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ABSTRACT

The need for efficient spectrum utilization and routing has ignited interest in
the Cognitive Radio Sensor Network (CRSN) paradigm among researchers. CRSN
ensures efficient spectrum utilization for wireless sensor network. However, the main
challenge faced by CRSN users have to deal with is the issue of service quality in terms
of interference when using channels and degradation in multi-hop communication.
This thesis proposes to overcome the interference due to contention and routing issues
through the design of an efficient Channel Acquisition and Reliable routing System
(CARS). CARS is designed to reduce carrier sense multiple access contention and
enhance routing in CRSNs. CARS comprises of Lightweight Distributed Geographical
(LDG), and Reliable Opportunists Routing (ROR) modules. LDG is a medium access
control centric; cross-layer designed protocol to acquire a common control channel
for signalling to determine the data channel. ROR is a network-centric cross-layer
designed protocol to decide on a path for routing data packets. The result shows that
LDG significantly reduces the overhead of media access contention and energy cost
by at an average of 70% and 80% respectively compared to other approaches that use
common control channel acquisition like Efficient Recovery Control Channel (ERCC)
protocol. In addition, LDG achieves a 16.3% boost in the time to rendezvous on the
control channel above ERCC and a 36.9% boost above Coordinated Channel Hopping
(CCH) protocol. On the other hand, the virtual clustering framework inspired by ROR
has further improved network performance. The proposed ROR significantly increases
packet received at the sink node by an average of over 20%, reduces end-to-end latency
by an average of 37% and minimizes energy consumption by an average of 22% as
compared to Spectrum-aware Clustering for Efficient Multimedia routing (SCEEM)
protocol. In brief, the design of CARS which takes the intrinsic characteristics of
CRSNs into consideration helps to significantly reduce the energy needed for securing
a control channel and to guarantee that end-to-end, real-time conditions are preserved
in terms of latency and media content. Thus, LDG and ROR are highly recommended
for real-time data transmission such as multimedia data transfer in CRSN.
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ABSTRAK

Keperluan untuk penggunaan spektrum dan laluan yang cekap telah menyuntik
minat di kalangan para penyelidik dalam paradigma CRSN. Rangkaian peranti
Pengesan Radio Kognitif (CRSN) memastikan penggunaan spektrum yang cekap
untuk rangkaian peranti pengesan tanpa wayar. Tetapi, cabaran utama yang
dihadapi oleh pengguna-pengguna CRSN adalah isu kualiti perkhidmatan daripada
segi gangguan apabila menggunakan saluran dan kemerosotan dalam komunikasi
multi-hop. Tesis ini dikemukakan untuk mengatasi gangguan yang disebabkan
oleh isu-isu pertembungan dan laluan melalui reka bentuk satu Sistem Pemerolehan
saluran dan Laluan yang cekap dan Boleh Dipercayai (CARS). CARS direka
untuk mengurangkan pertembungan capaian berbilang penderiaan pembawa dan
meningkatkan laluan dalam CRSNs. CARS terdiri daripada modul-modul Geografi
Ringan Teragih (LDG), dan laluan Oportunis yang Boleh Dipercayai (ROR). LDG
adalah kawalan capaian perantara yang berpusat; reka bentuk protokol lapisan-rentas
untuk mendapatkan saluran kawalan sepunya sebagai pengisyaratan bagi menentukan
saluran data. ROR adalah reka bentuk protokol lapisan-rentas rangkaian berpusat
untuk membuat keputusan mengenai laluan untuk paket-paket data. Keputusan
menunjukkan LDG dengan ketaranya mengurangkan overhed bagi pertembungan
kawalan capaian perantara dan kos tenaga dengan nilai purata masing-masing 70%
dan 80% berbanding pendekatan lain yang menggunakan pemerolehan saluran
kawalan sepunya seperti protokol Pemulihan Saluran Kawalan yang Cekap (ERCC).
Di samping itu, LDG mencapai 16.3% peningkatan dalam masa untuk bertemu
di saluran kawalan mengatasi ERCC dan 36.9% peningkatan mengatasi protokol
Lompatan Saluran Terkoordinat (CCH). Sebaliknya, rangka kerja kelompok maya
yang diilhamkan oleh ROR telah meningkatkan lagi prestasi rangkaian. ROR yang
dicadangkan dengan ketaranya telah meningkatkan paket yang diterima pada nod
sink dengan purata melebihi 20%, mengurangkan pendaman hujung-ke-hujung secara
purata sebanyak 37% dan mengurangkan penggunaan tenaga secara purata sebanyak
22% berbanding dengan protokol Kelompok Spektrum-sedar untuk Laluan Multimedia
Berkesan (SCEEM). Ringkasnya, reka bentuk CARS yang mengambil kira ciri-ciri
intrinsik CRSNs membantu mengurangkan tenaga yang diperlukan secara berkesan
bagi memperolehi satu saluran kawalan dan memberi jaminan bahawa hujung-ke-
hujung, keadaan masa sebenar dipelihara daripada segi pendaman dan kandungan
media. Oleh itu, LDG dan ROR adalah sangat disyorkan untuk penghantaran data
masa sebenar seperti pemindahan data multimedia dalam CRSN.
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CHAPTER 1

