The three broadcast

schemes are implemented as sub-functions of the MAC driver.

4.4.1.1 Time Slot and Synchronization

To support synchronized transmission of broadcast messages in different time slots,

we first need to implement timing events that are synchronized among all communi-

cation nodes [105]. In order to minimize the impact by the software in the driver, a

hardware register called software beacon alert (SWBA) is utilized to generate timing

events. To support different timing events, the value in the SWBA register must be

set into the time interval between the current timing event and the next expected

timing event. Based on this mechanism, the time-line of each communication node

is split into consecutive time slots each consisting of two portions: channel switching

(CSS) and packet transmission/reception (PTR), as shown in Figure 4.10.

To synchronize time slots among all nodes, we adopt two mechanisms of IEEE

802.11 [106]: target beacon transmission time (TBTT) and timing synchronization

function (TSF). Within each beacon interval, the first time slot must be aligned with

TBTT, as shown in Figure 4.10. Through TSF, the time in the TSF register of

different nodes is synchronized. Since TBTT is determined based on the timing value

of the TSF register, the time slots of different nodes are synchronized accordingly.
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TBTT TBTT TBTT

Beacon Interval Beacon Interval

CSS PTR CSS PTR CSS PTR CSS PTR… …
Time

Slot 1

Time

Slot 1

Time

Slot kSlot 1 Slot 1 Slot k

SWBA
1
= CSS

SWBA
2
= PTR

Figure 4.10: Synchronized time slots for IEEE 802.11 chipsets.

4.4.1.2 Packet Transmission/Reception and Channel Selection

In a source node, a broadcast message is generated in the PTR portion of a

time slot and is then sent in a selected channel. This process repeats for S time

slots. Other nodes in the network attempt to receive the broadcast message from

its neighboring nodes and then rebroadcast it. Due to slot-by-slot operation, when a

broadcast message is received, it is rebroadcast in the next time slot in the selected

channel. This process is also repeated for S time slots. Since the same message

may be received for multiple times, a sequence number is added into each broadcast

message to avoid redundant broadcast messages. It should be noted that the channel

selection for packet transmission and reception follows the rules set by the specific

broadcast schemes developed in this chapter. The channel set in each node reflects

the activities of primary nodes and is determined according to off-line simulations.

4.4.1.3 Performance Measurement

Two performance metrics are used in our implementation: the successful broadcast

ratio and the average broadcast delay. The former metric measures the probability

that a broadcast message can be successfully received by all nodes in a network, and

the latter one records the average delivery time from the source node to the last

node. In order to get stable performance results, we repeat the experiments for N

measurements as shown in Figure 4.12. Within te seconds, one round of experiment is

conducted. te is selected large enough so that all non-source nodes finish the process

of receiving/rebroadcasting messages within the same period. In our experiments, we

set te to be 3 seconds for a multi-hop CR ad hoc network under Topology 1 as shown
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…

First round of experiment

t
e

…

Second round of experiment

t
e

… …

N-th round of experiment

t
e

…

First tx

time slot

Last tx

time slot

First tx

time slot

Last tx

time slot

Last tx

time slot
First tx

time slot

Figure 4.12: Repeating experiments.

in Figure 4.13(a).

Figure 4.14 shows comparisons between analytical results and experimental mea-

surements for the random and QoS-based broadcast schemes. The comparisons for the

distributed broadcast scheme are depicted in Figure 4.15, where two cases are consid-

ered: 1) Case 1: all nodes have the same w (i.e., w(A) = w(B) = w(C) = w(D) = 5)

and 2) Case 2: some nodes have different w (i.e., w(A) = w(B) = w(D) = 5 and

w(C) = 4). As we can see from Figs. 4.14 and 4.15, the implementation results fit

the analytical results fairly well.

C 

B A 

D 

(a) Topology 1.

C 

B 

A 

D 

E 

F 

(b) Topology 2.

Figure 4.13: Topology 1 and 2 considered in the performance evaluation.

4.4.2 Validating Analysis using Simulation

Due to the constraint on the total number of channels for hardware testing, we

also use simulations to validate our proposed analytical model when the number of

channels varies from 10 to 40. The side length of the simulation area Ls=10 (unit

length). PUs are evenly distributed within this area. The total number of PUs is

denoted as K = 40. The total number of channels is denoted as M . Furthermore,

each SU has a circular transmission range with a radius of rc. The SUs within the

transmission range are considered as the neighboring nodes of the corresponding SU.



110

5 10 15 20

0.2

0.4

0.6

0.8

1

Number of Channels

S
uc

ce
ss

fu
l B

ro
ad

ca
st

 R
at

io

 

 

Random scheme implementation
Random scheme analysis
QoS−based scheme implementation
QoS−based scheme analysis

(a) Successful broadcast ratio.
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(b) Average broadcast delay.

Figure 4.14: Analytical and implementation results using the random and QoS-based
broadcast schemes under Topology 1.
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(a) Successful broadcast ratio.

10 15 20

4

6

8

10

12

Number of Channels

A
ve

ra
ge

 B
ro

ad
ca

st
 D

el
ay

 (
sl

ot
s)

 

 

Case 1 implementation
Case 1 analysis
Case 2 implemenation
Case 2 analysis

(b) Average broadcast delay.

Figure 4.15: Analytical and implementation results using the distributed broadcast
scheme under Topology 1.
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In addition, each SU also has a circular sensing range with a radius of rs. That is,

if a PU is currently active within the sensing range of a SU, the corresponding SU

is able to detect its appearance. Moreover, we consider the PU traffic model used in

[89], where the PU packet inter-arrival time follows the biased-geometric distribution

[90][107]. In fact, our proposed algorithms do not rely on specific PU traffic models.

We assume that the probability that a PU is active is fixed (i.e., ρ=0.9). Each PU

randomly selects a channel from the spectrum band to transmit one packet. Since the

available channels for each SU depends on the sensing outcome in its sensing range,

we use the values from the simulation as the input for the proposed analytical model

(e.g., the number of common available channels between nodes A and B, ZAB). In

addition, we assume that the SU channel availability is stable during a broadcast

duration.

4.4.2.1 Single-hop Performance

We first investigate the single-hop performance of each broadcast protocol con-

sidered in this chapter, because this performance is the foundation of the multi-hop

performance evaluation. We study the two single-hop broadcast scenarios shown in

Figure 4.6. In our study, the nodes are at the border of each other’s sensing range.

Figure 4.16(a) to 4.16(c) show the analytical and simulation results of the single-hop

successful broadcast ratio using the three considered broadcast schemes under Sce-

nario I and II. For the random broadcast scheme, Sr is set to be the same as the
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(a) Random broadcast scheme.

10 15 20 25 30 35 40
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Number of Channels

S
uc

ce
ss

fu
l B

ro
ad

ca
st

 R
at

io

 

 

Simulation Scenario I
Analysis Scenario I
Simulation Scenario II
Analysis Scenario II

(b) QoS-based broadcast
scheme.
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(c) Distributed broadcast
scheme.

Figure 4.16: Analytical and simulation results of the single-hop successful broadcast
ratio using the three broadcast schemes under Scenario I and II.
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number of channels, M . For the QoS-based broadcast scheme, n = 2 and S = 2M .

In addition, for the distributed scheme, w = 5. It is shown that the simulation and

analytical results match very well with the maximum difference of 0.4%, 0.5%, and

0.7% for the three schemes, respectively. The figure indicates that the distributed

broadcast scheme can achieve the highest single-hop successful broadcast ratio.

In addition, Figure 4.17(a) to 4.17(c) illustrate the analytical and simulation re-
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(a) Random broadcast scheme.
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(b) QoS-based broadcast
scheme.
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(c) Distributed broadcast
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Figure 4.17: Analytical and simulation results of the single-hop average broadcast
delay using the three broadcast schemes under Scenario I and II.
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(a) Random broadcast scheme.

10 15 20 25 30 35 40
0.9

0.92

0.94

0.96

0.98

1

Number of Channels

S
uc

ce
ss

fu
l B

ro
ad

ca
st

 R
at

io

 

 

Simulation Topology 1
Analysis Topology 1
Simulation Topology 2
Analysis Topology 2

(b) QoS-based broadcast
scheme.
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Figure 4.18: Analytical and simulation results of the successful broadcast ratio using
the three broadcast schemes under Topology 1 and 2.
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(a) Random broadcast scheme.
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(b) QoS-based broadcast
scheme.
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Figure 4.19: Analytical and simulation results of the average broadcast delay using
the three broadcast schemes under Topology 3 and 4.
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sults of the single-hop average broadcast delay using the three considered broadcast

schemes under Scenario I and II. It is also shown that the simulation and analytical

results match very well with the maximum difference of 1.4%, 3.7%, and 5.5% for the

three schemes, respectively. The distributed broadcast scheme results in the lowest

single-hop average broadcast delay among the three schemes.

4.4.2.2 Successful Broadcast Ratio of Multi-hop CR ad hoc Networks

Next, we investigate the multi-hop performance. For the successful broadcast

ratio, we study the two topologies shown in Figure 4.13(a) and 4.13(b). The coordi-

nates of nodes in Topology 1 are A(4, 4), B(6, 4), C(5, 2.28), and D(7, 2.28). On the

other hand, note that Topology 2 is a 6-node network under arbitrary topology. More-

over, the coordinates of nodes in Topology 2 are A(4, 4), B(5.8, 4.8), C(5, 3), D(6.6, 3),

E(7, 4.5), and F (3, 5). The parameters of each broadcast scheme are set to be the

same as in the single-hop performance evaluation. In all topologies considered in the

performance evaluation, node A is the source node. Figure 4.18(a) to 4.18(c) show

the analytical and simulation results of the broadcast ratio using the three considered

broadcast schemes under Topology 1 and 2. It is shown that the simulation results

fit the analytical results well with the maximum difference of 2.1%, 4.6%, and 0.4%

for the three schemes, respectively. The distributed broadcast scheme still has the

best performance of successful broadcast ratio among the three schemes.

4.4.2.3 Average Broadcast Delay of Multi-hop CR ad hoc Networks

For the average broadcast delay, we investigate two grid topology networks: 1) a

3 × 3 grid network (denoted as Topology 3); and 2) a 4 × 4 grid network (denoted

as Topology 4). Figure 4.19(a) to 4.19(c) depict the analytical and simulation results

of the average broadcast delay using the three considered broadcast schemes under

Topology 3 and 4. It is shown that the simulation and analytical results coincide with

each other well with the maximum difference of 4.9%, 9.4%, and 6.5% for the three

schemes, respectively. Again, the distributed broadcast scheme has a much lower
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average broadcast delay, as compared to the other two schemes.

4.4.3 System Parameter Design using the Proposed Analytical Model

The system parameters of the proposed broadcast protocols in [21, 22, 23, 24]

are not designed to achieve the optimal performance due to the lack of analytical

analysis. In this chapter, we investigate the system parameter design of the random

broadcast scheme using the proposed analytical model. In the random broadcast

scheme, the length of time slots that the sender uses for broadcasting, Sr, is crucial

to the performance of the broadcasting. Note that there exists a trade-off when

determining Sr. If Sr is large, the successful broadcast ratio is high. However, the

average broadcast delay is also long. On the other hand, if Sr is small, the average

broadcast delay is short. However, the successful broadcast ratio is low. Hence, to

design an optimal Sr is essential to the performance of the random broadcast scheme.

We use an example to illustrate the process of the system parameter design. Consider

a CR ad hoc network under Topology 1 shown in Figure 4.13(a). We assume that the

single-hop successful broadcast ratio over each link is the same, which can be obtained

from (4.13) (denoted as p). Thus, using the proposed algorithm for calculating the

successful broadcast ratio, the successful broadcast ratio for the random broadcast

scheme under Topology 1 is

Psucc=p[1−(1−p)2−Pq]
2+p3{1−[1−(1−p)2−Pq]}

+(1−p)p2[1−(1−p)2−Pq]+(1−p)2p3,
(4.27)

where Pq is given in (4.18). It is known that Psucc is a function of Sr.

On the other hand, we calculate the average broadcast delay under Topology 1,

where node A is the source node. Since there are two levels in the network, we need to

obtain the average broadcast delay of each level. Thus, using the proposed algorithm
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for calculating the average broadcast delay, we have

Γ =
Sr∑

d=1

dP1(d) +
Sr∑

d=1

dP2(d), (4.28)

where P1(d) and P2(d) can be obtained from Section 4.3.1.2 and (4.3). Note that Γ

is also a function of Sr. Define the objective function of a broadcast protocol, Θ,

as the rate between the successful broadcast ratio and the average broadcast delay.

Therefore, we have Θ = Psucc

Γ
. Thus, the optimization problem of the protocol design

becomes finding the optimal Sr that maximizes the objective function, Θ. Then,

using certain numerical method, the optimal Sr can be obtained. Figure 4.20 shows

the numerical results of the objective function under various Sr. It is shown that

a proper Sr exists to achieve the optimal performance of a broadcast protocol. For

instance, when M = 10, the optimal Sr is 11. The corresponding successful broadcast

ratio is 81.25% and the average broadcast delay is 8.85 time slots.
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Figure 4.20: The numerical results of the objective function under various Sr.



CHAPTER 5: OPTIMAL HELLO EXCHANGE SCHEME IN CRAHNS

In this chapter, we study the optimal HELLO message exchange protocol in mo-

bile CR ad hoc networks. The proposed HELLO message exchange protocol can

achieve the optimal network performance in terms of SU throughput, average SU

waiting time, and control overhead. It is not only important, but also necessary to

link many essential functionalities in CR networks (i.e., spectrum sensing, spectrum

sharing, and spectrum mobility) to form an operative framework. Moreover, the pro-

posed HELLO message exchange protocol is independent of the particular spectrum

sensing, channel rendezvous, and networking protocols adopted. More specifically,

the main contributions of this research are:

1) The channel behavior caused by spatially distributed PUs and its impact on SU

traffic is mathematically modeled for the first time.

2) The trade-off between SU throughput as well as average SU waiting time and

control overhead is investigated analytically for the first time which takes into con-

sideration the changes in the channel behavior and the impact of the HELLO message

broadcast duration.

3) The impact of node mobility on the SU spectrum availability and the prompt

changes in the identities of PUs is studied.

4) Two optimal HELLO message exchange protocols based on the modeled trade-off

and node mobility impact are proposed for static and mobile CR ad hoc networks.

To the best of our knowledge, this is the first work that investigates the optimal

HELLO message exchange protocol design for both static and mobile CR ad hoc

networks.
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5.1 Network Model

In this chapter, we consider a CR ad hoc network where N SUs and K PUs co-

exist in an l×l area. PUs are evenly distributed within the area. SUs opportunistically

access M licensed channels. Each SU has a circular transmission range with a radius

of rc. The SUs within the transmission range are considered as the neighboring nodes

of the corresponding SU. Each SU also has a circular sensing range with a radius of rs.

If a PU is currently active within the sensing range of a SU, the corresponding SU is

able to detect its appearance. Since different SUs have different local sensing ranges

which include different PUs, their acquired available channels may be different.

In addition, we assume that the PU and SU traffic follows the M/D/1 model.

Denote the average PU and SU packet arrival rates as λp and λs, respectively, and

the average PU and SU packet lengths in terms of time as Lp and Ls, respectively.

Assume that each PU randomly selects a channel from the spectrum band to transmit

one packet which consists of multiple time slots. Moreover, because PUs at different

locations can claim any channels for communications, the packets on the same channel

do not necessarily belong to the same PU. Thus, the PU channel behavior usually

does not follow the same traffic behavior as a single PU. This is a more practical

scenario, as compared to some papers which assume that each channel is associated

with a different PU. Under such a practical scenario, only those PUs that are within

the sensing range of a SU and are active contribute to the unavailable channels of the

SU.

5.2 The Optimal HELLO Exchange Protocol for Static CRAHNs

In this section, we first consider the HELLO message exchange protocol for static

CR ad hoc networks. The problem is formulated by investigating the trade-off be-

tween SU throughput as well as average SU waiting time and control overhead under

different scenarios. Then, SU throughput and average waiting time are analytically

studied. Finally, based on the analysis, the optimal HELLO message exchange inter-
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val, α∗, is obtained.

5.2.1 Problem Formulation

To formulate the optimal HELLO message exchange problem, we first define two

scenarios. Denote the average SU service time as Xs. If λsXs<1, we define that the

SU traffic is unsaturated (or, stable). That is, any SU packet generated and waiting

in the queue can be served eventually given an infinite queue length. Hence, SU

throughput is equal to the average SU arrival rate. On the other hand, if λsXs≥ 1,

we define that the SU traffic is saturated (or, unstable). Since there is always a

SU packet transmission request following the previously finished transmission, SU

throughput is S= 1
Xs

. Therefore, SU throughput is expressed as

S =







λs if λsXs < 1

1
Xs

if λsXs ≥ 1.

(5.1)

Thus, we formulate two objective utility functions under the above two different

scenarios that capture the trade-off in determining the optimal HELLO message ex-

change interval. For the saturated scenario, the objective utility function is defined

as

U1(α) = S(α)− 1

αts
, (5.2)

where ts is the length of a time slot. In addition, the unit of the HELLO message ex-

change interval α is time slot. The second term of the objective function is the average

number of HELLO messages sent by a SU. Hence, our goal is to obtain the optimal

α∗ that maximizes U1(α). Moreover, since the objective function may not maintain

its concavity under all PU and SU traffic scenarios, we add another quality-of-service

(QoS) condition that the SU throughput should not be less than a threshold. That is,

S(α) ≥ η, where η is a threshold. Thus, we have α∗ = argmaxU1(α), w.r.t. S(α) ≥ η.

For the unsaturated scenario, since SU throughput is always the same (from (5.1)),

we use the SU average waiting time as the metric. Denote the SU average waiting
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time as Ws(α). Thus, the objective utility function is defined as

U2(α) =
1

Ws(α)ts
− 1

αts
. (5.3)

The unit of Ws(α) is time slot. Similar to SU throughput, Ws(α) should be less than

a threshold τ (i.e., Ws(α) ≤ τ).

Therefore, based on the objective functions and the QoS conditions, the optimal

HELLO message exchange interval, α∗, can be obtained. Before that, we need to

first derive the SU throughput S(α) and average SU waiting time Ws(α). However,

how to mathematically model the channel behavior caused by spatially distributed

PUs and the impact of the periodic HELLO message update on SU traffic is still

very challenging. We propose analytical models to address this challenge in Section

5.2.2∼5.2.4.

5.2.2 The Derivation of SU Throughput

From (5.1), the average SU service time Xs is crucial for evaluating the SU

throughput of CR ad hoc networks. In addition, since there also exist PU trans-

missions on the channels, SUs are not able to fully utilize the channels. Therefore,

the average SU service time is usually longer than the average SU packet length in

terms of time. That is, Xs ≥ Ls. Next, we derive Xs considering the PU traffic on

the channels.

Since SUs and PUs co-exist on the spectrum band, Xs is affected by various factors

(e.g., SU packet length, PU traffic, number of PUs, and number of channels). We first

consider the scenario where the HELLO message exchange is not implemented. As

mentioned earlier, since a PU packet may arrive in the middle of a SU transmission,

the SU packet may need to be transmitted several times before it is successful. Figure

5.1 shows an example of the scenario where the SU packet is retransmitted once.

From Figure 5.1, at t1, a new SU packet is transmitted on channel i. Before the

transmission is finished, a PU packet arrives on channel i at t2 and the channel
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becomes busy. Thus, a collision occurs and the current SU transmission fails. Then,

since we allow PUs to spatially reuse the channel, at t3, another PU packet arrives

on channel i from a different PU at a different location. Both PUs are within the

sensing ranges of the two SUs, so the channel is busy and cannot be used until all

PU transmissions end. Thus, at t4, all PU transmissions end and channel i becomes

idle again. The previously collided SU packet is retransmitted. Finally, at t5, the SU

packet is successfully transmitted.

SU packet

PU packet

SU packet

time

CH i

total SU service time, Xs

t1 t2 t4 t5

PU packet

t3

total channel busy time, Dbusy

Tu

Figure 5.1: An example where the SU packet is retransmitted once under the scenario
without the periodic HELLO message exchange.

Therefore, from Figure 5.1, the total SU service time is the duration from t1 to

t5. Denote the duration from t1 to t2 and the total channel busy time (i.e., the

duration from t2 to t4) as Tu and Dbusy, respectively. Thus, when the SU packet is

retransmitted once, the average SU service time is

Xs,1 = Tu +Dbusy + Ls. (5.4)

Given that a PU packet arrives during a SU transmission, the probability that the

PU packet arrives at an arbitrary time slot is the same. Thus, we have Tu = Ls

2
.

In addition, the derivation of the average channel busy duration, Dbusy, is given in

Section 5.2.4. Hence, the average SU service time when the SU packet is retransmitted

once is obtained. Since a SU packet may be retransmitted several times, using a

similar method, we can obtain the average SU service time when a SU packet is

retransmitted h, h ∈ {0, 1, 2, · · · } times, Xs,h. Therefore, we have
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Xs,h =

(
Ls

2
+Dbusy

)

h+ Ls, h = 0, 1, 2, · · · . (5.5)

Then, we calculate the probability that a SU packet is retransmitted h times,

Ps,h. Denote the probability that a PU packet does not arrive in the middle of a SU

packet transmission as P0. Therefore, we have Ps,h = (1− P0)
hP0. Since P0 is equal

to the probability that the channel is idle for Ls consecutive time slots, we obtain

P0 = (1− p01)
Ls , where p01 is the probability that the current time slot is busy given

that the previous time slot is idle. The derivation of p01 is also given in Section 5.2.4.

Hence, the average SU service time is

Xs =
∞∑

h=0

Xs,h · Ps,h. (5.6)

Next, we consider the scenario where the periodic HELLO message exchange is

implemented. Figure 5.2 shows an example where the SU packet is retransmitted

once under the periodic HELLO message exchange scenario. In Figure 5.2, the dark

rectangles represent HELLO message updates. Even though the dark rectangles are

shown on channel i in the figure, it does not mean that the HELLO message updates

are on channel i. They only represent the periods of time which are used for the

updates. From Section 5.1, it is known that the HELLO message update is related

to the adopted channel rendezvous scheme and usually involves multiple channels.

Different from the scenario without HELLO message exchange, under this scenario,

the SU does not have to wait until the current channel becomes idle again and then

retransmits the unsuccessful packet. Instead, after the current SU packet is collided,

if the two SUs perform the HELLO message exchange before t4 (e.g., at t
′), based on

the newly obtained channel availability of each other, they can switch to a new idle

channel (e.g., channel j in Figure 5.2) and start the packet retransmission. Thus, the

total SU service time can be reduced. Moreover, in Figure 5.2, the channel switching

delay is ignored, but it can be easily added in the total SU service time if necessary.
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HelloHello Hello

SU packet

PU packet

SU packet

time

CH i

total SU service time, Xs

t1 t2 t4

t5

PU packet

t3

total channel busy time, Dbusy

Tu

time

CH j

Tw

Tb

α

t’

switch to CH j

Figure 5.2: An example where the SU packet is retransmitted once under the scenario
with the periodic HELLO message exchange.

Denote the duration from the moment the current collided packet is finished to

the moment of the next upcoming HELLO message update as Tw. Thus, similar to

the scenario without the HELLO message exchange, given that a HELLO message

update is performed before the channel busy duration ends, the average SU service

time when the SU packet is retransmitted once is

X ′
s,1 = Ls + Tw + Tb + Ls. (5.7)

There are two cases when calculating Tw. If Dbusy + Tu−Ls < α, then given that

a HELLO message update is performed before the channel busy duration ends, the

probability that the HELLO message update arrives at an arbitrary time slot is the

same. Therefore, Tw =
Dbusy+Tu−Ls

2
. On the other hand, if Dbusy + Tu − Ls ≥ α,

a HELLO message update is guaranteed to arrive before the channel busy duration

ends. Thus, Tw = α
2
.

In addition, there exists a probability that the HELLO message update is not

performed before the channel busy duration ends. The average SU service time under

this scenario is equivalent to the scenario without the HELLO message exchange.

Thus, we have X ′′
s,1 = Tu + Dbusy + Ls. Denote the probability that the HELLO

message update is performed before the channel busy duration ends as Pm. Hence,
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the average SU service time when the SU packet is retransmitted once is

Xs,1 = PmX ′
s,1 + (1− Pm)X ′′

s,1. (5.8)

Since the HELLO update is performed periodically with the interval α and the PU

packet arrives randomly on a channel, we obtain

Pm =







Dbusy+Tu−Ls

α
if Dbusy + Tu − Ls < α

1 if Dbusy + Tu − Ls ≥ α.

(5.9)

Then, we calculate the average SU service time when the SU packet is retrans-

mitted h times. Given that a SU packet is retransmitted h times, the number of

times that the HELLO message update is performed before the channel busy dura-

tion ends is denoted as z. Therefore, the average SU service time when a SU packet

is retransmitted h times is

Xs,h =
h∑

z=0

(
h

z

)

P z
m(1− Pm)

h−z[z(Ls + Tw + Tb)+

(h− z)(Tu +Dbusy) + Ls], h = 0, 1, 2, · · · .
(5.10)

Using (5.1) and (5.6), the SU throughput can be obtained. Figure 5.3 shows the

analytical and simulation results of SU throughput with periodic HELLO message

exchange under saturated and unsaturated scenarios. It is shown that the simulation

validates the analysis very well.

5.2.3 The Derivation of the Average SU Waiting Time

Next, we derive the average SU waiting time. Using the Pollaczek-Khinchine

formula for the M/G/1 system [108], the average SU waiting time is given by

Ws =
λsX2

s

2(1− λsXs)
, (5.11)
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(a) The saturated scenario with λs=20 pkt/s.
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(b) The unsaturated scenario with λs=5 pkt/s.

Figure 5.3: The analytical and simulation results of SU throughput with periodic
HELLO message exchange under saturated and unsaturated scenarios.

where X2
s =σ2+(Xs)

2. In addition, the variance σ2 is expressed as

σ2 =
∞∑

h=0

(Xs,h −Xs)
2 · Ps,h. (5.12)

Hence, the average SU waiting time is obtained. Therefore, the only two unknown

parameters are Dbusy and p01. The derivation process of these two parameters is given

in the next section.

5.2.4 The Derivation of the Average Channel Busy Duration

In this section, the derivation process of the average channel busy duration, Dbusy,

is introduced. We use “0” and “1” to represent that the channel is idle and busy,

respectively. Denote H(t) as the status of the channel at time slot t. In addition, Q(t)

is the number of consecutive idle slots until time slot t from the last busy time slot.

Figure 5.4 shows three examples of the idle periods on a channel when Q(t) = 1, 2, 3.

channel 

status

t-1 t

busy idle

t-2 t-1

busy idle idle

t t-3 t-2

busy idle idle

t-1

idle

t

Q(t)=1 Q(t)=2 Q(t)=3

Figure 5.4: Three examples of the different idle period lengths on a channel.
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Based on the channel status of two consecutive time slots, we define the following

four conditional probabilities: 1) p00 =Pr(H(t) = 0|H(t−1)= 0); 2) p01 =Pr(H(t) =

1|H(t−1)=0); 3) p10=Pr(H(t)=0|H(t−1)=1); and 4) p11=Pr(H(t)=1|H(t−1)=1).

Therefore, from Figure 5.4, the probability that there are k consecutive idle time slots

can be expressed as Pr(Q(t)=k)=Pr(H(t)=0, H(t−1)=0, · · · , H(t−k)=1). Then,

since the PU arrival process is memoryless, using the Bayes’ theorem and the Markov

property, we have

Pr(Q(t)=k)

=Pr(H(t)=0|H(t−1)=0, · · · , H(t−k)=1)·

Pr(H(t−1)=0|H(t−2)=0, · · · , H(t−k)=1) · · ·

Pr(H(t−k+1)=0|H(t−k)=1) · Pr(H(t−k)=1)

=Pr(H(t)=0|H(t−1)=0)·Pr(H(t−1)=0|H(t−2)=0)· · ·

Pr(H(t−k+1)=0|(H(t−k)=1) · Pr(H(t−k)=1)

= p00 · · · p00
︸ ︷︷ ︸

k−1

p10 Pr(H(t−k)=1)

=pk−1
00 p10 Pr(H(t−k)=1)

=pk−1
00 p10Pbusy,

(5.13)

where Pbusy=Pr(H(t)=1) is the probability that the channel is busy in a time slot.

Note that (5.13) is the absolute probability that there are k consecutive idle slots.

Thus, given that the channel is idle, the conditional probability is

Pk =
Pr(Q(t) = k)

∑

k Pr(Q(t) = k)
=

pk−1
00 p10Pbusy

Pidle

, (5.14)

where Pidle =Pr(H(t) = 0) is the probability that the channel is idle in a time slot.

Denote Didle as the average idle duration on a channel. Thus, Didle =
∑∞

k kPk.

Next, we calculate p00. The probability that p PUs are within the sensing ranges
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of the two SUs, A∗, is Pr(p) =
(
K
p

) (
A∗

AL

)p(
AL−A

∗

AL

)K−p

, where AL = l2 is the total

network area under consideration. In addition, the area of the sensing ranges of the

two SUs is A∗=2(π−θ)r2s+d12
√

r2s−(d122 )2, where d12 is the distance between the two

SUs and θ = cos−1 d12
2rs

. Given that there are p PUs within the sensing ranges of the

two SUs, the probability that there are u PUs inactive is Pr(u|p) =
(
p
u

)
ρp−u(1−ρ)u,

where ρ is the probability that a PU is active. Since a PU is a M/D/1 system, we

have ρ=Lp/[Lp+(1−λp)/λp]. Then, given that there are u PUs inactive and (p−u)

PUs active, the probability that there are m active PUs who finish the transmissions

in the previous slot is

Pr(m|u, p) =
(
p− u

m

)(
1

Lp

)m(

1− 1

Lp

)p−u−m

. (5.15)

Then, given that there are u PUs inactive and m active PUs who finish the transmis-

sions in the previous slot, the probability that there are q PUs who start transmissions

in the current slot is

Pr(q|u,m) =

(
u+m

q

)

λq
p (1− λp)

u+m−q . (5.16)

Finally, given that there are q PUs who start transmissions in the current slot, the

probability that the current slot is idle is equal to the probability that all these q PUs

do not select this channel. Thus, we have Ps =
(
M−1
M

)q
. Therefore, the conditional

probability p00 is expressed as

p00=
K∑

p=0

p
∑

u=0

p−u
∑

m=0

u+m∑

q=0

Ps Pr(q|u,m) Pr(m|u, p) Pr(u|p) Pr(p). (5.17)

Since the sum of the conditional probabilities p01 and p00 is one, we have p01 = 1−p00.

Using a similar method, p10 and p11 can also be obtained.

To calculate Pidle and Pbusy, we use the method proposed in [24]. Given that

there are p PUs within A∗, the probability that there are b PUs active is Pr(b|p)=
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(
p
b

)
ρb(1−ρ)p−b. Furthermore, given that there are p PUs and b active PUs within Ak,

the probability that there are c available channels is

Pr(c|p, b)=
(
M
c

)
(M−c)!Θ(b,M−c)

M b
, c∈ [max(0,M−b),M ], (5.18)

where Θ(b,M−c) is the Stirling number of the second kind. Therefore, the probability

that a time slot is idle is

Pidle=
K∑

p=0

p
∑

b=0

M∑

c=max(0,M−b)

c

M
Pr(c|p, b) Pr(b|p) Pr(p). (5.19)

Then, Pbusy=1−Pidle. Hence, the average channel busy duration is

Dbusy =
PbusyDidle

Pidle

. (5.20)

5.3 The Optimal HELLO Exchange Protocol for Mobile CRAHNs

In this section, we first propose an adaptive optimal HELLO message exchange

protocol for mobile CR ad hoc networks. In this chapter, we assume that only SUs

are mobile and PUs are static [109][110]. Then, the impact of the change in the

identities of PUs within the sensing ranges on the HELLO message exchange design

is analyzed. Based on the analysis, a supplementary HELLO message update scheme

is proposed to further enhance the network performance.

5.3.1 The Adaptive Optimal HELLO Exchange in Mobile CRAHNs

Node mobility plays an essential role in the networking protocol design for CR

networks. Currently, there are only a few papers addressing the impact of node

mobility on the spectrum access in mobile CR ad hoc networks [109]. However, in

[109], both the time interval that a SU moves inside a PU interference range and

the time duration that a SU is located within a PU interference range follow the

exponential distribution. In addition, in [109], the PU spatial reuse of the channel is
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not considered. The PU channel process is modeled as an exponential distribution.

These assumptions are over-simplified and unrealistic. In this chapter, we do not

make such assumptions. In fact, one of the advantages of the proposed optimal

HELLO message exchange protocol is that it does not rely on any mobility model.

By using the most updated control information (e.g., SU location), SUs can calculate

the changes in the channel availability caused by node mobility and adaptively adjust

the optimal exchange interval for the next HELLO message update.

We propose an adaptive optimal HELLO message exchange protocol for mobile

CR ad hoc networks that is based on the analytical models proposed in Section 5.2

but incorporates the impact of node mobility. From Section 5.2, in order to obtain

the optimal HELLO message exchange interval, two important factors are PU traffic

intensity (i.e., λp and Lp) and the number of PUs within the sensing ranges of the

two SUs (i.e., p). If we assume that the PU traffic intensity does not change, the

optimal HELLO message exchange interval only depends on p. Furthermore, from

the derivation in Section 5.2.4, p depends on the area of the sensing ranges of the two

SUs, which also relies on the relative distance between the two SUs, d12. Hence, if d12

changes, the corresponding optimal HELLO message exchange interval also changes

and can be calculated if d12 is known. Therefore, under our design, during each

HELLO message update, in addition to the channel availability information, the two

SUs also exchange their current location information (e.g., location coordinates from

a certain positioning technique). Then, the two SUs obtain a new optimal HELLO

message exchange interval based on the new location information. The beauty of this

design is that the impact of node mobility on the optimal exchange interval is easily

considered and can be practically implemented.

5.3.2 The Supplementary HELLO Message Update Scheme

Besides the change in the number of PUs within the sensing ranges, the change

in the identities of PUs within the sensing ranges also has an effect on the network
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performance. That is, due to SU movement, the change in the identities of PUs may

cause prompt changes on the channel behavior. We name the prompt changes in

the identities of PUs the “short-term” effect. Hence, we analyze the impact of this

“short-term” effect on the HELLO message exchange design. Based on the analysis,

a supplementary HELLO message update scheme for the proposed adaptive optimal

HELLO message exchange protocol is proposed.

The “short-term” effect of SU mobility has two scenarios: 1) new PUs arrive

within the sensing ranges of the two SUs; and 2) old PUs leave the sensing ranges.

Since only the first scenario may have a negative effect on the SU performance, we

study this scenario. First of all, we derive the probability distribution of the inter-

arrival time of new PUs. That is, the cumulative distribution function (CDF) of the

inter-arrival time of new PUs is defined as

FTa
(t) = Pr(Ta ≤ t), (5.21)

where Ta is the inter-arrival time of new PUs. Figure 5.5 shows a moving scenario

after t seconds. Denote the speed of the moving SU as v. Thus, from location A to

B, the distance that the SU moves is vt. The shaded part is the new area that the

sensing range of the moving SU sweeps during the movement. Denote the shaded

area as Ad. Thus, the probability Pr(Ta ≤ t) is equal to the probability that there

exists at least one new PU within Ad.

vt

rs

A B

Figure 5.5: The SU moving scenario from A to B after t seconds.

Denote the probability that there are y PUs within an area A as PA(y). Thus, we

have
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Pr(Ta ≤ t) =Pr(at least one PU is located within Ad)

=
∞∑

y=1

PAd
(y). (5.22)

If PUs are uniformly distributed within the network area, PAd
(y) =

(
K
y

) (
Ad

AL

)y (

1− Ad

AL

)K−y

.

In addition, from Figure 5.5, we have Ad = 2rsvt. Therefore, the CDF of the inter-

arrival time is

FTa
(t) =

∞∑

y=1

(
K

y

)(
Ad

AL

)y (

1− Ad

AL

)K−y

= 1−
(

1− 2rsv

AL

t

)K

.

(5.23)

Figure 5.6 shows the simulation and analytical results of the CDF of the inter-arrival

time of new PUs under different SU speeds. It is shown that the simulation and

analytical results match perfectly.
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(a) The SU speed is 0.5 m/s.
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(b) The SU speed is 10 m/s.

Figure 5.6: The simulation and analytical results of the CDF of the inter-arrival time
of new PUs, Ta.

Then, by differentiating (5.23), the probability density function (pdf) of the inter-

arrival time of new PUs is

fTa
(t) = −K

(

−2rsv

AL

)(

1− 2rsv

AL

t

)K−1

. (5.24)

Therefore, the expected inter-arrival time of new PUs is
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E[Ta] =

∫ AL
2rsv

0

tfTa
(t)dt

=

∫ AL
2rsv

0

t

[

−K
(

−2rsv

AL

)(

1− 2rsv

AL

t

)K−1
]

dt

=
AL

(K + 1)2rsv
. (5.25)

From the above analysis, it is known that on average every E[Ta] seconds, a new

PU arrives in the SU sensing range. This new PU may be active and use one of the

channels, which leads to prompt changes on the channel behavior. In addition, when

v→∞, E[Ta]→0. This means that the faster the SU moves, the more frequent new

PUs arrive. Hence, the “short-term” effect of SU mobility is more significant. Thus, in

addition to the adaptive optimal HELLO message exchange protocol, we propose that

the two SUs also perform a HELLO message update every E[Ta] seconds to cope with

the “short-term” effect. We name it the supplementary HELLO message exchange

scheme. If we denote the HELLO message update interval for the supplementary

scheme as β, we have β=E[Ta]. Figure 5.7 illustrates the update moments in the

adaptive optimal HELLO message exchange protocol and the supplementary update

scheme. After each update, SUs adjust the next optimal α based on the updated

relative locations. In addition, SUs also perform a HELLO message update every β

seconds if the SU speed does not change.

time

t0+α1

t0 + β

t0 t0+α1+α2

t0 + 2β

t0+α1+α2+α3

Figure 5.7: The proposed adaptive optimal HELLO message exchange protocol and
the supplementary update scheme for mobile CR ad hoc networks.

5.4 Performance Evaluation

In this section, we evaluate the performance of the proposed HELLO message

exchange protocol. We use the common frequency hopping scheme as the channel

rendezvous scheme [42]. Under this scheme, since all SUs follow the same channel

hopping sequence, they always hop on the same channel at the same time. One round
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of channel hopping can guarantee the reception of the HELLO message. Therefore,

the HELLO message broadcast duration is Tm = M . Assume that the spectrum

sensing time for each channel is 1ms. Thus, the HELLO message update duration

Tb is determined. In addition, the side length of the network area l = 100m. We

assume that the radii of the sensing range and the transmission range are the same

(i.e., rs=rc=20m). Other simulation parameters are given in Table 5.1.

Table 5.1: Simulation Parameters
Number of PUs K 40
Number of channels M 5
Time slot length ts 2 ms
SU packet length Ls 20 slots
PU packet arrival rate λp 5 pkt/s
PU packet length Lp 100 slots

5.4.1 Static CR Ad Hoc Networks

5.4.1.1 The Trade-off under Different Scenarios

We first evaluate the performance in static CR ad hoc networks. Figure 5.8(a) and

5.8(b) illustrate the trade-off between SU throughput as well as average SU waiting

time and control overhead in the saturated and unsaturated scenario, respectively.

Since both the network revenue (i.e., SU throughput and average SU waiting time)

and the network cost (i.e., control overhead) are monotonic functions of the HELLO

message exchange interval, any α leads to a Pareto-optimal solution [111]. However,

by considering the proposed objective utility functions and the QoS conditions, a

single optimal HELLO message exchange interval can be obtained. Network designers

can adjust the objective utility functions and the QoS conditions to obtain a different

optimal HELLO message exchange interval based on different requirements.

5.4.1.2 The Impact of the HELLO Message Exchange Duration

Figure 5.9 shows the impact of the HELLO message exchange duration Tb on the

network performance under saturated and unsaturated scenarios. It is shown that
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Figure 5.8: The trade-off between SU throughput/average SU waiting time and con-
trol overhead under saturated and unsaturated scenarios.

when Tb increases, network performance suffers degradation (i.e., SU throughput de-

creases and average SU waiting time increases). Thus, the HELLO message exchange

duration has a significant impact on network performance and cannot be ignored in

networking protocol designs in CR networks.
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Figure 5.9: The impact of the HELLO message update duration Tb on network per-
formance.

5.4.1.3 Performance Comparison with the Change-Triggered Scheme

We compare our proposed HELLO message exchange protocol with the change-

triggered HELLO message exchange scheme: a SU performs a HELLO message up-

date whenever a change in the channel availability is detected. We consider 4 SUs

(two pairs) located in the same neighborhood. Figure 5.10 shows the performance
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comparison between these two schemes when Tb = 10 slots and λs = 20pkt/s. Since

SUs can always obtain the latest channel availability information under the change-

triggered scheme, SU throughput is higher than the proposed scheme (up to 12%

higher from Figure 5.10(a)). However, the change-triggered scheme causes very high

control overhead (up to 87% higher from Figure 5.10(b)) because SUs need to per-

form the HELLO message update with a high frequency, which often leads to a

waste of channel resources. Therefore, considering this trade-off, the proposed opti-

mal HELLO message exchange protocol outperforms the change-triggered scheme in

terms of higher utilities, as shown in Figure 5.10(c).
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Figure 5.10: Performance comparison between the proposed optimal HELLO message
exchange and the change-triggered scheme in static CR ad hoc networks.
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Figure 5.11: Performance comparison between the proposed optimal HELLO message
exchange and the change-triggered scheme in mobile CR ad hoc networks.

5.4.2 Mobile CR Ad Hoc Networks

Next, we evaluate the performance of the proposed optimal HELLO message ex-

change protocol in mobile CR ad hoc networks. We consider the Random Way-point

as the mobility model [112]. Two SUs are originally located at random locations
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within the transmission ranges of each other. The mobile SU randomly selects a

speed from [0, vmax] and a direction. The maximum SU speed, vmax, is set to be

10m/s. Figure 5.11 shows the performance comparison between the proposed opti-

mal HELLO message exchange scheme and the change-triggered scheme in mobile

CR ad hoc networks. Similar to the static scenario, the SU throughput under the

change-triggered scheme is higher than the proposed protocol (up to 22%), but the

change-triggered scheme results in much higher control overhead (up to 85%). Thus,

the proposed optimal HELLO message exchange protocol outperforms the change-

triggered scheme in terms of higher utilities.

Figure 5.12 shows the impact of the maximum SU speed on network performance.

It is shown that SU throughput without the supplementary scheme suffers greater

degradation when the maximum SU speed increases, as compared to the scenario

with the supplementary scheme. This is because that there is no mechanism to cope

with the “short-term” effect. In addition, even with the supplementary scheme, the

proposed adaptive scheme does not generate too much excessive control overhead.
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Figure 5.12: The impact of the maximum SU speed on network performance.



CHAPTER 6: SECURITY SCHEMES FOR FCIE ATTACKS IN CRAHNS

In this chapter, we propose a distributed algorithm to fight against the FCIE

attacks in CR ad hoc networks. We investigate the spatial correlation of the channel

availability between neighboring nodes. This is because that the channel availability

of neighboring nodes is correlated with the relative locations of these nodes. Using

this relationship, the malicious node that sends the false channel information can

be identified. To the best of our knowledge, this is the first work that defines and

addresses the FCIE attacks in CR ad hoc networks.

6.1 The Spatial Correlation of the Channel Availability

In this section, we first introduce a network model we consider. Then, based on

this model, we investigate the spatial correlation of the channel availability between

two neighboring nodes.

6.1.1 The Network Model

In this chapter, we consider a CR ad hoc network where N SUs and K PUs co-

exist in an L×L area, as shown in Figure 6.1. PUs are distributed within the area

under the probability density function (pdf) fX(x). For simplicity, in this chapter,

we consider that PUs are evenly distributed. The SUs opportunistically access M

licensed channels. In Figure 6.1, the solid circle represents the transmission range of

a SU with a radius of rc. Other SUs within the transmission range are considered

as the neighboring nodes of the corresponding SU. In addition, the dashed circle

represents the sensing range of a SU with a radius of rs. If a PU is currently active

within a sensing range, the corresponding SU is able to detect its appearance. Since

the sensing ranges of different SUs at different locations may include different PUs,
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their acquired available channels may be different. In addition, because the available

channels of a SU are obtained based on the sensing outcome within the sensing range,

each SU is not allowed to communicate with other SUs outside its sensing range since

it may mistakenly use an occupied channel by a PU, which results in interference to

the PU. Therefore, in this chapter, we assume that rc ≤ rs.
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Figure 6.1: The network model of a CR ad hoc network.

In addition, in this chapter, we model the PU channel activity as an ON/OFF

process, where the length of the ON period is the length of a PU packet [89]. We

assume that each PU randomly selects a channel from the spectrum band to transmit

a packet. Therefore, the packets on the same channel do not necessarily belong to

the same PU. This is a more practical scenario, as compared to some papers which

assume that each channel is associated with a different PU. Under such a practical

scenario, the number of active PUs is not necessarily the number of occupied channels

but depends on the total number of PUs in the network and the PU traffic intensity.

6.1.2 The Spatial Correlation of the Channel Availability

Next, we analyze the spatial correlation of the channel availability between two

neighboring SUs. We assume that the channel availability information for both SUs

is true. Figure 6.2 shows the relative locations of two neighboring SUs whose sensing

ranges overlap, where d12 is the distance between SU1 and SU2.

We denote Q1 and Q2 as the channel information for SU1 and SU2, respectively.
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Figure 6.2: Two neighboring SUs whose sensing ranges overlap.

In addition, we define Qi = [q1i , q
2
i , · · · , qMi ], where qji is a binary number indicating

the availability of channel j for SUi (i.e., we use 1 to indicate that the channel is

available and 0 to indicate that the channel is unavailable). Given Q1 and Q2, the

relationship of the channel availabilities between the two SUs can be expressed as

{Q1,Q2} = [(q11, q
1
2), (q

2
1, q

2
2), · · · , (qM1 , qM2 )]. Therefore, based on the availability of

each channel, there are four possible scenarios in {Q1,Q2}. They are: 1) the channel

is available for both SUs (qj1 = qj2 = 1); 2) the channel is only available for SU1

(qj1 = 1, qj2 = 0); 3) the channel is only available for SU2 (qj1 = 0, qj2 = 1); and 4) the

channel is unavailable for both SUs (qj1=qj2=0). We denote the numbers of channels

in these four scenarios as V = [v1, v2, v3, v4].