INTRODUCTION

1.1 Background

The need for efficient spectrum utilization has recently brought about the new
paradigm of cognitive radio sensor networks (CRSNs) [4]. The two major drives
toward this paradigm are the underutilization of the spectrum below 3 GHz and the
congestion problem in both licensed and unlicensed bands. As challenging as this
paradigm may appear, the effort of recent studies such as [1, 5] are gradually making
this paradigm a reality.

Meanwhile, as the world gradually develops into an internet of things (IoT), the
ubiquity of wireless sensor networks (WSNs) is accordingly becoming imperative. As
a result, this further complicates the issue of the congestion of the industrial, scientific

and medical (ISM) spectrum and the unlicensed national information infrastructure

(UNII), as evidenced by [6, 7, 8]. Notwithstanding the predicted ubiquity of WSNs,
other wireless systems such as WiMAX, Bluetooth and Wi-Fi also operate in these
bands, along with cordless phones and microwaves. The normal IEEE 802.15.4
standard defines sixteen channels, each with a bandwidth of 2 MHz, in the 2.4-GHz
ISM band, among which only four are not overlapping with the IEEE 802.11 22-MHz
bandwidth channels. If the Wi-Fi deployment uses channels other than 1, 6 and 11,
then overlapping will occur. Furthermore, a recent and practical study performed on
the co-existence issue showed that, in reality, only three of these channels are actually
non-overlapping [9]. In extreme cases where all networks, for example, medical sensor
networks, security networks, disaster communications, PDAs, Bluetooth devices and
many more applications envisioned in the very near future, compete for these three
channels, the congestion issue becomes more urgent. The authors of [10] and [11]
have shown that IEEE 802.11 degrades the performance of 802.15.4 when they operate
in overlapping bands, and in [9] a highly variable IEEE 804.15.4 performance drop of
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approximately 41% was demonstrated. Furthermore, as computing/networking heads
toward ubiquity, various WSNs will form a great percentage of this phenomenon. The
concept of CRSN aims to address this spectrum utilization challenge by offering sensor
nodes temporary usage of vacant primary user (PU) spectra via dynamic spectrum

access (DSA) with the condition that they will vacate that spectrum once the presence
of the incumbent is detected [1].

With the successful implementation of DSA via cognitive radio (CR), other
advantages are exploited by the WSN. The most enticing of these advantages are
that the node energy can be significantly conserved by the reduction of collisions,
which invariably results in the reduction of retransmission of lost packets. Energy
conservation can also be achieved by employing nodes that dynamically change
their transmission parameters to suit channel characteristics, thus providing full
management control of these valuable resources. This practice, in effect, can also
enable the coexistence of various WSNs deployed in a spatially overlapping area in
terms of communication and resource utilization [1].

Notwithstanding the potential of this concept, the CRSN comes with its own
unique challenges. For example, the practical development/implementation of a CR
sensor node is still an unsolved issue. Additionally, because the DSA characteristic
affects the entire communication framework of a conventional WSN [1], previous
protocols proposed for classical WSNs cannot be directly applied to a CRSN, nor can
the communication protocols for ad-hoc networks perfectly fit this context due to the
resource constraints. Incorporating the idea of DSA into a WSN changes not only
the MAC and PHY layers, but also affects all of the communication. However, the
fact that WSNs still remain the launch pad for protocol design in CRSNs necessitates a
performance study of WSN routing strategies vis-à-vis CRSN requirements [1, 12, 13].
Thus, there is a need for specially adapted communication protocols to fulfill the needs
of both DSA and WSNs in a CR context.