We calculate the probability distribution of vk, k ∈ [1, 2, 3, 4]. We first calculate

the probability distribution of v1. As illustrated in Figure 6.2, sensing ranges are

divided into three areas: A1, A2, and A3. Note that PUs in different areas contribute

to different channel availability for the two SUs. For instance, if a PU is active within

A3, the channel used by this PU is unavailable for both SUs. However, if a PU is

active within A1, the channel used by this PU is only unavailable for SU1. Therefore,

the probability distribution of vk is affected by the numbers of active PUs within these

three areas. Since v1 is the number of channels that are available for both SUs, the

channels of v1 cannot be used by any active PU within the union area of the sensing

ranges. Define A∗ = A1+A2+A3. Therefore, based on basic geometry, the union area
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of the sensing ranges A∗ can be obtained as follows:

A∗ = 2(π − α)r2s + d12

√

r2s −
(
d12
2

)2

, (6.1)

where α = cos−1 d12
2rs

. Thus, we need to calculate the number of channels that are not

used by any active PU within A∗. The size of the total network area is denoted as

AL (i.e., AL=L2). Since the locations of PUs are evenly distributed, the probability

that p PUs are within A∗ is

Pr(p) =

(
K

p

)(
A∗

AL

)p(
AL−A∗

AL

)K−p

, (6.2)

where
(
K
p

)
represents the total combinations of K choosing p. In addition, we define

the probability that a PU is active, ρ, as:

ρ =
E[ON duration]

E[ON duration] + E[OFF duration]
, (6.3)

where E[·] represents the expectation of the random variable. Therefore, given that

there are p PUs within A∗, the probability that there are b PUs active is

Pr(b|p) =
(
p

b

)

ρb(1− ρ)p−b. (6.4)

Furthermore, given that there are p PUs and b active PUs within A∗, the proba-

bility that there are c channels available for both SUs is denoted as Pr(c|p, b). Since

the number of available channels is only related to the number of active PUs, c is

independent of p. In addition, since an active PU randomly selects a channel from M

channels in the band, Pr(c|p, b) is equivalent to the probability that there are exactly

c empty boxes given that b distinguishable balls are randomly put into a total of M

distinguishable boxes and a box can have more than one ball (because we do not limit
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Pr(v2=c)=

K∑

p=0

p
∑

b=0

b∑

zs=0

zs∑

z1=0

min(M,b−zs)∑

u=min(1,b−zs)

max(M−u−z1,0)∑

w=min(M−u,M)

1

M b

(
M

u

)(
M−u
w

)(
w

c

)

u!S(zs−z1, u)

u∑

l=l∗

(
u

l

)

(M−w−l)!S(z1,M−u−w−l)
M−w∑

k=k∗

(
M−u
k

)

(M−w+c−k)!S(b−zs,M−w+c−k)

Pa(z1, zs, A1, As)Pa(zs, b, As, A
∗)Pr(b|p)Pr(p). (6.5)

Pr(v4=c)=
K∑

p=0

p
∑

b=0

b∑

zs=0

zs∑

z1=0

min(M,b−zs)∑

u=min(1,b−zs)

max(M−u−z1,0)∑

w=min(M−u,M)

1

M b

(
M

u

)(
M−u
w

)(
w

c

)

u!S(zs−z1, u)

u∑

l=l∗

(
u

l

)

(M−w−l)!S(z1,M−u−w−l)
u+w∑

k=k∗∗

(
u+w

k

)

(u+w+c−k)!S(b−zs, u+w+c−k)

Pa(z1, zs, A1, As)Pa(zs, b, As, A
∗) Pr(b|p) Pr(p). (6.6)

a channel to only one PU). Thus, Pr(c|p, b) can be expressed as:

Pr(c|p, b)=
(
M
c

)
(M−c)!S(b,M−c)

M b
, c∈ [max(0,M−b),M ], (6.5)

where S(b,M−c) is the Stirling number of the second kind. In addition, S(b,M−c)

is defined as

S(b,M−c) = 1

(M−c)!

M−c∑

i=0

(−1)i
(
M−c

i

)

(M−c−i)b. (6.6)

Hence, the joint probability that there are c available channels and there are p PUs and

b active PUs within A∗ is the product of (6.2), (6.4), and (5). Thus, the probability

mass function (pmf) of v1 is expressed as

Pr(v1 = c) =
K∑

p=0

p
∑

b=0

Pr(c|p, b) Pr(b|p) Pr(p). (6.7)

Next, we calculate the probability distribution of v2. Denote the number of active

PUs within a sensing range As as zs. Gven that there are b active PUs within A∗,

the probability that there are zs active PUs within As is written as
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Pa(zs, b, As, A
∗) =

(
b

zs

)(
As

A∗

)zs(A∗−As

A∗

)b−zs

. (6.8)

In addition, denote the number of active PUs within A1 as z1. We can obtain the

probability that there are z1 active PUs within A1 given zs active PUs within As

by Pa(z1, zs, A1, As). Thus, the active PUs within A2 and A3 can be obtained by

z2 = b− zs and z3 = zs − z1, respectively. We further denote the number of channels

used by z3 as u. Similar to (5), the total number of possible cases is
(
M
u

)
u!S(zs−z1, u).

Since A3 is the overlapping area of the two sensing ranges, these u channels used by

z3 PUs cannot be used by either SU1 or SU2. Then, denote the number of available

channels for SU1 as w. Given z1 PUs active within A1, the total possible cases are
(
M−u
w

)∑u
l=l∗

(
u
l

)
(M−w−l)!S(z1,M−u−w−l), where l∗ = max(0,M−w−z1). Next,

given z2 active PUs within A2, the total possible cases are
(
w
c

)∑M−w
k=k∗

(
M−u
k

)
(M−w+

c−k)!S(b−zs,M−w+c−k), where k∗ = max(0,M + c−w− z2). Therefore, the pmf

of v2 is obtained from (6.5). Since SU1 and SU2 are symmetric, the pmf of v3 can be

easily obtained from (6.5) by switching z1 and z2.

Using the same derivation method, the pmf of v4 is obtained from (6.6), where

k∗∗ = max(0, u+w+c−z2). From (6.7) to (6.6), the expectations of vk, E[vk], can be

derived. Figure 6.3 shows the analytical and simulation results of the expectations

of vk, k ∈ [1, 2, 4] under different ratios between d12 and rs. It is illustrated that

the expectations of vk changes linearly with the relative distance between the two

neighboring nodes. Therefore, it is known that the channel availability between two

neighboring nodes is highly related to the relative locations of the two nodes. By

using this relationship, the abnormal channel availability caused by the FCIE attack

can be detected.

6.2 The Proposed Algorithm to Fight Against FCIE Attacks

In this section, the proposed algorithm to fight against the FCIE attacks is pre-

sented. We assume that a malicious node cannot change its channel information
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Figure 6.3: The expectations of vk, k ∈ [1, 2, 4] under different relative distances
between two nodes.

after receiving the legitimate channel information from its neighboring nodes. This

assumption can be justified using certain verification protocols. Without loss of gen-

erality, for the rest of the chapter, we denote SU1 as the legitimate node who needs

to determine whether a neighboring node is malicious or not. In addition, we denote

SU2 as the node whose integrity is unknown and may report false channel information

to SU1.

6.2.1 The Basic Approach

We first introduce the basic approach in which SU1 only uses its own channel

information to determine whether SU2 is malicious or not. Since the malicious node

does not have the channel information of the legitimate node, it only randomly selects

a few channels from the band to deceive the legitimate nodes. Therefore, given

the relative locations of the legitimate node and the malicious node, the channel

availability between these two nodes should be different from the channel availability

relationship between two legitimate nodes. The main idea of the proposed security

algorithm is to decide how deflected the channel availability relationship between a

legitimate node and a malicious node is, as compared with the authentic channel

availability.

Figure 6.4 shows the variance of the sum of v1 and v4 under different relative

distances between two neighboring nodes. It is observed that when two nodes are
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Figure 6.4: The variance of the sum of v1 and v4.

close to each other, the variance of the sum of v1 and v4 is very small. This means

that the sum of v1 and v4 is almost invariant when two nodes are close. However,

since a malicious node randomly selects channels to deceive, the combined channel

availability scenarios can only change either between (qj1=1, qj2=1) and (qj1=1, qj2=0),

or (qj1 = 0, qj2 = 1) and (qj1 = 0, qj2 = 0). Changes between other channel availability

scenarios are not allowed. Thus, as long as the numbers of changes in the above two

cases are not exactly the same, either change in the above two cases leads to the

change of the sum of v1 and v4. Therefore, we can use this information to identify

the malicious node.

We assume that the four scenarios of the channel availability between two nodes

observed by SU1 is V̂ = [v̂1, v̂2, v̂3, v̂4]. Given the distance between these two nodes

and the probability distribution of v1 and v4, the joint probability distribution func-

tion can be obtained. Moreover, the expectation and variance of the sum of v1 and

v4 is denoted as E[v1 + v4] and V ar(v1 + v4). In addition, the Euclidean distance

between v̂1 + v̂4 and E[v1 + v4] is defined as

‖(v̂1 + v̂4)−E[v1 + v4]‖ =
√

{(v̂1 + v̂4)−E[v1 + v4]}2. (6.11)

Then, the proposed scheme is formed as a hypothesis test problem given in the fol-
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lowing inequality, where H1 means that SU2 is a malicious node, H0 means that SU2

is a legitimate node, and γ is the threshold to decide whether SU2 is malicious or not.

We further define γ as β
√

V ar(v1 + v4), where β is a scaling coefficient.

‖(v̂1 + v̂4)− E[v1 + v4]‖
H1

≷
H0

γ. (6.12)

Therefore, using (6.12), we can determine the legitimacy of SU2.

6.2.2 The Improved Approach with the Assistance of an Honest Node

Next, we introduce an improved approach with the assistance of another node

who is known to be honest. As shown in Figure 6.5, SU3 is a legitimate node who

is a neighboring node of both SU1 and SU2. From Figure 3.24(b), it is illustrated

that the shaded area is a part of the sensing range of SU3 which overlaps with the

sensing range of SU2. However, since this area is not covered by the sensing range of

SU1, SU3 can give SU1 the channel information on this area. By properly utilizing

the channel information of SU3, the probability of successfully identifying SU2 can

be further improved.
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Figure 6.5: Two neighboring SUs whose sensing ranges overlap.

Denote the shaded area shown in Figure 3.24(b) as Ad. Since Ad is also covered

by the sensing range of SU2, the channel information of SU3 can be used by the

improved approach. However, another part of the sensing range of SU3, denoted as

Af , is not covered by the sensing ranges of either SU1 or SU2. Since Af incurs extra
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channel information which cannot be used to improve the credibility of the proposed

approach, the channel information of SU3 is used only when Ad > Af . Then, if SU3 is

used in the improved approach, we consider SU1 and SU3 as a combined node whose

sensing range is the union of the sensing ranges of these two nodes. The new combined

node is denoted as SU ′
1. Similar to Section 6.1.2, we further denote the numbers of

channel availability between SU ′
1 and SU2 in the four scenarios as V′ = [v′1, v

′
2, v

′
3, v

′
4].

Then, we need to obtain the probability distribution of these four random variables.

We use the same method in Section 6.1.2 to obtain the probability distribution of

v′k, k ∈ [1, 2, 3, 4]. Based on the locations of SU ′
1 and SU2, the three new areas A′

1,

A′
2, and A′

3 can be obtained. Then, based on (6.7), (6.5) and (6.6), the probability

distribution of v′k, k ∈ [1, 2, 3, 4] is obtained. In addition, the expectation and variance

of the sum of v′1 and v′4, E[v′1 + v′4] and V ar(v′1 + v′4) can also be acquired.

Denote the vector of channel availability in the four scenarios observed by SU ′
1

as V̂
′
= [v̂′1, v̂

′
2, v̂

′
3, v̂

′
4]. Therefore, similar to the basic approach, the detection of a

malicious node is formulated as a hypothesis testing problem in

‖(v̂′1 + v̂′4)− E[v′1 + v′4]‖
H1

≷
H0

γ′. (6.13)

where ‖(v̂′1+ v̂′4)−E[v′1+v′4]‖ =
√

{(v̂′1 + v̂′4)−E[v′1 + v′4]}2 and γ′ = β
√

V ar(v′1 + v′4).

In addition, if the distance between SU3 and SU2 is shorter than the distance

between SU1 and SU2 (i.e., d23 < d12), SU3 has a larger area in its sensing range

that overlaps with SU2 than SU1. Therefore, SU1 can directly utilize the channel

information of SU3 as in the basic approach to further improve the probability of

identifying the integrity of SU2.

6.3 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithm to defend

against the FCIE attack. The parameters used to obtain the simulation results are
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listed in Table 6.1. Malicious nodes are randomly selected from the SU nodes. The

major performance metrics considered in this chapter are the detection rate (i.e.,

the probability that a malicious node is identified) and false alarm rate (i.e., the

probability that a legitimate node is incorrectly determined as a malicious node).

Table 6.1: Simulation Parameters
Number of SUs N 10
Number of PUs K 20
Number of channels M 10
Side length of the simulation area L 4 (unit length)
Radius of the sensing range rs 1 (unit length)
Radius of the transmission rage rc 1 (unit length)
The probability that a PU is active ρ 0.9
The scaling coefficient β 1

Figure 6.6 shows the detection rate under different numbers of false channels

manipulated by the malicious node when the total number of channels M changes.

Generally, since additional channel information is used, the improved approach out-

performs the basic approach in terms of higher detection rate. In addition, it is shown

that, if M is fixed, the detection rate increases when the number of false channels

increases. This is because that the channel availability between the two nodes is

more deflected if there are more false channels. In addition, the detection rate in-

creases when M increases if the number of false channels is fixed. This is because

that when M is large, the randomness of the channel availability decreases. Thus,

the creditability of the proposed algorithm improves.

Figure 6.7 shows the false alarm rate of the proposed algorithm under different

numbers of channels. It is shown that the false alarm rate increases when the number

of channels increases. This is because that, when M is large, the variance of the sum

of v1 + v4 decreases, as shown in Figure 6.4. Then, the threshold of the hypothesis

testing problem is low. Thus, the proposed algorithm is more sensitive to the change

of the channel availability whenM is large, which may incur false detection. However,

by increasing the scaling coefficient β, the threshold of the hypothesis testing problem
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(b) Detection rate when M = 15.

Figure 6.6: Detection rate under different numbers of false channels manipulated by
the malicious node.

increases. Hence, the false alarm rate reduces significantly when β is large.
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Figure 6.7: The false alarm rate under different numbers of channels.

Figure 6.8 depicts the impact of the scaling coefficient β to the network perfor-

mance. The threshold of the hypothesis testing problem is affected by this scaling

coefficient. From Figure 6.8, it is shown that the difference between the detection rate

and the false alarm rate first increases and then decreases when β increases. This

is because that there exists a trade-off when the threshold changes. That is, when

the threshold is low, the detection rate is high. However, the false alarm rate is also

relatively high. On the other hand, when the threshold is high, both the detection

rate and the false alarm rate are relatively low. Therefore, by evaluating the differ-
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ence between the detection rate and the false alarm rate, an optimal threshold can

be obtained.
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Figure 6.8: The impact of the scaling coefficient β with different M .



CHAPTER 7: SPECTRUM HANDOFF PROTOCOLS IN CRAHNS

In this chapter, a proactive spectrum handoff framework is presented. In the pro-

posed proactive spectrum handoff framework, SUs predict the future channel avail-

ability status and perform spectrum switching and RF reconfiguration before a PU

occupies the channel based on observed channel usage statistics. In addition, a dis-

tributed channel selection scheme is proposed in the multi-user scenario to avoid

collisions when multiple pairs of SUs perform spectrum handoffs simultaneously.

7.1 Network Coordination and Assumptions

In this section, we first describe the decentralized network coordination schemes

we consider in this research. Based on the number of users making link agreements

simultaneously, we define two types of network coordination schemes called single

rendezvous coordination scheme (i.e., only one pair of SUs can exchange control in-

formation and establish a link at one time) and multiple rendezvous coordination

scheme (i.e., multiple pairs of SUs can use different channels to exchange control

information and establish multiple links at the same time). Then, the network as-

sumptions made in this chapter are introduced.

7.1.1 Single Rendezvous Coordination Scheme

Throughout this section, we consider a network scenario where N SUs form a CR

ad hoc network and opportunistically access M orthogonal licensed channels. For

the single rendezvous coordination scheme, we use Common Hopping as the channel

coordination scheme [42]. Figure 7.1 illustrates the operations of Common Hopping,

under which the channels are time-slotted and SUs communicate with each other in

a synchronous manner. This is similar to the frequency hopping technique used in
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Figure 7.1: An example of the single rendezvous coordination scheme.

Bluetooth [113]. When no packet needs to be transmitted, all the SU devices hop

through channels using the same hopping sequence (e.g., the hopping pattern cycles

through channels 1, 2, · · · ,M). The length of a time slot (i.e., the dwelling time

on each channel during hopping) is denoted as β. In order to cooperate with the

channel selection algorithm proposed in Chapter 7.3, a time slot is further divided

into N mini slots, as shown in Figure 7.1. If a SU wants to initiate a transmission,

it first generates a pseudo-random sequence of length N (which is explained in detail

in Chapter 7.3) and sends a request-to-send (RTS) packet in the corresponding mini

slot based on the sequence, if no other RTS is heard before this mini slot. Then,

after the SU transmitter successfully receives a clear-to-send (CTS) packet from the

receiver, they pause the channel hopping and remain on the same channel for data

transmissions, while other non-transmitting SUs continue hopping. After the data

being successfully transmitted, the SU pair rejoins the channel hopping.

7.1.2 Multiple Rendezvous Coordination Scheme

Unlike in the single rendezvous coordination scheme that only one pair of SUs

can make an agreement in one time slot, in the multiple rendezvous coordination

scheme, multiple SU pairs can make agreements simultaneously on different channels.

A typical example of this type of coordination schemes is McMAC [114]. Figure

7.2 depicts the operations of McMAC. Instead of using the same channel hopping
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Figure 7.2: An example of the multiple rendezvous coordination scheme.

sequence for all SUs, in McMAC, each SU generates a distinct pseudo-random hopping

sequence (in Figire 7.2, the channel hopping sequence for user A is 2-4-1-3, and for

user B is 3-2-1-4, etc.). When a SU is idle, it follows its default hopping sequence

to hop through the channels. Similar to the single rendezvous coordination scheme,

each time slot is also divided into N mini slots (they are not shown in Figure 7.2). If

a SU intends to send data to a receiver, it temporarily tunes to the current channel

of the receiver (i.e., in Figure 7.2, SUs AB and CD are two transmitting pairs that

intend to initiate new transmissions at the same time). Then, it generates a pseudo-

random sequence and sends a RTS packet in its corresponding mini slot, if no other

RTS is heard before this mini slot. If the receiver replies with a CTS, both the

transmitter and the receiver stop channel hopping and start a data transmission on

the same channel. When they finish the data transmission, they resume to their

default channel hopping sequences. Similar to [114], in this chapter, we consider the

scenario where SUs are aware of each other’s channel hopping sequences.

In this chapter, we assume that stringent time synchronization among SUs for

channel hopping can be achieved without the need to exchange control messages on

a CCC in both cases. We consider a synchronization scheme similar to the one used

in [114] that every SU includes a time stamp in every packet it sends. Then, a SU

transmitter obtains the clock information of the intended SU receiver by listening

to the corresponding channel and estimates the rate of clock drift to realize time
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synchronization. Various schemes have been proposed to calculate the rate of clock

drift for synchronization [115]. The design of efficient synchronization mechanisms

without a CCC to realize single rendezvous and multiple rendezvous coordination

schemes is out of the scope of this research.

In both types of coordination schemes, we assume that any SU data packet is

transmitted at the beginning of a time slot and ends at the end of a time slot. This

implies that the length of a SU data packet, δ, is a multiple of the time slot. This

assumption is commonly used in time-slotted systems [116][117][118]. We further

define that a SU data packet is segmented into frames and each frame contains c

time slots. The length of a frame is denoted as ξ, so ξ = cβ. As shown in Figure

7.1, at the end of a frame, the two SUs can either rejoin the channel hopping when a

data transmission ends, or start another data transmission by exchanging RTS/CTS

packets.

In this research, we model each licensed channel as an ON-OFF process [60][119].

As shown in Figure 7.3, each rectangle represents a PU data packet being transmitted

on a channel (i.e., the ON period) and the other blank areas represent the idle periods

(i.e., the OFF period). The length of a rectangle indicates the packet length of a PU

data packet. Therefore, a SU can only utilize a channel when no PU transmits at

the same time. In Figure 7.3, t0 represents the finishing moment of the last sensed

PU packet. Thus, for the i-th channel at any future time t (t > t0), the status of the

channel is denoted as Ni(t) which is a binary random variable with values 0 and 1

representing the idle and the busy state, respectively.

Due to the fact that the power of a transmitted signal is much higher than the

power of the received signal in wireless medium, instantaneous collision detection is

not possible for wireless nodes. Thus, we assume that if a SU frame collides with

a PU packet, the wasted frame can only be retransmitted at the end of the frame.

In addition, in our proposed spectrum handoff protocol, we assume that each SU is



153

equipped with two radios. One is used for data and control message transmission,

namely the transmitting radio. The other is applied to scan all the channels in the

band and to obtain the channel occupancy information, namely the scanning radio.

The scanning radio has two major functions for the proposed protocol: 1) observe

the channel usage and store the channel statistics in the memory for future channel

availability prediction and 2) confirm that the newly selected channel is idle for SU

transmissions.

7.2 Proposed Proactive Spectrum Handoff Protocol

In this section, we first propose the spectrum handoff criteria and policies that a

CR transmitting pair is required to follow. Then, the details of the proposed spectrum

handoff protocol are presented.

7.2.1 Proposed Spectrum Handoff Criteria and Policies
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Figure 7.3: The PU activity on channel i.

By utilizing the sensed channel usage statistics, a SU can make predictions of
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the channel availability before the current transmission frame ends. Based on the

prediction, the SU decides whether to stay in the present channel, or switch to a new

channel, or stop the on-going transmission. We propose two criteria for determining

whether a spectrum handoff should occur: 1) the predicted probability that the cur-

rent and a candidate channel (i.e., a channel that can be selected for continuing the

current data transmission) is busy or idle and 2) the expected length of the channel

idle period. Based on these criteria, we design spectrum handoff policies.

Figure 7.3 shows the PU traffic activity on channel i, where Xk
i and T k

i represent

the inter-arrival time and arrival time of the k-th packet, respectively. As shown in

Figure 7.3(a), the probability that channel i is idle given that no PU packet arrives

between t0 and t is given by

Pr(Ni(t) = 0) = Pr(X1
i > t+ L0

i ), (7.1)

where Lk
i denotes the length of the k-th PU data packet on channel i. As shown in

Figure 7.3(b), the probability that channel i is idle given that only one PU packet

arrives between t0 and t is given by

Pr(Ni(t)=0)=Pr(X1
i +L1

i <t+L0
i ) Pr(X

1
i +X2

i >t+L0
i ). (7.2)

Similarly, in Figure 7.3(c), the probability that channel i is idle given that h (h ∈

[1, U ]) PU packets arrive, where U is the maximum number of PU packets that could

arrive between t0 and t, is

Pr(Ni(t)=0)=Pr(
h∑

k=1

Xk
i +Lh

i <t+L0
i ) Pr(

h+1∑

k=1

Xk
i >t+L0

i ). (7.3)

Therefore, the probability that channel i is idle at time t can be obtained by (7.4),
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which is shown in the next page.

Pr(Ni(t)=0)=Pr(X1
i >t+L0

i ) +
U∑

h=1

[

Pr(
h∑

k=1

Xk
i +Lh

i <t+L0
i ) Pr(

h+1∑

k=1

Xk
i >t+L0

i ))

]

(7.4)

Pr(ti,off >η|Ni(t)=0)=
Pr(X1

i >t+L0
i +η)+

∑U

h=1

[

Pr(
∑h

k=1X
k
i +Lh

i <t+L0
i ) Pr(

∑h+1
k=1X

k
i >t+L0

i +η))
]

Pr(X1
i >t+L0

i )+
∑U

h=1

[

Pr(
∑h

k=1X
k
i +Lh

i <t+L0
i ) Pr(

∑h+1
k=1X

k
i >t+L0

i ))
]

(7.5)

Let toff represent the duration from t to the beginning of the next PU packet, as

shown in Figure 7.3. Following the same derivation, for channel i, the probability

that the duration of idleness is longer than η given that the channel is idle at t is

obtained by (7.5), where η is the length of a frame plus a time slot (i.e., η = ξ + β).

Thus, if the PU traffic model is known and the channel statistics (e.g., PU packet

arrival rate, PU packet length) are obtained from the scanning radio, the predicted

probabilities can be calculated. Hence, based on the above prediction, the policy that

a SU should switch to a new channel is:

Pr(Ni(t) = 0) < τL, (7.6)

where τL is the probability threshold below which a channel is considered to be busy

and the SU needs to carry out a spectrum handoff, that is, the current channel is no

longer considered to be idle at the end of the frame transmission. In addition, the

policies that a channel j becomes a candidate channel at time t are:







Pr(Nj(t) = 0) ≥ τH

Pr(tj,off > η|Ni(t)=0) ≥ θ,
(7.7)

where τH is the probability threshold for a channel to be considered idle at the end of

the current frame and θ is the probability threshold for a channel to be considered idle

for the next frame transmission. The second criterion in (7.7) means that, in order
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to support at least one SU frame, the probability that the duration of the idleness of

channel j to be longer than a frame size must be higher than or equal to θ.

According to Figure 7.3 and (7.13), we calculate the spectrum handoff criteria

proposed in Chapter 7.2. We denote the finishing moment of the last PU packet as 0

and the future time as slot n. Hence, the probability that channel i is idle given that

no PU arrival occurs between slot 1 and n is given by

P0 = 1−
n∑

i=1

x(1− x)(i−1), (7.8)

where x is the normalized arrival rate. As shown in Figure 7.3(b), the probability

that channel i is idle given that only one PU packet arrives between slot 1 and n is

P1 =
n−L∑

m=1

[

1−
n−m−L+1∑

i=1

x(1−x)(i−1)

]

x(1−x)(m−1), (7.9)

where m is the time slot at which a PU transmission starts and L is the length of

a PU packet. Similarly, in Figure 7.3(c), the probability that channel i is idle given

that h PU packets arrive between slot 1 and n is

Ph =
n−hL∑

mh=h

[

1−
n−mh−hL+1∑

i=1

x(1−x)(i−1)

]

xh(1−x)(mh−h). (7.10)

Therefore, the total probability that channel i is idle at slot n is obtained as follows:

Pr(Ni(n) = 0) =
U∑

i=0

Pi. (7.11)

Secondly, due to the memoryless property of geometric distribution, the proba-

bility that the duration of the idleness is longer than η slots on channel i is given

by

P (toff > η|Ni(n) = 0) = 1−
η
∑

i=1

x(1− x)(i−1). (7.12)
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7.2.2 Proposed Spectrum Handoff Protocol Details

The proposed spectrum handoff protocol is based on the above proposed spectrum

handoff policies. It consists of two parts. The first part, namely Protocol 1, describes

how a SU pair initiates a new transmission. Regardless of the coordination schemes

used during channel hopping, if a data packet arrives at a SU, the SU predicts the

availability of the next hopping channel (in the single rendezvous coordination scheme

case) or the hopping channel of the receiver (in the multiple rendezvous coordination

scheme case) at the beginning of the next slot. Based on the prediction results, if the

channel satisfies the policies in (7.7) for data transmissions, the channel is considered

available. Then, the SU transmitter generates a pseudo-random sequence and sends

a RTS packet on the same hopping channel during the corresponding mini slot for

this SU in the next time slot, if no other RTS is heard before this mini slot. Upon

receiving the RTS packet, the intended SU receiver replies a CTS packet in the same

mini slot. Then, if the CTS packet is successfully received by the SU transmitter,

the two SUs pause the channel hopping and start the data transmission on the same

channel in the next time slot. Note that if more than one pair of SUs contend the

same hopping channel for new data transmissions, only the SU pair who exchange

the RTS/CTS packets first claims the channel, as described in Appendix A. Hence,

no RTS collision will occur. The following is the pseudo code of the protocol for

initiating a new transmission, where DAT is the flag for data transmission requests,

DSF is the data sending flag, t is the beginning of the next slot, and k is the next

hopping channel in the single rendezvous coordination scheme or the hopping channel

for the receiver in the multiple rendezvous coordination scheme.

Algorithm 1: Proposed algorithm to initiate a new transmission. Register initiation:

DAT:=0, DSF:=0;

if a new data packet needs to be transmitted

DAT := 1;
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end if

if DAT=1

predicting Pr(Nk(t) = 0), Pr(toff > η|Nk(t) = 0);

end if

if Pr(Nk(t) = 0) ≥ τH AND Pr(toff > η|Nk(t) = 0) ≥ θ

generating a pseudo-random sequence;

else wait for the next time slot;

end if

if no RTS is heard before the corresponding mini slot

sending RTS;

else wait for the next time slot;

end if

upon receiving CTS then

DSF := 1;

if DSF=1

DSF := 0;

transmitting a data frame;

DAT := 0 when transmission ends;

end if

The second part, namely Protocol 2, is on the proactive spectrum handoff during

a SU transmission. Figure 7.4 illustrates the operations of Protocol 2. The goal of

our proposed protocol is to determine whether the SU transmitting pair needs to

carry out a spectrum handoff and then switch to a new channel by the time a frame

transmission ends. Using the proposed protocol, the SU transmitting pair can avoid

disruptions with PUs when PUs appear. The following is the pseudo code of the

protocol for the proactive spectrum handoff, where CSW is the channel switching
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Figure 7.4: Proposed proactive spectrum handoff protocol.

flag, NUC and LSC are the number and the list of the candidate channels for data

transmissions, respectively, and channel i is the current channel. As similar in Proto-

col 1, DAT is the flag for data transmission requests and DSF is the data-sending flag.

Algorithm 2: Proposed proactive spectrum handoff protocol Register initiation: CSW:=0,

DSF:=0, NUC:=0, LSC:=∅;

for j := 0, j ≤M do

predicting Pr(Nj(t) = 0), Pr(toff > η|Nk(t) = 0);

end for

if Pr(Ni(t) = 0) < τL AND DAT=1

CSW := 1;

end if

if CSW=1

for k := 0, k ≤M do

if Pr(Nk(t) = 0) ≥ τH AND Pr(toff > η|Nk(t) = 0) ≥ θ

NUC := NUC+1;

LSC(NUC) := k;

end if

end for

end if

if LSC=∅
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wait for the next time slot;

elseif LSC 6= ∅

generating a pseudo-random sequence;

broadcast channel availability information;

end if

upon receiving channel availability information then

switching to the selected channel;

starting the scanning radio;

if channel is busy

wait for the next time slot;

else DSF := 1 CSW:=0;

end if

if DSF=1

DSF := 0;

transmitting a data frame;

DAT := 0 when transmission ends;

end if

Based on the sensed channel usage information, a SU transmitter checks the spec-

trum handoff policy in (7.6) for the current channel by predicting the channel avail-

ability at the end of the frame. If the policy is not satisfied, this means that the

current channel is still available for the next frame transmission. Then, the SU trans-

mitting pair does not perform a spectrum handoff and keeps staying on the same

channel. However, if the policy is satisfied, the channel-switching (CSW) flag is set,

that is, the current channel is considered to be busy during the next frame time and

the SUs need to perform a spectrum handoff by the end of the frame to avoid harmful

interference to a PU who may use the current channel. After the CSW is set, the two
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SUs rejoin the channel hopping in the next time slot after the previous frame.

In the proposed distributed channel selection algorithm (which is explained in

detail in Chapter 7.3), the SUs that need to perform spectrum handoffs at the same

time are required to update the predicted channel availability information with each

other on the same channel. Note that in the single rendezvous coordination scheme,

all SUs that do not transmit data follow the same hopping sequence. Therefore, when

the CSW flag is set, the SUs that need to perform spectrum handoffs pause the current

transmissions and resume the channel hopping with the same sequence, so they will

hop to the same channel. However, in the multiple rendezvous coordination scheme,

each SU follows a default hopping sequence which may not be the same as other’s

hopping sequences. In order to be able to exchange channel availability information

among SUs on the same channel, in our proposed protocol, SUs are required to follow

the same hopping sequence only when performing spectrum handoffs.

On the other hand, the SU transmitter checks the criteria in (7.7) for available

handoff candidate channels in the band. If no channel is available, then the on-going

transmission stops immediately at the end of the frame. The two SUs hop to the

next channel for one more time slot and check the channel availability based on the

criteria in (7.7) at the beginning of the next time slot for both the single rendezvous

and the multiple rendezvous coordination schemes. However, if the set of the handoff

candidate channels is not empty, the SU transmitter triggers a distributed channel

selection algorithm (which is explained in detail in Chapter IV) in the next time slot.

Using the proposed channel selection algorithm, both the SU transmitter and receiver

can compute the target channel if it is available. Then, both SU nodes switch to the

target channel and start the data transmission for the next frame.

Note that there is a possibility that the prediction is not correct and a PU is

on the channel which the SUs switch to. Hence, at the beginning of the frame, the

SU transmitting pair restarts the scanning radio to confirm that the selected channel
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is idle. If the channel is sensed busy, the two SUs immediately rejoin the channel

hopping and wait for the next time slot for spectrum handoffs.

7.3 Distributed Channel Selection Algorithm

In this section, we present the details of our proposed distributed channel se-

lection algorithm. We define the spectrum handoff delay as the duration from the

moment a SU starts to perform a spectrum handoff to the moment it resumes the

data transmission, as shown in Figure 7.4.

7.3.1 Procedure of the Proposed Channel Selection Algorithm

As explained in Chapter 1, the channel selection issue should be handled with

caution to avoid collisions among SUs. On one hand, preventing SU collisions is more

important in the spectrum handoff scenario than in general channel allocation scenar-

ios [71] due to the fact that collisions among SUs lead to data transmission failures,

thus they may result in long spectrum handoff delay, which has deteriorating effect

on delay-sensitive network applications. Additionally, the channel selection algorithm

also should be executed fast in order to achieve short handoff delay. Furthermore,

since no centralized network entity exists in CR ad hoc networks to manage the spec-

trum allocation, the channel selection algorithm should be applied in a distributed

manner to prevent SU collisions.

SU-A

(CH2,CH3)

SU-B

(CH2,CH3)

SU-C

(CH3,CH1)

The channel

selecting order is

B-A-C CH2CH3 CH1

Figure 7.5: An example of the proposed channel selection scheme.

Our goal is to design a channel selection scheme for the spectrum handoff scenario

in CR ad hoc networks that can eliminate collisions among SUs in a distributed

fashion. Figure 7.5 describes an example of the proposed channel selection scheme,

where three SUs, A, B, and C, perform spectrum handoffs at the same time. In the
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parenthesis, the candidate channels are ordered based on the criterion for channel

selection (e.g., the probability that a channel is idle). The proposed channel selection

procedure is summarized as follows:

Step 1 Pseudo-random Sequence Generation: At each time slot, a pseudo-random

channel selecting sequence with a length of N is generated locally that all SU trans-

mitters who need to initiate new transmissions and who are involved in spectrum

handoffs should follow. In Figure 7.5, the channel selecting sequence for all SUs is B-

A-C. Since the sequence is generated with the same seed (e.g., the time stamp), every

SU generates the same channel selecting sequence at the same time slot. However,

the selecting sequences are different at different time slots.

Step 2 Channel Information Update: For both the single rendezvous coordination

scheme and the multiple rendezvous coordination scheme, all SUs follow the same

sequence to hop through the channels during a spectrum handoff. When a SU needs

to perform a spectrum handoff at the beginning of a time slot, it broadcasts the sensed

channel availability information to neighboring SU nodes on the current hopping

channel only in the corresponding mini slot based on the selecting sequence generated

in Step 1. In addition, for the SU transmitter who needs to initiate a new transmission,

it sends a RTS in the corresponding mini slot. Thus, the channel information messages

and RTS packets do not collide with each other. Since every SU may have different

neighbors and may not receive the channel information from all SUs involved in the

spectrum handoffs, each SU is required to broadcast its own channel information

with its previously received channel information from other SUs. Therefore, a SU can

obtain the channel availability information predicted by the SUs who need to perform

spectrum handoffs and whose orders of broadcast are earlier than this SU.

Step 3 Channel Selection: Every SU pair who needs to perform a spectrum handoff

computes the target handoff channel for its spectrum handoff based on the selecting

sequence and the criterion for channel selection. The pseudo code of the algorithm
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for computing the target channel is presented in Algorithm 3, where Ci denotes the

target handoff channel for SUi. In the example shown in Figure 7.5, based on the

selecting sequence, SU-B selects the first channel (i.e., channel 2) in its available

channel list. Other SUs know that SU-B will select channel 2 based on the channel

selecting sequence and the obtained channel availability information from SU-B, so

they delete channel 2 in their available channel lists. Then, SU-A selects channel 3,

and so on so forth. Therefore, for each SU, the proposed channel selection algorithm

terminates until an available channel is selected or all available channels are depleted.

If the target channel exists, then the SU pair selects it to resume its data transmission;

otherwise, the SU pair waits for the next time slot to perform the spectrum handoff.

Since the selecting sequence and the channel availability information of each SU are

known to every SU who perform spectrum handoffs at the same time, the target

channel for each SU (i.e., Ck, k ∈ [1, N ]) is also known. Thus, the collision among

SUs can be avoided.

Algorithm 3: Proposed distributed channel selection algorithm Input: Selecting

sequence s, the list of candidate channels ln, n ∈ [1, N ].

Output: target channel Ck.

for i := 1, i ≤ N do

if s(i) 6= k then

if ls(i) is received directly from SU s(i) then

if ls(i) = ∅ then

Cs(i) := NULL;

else if ls(i) 6= ∅ then

Cs(i) := argmaxj∈ls(i)(Pr(Nj(t) = 0));

end if

end if

for m := i+ 1,m ≤ N do
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if Cs(i) ∈ ls(m) then

ls(m) := ls(m) − Cs(i);

end if

end for

else if s(i) = k then

if lk = ∅ then

return Ck := NULL; break;

else if lk 6= ∅ then

return Ck := argmaxj∈lk(Pr(Nj(t) = 0)); break;

end if

end if

end for

7.3.2 Fairness of the Proposed Channel Selection Algorithm
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Figure 7.6: Fairness of the proposed channel selection scheme.

The above procedure shows that our proposed channel selection scheme can avoid

collisions among SUs during spectrum handoffs and it is a fully distributed algorithm.

In addition, from the above discussion, we observe that an important feature of

the proposed distributed channel selection scheme is fairness. Unlike the previous
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definition of fairness as equal channel capacity for every user [71], in this research, we

define fairness as equal average handoff delay for every SU. This is because that, from

the network performance point of view, handoff delay is the most important metric

to evaluate a spectrum handoff protocol. Thus, letting every SU have equal average

handoff delay is fair.

7.3.3 Scalability of the Proposed Channel Selection Algorithm

For CR ad hoc networks where nodes membership may change over time, an

important issue is the scalability of the proposed channel selection algorithm when

the network size increases. Even though the number of SUs in a network may vary, as

illustrated in Algorithm 3, only those SUs who are involved in the spectrum handoff

process at the same time will activate the algorithm, which may not be a large number.

In addition, from the number of broadcasted messages during the second step of the

proposed channel selection scheme, our proposed channel selection algorithm will not

result in excessive overhead when the network size increases.

Since the number of channel information message updates affects the spectrum

handoff delay (i.e., more channel information messages updated results in longer spec-

trum handoff delay), Figure 7.7 shows the simulation result of the average spectrum

handoff delay under different network sizes. It is shown that when the network size

changes from 10 SU pairs to 40 SU pairs (i.e., the network size increases 300%), the

spectrum handoff delay only increases 14.5%, 16%, and 105% for the cases when the

number of channels is 10, 5, and 2, respectively.

7.4 Performance Evaluation

In this section, we evaluate the performance of the proposed proactive spectrum

handoff protocol and the proposed distributed channel selection scheme in various

network scenarios.
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Figure 7.7: Scalability of the proposed channel selection scheme.

7.4.1 Simulation Setup

The parameters used to obtain the simulation results are listed in Table 7.1. The

channel parameters are chosen based on the IEEE 802.11 frequency hopping spread

spectrum (FHSS) system [120]. The lengths of SU packets and PU packets are fixed

in the simulation. We adopt two types of PU traffic models in the simulation. The

first PU traffic model is a time slotted system, where the inter-arrival time X follows

the biased-geometric distribution whose probability mass function (pmf) is given by

[90]:

Pr(X=d) =







0 d < l

λn(1− λn)
(d−l) d ≥ l,

(7.13)

where d is the number of time slots between packet arrivals, l ≥ 0 represents the

minimum number of time slots between two adjacent packets, and λn is the probability

that a packet arrives during one time slot (i.e., λn is the normalized arrival rate of

data packets, that is, λn = λpβ, where λp is the PU packet arrival rate in terms of

packets/second). Based on this model, if we set l as the packet length, then a new

packet will not be generated until the previous packet finishes its transmission.

The second PU traffic model we consider is Pareto traffic, where the cumulative
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distribution function (CDF) of the inter-arrival time X is given by [90]:

FX(x) =







1−
(
a
x

)b
x ≥ a

0 x < a,
(7.14)

where a=Lmin, b=
1

1−λpa
, and Lmin is the minimum PU packet length sensed by SUs

[90]. The distinctive differences between Pareto traffic and biased-geometric traffic

are that the PU packet inter-arrival time of Pareto traffic is heavy-tailed and it does

not possess the memoryless property. Therefore, the derivations of the spectrum

handoff criteria under biased-geometric and Pareto PU traffic are different and given

in Appendix C and D, respectively.

Table 7.1: Simulation Parameters
Channel bit rate 2Mbps
Time slot 2ms
Mini slot 0.264ms
RTS 288 bits
CTS 240 bits
Length of a SU packet 12× 105 bits
Length of a PU packet 2× 105 bits
Simulation time 40s

7.4.2 Spectrum Handoff Criteria for Biased-Geometric Traffic

According to Figure 7.3 and (7.13), we calculate the spectrum handoff criteria.

We denote the finishing moment of the last PU packet as n0 and the future time as

slot n. Hence, the probability that channel i is idle and no PU arrival occurs between

slot n0+1 and n is given by

P0 = 1−
n−n0∑

i=1

λn(1− λn)
(i−1), (7.15)
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where λn is the normalized arrival rate. As shown in Figure 7.3(b), the probability

that channel i is idle and only one PU packet arrives between slot n0+1 and n is

P1 =

n−n0−L∑

m=1

[

1−
n−n0−m−L+1∑

i=1

λn(1−λn)
(i−1)

]

λn(1−λn)
(m−1), (7.16)

where m is the time slot at which a PU transmission starts and L is the length of a

PU packet. Similarly, in Figure 7.3(c), the probability that channel i is idle and h

PU packets arrive between slot n0+1 and n is

Ph=

n−n0−hL∑

mh=h

[

1−
n−n0−mh−hL+1∑

i=1

λn(1−λn)
(i−1)

]

λh
n(1−λn)

(mh−h). (7.17)

Therefore, the total probability that channel i is idle at slot n is obtained as follows:

Pr(Ni(n) = 0) =
U∑

i=0

Pi. (7.18)

Secondly, due to the memoryless property of the geometric distribution, the prob-

ability that the duration of the idleness is longer than η slots on channel i is given

by

Pr(ti,off > η|Ni(n) = 0) = 1−
η
∑

i=1

λn(1− λn)
(i−1). (7.19)

7.4.3 Spectrum Handoff Criteria for Pareto Traffic

We follow the exact derivation procedure to calculate the spectrum handoff criteria

of Pareto traffic. It is noted in (7.4) and (7.5) that the key is to obtain the expression

of the distribution of the sum of W Pareto random variables (i.e., V =
∑W

i=1 Xi). In

[121], the authors proved that, when a = 1, 0 < b < 2 and b 6= 1, the CDF of V is

given by

Pr(
W∑

i=1

Xi > x) =
−1
π

W∑

j=1

(
W

j

)

(−Γ(1− b))j sin(πbj)
∞∑

m=0

CW−j,mΓ(m+ bj)

x(m+bj)
, (7.20)
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where Γ(·) is the Gamma function and CW−j,m is the m-th coefficient in the series

expansion of the (W−j)-th power of the confluent hyper-geometric function.

Therefore, the probability that channel i is idle and the probability that the du-

ration of the idleness is longer than a frame size can be obtained by (7.4) and (7.5) if

a is normalized to one and b is carefully selected.

7.4.4 The Proposed Proactive Spectrum Handoff Scheme

We first compare the proposed proactive spectrum handoff scheme with the re-

active spectrum handoff approach. In the reactive spectrum handoff approach, a SU

transmits a packet without predicting the availability of the current channel at the

moment when a frame ends (i.e., using the policy in (7.6)). That is, a SU does not

change the current channel by the end of a frame if the previous frame is successfully

received. A spectrum handoff occurs only if the on-going transmission actually col-

lides with a PU transmission and the collided SU frame needs to be retransmitted.

We choose the average SU throughput (i.e., the successfully transmitted data per unit

time) and collision rate (i.e., the number of collisions between SUs and PUs per SU

packet transmitted) as the performance metrics.

In order to conduct a fair comparison, we assume that channel prediction is a ca-

pability of SUs (i.e., SUs can select candidate channels based on the policy in (7.7) in

both schemes). Therefore, the only difference between the proposed proactive spec-

trum handoff scheme and the reactive spectrum handoff scheme is the mechanism

to trigger the spectrum handoffs. In addition, in order to solely investigate the per-

formance of the two spectrum handoff schemes, we adopt a general random channel

selection scheme (i.e., a SU randomly selects a channel from its candidate channels)

in both schemes.