Alongside the aforementioned, the increase in demand for more data content
that satisfies the end user has made the transfer of multimedia across wireless links
a major issue. This has specifically given birth to a new evaluation metric called
quality of experience (QoE) [9, 13] which is a more customer centric metric unlike
the quality of service (QoS) metric which is vendor centric. Most works in wireless
multimedia networks often utilize only the QoS metric because of the low data rate
characterised with Sensor networks. However, recent trends has shown the need for
more data content at the sink to make analysis and corresponding action more accurate
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especially in emergency or critical mission situations. Thus guaranteeing both QoS
and QoE in light of the spectrum congestion discussed above becomes an urgent issue
in communication multimedia data packets over WSNs.

The network layer which offers routing services is fundamental in any network
and is significantly affected by the dynamic radio environment created by CR because
it addresses the peer-to-peer delivery through other nodes in a multi-hop fashion to the
correct recipients in due time. The sending node must address both its dynamic radio
environment and that of the next hop node. This phenomenon is otherwise referred
to as the deafness problem and introduces a challenging scenario requiring innovative
algorithms that consider the intrinsic nature of the sensor nodes. Although the deafness

problem is local to the media access control (MAC) layer, it is fundamental to note that
the deafness issue has introduced unique issues across all communication layers [2].
For example, any routing protocol in CR networks is dependent on a common control

channel (CCC) for neighbour discovery, transmitter-receiver handshake, topology
change and channel access negotiation which are the major facilitating components
of any routing protocol. Hence, the design of any routing protocol for CRSNs has
to be done in line with the underlying CCC establishment scheme in mind because
the effectiveness of the latter defines how efficient the former will be. During routing
operation, the deafness problem is usually solved by assuming the availability of a
dedicated common control channel, or a separate design for a common control channel
is made [2].

At this point, it is pertinent to acknowledge that a number of researchers
have proposed common control channel design schemes [14] and routing schemes
for cognitive radio ad-hoc networks [15, 16]. However, due to the differences in
constraints between classical ad-hoc networks and WSNs, these solutions cannot be
directly imported to solve the problem of routing in CRSNs [1]. In addition, the issue
of reliable routing in all cognitive radio ad-hoc network (CRAHN) is still an open issue
which needs to be looked into [15, 17].

Based on our studies, specific attention has not been given to the two areas,
namely; control channel design and reliable routing as it relates to the network layer
of CRSNs. Hence, there is the need for urgent research effort to focus on these areas.



4

1.2 Problem Statement

In order to effectively route real-time packets over CRSN in emergency or
mission critical situations, two fundamental issues have to be addressed, namely; (i)
how timely the nodes can acquire a common control channel for control signalling and
(ii) how the most reliable route to the sink can be established. In line with these issues,
the problem statement of this work are as follows;

• Unlike classical sensor networks in which sensor deployment is pre-planned
and resources are allocated only after the deployment field is evaluated, the CR
paradigm introduces the deafness issue which is a lack of common coordination
amongst communicating nodes. Likewise, from the perspective of CRSN,
proposed common control channel (CCC) designs for classical CRAHNs are
characterised as too heavy in terms of communication and energy overhead.
Hence, there is the need for a unique common control channel design for
CRSN that takes into consideration, the unique characteristics of CRSN.
Specifically, such a design should be characterised as lightweight in terms of
communication and energy cost of securing the control channel at a considerable
time refereed to as time to rendezvous (TTR). Thus, while considering the
unique resource restrains of CRSN, what is the best way of implementing control
channel acquisition that ensures network wide connectivity while reducing
communication and energy cost at a considerable time refereed to as time to
rendezvous (TTR)?