Figure 7.8 and Figure 7.9 illustrate the performance results of the two spectrum

handoff schemes under different PU traffic models, when the network coordination

scheme is the single rendezvous coordination scheme, where there are 10 SU pairs
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and 10 channels in the network. For biased-geometric PU traffic, the prediction

thresholds are set to be τL = τH = 0.6 and θ = 0.8. As shown in Figure 7.8(a),

under biased-geometric PU traffic, when both SU traffic and PU traffic are light (e.g.,

λs=20 packets/second and λp=0.5 packets/second), the SU throughput is similar in

both schemes. This is because when the traffic is light, collisions between SUs and

PUs are much fewer than the case when the traffic is heavy. SUs have less probability

of retransmitting a packet in both cases, thus the performance difference between

the proactive spectrum handoff scheme and the reactive spectrum handoff scheme

is not very obvious. However, when the SU and PU traffic are heavy (e.g., λs=100

packets/second and λp=10 packets/second), the proactive spectrum handoff scheme

outperforms the reactive scheme in terms of 30% higher throughput. From Figure

7.8(b), it is shown that the collision rate using the proposed proactive scheme is

always lower than using the reactive scheme.

For Pareto PU traffic, the prediction thresholds are set to be τL = τH = θ = 0.5.

To investigate the impact of Pareto PU traffic to the network performance, we use the

Hurst index to indicate the burstiness of the traffic. The Hurst index H corresponding

to the Pareto distribution [90] is defined as:

H =
3− b

2
. (7.21)

We set the PU packet arrival rate λp to be fixed at 10 packets/second. Thus, H

is a function of Lmin. As shown in Figure 7.9, the proposed proactive spectrum

handoff scheme outperforms the reactive spectrum handoff scheme in terms of higher

throughput and lower collision rate. In addition, even when H→1 and the primary

traffic exhibits high burstiness (i.e., PU packets tend to arrive intensely in a short

period of time while in some other periods of time, the PU arrival rate is fairly low),

the proposed proactive scheme still performs better than the reactive scheme.
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Figure 7.8: Network performance results under biased-geometric PU traffic.
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Figure 7.9: Network performance results under Pareto PU traffic.

The Effect of Practical Scanning Radios: Now, we consider more practical scan-

ning radios. We assume that only one channel can be sensed at a time and the

duration of spectrum sensing per channel is not negligible and is denoted as ts. Thus,

it takes a scanning radio M×ts time to sense the whole band. Since this practical

scanning radio cannot provide the most updated channel information of all channels,
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the sensing results (e.g., PU arrival rate and PU packet length) of some channels may

be outdated, especially when the behavior of PU traffic varies significantly between

the last sensing of a channel and the prediction moment. These outdated sensing

results may lead to inaccurate prediction of the channel status Ni(t) and channel

idleness duration ti,off .

Figure 7.10 shows the simulation results of the proposed proactive spectrum hand-

off scheme and the reactive spectrum handoff scheme under ideal sensing (i.e., all

channels can be sensed simultaneously) and practical sensing when ts = 0.1 second.

We apply a periodic PU traffic model (i.e., the PU traffic changes between 10 packet-

s/second and 30 packet/second every 10 seconds, i.e., every 0.5×104 time slots). It is

observed that even though the practical sensing radio is applied, the proposed proac-

tive scheme still outperforms the reactive scheme in terms of higher throughput and

lower collision rate. Note that the accumulated throughput using the reactive scheme

under practical sensing without channel prediction is higher than using the proposed

proactive scheme by approximately 18%. This is because when practical sensing is

applied, the channel prediction results might not be accurate. Thus, the number of

available channels based on this inaccurate prediction is less than the actual number

of available channels in the band. Hence, the reactive scheme without prediction

yields higher throughput. However, from Figure 7.10(b), we can see that the colli-

sion rate using the reactive scheme without prediction is much higher than using the

proposed proactive scheme by approximately 120%. Considering this trade-off, the

reactive scheme is not applicable.

The Effect of Network Coordination Schemes: In order to conduct a comprehen-

sive comparison, besides the single rendezvous coordination and multiple rendezvous

coordination schemes considered in the chapter, we also investigate the following two

scenarios: 1) the network coordination is implemented with a CCC (i.e., SUs send

control messages through an out-of-band CCC to establish links), and 2) no network
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Figure 7.10: Simulation results under ideal and practical scanning.

coordination scheme is used (i.e., a SU transmitter randomly selects a channel to send

out a RTS without informing the receiver the channel information). To study how

long a link between two nodes can be established, we introduce a new performance

metric: rendezvous time. Rendezvous time is defined as the duration from the mo-

ment a data transmission request is generated at a SU transmitter to the moment a

link for that data transmission request is established.

Figure 7.11 shows the simulation results of the networks using different network

coordination schemes with varying SU traffic load under the proposed proactive spec-

trum handoff scheme and the general random channel selection scheme. The PU

traffic load is fixed at 10 packets/second. There are totally 10 SU pairs and 10 chan-

nels in the network. Figure 7.11(a) shows that the SU throughput without network

coordination is the lowest among the four networks. This is because that without co-

ordination, a SU transmitter randomly selects a channel to send out a RTS regardless

of the current channel of the receiver. There is a high possibility that the intended

receiver is not on the same channel through which the transmitter sends data. Thus,

if a CTS is not received by the SU transmitter, it needs to randomly select a channel

and send a RTS again until a CTS is received, which leads to low throughput. For

the other three cases, the throughput with CCC is always the highest because the
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control channel is always available, while in the single and multiple rendezvous co-

ordination schemes, the channels to which SUs hop may not be available due to the

existence of PUs. Thus, the rendezvous time is longer (shown in Figure 7.11(b)) than

the rendezvous time with CCC, which results in lower throughput. Therefore, from

Figure 7.11, we observe that network coordination is crucial to the performance of a

CR network. Additionally, the performance of the multiple rendezvous coordination

scheme is close to the performance of the network using CCC.
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Figure 7.11: Simulation results of the networks under different network coordination
schemes.

The Effect of Prediction Thresholds: Figure 7.12 shows the performance results

under varying prediction thresholds, τH , τL, and θ. It is observed that there exists

a trade-off in selecting the prediction thresholds. From Figure 7.12(a) and 7.12(c),

when the thresholds are small, the probability that the conditions in (7.7) are satisfied

is high. Thus, the number of available channels for spectrum handoff is large and the

throughput is high. However, the confidence level of the prediction is low. Therefore,

the collision rate is high, shown in Figure 7.12(b) and 7.12(d). On the other hand,

when the thresholds are large, the number of available channels becomes fairly small.

Hence, the SU throughput is low. Therefore, based on certain design requirements,

proper prediction thresholds should be selected.

The Effect of Spectrum Sensing Errors: Figure 7.13 shows the effect of spectrum
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sensing errors on the performance of different spectrum handoff schemes using the

single rendezvous coordination scheme. We use a coefficient χ to indicate the level

of imperfect spectrum sensing, where χ ∈ [0, 1] represents the probability that the

result of spectrum sensing is wrong (the spectrum sensing errors include both miss

detection and false alarm [122]). When χ = 0, it means that the spectrum sensing is

perfect and there is no error, whereas when χ = 1, it means that the spectrum sensing

is completely incorrect. It is shown in Figure 7.13 that the SU performance becomes

worse as χ increases. However, when χ is small, the proposed proactive spectrum

handoff scheme still outperforms the reactive spectrum handoff scheme in terms of

higher throughput and lower collision rate.

7.4.5 The Proposed Distributed Channel Selection Scheme

To investigate the performance of the proposed distributed channel selection scheme,

we compare it with the following three different channel selection methods under the

proposed proactive spectrum handoff scenario using the single rendezvous coordina-

tion scheme:

1) Random channel selection: A SU randomly chooses a channel from its predicted

available channels. 2) Greedy channel selection: In this method, only one pair of SUs

is considered in the network. The SUs can obtain all the channel usage information

and predict the service time on each channel. Thus, when a spectrum handoff occurs,

a SU selects a pre-determined channel that leads to the minimum service time [55].

3) Local bargaining: In this method, SUs form a local group to achieve a collision-

free channel assignment. To make an agreement among SUs, a four-way handshake

is needed between neighbors (i.e., request, acknowledgment, action, and acknowledg-

ment). Since one of the SUs is the initiating node which serves as a group header,

the total number of control messages exchanged is 2NLB, where NLB is the number

of SUs need to perform spectrum handoffs [71]. Since for channel selection schemes,

reducing the number of collisions among SUs is the primary goal, we consider the
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SU throughput, average SU service time (i.e., the duration from the moment a SU

starts a data transmission to the moment it finishes the data transmission), num-

ber of collisions among SUs, and average spectrum handoff delay as the performance

metrics.

One-pair-SU Scenario: Figure 7.14(a) and Figure 7.14(b) show the SU throughput

and the average service time of different channel selection schemes in a one-pair-SU

scenario, respectively. Because only one pair of SUs exists in the network, there is

no collision among SUs. Thus, in this scenario, the greedy channel selection scheme

performs the best among all the schemes. This is because that the handoff target

channel a SU transmitter selects is pre-determined based on channel observation

history. Hence, no signaling message is needed between the SU transmitting pair.

While in other schemes, the SU transmitter needs to inform the receiver about the

newly selected channel. Thus, the throughput is lower and the average service time

is longer than the greedy scheme. However, among the three schemes other than the

greedy scheme, our proposed channel selection scheme has the best performance in

terms of higher throughput and shorter total service time.

Multiple-pair-SU Scenario: Figure 7.15(a) and Figure 7.15(b) show the SU through-

put and the average service time of different channel selection schemes in a 10-pair-SU

scenario, respectively. In the greedy channel selection method, all pairs of SUs al-

ways select the same pre-determined channel for spectrum handoffs. Therefore, the

greedy method always leads to collisions among SUs. The throughput of SUs using

the greedy method is almost zero. Because the proposed channel selection scheme

can totally eliminate collisions among SUs, the throughput is higher and the aver-

age service time is shorter than the other channel selection schemes. In addition, as

shown in Figure 7.15(a), when the PU traffic load is larger than 12 packets/second,

the SU throughput under the greedy channel selection method is zero due to con-

stant collisions among SUs. Thus, the average service time is infinite under the same
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circumstance. Hence, the result of SU service time is only shown until when the PU

traffic load is 12 packets/second in Figure 7.15(b).

Figure 7.16(a) and Figure 7.16(b) show the performance under different number of

SUs, when there are 10 channels and the SU and PU traffic load is 500 packets/second

and 10 packets/second, respectively. In Figure 7.16(a), we only show the performance

of the local bargaining method, random channel selection, and the proposed channel

selection. We exclude the greedy method because the greedy method constantly

achieves zero throughput. Thus, its average service time is meaningless. As shown

in the Figure 7.16(a), the proposed channel selection scheme constantly achieves the

highest throughput. This is because that the random channel selection scheme cannot

eliminate collisions among SUs during spectrum handoffs. Additionally, in the local

bargaining method, all SUs involved need to broadcast signaling messages twice in

order to obtain a collision-free channel assignment, which leads to longer spectrum

handoff delay and lower throughput. Additionally, as shown in Figure 7.16(b), the

greedy method and the random channel selection method cause more collisions among

SUs, while the local bargaining method and the proposed channel selection method

can eliminate collisions. On the other hand, the local bargaining method causes much

longer average spectrum handoff delay than the proposed channel selection scheme,

as shown in Figure 7.16(c). Therefore, the proposed channel selection scheme is the

most suitable one for spectrum handoff scenarios.
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Figure 7.12: Performance results under varying thresholds.
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Figure 7.13: Performance comparison under imperfect spectrum sensing.
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Figure 7.14: Performance of the channel selection schemes in a one-pair-SU scenario.
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Figure 7.15: Performance of the channel selection schemes in a 10-pair-SU scenario.
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Figure 7.16: Performance of the channel selection schemes in a multiple-pair-SU
scenario under varying number of SUs.



CHAPTER 8: ANALYSIS ON SPECTRUM HANDOFFS IN CRAHNS

In this chapter, we propose an analytical model to analyze the spectrum handoffs

in CRAHNs. We assume that any SU data packet is transmitted at the beginning

of a time slot and ends at the end of a time slot. This implies that the length of a

SU packet is a multiple of a time slot. This assumption is commonly used in time-

slotted systems [123][117][124]. We further define that a SU packet is segmented into

frames and each frame contains c time slots. At the end of a frame, the two SUs can

either rejoin the channel hopping when a data transmission ends, or start another

frame by exchanging RTS/CTS packets on the same channel. Therefore, if a SU

packet collides with a PU packet, only the collided frame will be retransmitted while

the successfully received frames will not be retransmitted. Thus, the probability of

successfully transmitting a whole packet is improved.

8.1 Spectrum Handoff Process

Figure 8.1 shows an example of a spectrum handoff process considered in this

chapter in a three-channel scenario. Before a data transmission starts, SUs hop

through the channels following the same frequency-hopping sequence. Once a suc-

cessful RTS/CTS handshake between a SU transmitter and its receiver takes place,

the two SUs pause the channel hopping and start the data transmission. If a PU

packet transmission starts in the middle of a SU transmission, the transmitter cannot

instantaneously detect the collision. Thus, the SU transmitting pair will know the

successful transmission or collided transmission till the end of the frame (e.g., the

transmitter does not receive the acknowledgment (ACK) from the receiver). Then,

the two SUs resume the channel hopping for coordination until they find another idle

channel for the retransmission of the previously unsuccessful frame. On the other
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hand, if a SU frame does not collide with a PU packet, the SU transmitter continues

to transmit the next frame on the same channel until all frames have been successfully

transmitted.

channel hopping collision

with a PU

frequency

hopping SU frame PU packet

successful frame

transmission

unsuccessful frame

transmission

CH 1

CH 2

CH 3

RTS/

CTS

RTS/

CTS

Figure 8.1: An example of the spectrum handoff process.

8.2 The Proposed Three Dimensional Discrete-time Markov Model

In this section, we develop a Markov model to analyze the performance of the

spectrum handoff process. For simplicity, we assume the same number of neighbors

per SU, which permits us to focus on any SU to analyze the performance. We ignore

the propagation delay or any processing time in our analysis. We also assume that

the destination of any data packet from a SU transmitter is always available, that is,

the probability that the selected SU receiver is not busy is one.

8.2.1 The Proposed Markov Model

Based on the time slotted channels, any action of a SU can only be taken at the

beginning of a time slot. In addition, the status of a SU in the current time slot only

relies on its immediate past time slot. Such discrete-time characteristics allow us to

model the status of a SU using Markov chain analysis. From Figure 8.1, the status

of a SU in a time slot can only be one of the following: 1. Idle: no packet arrives at a

SU. 2. Transmitting: the transmission of a SU does not collide with PU packets in a

time slot, i.e., successful transmission. 3. Collided: the transmission of a SU collides



184

with PU packets in a time slot, i.e., unsuccessful transmission. 4. Backlogged: a

SU has a packet to transmit in the buffer but fails to access a channel. Note that

there are two cases that a SU can be in the Backlogged status. In the first case,

when a SU pair initiates a new transmission, if multiple SU pairs select the same

channel for transmissions, a collision among SUs occurs and no SU pair can access

the channel. Thus, the packet is backlogged. Similarly, in the second case, when a

SU pair performs a spectrum handoff, if multiple SU pairs select the same channel, a

collision among SUs occurs and the frame in each SU is also backlogged.

As mentioned in Chapter 1, we consider the scenario that when a collision be-

tween a SU and PU happens, the overlapping of a SU frame and a PU packet is

not negligible. Thus, the number of time slots that a SU frame collides with a PU

packet is an important parameter to the performance of SUs. Based on the above

analysis, the state of the proposed Markov model at time slot t is defined by a vector

(Nt(t), Nc(t), Nf (t)), where Nt(t), Nc(t), and Nf (t) denote the number of time slots

including the current slot that are successfully transmitted in the current frame, the

number of time slots including the current slot that are collided with a PU packet in

the current frame, and the number of frames that have been successfully transmitted

plus the current frame that is in the middle of a transmission at time slot t, respec-

tively. Therefore, Nt(t)+Nc(t)≤ c. Figure 8.2 shows the state transition diagram of

our proposed three dimensional Markov chain. There are totally (h+1) tiers in the

state transition diagram. For each tier, it is a two dimensional Markov chain with a

fixed Nf (t). Table 8.1 summarizes the notations used in our Markov model.

Table 8.1: Notations Used in the Markov Analysis
Symbol Definition

p Probability that a PU packet arrives in a time slot
s Probability that a SU packet arrives in a time slot
h Number of frames in a SU packet
c Number of time slots in a frame
q Probability of a collision among SUs
u Probability that at least one channel is idle
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Figure 8.2: The transition diagram of the proposed Markov model.

From Figure 8.2, it is observed that the proposed Markov model accurately capture

the status of a SU in a time slot. The state (Nt(t)=0, Nc(t)=0, Nf (t)=0) in Figure 8.2

represents that a SU is in the Idle status. Similarly, the states (Nt(t)∈[1, c], Nc(t)=

0, Nf (t) ∈ [1, h]) represent the Transmitting status, i.e., no collision. The states
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(Nt(t) ∈ [0, c− 1], Nc(t) ∈ [1, c], Nf (t) ∈ [1, h]) represent the Collided status. At last,

the states (Nt(t)=0, Nc(t)=0, Nf (t) ∈ [1, h]) represent the Backlogged status, where

(Nt(t)=0, Nc(t)=0, Nf (t)=1) is the Backlogged status during a new transmission. As

shown in Figure 8.2, the feature of the common frequency-hopping sequence scheme

is captured in our model that a SU can only start a new transmission when there

is a channel available. In the following discussion, we use the terms “states” in our

proposed Markov model and the “status” of a SU in a time slot interchangeably. We

also use the notations (Nt(t+1)=i, Nc(t+1)=j,Nf (t+1)=k) and (i, j, k) to represent

a state interchangeably.

8.2.2 Derivation of Steady-State Probabilities

To obtain the steady-state probabilities of the states in the three dimensional

Markov chain shown in Figure 8.2, we first get the one-step state transition proba-

bility. We denote the one-step state transition probability from time slot t to t + 1

as P (i1, j1, k1|i0, j0, k0)=P (Nt(t+1)=i1, Nc(t+1)=j1, Nf (t+1)=k1|Nt(t)=i0, Nc(t)=

j0, Nf (t) = k0). Thus, the non-zero one-step state transition probabilities for any
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0<i0<c, 0<j0<c, and 0<k0<h are given as follows:







P (0, 0, k0|0, 0, k0) = qu+ (1− u)

P (1, 0, k0|0, 0, k0) = u(1− p)(1− q)

P (0, 1, k0|0, 0, k0) = up(1− q)

P (i0, j0 + 1, k0|i0, j0, k0) = 1

P (i0, 1, k0|i0, 0, k0) = p

P (i0 + 1, 0, k0|i0, 0, k0) = 1− p

P (1, 0, k0 + 1|c, 0, k0) = 1− p

P (0, 1, k0 + 1|c, 0, k0) = p

P (0, 0, 0|c, 0, h) = 1− s

P (0, 0, 1|c, 0, h) = s

P (0, 0, 0|0, 0, 0) = 1− s

P (0, 0, 1|0, 0, 0) = s

(8.1)

Let P(i,j,k)=limt→∞ P (Nt(t)=i, Nc(t)=j,Nf (t)=k), i ∈ [0, c], j ∈ [0, c], k ∈ [0, h] be

the steady-state probability of the Markov chain. We first study a simple case where

no PU exists in the CR network. Then, we consider the scenario where SUs coexist

with PUs.

1) No PU Exists in a Network: In this case, since the probability that a PU packet

arrives in a time slot is equal to zero (i.e., p= 0), all channels are always available

for SUs (i.e., u=1) and a SU does not need to perform spectrum handoffs during a

data transmission. Thus, a SU cannot be in the Collided state. In addition, a SU

can only be in the Backlogged state when it initiates a new transmission (i.e., the

Backlogged states are reduced to (Nt(t)=0, Nc(t)=0, Nf (t)=1). Thus, the steady-state

probabilities of the Transmitting and Idle state can be represented in terms of the
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steady-state probability of the Backlogged state P(0,0,1). Hence, from Figure 8.2,

P(i,0,k) = (1− q)P(0,0,1), for 1 ≤ i ≤ c, 1 ≤ k ≤ h, (8.2)

P(0,0,0) =
(1− s)(1− q)

s
P(0,0,1). (8.3)

Since
∑

i

∑

j

∑

k P(i,j,k)=1, we can calculate the steady-state probability of every state

in the Markov chain. Note that the probability of a collision among SUs, q, depends

on the channel selection scheme. The derivation of q is given in Chapter 7.3.

2) SUs Coexist with PUs in a Network: If the probability that a PU packet

arrives in a time slot is not equal to zero (i.e., p 6=0), collisions between SUs and PUs

may occur when a SU transmits a frame. Thus, the steady-state probabilities of the

Collided states are not zero. Similar to the no-PU case, we represent the steady-state

probabilities in terms of P(0,0,1). First of all, for the first tier in Figure 8.2, we can

obtain the steady-state probabilities of all the Transmitting states in terms of P(0,0,1),

that is,

P(i,0,1) = u(1− q)(1− p)iP(0,0,1), for 1 ≤ i ≤ c. (8.4)

Then, for the Collided states with i = 0,

P(0,j,1) = up(1− q)P(0,0,1), for 1 ≤ j ≤ c. (8.5)

For the Collided states with i > 0,

P(i,j,1)=u(1−q)p(1−p)iP(0,0,1), for 1≤ i≤c−1, 1≤j≤c. (8.6)

For the k-th (k > 1) tier, we first derive P(1,0,k) and P(0,1,k):

P(1,0,k) = (1− p)P(c,0,k−1) + u(1− p)(1− q)P(0,0,k), (8.7)
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P(0,1,k) = pP(c,0,k−1) + up(1− q)P(0,0,k). (8.8)

Then, the steady-state probabilities of the Transmitting states when i > 1 can be

represented as

P(i,0,k) = (1− p)i−1P(1,0,k), for 1 < i ≤ c. (8.9)

Similar to the derivation method for the first tier, for the Collided states with i = 0,

P(0,j,k) = P(0,1,k), for 1 ≤ j ≤ c. (8.10)

For the Collided states with i > 0,

P(i,j,k)=p(1−p)i−1P(1,0,k), for 1≤ i≤c− 1, 1≤j≤c. (8.11)

Then, for the Backlogged state in the k-th tier,

c−1∑

i=0

P(i,c−i,k) = u(1− q)P(0,0,k). (8.12)

Combining (8.7) through (8.12), we obtain the following equations using basic math-

ematical manipulations:

P(1,0,k) =
1

(1− p)c−1
P(c,0,k−1), (8.13)

P(0,1,k) =
p

(1− p)c
P(c,0,k−1), (8.14)

P(0,0,k) =
1− (1− p)c

u(1− q)(1− p)c
P(c,0,k−1). (8.15)

Then, from (8.9),

P(c,0,k−1) = (1− p)c−1P(1,0,k−1). (8.16)
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Combining (8.13) and (8.16), we find the following relationship:

P(c,0,k) = P(c,0,k−1). (8.17)

Thus,

P(c,0,k) = u(1− q)(1− p)cP(0,0,1). (8.18)

(8.18) indicates the steady-state probabilities of the states in the k-th tier are inde-

pendent of k. Now, we have all the steady-state probabilities of the states in all tiers

except the state (0, 0, 0). At last, for the Idle state,

P(0,0,0) =
1− s

s
u(1− q)(1− p)cP(0,0,1). (8.19)

Similarly, since
∑

i

∑

j

∑

k P(i,j,k) = 1, we can get the steady-state probability of

every state in the Markov chain. If we denote Θ as the normalized throughput of

SU transmissions, Θ is the summation of the steady-state probabilities of all the

Transmitting states in our proposed Markov model. That is,

Θ =
h∑

k=1

c∑

i=1

P(i,0,k). (8.20)

8.2.3 The Probability that at Least One Channel is Idle

In the above derivations, u and q are unknown. In this subsection, we calculate

the probability that at least one channel is idle, u. Without loss of generality, we

associate a PU with one channel and model the activity of a PU on a channel as an

ON/OFF process [72][123]. SUs can only exploit the channels when the channels are

idle (i.e., in the OFF period). We assume that the buffer in each PU can store at most

one packet at a time. Once a packet is stored at a buffer, it remains there until it is

successfully transmitted. Thus, we assume that the OFF period of a channel follows

the geometric distribution, where the probability mass function (pmf) is given by
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Pr(NOFF = n) = p(1− p)n, (8.21)

where NOFF is the number of time slots of an OFF period.

Let Ω(t) be the number of channels used by PUs at time slot t. The process

{Ω(t), t = 0, 1, 2, · · · } forms a Markov chain whose state transition diagram is given

in Figure 8.3, in which the self loops are omitted. To characterize the behavior of the

PU channels, we define Dl
α as the event that l PUs finish their transmissions given

that there are α PUs in the network in a time slot. We also define Am
γ as the event

that m PUs start new transmissions given that there are γ idle PUs in a time slot.

Thus, the probabilities of events Dl
α and Am

γ are:

Pr(Dl
α) =

(
α

l

)

vl(1− v)α−l, (8.22)

Pr(Am
γ ) =

(
γ

m

)

pm(1− p)γ−m, (8.23)

where v is the probability that a PU finishes its transmission in a slot. If the average

length of a PU packet is denoted as L̄, then v=1/L̄. Therefore, the state transition

probability from state {Ω(t)=a} to state {Ω(t+1)=b} can be written as

pab =







∑a
l=0 Pr(Dl

a) Pr(Ab−a+l
M−a+l), for b ≥ a

∑a
l=a−b Pr(Dl

a) Pr(Ab−a+l
M−a+l), for b < a.

(8.24)

Therefore, we can obtain the steady-state probabilities of the number of busy channels

in the band in a time slot, denoted as g = [g0 g1 g2 · · · gM ]T , where gi denotes

the steady-state probability that there are i busy channels in a time slot. Hence,

u =
∑M−1

i=0 gi.

8.3 The Impact of Different Channel Selection Schemes

In this section, we investigate the impact of different channel selection schemes on

the performance of the spectrum handoff process in a multi-SU scenario by deriving
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Figure 8.3: The transition diagram of the number of channels used by PUs in one
time slot.

the probability of a collision among SUs, q.

8.3.1 Random Channel Selection

For the random channel selection scheme, a SU selects an available channel for

access on a random basis. Thus, a collision among SUs happens if more than one

SU selects the same channel. To make the analysis tractable, we assume that the

SU traffic is saturated (i.e., after finishing transmitting a packet, a SU always has

another packet in the buffer to send). Thus, let B(t), T (t), and C(t) be the number of

SUs in the Backlogged, Transmitting, and Collided state at time slot t, respectively.

Therefore, B(t)+T (t)+C(t) =N . The process {B(t), T (t), C(t), t = 1, 2, · · · } forms

a Markov chain, namely the system chain. Thus, we denote the state transition

probability of the system chain from (n1, n2, n3) to (n′
1, n

′
2, n

′
3) as K((n1,n2,n3),(n′

1,n
′
2,n

′
3))
.

Let Xw(n2) be the probability that w number of SUs in the Transmitting state

successfully finish their transmissions at time slot t given that there are n2 SUs in the

Transmitting state. Then,

Xw(n2) =

(
n2

w

)

σw(1− σ)n2−w, (8.25)

where σ is the probability that a SU finishes a packet transmission in a slot. Let

Yr(n2, w) be the probability that r SUs in the Transmitting state collide with PU

packets in the next time slot given that n2 SUs are in the Transmitting state and w
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SUs out of n2 SUs finish their transmissions. Thus,

Yr(n2, w) =

(
n2 − w

r

)

pr(1− p)n2−w−r. (8.26)

Let Ze(n) be the probability that e of n3 users transmit the last time slot of a frame

in the current slot given there are n3 SUs in the Collided state. Then,

Ze(n3) =

(
n3

e

)

pef (1− pf )
n3−e, (8.27)

where pf is the probability that the current time slot is the end of a frame. Since

the frame length is c time slots, pf =
1
c
. Let Td(n1, θ) be the probability that d SUs

successfully access the channels given that there are n1 SUs in the Backlogged state

and θ available channels in the band. Then,

Td(n1, θ) =
Sd(n1, θ)
(
θ+n1−1

n1

) , (8.28)

where Sd(n1, θ) is the number of possibilities that d of n1 SUs select a channel that is

only selected by one SU given that there are θ channels available. The denominator

in (8.28) is the total number of possibilities that n1 SUs select θ available channels.

Sd(n1, θ) can be calculated using the following iterative equation:

Sd(n1, θ) = Ud(n1, θ)−Ud+1(n1, θ)−
n1−d∑

i=1

[(
d+ i

d

)

−
(
d+ i

d+ 1

)]

Sd+i(n1, θ), (8.29)

where Ud(n1, θ)=
(
n1

d

)(
θ+n1−2d−1

θ−d

)
.

We now give the proof of (8.29). Sd(n1, θ) is the number of possibilities that d

channels are selected by only one SU for each channel given that there are n1 SUs

and θ available channels. Let Φd(n1, θ) be the number of possibilities that at least d

channels are selected by one SU for each channel given that there are n1 SUs and θ

available channels. Thus,
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Sd(n1, θ) = Φd(n1, θ)− Φd+1(n1, θ). (8.30)

Then, we calculate Φd(n1, θ). We first select d channels out of n1 with one SU

on each channel. The total number of possibilities is
(
n1

d

)
. Then, let the remaining

n1 − d SUs select the remaining θ − d channels. The total number of possibilities is
(
θ+n1−2d−1

θ−d

)
. Thus, we denote Ud(n1, θ) =

(
n1

d

)(
θ+n1−2d−1

θ−d

)
. Compare Φd(n1, θ) with

Ud(n1, θ), there are many repeated counts that need to be removed. We denote the

number of repeated counts as Γd(n1, θ).

Note that for the d+i, i>0, channels that are selected by only one SU, the number

of repeated counts is
[(

d+i
d

)
−1
]
Sd+i(n1, θ). Thus, the total number of repeated counts

is

Γd(n1, θ) =

n1−d∑

i=1

[(
d+ i

d

)

− 1

]

Sd+i(n1, θ). (8.31)

Thus,

Φd(n1, θ) = Ud(n1, θ)− Γd(n1, θ). (8.32)

Compare (8.38) through (8.40), (8.29) is obtained.

Since n2=N−n1−n3, we can remove n2 from the state space and reduce the state

space from three dimensions to two dimensions. Thus, the system chain becomes a

two-dimensional Markov chain {B(t), C(t)}. The state transition probability is

K((n1,n3),(n′
1,n

′
3))

=
M∑

θ=0

n3∑

e=0

N−n1−n3∑

w=0

Tn1−n′
1+w+e

(n1, θ)Yn′
3+e−n3

(N − n1 − n3, w)

Xw(N − n1 − n3)Ze(n3) Pr(θ),

(8.33)

where Pr(θ) is the steady-state probability that there are θ channels available in the

band which can be obtained in Chapter 8.2.3.

We further reduce the two dimensional system chain {B(t), C(t)} with the state

transition probability matrix K((n1,n3),(n′
1,n

′
3))

to a one dimensional Markov chain with
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the state transition probability matrix H(m,m′)=K((n1,n3),(n′
1,n

′
3))
, where







m = (2N−n1+3)n1

2
+ n3

m′ =
(2N−n′

1+3)n′
1

2
+ n′

3.
(8.34)

Let πm be the steady-state probability for state m, 0 ≤ m ≤ (N+1)(N+2)
2

, of the

one-dimensional Markov chain with the state transition probability matrix H(m,m′).

By solving the equilibrium equation π′
m =

∑ (N+1)(N+2)
2

m=0 πmH(m,m′) with the condition
∑ (N+1)(N+2)

2
m=0 πm = 1, we can obtain the steady-state probability πm. We denote the

steady-state probability that there are k SUs in the Backlogged state as ρk. ρk can

be calculated by adding all the πm in which m should be:

m =
(2N − k + 3)k

2
+ j, ∀j ∈ [0, N − k]. (8.35)

Thus,

ρk =

(2N−k+3)k
2

+N−k
∑

m=
(2N−k+3)k

2

πm. (8.36)

Thus, the probability that a collision occurs among SUs when they randomly select

a channel for each SU is obtained by

q =
M∑

θ=1

N∑

k=1

k − 1

θ + k − 2
ρk Pr(θ). (8.37)

We now give the proof of (8.29). Sd(n1, θ) is the number of possibilities that d

channels are selected by only one SU for each channel given that there are n1 SUs

and θ available channels. Let Φd(n1, θ) be the number of possibilities that at least d

channels are selected by one SU for each channel given that there are n1 SUs and θ

available channels. Thus,

Sd(n1, θ) = Φd(n1, θ)− Φd+1(n1, θ). (8.38)
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Then, we calculate Φd(n1, θ). We first select d channels out of n1 with one SU

on each channel. The total number of possibilities is
(
n1

d

)
. Then, let the remaining

n1 − d SUs select the remaining θ − d channels. The total number of possibilities is
(
θ+n1−2d−1

θ−d

)
. Thus, we denote Ud(n1, θ) =

(
n1

d

)(
θ+n1−2d−1

θ−d

)
. Compare Φd(n1, θ) with

Ud(n1, θ), there are many repeated counts that need to be removed. We denote the

number of repeated counts as Γd(n1, θ).

Note that for the d+i, i>0, channels that are selected by only one SU, the number

of repeated counts is
[(

d+i
d

)
−1
]
Sd+i(n1, θ). Thus, the total number of repeated counts

is

Γd(n1, θ) =

n1−d∑

i=1

[(
d+ i

d

)

− 1

]

Sd+i(n1, θ). (8.39)

Thus,

Φd(n1, θ) = Ud(n1, θ)− Γd(n1, θ). (8.40)

Compare (8.38) through (8.40), (8.29) is obtained.

8.3.2 Greedy Channel Selection

For the greedy channel selection scheme, a SU always selects the channel which

leads to the minimum service time [55]. If more than one SU pair perform spectrum

handoffs at the same time, this channel selection method will cause definite collisions

among SUs. Thus, the probability that a collision occurs among SUs is given by:

q =







0 for N ≤ 2

1 for N > 2.
(8.41)

Note that in this channel selection scheme, both the SU transmitter and receiver

do not need to exchange information on the selected channel. Thus, the transition

probability from the Collided states to the corresponding Backlogged state is 1−u

instead of one. A part of the modified state transition diagram for the first tier is

shown in Figure 8.4. The derivation of the steady-state probabilities of this modified
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model can be carried out in the way as in Chapter 8.2.2.

0,1,1 0,c,1

1,0,1 1,1,1 1,c-1,1

...

...

1-u
0,0,1

...

1-u

u(1-p)

up

...

Figure 8.4: The modified Markov model based on the greedy channel selection scheme.

8.3.3 Pseudo-Random Selecting Sequence based Channel Selection

A channel selection scheme is proposed based on a pseudo-random selecting se-

quence [107]. When multiple SUs perform spectrum handoffs at the same time, a

pseudo-random selecting sequence for each SU is generated locally. SUs need to per-

form spectrum handoffs following the same selecting sequence to select channels to

avoid collisions. Thus, for this channel selection scheme, the probability of a collision

among SUs is always zero (i.e., q=0).

8.3.4 Results Validation

In this subsection, we validate the numerical results obtained from our proposed

Markov model using simulation. Note that when the number of SUs in the network

is larger than two, the throughput using the greedy channel selection scheme for

spectrum handoff is always zero because q=1. Thus, we first validate our numerical

results in a two-SU scenario, where the number of PU channels, M=10. The number

of frames in a SU packet, h=1, and the number of slots in a frame, c=10. We assume

that the SU packets are of fixed length. Thus, σ = 1/(ch). Figure 8.5 depicts the

analytical and simulation results of the normalized SU throughput using the random

channel selection scheme and the greedy channel selection scheme. It can be seen

that the simulation results match extremely well with the numerical results in both

schemes with the maximum difference only 3.84% for the random selection and 4.09%

for the greedy selection. It is also shown that, under the same SU traffic load, the

greedy channel selection scheme always outperforms the random channel selection
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scheme in terms of higher SU throughput.
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Figure 8.5: Analytical and simulation results of the normalized SU throughput in a
two-SU scenario.

Then, we consider a CR network with 10 SUs in the network. We fixed the SU

traffic at s=1. The rest of the parameters are the same as in the two-SU scenario.

Figure 8.6 shows that, under different channel selection schemes, the analytical and

simulation results match well with the maximum difference only 6.14% for the random

selection and 1.2% for the pseudo-random sequence selection. Figure 8.6 also indicates

that the pseudo-random sequence selecion outperfoms the random selection, especially

when PU traffic is high.

8.4 The Impact of Spectrum Sensing Delay

In this section, we investigate the impact of the spectrum sensing delay on the

performance of a spectrum handoff process. The spectrum sensing delay considered in

this chapter is defined as the duration from the moment that a collision between a SU

and PU happens to the moment that the SU detects the collision (i.e., the overlapping

time between a SU and PU transmission). Let Ts be the spectrum sensing delay.

Therefore, a SU does not need to wait till the last time slot of a frame to realize the

collision, as shown in Figure 8.1. It only needs to wait for Ts to realize that a collision

with a PU packet occurs and stops the current transmission immediately. In a recent
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Figure 8.6: Analytical and simulation results of the normalized SU throughput under
different channel selection schemes in a ten-SU scenario.

work [57], the spectrum sensing time is considered as a part of the spectrum handoff

delay. However, the definition of the spectrum sensing time in [57] is different from

the definition considered in this research. In [57], the spectrum sensing time only

refers to the duration that a SU finds an available channel for transmission after a

collision occurs. Thus, the spectrum sensing time can be as low as zero in [57]. In

addition, the overlapping time of a SU and PU collision is neglected in [57]. However,

the spectrum sensing delay considered in this chapter is not negligible.

The spectrum sensing delay, Ts, can be easily implemented in our proposed three

dimensional Markov model with minor modifications. Figure 8.7 shows the first tier

of the modified three dimensional discrete-time Markov chain when Ts equals 3 time

slots. It is shown that, for a fixed Nt(t), the maximum number of Collided states is

Ts. The modified model of other tiers is similar to the first tier as shown in Figure

8.7.

Compared with the original Markov model shown in Figure 8.2, the derivation of

the steady-state probabilities of the Markov model implemented with the spectrum

sensing delay is exactly the same. The only difference is that the total number of

the Collided states in the modified Markov model is reduced from [c(c+1)/2]h in the
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Figure 8.7: The modified Markov model based on the spectrum sensing delay when
Ts equals 3 time slots.

original Markov model to [Ts(c−Ts+1)+Ts(Ts−1)/2]h.

8.4.1 Results Validation

Figure 8.8 shows the impact of the spectrum sensing delay on the SU throughput

performance. We consider a two-SU scenario with different spectrum sensing delay

using the random channel selection scheme. It is shown that the numerical results

and analytical results match well with the maximum difference 1.83% for Ts=1 and

4.56% for Ts =6. It reveals that our proposed model can accurately predict the SU

throughput.
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Figure 8.8: Analytical and simulation results of the normalized SU throughput under
different spectrum sensing delay.
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8.5 Performance Evaluation

In this section, we use our proposed Markov model to evaluate the performance

of SU transmissions in spectrum handoff scenarios under various system parameters.

8.5.1 Collision Probability between SUs and PUs

Based on the proposed Markov model, the collision probability between SUs and

PUs is the summation of all the steady-state probabilities of the Collided states.

That is, Pr[collision] =
∑h

k=1

∑c−1
i=0

∑c−i
j=1 P(i,j,k). Figure 8.9 shows the analytical and

simulation results of the collision probability between SUs and PUs using the random

channel selection scheme. The analytical results fit simulation results well with the

maximum difference 6.26% for N =2 and 3.41% for N =6, respectively. It is shown

that the collision probability between SUs and PUs decreases as the number of SUs

increases. This is because that the number of collisions among SUs increases as the

number of SUs during a spectrum handoff increases. Therefore, the probability for a

SU being in the Backlogged states increases. Thus, the collision probability between

SUs and PUs drops.
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Figure 8.9: Analytical and simulation results of the collision probability between SUs
and PUs.
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8.5.2 Average Spectrum Handoff Delay

We denote Ds as the average spectrum handoff delay. Since the spectrum handoff

delay is equivalent to the dwelling time on the Backlogged state, we obtain

Ds =
∞∑

k=1

kpk−1
d (1− pd), (8.42)

where pd = qu+(1−u). Figure 8.10 shows the analytical and simulation results of

the average spectrum handoff delay using the random channel selection scheme. It

is shown that as the number of SUs increases, the average spectrum handoff delay

increases drastically.
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Figure 8.10: Analytical and simulation results of the average spectrum handoff delay.



CHAPTER 9: END-TO-END CONGESTION CONTROL IN CRAHNS

In this chapter, the end-to-end congestion control scheme is studied in CRAHNs.

In the past decade, most of the research efforts in CR networks focus on the lower

two layers (i.e., physical layer and data link layer) [125]. Despite a few routing algo-

rithms, the transport layer issue in CR networks still remains unexplored. Although

the transport layer protocol in Internet and traditional wireless ad hoc networks has

been studied extensively [126, 127, 128, 129, 130], currently, there are only limited

papers addressing this issue in CR networks [131, 132, 133, 134]. Due to the extremely

important role of transport layer protocols in providing end-to-end communication

services in a multi-hop ad hoc network (e.g., reliability, congestion control, flow con-

trol, and jitter control), in this chapter, we focus on the transport layer issue in

multi-hop CR ad hoc networks.

End-to-end congestion control, aiming to find out how much traffic load offered

by the source can be handled by a network, is an essential function of a transport

layer protocol. Conventionally, Transmission Control Protocol (TCP) is the prevalent

transport protocol to provide end-to-end congestion control on the Internet. Routers

over the Internet indicate congestion by dropping packets (i.e., butter overflow). Thus,

the classical TCP protocol interprets all packet losses as being congestion related. In

addition, based on TCP, packet round trip timeouts (RTOs) and duplicate acknowl-

edgments (ACKs) are used as indicators for packet losses. However, in wireless ad

hoc networks, packet losses may be attributed to wireless channel errors or the change

of the network topology rather than buffer overflow. If TCP reacts to these packet

losses as if they were due to congestion and thus decreases the packet transfer rate, it

may cause performance degradation in the end-to-end throughput. As a result, the
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classical TCP is shown to perform poorly over wireless ad hoc networks [129][135].

Since RTOs and duplicate ACKs are not good indicators for congestion in wireless ad

hoc networks, the Explicit Congestion Notification (ECN) mechanism is proposed to

notify the source whenever congestion occurs in a wireless network [136]. In this way,

the source is able to differentiate between congestion-related packet losses and non-

congestion-related packet losses (e.g., channel errors) in a wireless network. Therefore,

only upon the receipt of an ECN message, the source invokes the congestion control

by reducing its packet transfer rate.

Generally, there are two approaches to implement the ECN mechanism: 1) the

ECN is sent from the node where congestion occurs directly back to the source in

a dedicated packet (e.g., an ICMP Source Quench message [131][136]); and 2) the

ECN is piggybacked over data packets to the destination and then sent to the source

through the ACK from the destination [129]. Despite the advantages of the ECN

mechanism, there are some disadvantages. On one hand, for the first approach, more

packets are added in the already congested network, which increases the network

traffic load. On the other hand, for the second approach, it may take a long round

trip delay for the ACK to reach the source. In fact, the initial implementation of

the ECN mechanism to control network congestion for Internet has a premise that

packets marked with ECN can be delivered to the source immediately so that the

source knows that congestion occurs in time [136]. In traditional Internet or wireless

ad hoc networks, this premise can be easily satisfied due to the existence of a common

control channel (CCC) that is always available for all nodes in a network. However,

in multi-hop CR ad hoc networks where a CCC usually does not exist, implementing

the ECN mechanism for congestion control is a non-trivial issue.

In CR ad hoc networks, as shown in Figure 9.1, due to the non-uniformity of the

secondary user (SU) channel availability, a dedicated CCC for control packet exchange

may not exist. Therefore, the SU transmitting pair first needs to find a common
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Figure 9.1: An example of a 3-hop CR ad hoc network where a common control
channel does not exist.

available channel for communications. This process is usually not straightforward

and takes a non-negligible time (the detailed process is presented in Section 9.1).

In addition, due to the dynamic channel availability caused by primary user (PU)

activities, the SU transmission on one channel may fail. Thus, without a CCC, it

may take an excessively long time to successfully transmit an ECN message over a

single hop in a CR network, let alone the delay of the ECN from the congested node

to the source over multiple hops. If the delay of the ECN message is very long, the

network cannot restore from the congested status quickly. Therefore, the congestion

in multi-hop CR ad hoc networks cannot be properly solved by the ECN mechanism.

Furthermore, since RTOs and duplicate ACKs are not used as indicators of network

congestion, the end-to-end congestion control in multi-hop CR ad hoc networks is a

very challenging issue.

To illustrate the impact of the delay of the ECN messages on the congestion control

performance, consider a multi-hop CR ad hoc network shown in Figure 9.2. In Figure

9.2, node 2 is a “bottleneck” node whose buffer size is smaller than other nodes. If the

buffer of a SU is full, additional packets sent to this node will be denied. Therefore,

the “bottleneck” node is usually where the congestion occurs. We use three different

ECN implementations: 1) Priority ECN with a CCC (i.e., the ECN message is sent

in a dedicated packet on a CCC with the highest priority); 2) Priority ECN (i.e.,

the ECN message is sent in a dedicated packet on data channels with the highest

priority); and 3) Piggybacked ECN (i.e., the ECN message is piggybacked in the data

packets on data channels). Figure 9.3 shows the simulation results on the delay of
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the ECN messages and the network performance under different ECN scenarios. We

define an important performance metric, congestion control efficiency, as the ratio

of the number of non-congested received packets (i.e., received packets that are not

dropped due to congestion) to the total number of received packets. This metric

measures the efficiency of the end-to-end congestion control scheme. From Figure

9.3(b), it is shown that if the CCC does not exist, the congestion control efficiency

suffers significantly.

3 1 S 4 2 D 

“bottleneck” node 

piggybacked ECN 

priority ECN 

Figure 9.2: A multi-hop CR ad hoc network.
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Figure 9.3: Network performance of different ECN implementations.