• In addition to the above, based on joint route and spectrum selection
geographical forwarding schemes, in searching for the next hop node selection
in CRSN, the choice between two criteria usually arise: (i) the stipulation of
the closest node to the transmitting node criterion; or (ii) the stipulation of the
closest node to the sink criterion. Although the choice of the first criteria has the
capability of assuring node-to-node quality links, it cannot be classified as an
efficient solution for resource-constrained CRSN, because, this means a greater
number of hops will be required to transmit a packet to the sink. The implications
of this choice include amplified end-to-end delays and additional energy incurred
for the multiple hop-to-hop communication to the sink. On the other hand, if the
closest node to the sink criterion is made, which is the typical greedy forwarding
scenario, the existence of unreliable links, which is referred to as the weakest

link problem, is encountered. For this strategy, at each hop, the neighbors that
are closest to the destination (also likely to be farthest from the forwarding node)
may have poor links with the current node. These “weak links“ will usually
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result in a high rate of packet drops, resulting in drastic reduction of the delivery
rate or increased energy wastage if re-transmissions are employed. Thus, the
question arises: in order to ensure real-time conditions, what is an efficient and
reliable way of implementing geographical forwarding for CRSNs?

1.3 Objectives of the Thesis

The main objective of the thesis is to develop an efficient framework that can
ensure quality of service in CRSNs. The specific objectives of the work include:

• To develop a channel acquisition protocol in the MAC layer to ensure an efficient
channel selection.

• To develop a routing protocol for CRSN that is able to ensure QoS in multi-hop
communication.

The two protocols are carefully designed for a single system which is refereed
to as channel acquisition and routing system (CARS). In this case, the fundamental
real-time metrics that will direct this design will be towards reducing contention due
to packet collision, ensuring reliable links, reducing packet loss, reducing end-to-end
delay and energy consumption.

1.4 Scope of the Thesis

The work is divided into two parts, firstly, the control channel acquisition
and secondly, routing having functions that primarily reside in the MAC layer and
the Network layer respectively. A major point of significance is, since geographic
forwarding schemes are usually the scheme of choice in WSNs and CRAHNs because
of their simplicity and scalability, the presented protocols are designed for lossy link

aware geographic forwarding schemes [18, 19]. In addition, all nodes are assumed to
be stationary.

For the design of the CCC, the considered communication layers shall
be restricted to the medium access control (MAC) and link layer for real-time
applications. In the link layer, a CR based on dynamic spectrum access is employed to
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mitigate the congestion issue in ISM band. While at the MAC, the acquisition protocol
will be addressed. Although, the control channel acquisition protocol shall be MAC
centric, identification of local minima nodes which is a crucial issue for simplifying
routing at the network layer shall be considered in the design. In geographical
forwarding schemes, a node is said to be local minima when it cannot directly reach
the sink or it is the only node closest to the sink with respect to its neighbours.
Furthermore, while adhering to relevant IEEE 802.15.4 standard, the physical medium
is accessed through a modified carrier sense multiple access with collision avoidance
(CSMA/CA) protocol.

For the routing protocol, the protocol will consider application layer rate
stipulation for route search. Also, same as in the CCC protocol, while adhering to
relevant IEEE standard 802.15.4, the physical medium is accessed through a modified
carrier sense multiple access with collision avoidance (CSMA/CA) protocol. The
probabilistic wireless network simulator (PROWLER) will be used for designing the
protocols. Finally, resulting solutions shall be evaluated and compared with previous
works mathematically and through simulation.

1.5 Research Contributions

With respect to the aforementioned issues, the main contribution of the channel

acquisition and routing system (CARS) presented in this work are as follows:

The development of the proposed lightweight distributed geographical (LDG)
protocol, which is an efficient protocol for acquiring CCC in CRSN. LDG is a
distributed channel selection algorithm for geographical forwarding in multimedia
CRSNs to simplify channel selection overhead for the dynamic spectral nature of
CR environment. In addition to LDG being a novel algorithm for dynamic virtual
clustering in CRSN, it is also the first approach that leverages multichannel MAC
on location awareness to further simplify geographical forwarding schemes. This
contribution is fully documented in the Chapter 3.