In this chapter, we study the end-to-end congestion control issue in multi-hop CR

ad hoc networks without a CCC. We observe that the delay of the ECN messages has

a significant impact on the network performance. In addition, we show that none of

the existing transport layer approaches can be simply used to solve the congestion

issue in CR ad hoc networks. More specifically, the main contributions of this chapter

are:
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1. A comprehensive end-to-end congestion control framework is proposed in multi-

hop CR ad hoc networks without a CCC.

2. The unique challenges of the end-to-end congestion control in multi-hop CR ad

hoc networks without a CCC are addressed for the first time.

3. The existing methods of the end-to-end congestion control for traditional wireless

ad hoc networks are studied and shown to perform poorly in CR ad hoc networks

without a CCC.

To the best of our knowledge, this is the first work that investigates the end-to-end

congestion control issue in multi-hop CR ad hoc networks without a common control

channel.

9.1 End-to-End Congestion Control Framework in Multi-hop CRAHNs

In this section, we first introduce the related work on congestion control in CR net-

works and their limitations. Then, the comprehensive end-to-end congestion control

framework in multi-hop CR ad hoc networks is proposed.

9.1.1 Related Work

Currently, the research effort on the transport layer issue in CR ad hoc networks

is still quite insufficient. In addition, in these existing works, some unique features

of CR ad hoc networks are not considered and impractical assumptions are made. In

[131], a TCP-like transport protocol for CR ad hoc networks is proposed using the

explicit feedback (i.e., ECN) from the intermediate nodes. However, in [131], a CCC

is used to exchange the control information including the ECN messages. In [132],

the authors evaluate the performance of TCP in CR ad hoc networks. However, in

[132], the non-uniform channel availability of CR ad hoc networks and the complexity

in finding a common available channel caused by the non-uniform channel availability

on the network performance is not considered. In [133] and [134], only a single-hop

CR network is studied and the end-to-end congestion control is not investigated.

Furthermore, the non-uniform channel availability is still not considered. From the
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above discussion, it is known that all the existing works on the transport layer issue

in CR ad hoc networks cannot be used in a practical scenario where the channel

availability is non-uniform and a CCC does not exist. Previous research shows that,

in wireless networks, the design of the lower layer protocols (especially the data

link layer) often has a significant impact on the transport layer performance [127].

Therefore, the transport layer protocol design in CR ad hoc networks should take the

lower layer protocols into consideration.

9.1.2 End-to-End Congestion Control Framework

In this chapter, we propose a comprehensive end-to-end congestion control frame-

work for multi-hop CR ad hoc networks under practical scenarios, as shown in Figure

9.4. Our proposed framework considers the interactions from the physical (PHY)

layer to the transport layer in a network. More importantly, the components at each

layer are necessary for SUs to work in a CR ad hoc networks without a CCC.

Data Link Layer

Medium Access 

Control

802.11 DCF CSMA/CA

Logic Link Control

Channel Rendezvous 

+ Link Error Control

Network Layer

Routing Protocol

Transport Layer

End-to-End Congestion Control

Physical (PHY) Layer

Spectrum Sensing PHY Operations

Figure 9.4: The end-to-end congestion control framework for CR ad hoc networks.

Next, we illustrate how the components at different layers are systematically inte-

grated in the proposed framework. First of all, at the PHY layer, we use QPSK as the

modulation scheme based on the IEEE 802.11 standard [120]. In addition, another

major objective at the PHY layer is spectrum sensing. That is, each SU performs
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spectrum sensing to obtain the availability information of the current channel as an

input for the higher layers. Secondly, at the data link layer, there are two sub-layers.

The first sub-layer is the medium access control (MAC) layer. In this chapter, we use

the IEEE 802.11 DCF CSMA/CA as the MAC protocol [120]. The second sub-layer

is called the logic link control (LLC) layer. One objective of the LLC layer is for two

SUs to find a common available channel and establish a logic link for communica-

tions, namely the channel rendezvous (the channel rendezvous scheme is introduced

in detail in the following paragraph). Another objective of the LLC layer is the link

error control. In CR ad hoc networks, due to various reasons (e.g., channel errors,

dynamic channel availability, and congestion), the SU packet transmission is prone

to fail. To avoid retransmitting the unsuccessful packets constantly by the source,

we incorporate the link layer error control scheme in the framework (i.e., hide link-

related packet losses from the source by using local retransmissions). In this chapter,

we use the stop-and-wait automatic repeat request (ARQ) protocol as the link layer

error control scheme. Therefore, any unsuccessful packet will be instantaneously re-

transmitted over each link locally. Thirdly, at the network layer, a routing protocol

for wireless ad hoc networks is used to find a path from the source to the destination.

Finally, at the transport layer, the proposed end-to-end congestion control scheme is

implemented.

Then, we present the operations of the channel rendezvous scheme. In this chapter,

we use Common Hopping as the channel rendezvous scheme, which is a straightfor-

ward and effective scheme [89]. Figure 9.5 shows the procedure of Common Hopping,

where the SU channels are time-slotted and SUs communicate with each other in

a synchronous manner. Based on Common Hopping, all the SUs in a network hop

through the spectrum band using the same hopping sequence (e.g., the hopping pat-

tern cycles through channels 1, 2, · · · ,M , where M is the number of channels). This

is similar to the frequency hopping technique used in Bluetooth [113]. SUs stay on



210

each hopped channel for one time slot. There are two phases in a time slot. At the

beginning of each time slot, the first phase is called Sensing Phase (SP): all SUs are

required to perform spectrum sensing during this phase. Following the SP, the sec-

ond phase is called Transmission Phase (TP): SUs may transmit packets during this

phase. Therefore, if the current channel is sensed idle during a SP, SUs may use this

channel for transmissions during the following TP. On the other hand, if the current

channel is sensed busy, SUs cannot start transmissions during the TP. SUs need to

hop on channels until an available channel is found. As we can see, in order to find

a common available channel, the SU transmitting pair may need to hop several time

slots, which leads to long delay of packet transmissions over a single hop.

CH 3

CH 2

CH 1

...

...

...

Sensing 

Phase (SP)
Transmission Phase (TP)

Figure 9.5: An example of the Common Hopping channel rendezvous scheme in CR
ad hoc networks.

From the above description, if a SU does not have any packet to transmit, it hops

through channels following the hopping sequence. If a SU has a packet in the buffer

and needs to initiate a transmission, it follows the IEEE 802.11 DCF CSMA/CA

and sends the request-to-send (RTS) packet to the intended receiver during the TP

if the current channel is idle. Then, the receiver replies with the clear-to-send (CTS)

packet on the same channel. After the transmitting pair has successfully exchanged

the RTS/CTS messages, they pause the channel hopping and remain on the same

channel for data transmissions, while other non-transmitting SUs continue hopping.

After the data being successfully transmitted, the SU pair rejoins the channel hopping.
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9.2 Challenges of End-to-End Congestion Control in Multi-hop CRAHNs

It is shown that the transport layer network performance suffers degradation when

a CCC does not exist. In this section, we first introduce the network scenario consid-

ered in this chapter. Then, based on the network scenario, we further elaborate the

challenges of end-to-end congestion control in multi-hop CR ad hoc networks.

9.2.1 Network Scenario

In this chapter, we consider a 5-hop CR ad hoc network with a chain-topology, as

shown in Figure 9.2. The distance between the two neighboring SUs is 200 meters.

PUs and SUs co-exist in a l × l area. PUs are evenly distributed within the network

area. SUs opportunistically access M licensed channels. Each SU has a circular

transmission range with a radius of rc. The sensing phase length is 1 ms (the minimum

spectrum sensing length using the energy detection method is 1 ms [137]). In addition,

the transmission phase length is 10 ms. This length is long enough for the SU pair

to exchange RTS/CTS packets. Thus, the length of a time slot is 11 ms. The normal

buffer size of each SU is 50 TCP packets. That is, each SU has a queue of packets

waiting for transmission that holds up to 50 packets and is managed in a drop-tail

fashion. In addition, the buffer size of the “bottleneck” nodes is 5 TCP packets.

Other parameters are given in Table 9.1.

In addition, each SU also has a circular sensing range with a radius of rs. That is,

if a PU is currently active within the sensing range of a SU, the corresponding SU is

able to detect its appearance. Since different SUs have different local sensing ranges

which include different PUs, their acquired available channels may be different. In

addition, in this chapter, we model the PU channel activity as an ON/OFF process,

where the length of the ON period is the length of a PU packet. Moreover, the

arrival process of PU packets follows Poisson distribution. We assume that each PU

randomly selects a channel from the spectrum band to transmit one packet.
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Table 9.1: System Parameters
Number of PUs 80
Number of channels in the spectrum band 5
Side length of the network area 1400 m
Radius of the SU transmission range 250 m
Length of the sensing phase 1 ms
Length of the transmission phase 10 ms
Data rate of the channels 2 Mbps
Size of RTS packets 288 bits
Size of CTS packets 240 bits
Size of MAC ACK packets 240 bits
Size of SU TCP segments 1460 Bytes
Size of PHY header+MAC header+IP header 70 Bytes
Size of SU TCP ACK packets 20 Bytes
Size of dedicated packets marked with ECN 20 Bytes
Size of PU packets 1460 Bytes

9.2.2 Challenges of End-to-End Congestion Control

Currently, all the existing end-to-end congestion control mechanisms can be cat-

egorized into two classes: 1) using the explicit feedback (e.g., ECN) to notify the

source when congestion occurs (usually for the wireless TCP [129][131]) and 2) us-

ing RTOs and duplicate ACKs as indicators for congestion (usually for the classical

TCP), namely the RTO mechanism. In this section, we study these two types of

congestion control mechanisms and show that none of them can be simply used in

multi-hop CR ad hoc networks.

9.2.2.1 The ECN Mechanism in Multi-hop CR Ad Hoc Networks

We first study the ECN mechanism in multi-hop CR ad hoc networks. Since

the SU channel availability is non-uniform, a dedicated CCC may not exist. Hence,

control packets cannot be transmitted via a dedicated control channel that is always

available. In addition, due to the dynamic channel availability, the SU transmitting

pair may not always have a common available channel. If the current channel is

sensed busy, they need to hop through the spectrum band to find a common available

channel for their transmissions based on the channel rendezvous scheme. If PU traffic
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is heavy, the SUs have to wait for a long time before they can start the transmissions,

which causes an excessive delay for the ECN messages from the congested node to

the source. The excessively long delay of the ECN messages results in a very serious

consequence. That is, the TCP source reacts to network congestion slowly. Once the

network is congested, the network cannot restore from the congested status quickly.

We still use the three ECN implementations. If the congested node is near to the

source, as shown in Figure 9.2, the delay of the ECN messages using the Priority

ECN is very close to the scenario where a CCC exists. Therefore, the Priority ECN

has similar performance as the Priority ECN with a CCC in terms of the congestion

control efficiency. In addition, the Priority ECN outperforms the Piggybacked ECN

in terms of higher congestion control efficiency because it has shorter delay of the

ECN. However, if the congested node is far away from the source, the results are quite

different. Consider a multi-hop CR ad hoc network, as shown in Figure 9.6. In Figure

9.6, node 4 is the “bottleneck” node who is far away from the source. If congestion

occurs at node 4, the priority ECN message needs to travels a long path through the

network back to the source. In addition, since the Priority ECN adds more packets

in the already congested network, the congestion status becomes even more critical.

On the other hand, the Piggybacked ECN does not introduce any overhead in the

network. Figure 9.7 shows the simulation results of the delay of the ECN messages

and the congestion control efficiency under different ECN implementations. From

Figure 9.7, it is shown that the Piggybacked ECN outperforms the Priority ECN in

terms of higher congestion control efficiency in this scenario.

3 1 S 4 2 D 

“bottleneck” node 

piggybacked ECN 

priority ECN 

Figure 9.6: A multi-hop CR ad hoc network where the congested node is far away
from the source.
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(a) Delay of the ECN messages.
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(b) Congestion control efficiency.

Figure 9.7: Network performance of different ECN implementations.

As the transport protocol runs at the end nodes (i.e., source and destination), it

has limited knowledge of the conditions of the intermediate nodes. That is, the source

does not know the location of the “bottleneck” node. Thus, the source cannot decide

which ECN implementation is used. Therefore, as we can see, without a CCC, using

either the Priority ECN or the Piggybacked ECN may not be an optimal solution for

multi-hop CR ad hoc networks.

9.2.2.2 The RTO Mechanism in Multi-hop CR Ad Hoc Networks

Since in our network scenario, there is only one path from the source to the

destination, duplicate ACKs do not occur. Therefore, in this chapter, we only study

the RTO mechanism in multi-hop CR ad hoc networks. The main idea of the RTO

mechanism is that the source keeps a timer when a segment is sent. If the timer expires

before the ACK of the corresponding segment comes in, the congestion control is

invoked. In our considered network scenario, if congestion occurs, the dropped packet

is retransmitted on each link. Therefore, this could lead to a long round trip time

(RTT) of that segment. Hence, by using the timeout mechanism, the congestion is

known to the source. However, to determine a RTO interval is not a trivial issue. Due

to the dynamic spectrum environment of CR ad hoc networks, the RTT of SU TCP

segments varies significantly. Figure 9.8 shows the cumulative distribution function
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(CDF) of the SU TCP segment RTT under different PU traffic load when there is no

“bottleneck” node in the network. From Figure 9.8, it is shown that, when the PU

traffic is heavy (e.g., PU packet arrival rate is 75 pkt/s), the variance of the RTT is

very large.
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(a) PU packet arrival rate is 10 pkt/s.
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(b) PU packet arrival rate is 75 pkt/s.

Figure 9.8: The CDF of the SU TCP segment RTT under different PU traffic load.

In this chapter, we adopt the timeout algorithm used by TCP [138]. Based on the

TCP protocol specification, the average estimated RTT can be calculated using the

following equation:

R = αR + (1− α)T, (9.1)

where R is the average estimated RTT and T is the RTT measured from the most

recent ACKed segment, respectively. In addition, α is a smoothing factor with a

typical value of 0.8. Once the estimated RTT is updated, the RTO for the next

segment is set to be βR. Normally, β = 2. However, we observe that if β = 2, the

source seldom timeouts since the RTO is larger than the RTT with a high probability.

Thus, the network cannot function properly. Therefore, in this chapter, we use β = 1.

Figure 9.9 shows the simulation results of network performance of the RTOmechanism

and the ECN mechanisms. From Figure 9.9(a), it is shown that the RTO mechanism

outperforms the ECN mechanisms in terms of higher congestion control efficiency. In

fact, using the RTO mechanism, the congestion control efficiency is always one since
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there is no packet congested. On the other hand, from Figure 9.9(b), it is shown

that the RTO mechanism has the lowest end-to-end throughput among the three

congestion control mechanisms.

25 50 75
0.92

0.94

0.96

0.98

1

PU Packet Arrival Rate (pkt/s)

C
on

ge
st

io
n 

C
on

tr
ol

 E
ffi

ci
en

cy

 

 

Priority ECN
Piggybacked ECN
RTO mechanism

(a) Congestion control efficiency.
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(b) End-to-end throughput.

Figure 9.9: Performance comparison between the ECN mechanism and the RTO
mechanism.

In addition, Figure 9.10 shows the change of the congestion window in terms of the

maximum segment size (MSS) under different congestion control mechanisms. From

Figure 9.10, the RTO mechanism reduces the congestion window very frequently,

when comparing to the Piggybacked ECN. As we can see, the congestion window

using the RTO mechanism is always smaller than five MSS. This overly conservative

congestion control leads to the low end-to-end throughput.
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Figure 9.10: The change of the congestion window under different congestion control
mechanisms.

Therefore, from the above analysis, it is known that both the ECN mechanism and

the RTO mechanism have their limitations in performing the end-to-end congestion

control in multi-hop CR ad hoc networks.
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9.3 Performance Evaluation

In this section, we show other performance results of the existing end-to-end con-

gestion control mechanisms in multi-hop CR ad hoc networks.

9.3.1 Performance of Packet Delay Variation

For audio and video communications, the average value the end-to-end packet

delay does not have significant impact on the network performance as long as the delay

is constant. However, the deviation of the packet delay is an important performance

metric. In computer networking, the variance of the end-to-end packet delay is also

called jitter. Even though the jitter control is a different issue in the transport layer,

maintaining a small variance of the packet delay is a main objective of a good end-

to-end congestion control mechanism. Figure 9.11 shows the simulation results of the

jitter under different congestion control mechanisms. From Figure 9.11, it is shown

that when the “bottleneck” node is far from the source and the PU traffic is heavy,

the Piggybacked ECN has better performance than the Priority ECN in terms of

smaller jitter. However, the RTO mechanism always has the smallest jitter among

the three congestion control schemes.
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(a) Node 2 is the “bottleneck” node.
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(b) Node 4 is the “bottleneck” node.

Figure 9.11: The packet delay variation under different congestion control mecha-
nisms.
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9.3.2 Impact of Channel Errors on Network Performance

As mentioned in Section 9.2, similar to traditional wireless ad hoc networks, in CR

ad hoc networks, the packet loss could also be caused by wireless channel errors. If

a packet cannot be successfully received by the receiver due to the lossy channel, the

packet is retransmitted locally, which results in a long delay of the packet. Therefore,

the channel errors may have significant effect on network performance. In this chapter,

we use QPSK as the modulation scheme, the bit error rate (BER) of QPSK for an

additive white Gaussian noise (AWGN) channel is

Pe = Q

(√

2Eb

N0

)

, (9.2)

where Q(·) is the Q-function and Eb/N0 is signal-to-noise ratio (SNR) on a channel

[139]. Therefore, the probability that a packet is lost due to wireless channel error is

Ploss = 1− (1− Pe)
Ls , (9.3)

where Ls is the size of the PHY layer packet. Figure 9.12 shows the performance

results of different end-to-end congestion control mechanisms under different SNR.

Similar to Figure 9.9(b), from Figure 9.12(b), it is shown that the RTOmechanism has

the lowest end-to-end throughput among the three schemes. However, as we can see,

for other performance metrics, the RTO mechanism achieves the best performance.
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(a) Congestion control efficiency.
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(b) End-to-end throughput.
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(c) Variance of the packet delay.
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(d) Average packet delay.

Figure 9.12: Performance results of different congestion control mechanisms under
different SNR.



CHAPTER 10: OPTIMAL POWER CONTROL FOR CRAHNS

In this chapter, the optimal power control issue is studied in CRAHNs. Many

challenges exist in the deployment of CR networks [4]. First of all, the transmission

of CR users should not cause interference to primary (PR) users. Secondly, the

throughput of CR links should be maximized for reliable quality communications.

Thirdly, the robustness of CR links becomes extremely difficult to achieve under the

mobility of CR users. A number of studies have been conducted in order to address

these challenges.

One commonly known technique to address the above challenges is spectrum sens-

ing, under which a CR transmitter can access the frequency band of interest only if

the PR transmission is detected to be off. Through spectrum sensing, CR users can

exploit unused spectrum opportunistically in a radio environment. Several spectrum

detection techniques have been proposed, such as the detection of a primary trans-

mitter through matched filter detection, energy detection, and cyclostationary feature

detection [140], and the detection of local oscillator power [141].

In this chapter, we consider to achieve the above mentioned goals from a different

perspective. Due to the non-zero probability of false detection and implementation

complexity of spectrum sensing, we may raise a question: is there a way to achieve the

goals of CR networks without spectrum sensing? Hence, we study a new sensing-free

solution to enable concurrent transmissions of mobile CR users and also guarantee

non-interference to PR users, thus improve the frequency reuse. With such aim, we

examine a location-aware spectrum sharing scenario, where a CR ad hoc network is

overlaid to a legacy network. CR users intend to operate over the same spectrum

band which is licensed to PR users. The objective is to maximize the concurrent
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transmission region of CR users within which they can move, while at the same time

maintaining non-interference to PR communications.

(a) Without power control (b) With power control

Figure 10.1: A spectrum sharing scenario of a two-node CR ad hoc network with a
PR user.

To achieve the above objective, power control policies are important to guarantee

the quality of both CR and PR communications. Figure 10.1 demonstrates the sce-

nario of using a fixed power policy (in (a)) and the scenario of using power control (in

(b)). The figure indicates that without power control, when a PR user is within the

interference range of a CR transmission, concurrent transmissions are not possible.

However, with power control, concurrent transmissions become feasible by reducing

the transmit power of the CR transmitter to ensure non-interference to the PR user.

Hence, the concurrent transmission region defined in this chapter refers to the circle

within which the transmissions of CR users can be conducted without interfering PR

users. The optimal power defined in this chapter refers to the transmit power which

makes the concurrent transmission region of a CR user the maximum so that the

bandwidth efficiency and CR link throughput can be improved. In addition, we as-

sume that every node has its own location information in the system through Global

Positioning System (GPS) or other positioning algorithms [96], and every node is able

to exchange location information via a common control channel with its neighboring

nodes [142][143].

Currently, related work on power control and concurrent transmissions of CR

networks falls into two categories. In the first category, the power control problem is
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considered in terms of either improving network energy efficiency [144, 145, 116, 146],

or supporting user communication sessions in multi-hop CR networks [147], but the

concurrent transmission for CR users is not considered. On the other hand, in [148],

the scanning-free concurrent transmission region for CR users is considered only from

a geometric point of view without taking power control into account. In addition,

in this work, the CR transmitters and receivers are geographically fixed and the

mobility of CR users is ignored. The concurrent transmission area defined in [148] is

an irregular area which is difficult to apply in mobile scenarios. In [142], a location-

assisted MAC protocol is proposed to enable concurrent transmissions for exposed

nodes. In [149], the power scaling constraint of a CR transmitter is studied.

Our proposed optimal power control algorithm differs from related work in the

original motivations. Most related work only considers fixed transmit power at each

CR node without the power control capability [148] [150]. In this chapter, we study

a mobile CR network where each CR node has the power control capability. That

is, each CR node can transmit at any power in the allowable transmit power range

to achieve the maximum concurrent transmission region. Our main contribution

is that we propose a location-aware sensing-free optimal power control algorithm

for concurrent transmissions especially in mobile CR ad hoc networks. Under such

algorithm, the CR transmitter is able to conduct transmissions with the presence of

the PR users while moving. Even if the CR users are in the area called “protected

region” [149] in which the CR users should not transmit, if the location information

of both CR and PR receivers is known to the CR transmitter, the CR transmitter

can adjust its transmit power to enable the concurrent transmission.

10.1 System Model and Problem Formulation

In this section, a spectrum sharing scenario in which a cognitive radio ad hoc net-

work overlaid to a legacy network is considered. Figure 10.2 shows the system model,

where the shaded triangle and square represent the PR transmitter and receiver, re-
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Figure 10.2: System model of a CR ad hoc network overlaid to a legacy network.

spectively. The white circles are the CR transmitter (denoted as CTx) and receiver

(denoted as CRx). They form an ad hoc network to share the same spectrum band

with the primary network. Without loss of generality, we assume that the PR base

station is at the origin of the coordinate axes, and the PR receiver does not move.

Let the location of the PR and CR receiver be (r1, ϕ1) and (r2, ϕ2), respectively. d12

represents the distance between the CTx and the PR receiver, and d22 represents the

distance between the CTx and CRx. The decodable radius of the TV base station isR.