The development of a proposed reliable opportunistic routing (ROR) protocol
for geographical forwarding cognitive radio sensor networks using virtual clusters. The
applicability of ROR is not restricted to CRSN alone; rather, it extends to CRAHNs
generally. This is because, the need of implementing reliable data transfer in cognitive
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radio ad-hoc networks is still an open issue in the research community. Previously
proposed protocols for routing in cognitive radio ad-hoc routing favorably use the
common control channel to negotiate a communication channel which are usually
selected based on the primary user activity and channel interference metrics. However,
this does not adequately address the issue of reliability in the presence of lossy links,
which is best addressed if choice of the next hop is made at the point of data transfer
when the common weak link issue is considered. In this respect, ROR is a novel
geographical forwarding technique that does not restrict the choice of the next hop to
the nodes in the selected route. This is achieved by the creation of virtual clusters
based on spectrum correlation around the nodes in the chosen route of the ad hoc

on-demand distance vector (AODV) based route reply operation. Thus during data-
transfer phase, the next hop is chosen from the virtual cluster members based on the
best link that makes the most progress to the sink. The design which considers the
resource constrained nature of CRSN nodes maximizes the use of idle listening and
receiver contention prioritization for energy efficiency, avoidance of routing hot spots
and stability. The validation result, which closely follows the simulation result, shows
that the developed scheme can make more advancement to the sink as against the usual
decisions of the AODV route select operation, while ensuring channel quality. Further
simulation results show the enhanced reliability, lower latency and energy efficiency
of the ROR scheme when compared to recent relevant proposals. This makes ROR the
first lossy link aware geographical forwarding scheme for CRSNs that is able to service
real time applications.

1.6 Significance of the Research

Ensuring reliability in cognitive radio based networks has been a pressing open
issue of research. The ROR strategy can guarantee an effective implementation of
reliable communication in industrial networks, smart-grid networks, medical networks,
emergency and critical mission situations. Apart from its simplicity, it also lays
a foundation for future improvements in reliable multi-hop routing in CR based
communication and internet of things (IoT).

Furthermore, the LDG protocol has the capacity of greatly simplifying
cognitive radio based communication managements. For example, in vehicular ad-hoc
networks (VANETs), this is possible in that the protocol can help a vehicle maintain
a reliable control channel with dynamic neighbours on real-time basis. Likewise,
the routing protocol can greatly reduce the deployment cost of CRSN in industrial
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networks and can make smart grid communication more reliable. Finally, the energy
conservation centric design principle adopted in the protocols readily finds a place for
encouraging green communication.

1.7 Thesis Outline

This thesis consists of six chapters that are organized as follows:

Chapter 2 studies and reviews the background knowledge and previous works
related to this research. It presents a quantitative analysis of the WSN routing
strategy vis-à-vis CRSN environment in order to clearly present the research gaps in
terms of routing in CRSN. In this respect, the work presents the first performance
evaluation of WSN routing strategies in a cognitive radio environment and lays a
proper analytical reason for developing CRSN routing solutions and to establish a
basis for future work in this area [20]. Then, a critical review of relevant literature
with respect to CCC design and routing in CRSN. Finally, reviewed literature were
systematically categorised and the most relevant works were critically discussed vis-à-
vis the proposed works in each case.

Chapter 3, presents an overview of the proposed system model used throughout
the thesis and the methodology used in achieving the outlined objectives. First, the
design concept of CARS which consist of LDG and ROR is explicitly presented. For
each protocol, all functional modules are discussed with their functions along with
relevant state diagrams. The network model considered in the development was then
mentioned and finally, the major performance metrics investigated throughout the work
were outlined.

Chapter 4 proposes the LDG protocol for acquisition of a efficient channel that
can be used for control signalling in a CRSN. All operational components of LDG
along with an all-inclusive implementation method are first presented. A cross-layer
mathematical formulation of LDG is then presented. Afterwards, the performance
evaluation results of LDG which includes, best operating values for LDG, effect on
MAC layer collisions, effect on time to rendezvous and comparison results with similar
protocols were presented.

Chapter 5 proposes the ROR protocol to ensure reliable routing in CRSNs. The
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operational building blocks are presented alongside appropriate in-depth discussions to
make clear the adopted strategies. It also presents a detailed simulation study of ROR
and explains how the results were gotten. It then discusses the performance evaluation
of ROR and compares ROR performance with the SCEEM [21, 22] protocol. Finally,
another variant of ROR which is specifically adapted for providing streaming service
in a CRSN is presented.

Chapter 6 summarizes the thesis, re-stating the contributions, and suggests
directions for future research.
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