Thus, the distance between the PR and CR receivers is dpc =
√

r21 + r22 − 2r1r2 cos θpc,

where θpc is the relative angle of the PR and CR receivers.

Based on the two-ray ground propagation model [139][151], the received signal

power Pr can be written asPr =
PtGtGrh2

th
2
r

rα
, where Pt is the transmit power, Gt and

Gr are the gains of the transmitter and receiver antennas, respectively; ht and hr are

the heights of the transmitter and receiver antennas, respectively; r is the distance

between the transmitter and the receiver; and α is the path loss factor.

In this chapter, we consider that the concurrent transmission for CR users must

satisfy the co-channel signal-to-interference ratio (SIR) requirements for both PR and

CR receivers. We denote the SIR thresholds for the PR and CR receivers as τp and

τc, respectively; and the SIRs for the PR and CR receivers are SIRp and SIRc,
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respectively. The optimal power control problem for concurrent transmission region

maximization is formulated as follows:

Maximize: the area of concurrent transmission region

Subject to:

SIRp > τp

SIRc > τc

Pmin
c ≤ Pct ≤ Pmax

c ,

(10.1)

where Pct is the transmit power of the CTx, Pmin
c and Pmax

c are the minimum and

maximum allowable transmit power of the CTx, respectively.

10.2 Optimal Power Control

In this section, the proposed optimal power control algorithm for concurrent trans-

mission region maximization is presented. We first consider the feasibility of the pro-

posed optimal power control algorithm. Then, we consider the implementation of the

algorithm in a mobility scenario. Finally, the impact of the shadowing fading effect

on the optimal power control algorithm is investigated for the mobility scenario.

10.2.1 Feasibility of Optimal Power Control

We assume that the transmit power of the TV base station is Pbs, the gains of

the transmitter and receiver antennas are unity, the heights of the antennas are the

same, the path loss factors of the PR and CR transmissions are the same, and the

Gaussian noise is negligible. Based on these assumptions, the SIRs at both CR and

PR receivers can be written as SIRc =
Pctrα2
Pbsd

α
22

and SIRp =
Pbsd

α
12

Pctrα1
, respectively. Since

the SIRs must satisfy (10.1), we have

d22 < r2(
Pct

τcPbs

)1/α

d12 > r1(
τpPct

Pbs

)1/α.

(10.2)
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The first constraint in (10.2) means that the CTx which can concurrently transmit

to the CRx must be physically within the disk centered at the CRx with a radius

of r2(
Pct

τcPbs
)1/α, as shown in Figure 10.2. The second constraint means that the CTx

must not fall into the disk which is centered at the TV receiver with a radius of

r1(
τpPct

Pbs
)1/α, as shown in Figure 10.2. Therefore, the concurrent transmission region

reaches the maximum when the following equation is satisfied:

r1(
τpPct

Pbs

)1/α + r2(
Pct

τcPbs

)1/α = dpc. (10.3)

Hence, given r1, r2, and θpc, the optimal power for concurrent transmission region

maximization can be derived by solving equation (10.3).

However, considering (10.1), the solution of (10.3) may not lie in the allowable

range [Pmin
c , Pmax

c ]. So we consider two extreme cases by letting Pct be Pmin
c and

Pmax
c , respectively. We have the following two extreme functions of r2 and θpc:

f(r2, θpc) =r1(
τpP

min
c

Pbs

)1/α + r2(
Pmin
c

τcPbs

)1/α

−
√

r21 + r22 − 2r1r2 cos θpc

(10.4)

g(r2, θpc) =r1(
τpP

max
c

Pbs

)1/α + r2(
Pmax
c

τcPbs

)1/α

−
√

r21 + r22 − 2r1r2 cos θpc.

(10.5)

If f(r2, θpc) > 0, as shown in Figure 10.3(a), the two disks overlap and increasing

the transmit power Pct cannot make these two disks separate, therefore, the optimal

transmit power of Pct can never be reached. Similarly, if g(r2, θpc) < 0, as shown in

Figure 10.3(b), there will not be an optimal power either. Hence, the existence of the

optimal Pct power relies on r2 and θpc. If the optimal power control is feasible, the

two cases shown in Figure 10.3 should be avoided. That is, to let the optimal power

exist, r2 and θpc must be in the set



226

(a) (b)

Figure 10.3: Two possible cases that there will be no solution for (10.3). (a)
f(r2, θpc) > 0. (b) g(r2, θpc) < 0.

{(r2, θpc)|f(r2, θpc) ≤ 0 ∩ g(r2, θpc) ≥ 0)}. (10.6)

Update r1 , ϕ1, r2 and ϕ2;

Calculate θpc, d22, f(r2, θpc) and g(r2, θpc);

if (f(r2, θpc) ≤ 0)AND(g(r2, θpc) ≥ 0)AND(d22 ≤ rmax)

calculate optimal power; //optimal power could apply

transmit with optimal power;

else if (g(r2, θpc) < 0)AND(d22 ≤ rmax)

transmit with maximum power; //concurrent transmission

will not affect primary user

else if (f(r2, θpc) > 0)

stop transmitting; //concurrent transmission is not

allowed

end if

The above algorithm presents the proposed optimal power control algorithm for the

scenario when the CRx is in a fixed location, where rmax is the maximum decodable

range of the CTx. Recall that the location information of both the CR and PR

receivers is available to the CTx. The proposed algorithm first evaluates the feasibility
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of the optimal power control for concurrent transmissions. Then, the optimal power

can be computed using any numerical method when the optimal power control is

feasible. The last case checks the availability of concurrent transmissions, and the

CTx will not conduct transmissions unless the condition is violated.

10.2.2 Optimal Power Control for Mobility Scenarios

We now extend our model to the scenario in which the mobility of the CRx is

considered. Because of the mobility of the CRx, r2 and relative angle θpc change with

the movement of the CRx. Thus, the optimal power and the concurrent transmission

region also change. Figure 10.4 shows the scenario where the concurrent transmission

region evolves with the movement of the CRx from A to B.

Figure 10.4: The concurrent transmission region evolves with the movement of the
CRx.

Without loss of generality, we assume that the CR transmitter is static in a loca-

tion (r3, ϕ3), and the CRx is moving from a starting point (R2,Φ2) with a velocity

of ~v = s~u, where s is the speed and ~u = (cos γ, sin γ) is the unit directional vector.

Therefore, the polar coordinates of the CRx can be written as:







r2(t) =
√

(R2 cosΦ2 + st cos γ)2 + (R2 sinΦ2 + st sin γ)2

ϕ2(t) = arctan( R2 sinΦ2+st sin γ
R2 cosΦ2+st cos γ

).

If the movement pattern of the CRx does not change (i.e., the direction and



228

velocity remain the same) or the movement pattern is deterministic, the coordinates

of the CRx are just functions of time. Therefore, the CTx can “predict” the location

of the CRx, thus adjust its transmit power using exactly the same optimal power

control algorithm shown in Figure 4.

On the other hand, if the movement pattern of the CRx keeps changing randomly,

the CRx should update its location to the CTx for computing the optimal power

control. Figure 6 demonstrates the proposed optimal power control algorithm for a

mobile CRx that changes movement patterns randomly, where rCT is the radius of

the concurrent transmission region.

Update r1 , ϕ1, R2, Φ2, r3, ϕ3, s and ~u;

Calculate r2, ϕ2, θpc and d22;

if (d22 ≤ rCT )AND(d22 ≤ rmax)

//the distance between CTx and CRx

is still in concurrent transmission region

transmit power remains the same;

else

calculate f(r2, θpc) and g(r2, θpc);

if (f(r2, θpc) ≤ 0)AND(g(r2, θpc) ≥ 0)AND(d22 ≤ rmax)

calculate optimal power;

calculate concurrent transmission radius rCT ;

transmit with optimal power;

else if (g(r2, θpc) < 0)AND(d22 ≤ rmax)

transmit with maximum power;

will not affect primary user

else if (f(r2, θpc) > 0)

stop transmitting;

end if
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end if

10.2.3 Shadowing Fading Effect

In this subsection, we consider the impact of the shadowing fading effect on the

optimal power control algorithm. Since the antenna of the TV transmitter is usually

hundreds of meters higher than that of the CR transmitter, we loose the assumption

that the path loss factors of the PR user and CR user are the same, and assume α1 <

α2, where α1 and α2 are the path loss factors of the PR user and CR user, respectively.

Using log-distance path loss model [139], the path loss of PR transmissions can be

written as:

PLp(r1)[dB] = PLp(d0) + 10α1 log(
r1
d0

) +Xσ,

where d0 is the reference distance and Xσ is a zero-mean Gaussian random variable

with standard deviation σ which is location and distance dependent. Therefore, the

received power of the PR receiver is Ppr(r1) = Pbs − PLp(r1), and interference from

the CTx is Pi(d12) = Pct − PLc(d12). Hence, the SIR at the PR receiver is SIRp =

Ppr(r1)− Pi(d12). Similarly, the SIR at the CR receiver is SIRc = Pcr(d22)− Pi(r2).

Since the SIRs must satisfy the constraints in (10.1), we have

d12[dB] >
Pct + α1r1 + τp +X

′

σ − Pbs

α2

(10.7)

d22[dB] <
Pct + α1r2 − τc −X

′

σ − Pbs

α2

, (10.8)

where X
′

σ ∼ N(0,
√
2σ). Similar to (10.3), the optimal power is achieved when the

following equation is satisfied.

10
Pct+α1r1+τp+X

′
σ−Pbs

10α2 + 10
Pct+α1r2−τc−X

′
σ−Pbs

10α2

=
√

r21 + r22 − 2r1r2 cos θpc.

(10.9)
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The solution of equation (10.9) can be written as

Pct[dB] = 10α2 lg





√

r21 + r22 − 2r1r2 cos θpc

10
α1r1+τp+X

′
σ−Pbs

10α2 + 10
α1r2−τc−X

′
σ−Pbs

10α2



 . (10.10)

10.3 Performance Results

In this section, the performance of the proposed optimal power control algorithm

is evaluated via simulations and compared with the power control algorithm with

fixed transmit power.

10.3.1 Simulation Parameters

The parameters used in our simulations are listed in Table 10.1. We assume that

the transmit power of the TV base station is 100 kW [152], the transmit power range

of the CTx is [1W, 100W] [152], and the SIR thresholds for the TV and CR receivers

are 30dB and 3dB, respectively.

Table 10.1: Simulation Parameters
TV base station transmit power 100kW
maximum transmit power of CTx 100W
minimum transmit power of CTx 1W
coordinates of TV receiver (50km, 0◦)
coordinates of CTx (50km, 60◦)
SIR thershold for PR receiver 30dB
SIR thershold for CR receiver 3dB
path loss factor 3
Simulation time 1000s

The mobility characteristics of the CRx are modeled using the random waypoint

mobility model [112][153]. The CRx changes its movement pattern every ts seconds,

where ts is uniformly distributed between 0 and 30s. The average speed of the CRx

s is chosen at 10, 20, 30, 40 m/s. The heading angle of the CRx is selected to be

uniformly distributed between 0 and 2π. The average pause time of the CRx is set

to be 5 seconds. The starting position of the CRx is (50km, 60◦). The time-based

update mechanism is used in our simulations with the time threshold 1 second.
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The length of packets sent from the CTx is exponentially distributed with the

mean length of 100 bytes. The packets are sent in a Poisson stream fashion with the

average arrival rate of 10 packets/s.

10.3.2 Simulation Results
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Figure 10.5: Optimal transmit power of CTx for maximum concurrent transmission.

First, from (10.3) we obtain the plane of the optimal power with respect to r2 and

θpc, as shown in Figure 10.5. It is observed that when θpc is within a certain range,

the optimal power is constant at Pmax
c . This is because that if the solution of (10.3) is

greater than the maximum allowable transmit power of the CTx, the optimal power

will be limited to the maximum transmit power.

0 10 20 30 40 50 60
55

60

65

70

75

80

85

90

95

100

r
2
 (km)

O
pt

im
al

 tr
an

sm
it 

po
w

er
 (

W
)

Figure 10.6: Optimal transmit power when θpc = 60◦.
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Figure 10.7: Simulation results of concurrent transmission radius vs. transmit power
of CTx.

Figure 10.6 along with Figure 10.7 illustrate the relationship between the radius

of the concurrent transmission region rCT and the transmit power of the CTx under

different r2. Figure 10.6 is obtained from Figure 10.5 when θpc is fixed to be 60◦, while

Figure 10.7 is obtained through the simulation based on the constraints in (10.1). It

is noted that when r2 is in the interval [47km, 51km] as shown in Figure 10.6, the

optimal power in these two figures match perfectly, which indicate the analytical and

simulation results coincided well. From the proposed optimal power control algorithm

shown in Figure 6, the distance between the CTx and the CRx d22 must be smaller

than the maximum decodable radius of the CTx to let the concurrent transmission

be feasible. According to (10.2), the maximum decodable radii of the CTx are 3.7km

when r2 is 47km and 4.2km when r2 is 54km. So if r2 is out of the neighborhood

of 50km (i.e., [47km, 54km]), d22 is larger than the maximum decodable radius of

the CTx. Hence, the concurrent transmission radius is zero, which means that the

concurrent transmission is not allowed. From Figure 10.6, the radius of the concurrent

transmission region increases as the transmit power of the CTx increases. When the

transmit power reaches the optimal power, the concurrent transmission radius reaches

the maximum, and then it decreases drastically.

Figure 10.8 shows the simulation results of packet delivery ratio of the mobile CR
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(a) Average speed = 10m/s
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(b) Average speed = 20m/s
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(c) Average speed = 30m/s
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Figure 10.8: Packet delivery ratio using fixed power algorithm and the proposed power
control algorithm under different average speeds.
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Figure 10.9: Packet delivery ratio under the shadowing fading effect (average speed
= 30m/s).

ad hoc network using fixed transmit power of the CTx and the proposed optimal

power control algorithm with different moving speeds of the CRx. The mobility

characteristics are given in Section 10.3.1. First of all, it is observed that the overall

packet delivery ratio suffers degradation as the moving speed of the CRx increases.

Secondly, with the same moving speed, the packet delivery ratio increases as the

transmit power of the CTx increases. When the fixed transmit power of the CTx

exceeds 80W, the packet delivery ratio decreases to zero. This is because that the

SIRp can never be satisfied when the transmit power of the CTx exceeds 80W.

However, it is noted that the packet delivery ratio using the proposed optimal power

control algorithm is always higher than that of the fixed power algorithm at any

speed.

Finally, Figure 10.9 shows the simulation results of the packet delivery ratio under

different power control algorithms with the impact of the shadowing fading effect. The

mobility characteristics are the same as used for Figure 10.8. The path loss factors

of PR and CR transmissions are 3 and 4, respectively. The average speed of the CRx

is set to be 30 m/s, and the standard deviation σ is chosen to be 6 dB. Compared

to Figure 10.8(c), the overall packet delivery ratio decreases significantly. However,

with the shadowing fading effect, the SIRp can be satisfied with certain probability
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when the transmit power of the CTx exceeds 80W. It is observed from the simulation

results that the proposed optimal power control algorithm also outperforms the fixed

power algorithm under the shadowing fading effect.



CHAPTER 11: CONCLUSION

11.1 Conclusions

In this research, the broadcasting challenges specifically in multi-hop CR ad hoc

networks under practical scenarios with collision avoidance have been addressed for

the first time. A fully-distributed broadcast protocol named BRACER is proposed

without the existence of a global or local common control channel. By intelligently

downsizing the original available channel set and designing the broadcasting sequences

and broadcast scheduling schemes, our proposed broadcast protocol can provide very

high successful broadcast ratio while achieving very short broadcast delay. In addi-

tion, it can also avoid broadcast collisions. Simulation results show that our proposed

BRACER protocol outperforms other possible broadcast schemes in terms of higher

successful broadcast ratio and shorter average broadcast delay.

The performance analysis of broadcast protocols for multi-hop CR ad hoc net-

works is studied. Due to the non-uniform channel availability in CR networks, several

significant differences and unique challenges are introduced when analyzing the per-

formance of broadcast protocols in CR ad hoc networks. A novel unified analytical

model is proposed to address these challenges and analyze the broadcast protocols in

CR ad hoc networks with any topology. Specifically, two algorithms are proposed to

calculate the successful broadcast ratio and the average broadcast delay of a broadcast

protocol. In addition, the derivation methods of the single-hop performance metrics

for three different broadcast protocols in CR ad hoc networks under practical sce-

narios are proposed. Results from both the hardware implementation and software

simulation validate the analysis well. To the best of our knowledge, this is the first

analytical work on the performance analysis of broadcast protocols for multi-hop CR
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ad hoc networks.

The optimal HELLO message exchange issue in static and mobile CR ad hoc

networks is addressed for the first time. The impact of PU traffic and periodic HELLO

message update on SU traffic is mathematically modeled. Based on the proposed

analytical model, the trade-off between SU throughput as well as average SU waiting

time and control overhead is analytically obtained. Simulation results show that

our proposed optimal HELLO message exchange protocol outperforms the change-

triggered scheme in terms of higher utilities. The proposed methodology and modeling

techniques are enlightening for realizing and optimizing other networking protocols

in CR ad hoc networks.

A new type of security threat in CR ad hoc networks called the false channel

information exchange attack is investigated. Malicious nodes broadcast false channel

information to neighboring nodes so that the victim nodes may make incorrect de-

cisions about other nodes. This attack is extremely challenging to detect and may

significantly deteriorate the performance for both the legacy and secondary network.

By investigating the spatial correlation of the channel availability between neighboring

nodes, the malicious node that sends the false channel information can be identified.

Simulation results show that the proposed algorithm can achieve very high detection

rate while maintaining low false alarm rate. To the best of our knowledge, this is the

first work that defines and addresses the FCIE attacks in CR ad hoc networks.

In this research, a proactive spectrum handoff framework in a CR ad hoc net-

work scenario without the existence of a CCC, ProSpect, is proposed. Compared

with the sensing-based reactive spectrum handoff approach, our proposed framework

can achieve fewer disruptions to primary transmissions by letting SUs proactively

predict the future spectrum availability and perform spectrum handoffs before a PU

occupies the current spectrum. We incorporated a single rendezvous and a multiple

rendezvous network coordination scheme into the spectrum handoff protocol design,
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thus our proposed spectrum handoff framework is suitable for the network scenarios

that do not need a CCC. Furthermore, most of the prior work on channel selection

in spectrum handoffs only considers a two-SU scenario, while the channel selection

issue for a multi-SU scenario is ignored. In this dissertation, we proposed a novel

fully distributed channel selection scheme which leads to zero collision among SUs

in a multi-SU scenario. Simulation results show that network coordination is cru-

cial to the performance of spectrum handoffs. Performance results also indicate that

our proposed channel selection scheme outperforms the existing methods in terms of

higher throughput and shorter handoff delay in multi-SU scenarios.

A novel three dimensional discrete-time Markov chain is proposed to analyze the

performance of SUs in the spectrum handoff scenario in a CR ad hoc network. We

performed extensive simulations in different network scenarios to validate our pro-

posed model. The analysis shows that our proposed Markov model is very flexible

and can be applied to various practical network scenarios. Thus, our analysis provides

insights into the spectrum handoff process for CR networks. This allows us to ob-

tain the throughput and other performance metrics for various design requirements.

Currently, no existing analysis has considered the comprehensive aspects of spectrum

handoff as what we considered in this dissertation. Finally, although we focus on

the spectrum handoff scenario in CR networks, the modeling techniques developed in

the dissertation are quite general and are applicable to other multi-channel scenarios

with multiple interacting users.

The end-to-end congestion control issue in multi-hop CR ad hoc networks without

a CCC is investigated for the first time. A comprehensive end-to-end congestion

control framework is proposed for multi-hop CR ad hoc networks without a CCC.

Our proposed framework considers the interactions from the physical layer to the

transport layer in a network. In addition, we observe that the delay of the ECN

messages has a significant impact on the network performance. Our study shows that
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the existing methods of the end-to-end congestion control for traditional wireless ad

hoc networks perform poorly in CR ad hoc networks.

Finally, an optimal power control algorithm for concurrent transmissions of location-

aware mobile CR ad hoc networks is proposed. The proposed algorithm incorporates

the mobility characteristics of the CR receiver in the algorithm design and is aimed

to maximize the concurrent transmission region of CR users, hence improving the

throughput of CR links. Simulation results demonstrate that the packet delivery ra-

tio of the proposed optimal power control algorithm can be effectively improved, as

compared to that of the fixed power algorithm. The impact of the shadowing fading

effect on the proposed algorithm is also considered. It is shown that the proposed

power control algorithm also outperforms the fixed power control algorithm under

the shadowing fading effect.

11.1.1 Completed Work

In this dissertation, the following research work has been completed:

1. Two distributed broadcast protocols for cognitive radio ad hoc networks are pro-

posed under practical constraints [23, 24, 103, 104].

2. A novel unified analytical model for performance analysis of broadcast protocols in

cognitive radio ad hoc networks is developed to analyze the performance of broadcast

protocols [154].

3. An optimal control information exchange scheme for cognitive radio ad hoc net-

works are proposed to efficiently update the control information among SUs.

4. Network security protocols to fight against false channel information exchange

attacks in cognitive radio ad hoc networks are designed [155].

5. A proactive spectrum handoff framework for cognitive radio ad hoc networks is

developed to realize seamless communications [89].

6. A novel 3-dimensional Markov model for performance analysis of spectrum hand-

off in cognitive radio ad hoc networks is proposed to analyze the performance of the
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spectrum handoff protocols [88].

11.2 Future Work

In the future, I would like to direct, but not limit my future research effort, to the

following research topics:

1. Cognitive radio network security algorithms design: Most of the current research

efforts in cognitive radio networks still focus on pure physical layer or higher layer

issues without considering the security aspects. The security issues in cognitive ra-

dio networks have drawn the attention of the research community only in recent

years. Since cognitive radios can intelligently adapt to their radio environments,

many unique security threats are introduced in cognitive radio networks that are dif-

ferent from traditional wireless networks. I am particularly interested in identifying

unique malicious threats in cognitive radio networks and providing robust security

solutions to defend these threats.

2. End-to-end congestion control protocol designs: In this research, we have

studied the existing end-to-end congestion control schemes for multi-hop CR ad hoc

networks. We have identified several challenges in these existing schemes. However,

we have not proposed any new protocol to support end-to-end congestion control

in CR ad hoc networks. In the future, I would like to investigate the end-to-end

congestion control protocol design, which is not considered in previous works.

3. Spectrum and energy-efficient wireless systems: Spectrum and energy efficien-

cies are among the most important venues for technological advances in current and

emerging wireless communication networks. The past decade has witnessed tremen-

dous efforts and progress made by both the industry and academia for improving

spectrum efficiency. It is known that cognitive and self-organizing networks will fur-

ther increase spectrum efficiency. In recent years, energy and power efficiencies of

wireless networks have become more crucial because of the steadily rising energy cost

and environmental concerns. While there has been a paradigm shift from improving
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spectrum efficiency to reducing energy consumption, a dilemma also arises as some

energy efficiency criteria are in conflict with the spectrum efficiency objectives. I

am particularly interested in the research that jointly considers spectrum and energy

efficiencies using cognitive radio technologies.
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