9 research outputs found

    Comparisons of Brightness Temperatures of Landsat-7/ETM+ and Terra/MODIS around Hotien Oasis in the Taklimakan Desert

    Get PDF
    The brightness temperature (BT) of Taklimakan Desert retrieved from the data of Landsat-7/ETM+ band 6 and Terra/MODIS band 31 and 32 indicates the following features: (1) good linear relationship between the BT of ETM+ and that of MODIS, (2) the observation time adjusted BT of ETM+ is almost equal to that of MODIS, (3) the BT of Terra/MODIS band 31 is slightly higher than that of band 32 over a reservoir while opposite feature is recognized over desert area, (4) the statistical analysis of 225 sample data of ETM+ in one pixel of MODIS for different landcovers indicates that the standard deviation and range of BT of ETM+ corresponding to one pixel of MODIS are 0.45∘C, 2.25∘C for a flat area of desert, while respective values of the oasis farmland and shading side of rocky hill amount to 2.88∘C, 14.04∘C, and 2.80∘C, 16.04∘C

    Comparison of optical sensors discrimination ability using spectral libraries

    Get PDF
    In remote sensing, the ability to discriminate different land covers or material types is directly linked with the spectral resolution and sampling provided by the optical sensor. Previous studies showed that the spectral resolution is a critical issue, especially in complex environment. In spite of the increasing availability of hyperspectral data, multispectral optical sensors onboard various satellites are acquiring everyday a massive amount of data with a relatively poor spectral resolution (i.e. usually about 4 to 7 spectral bands). These remotely sensed data are intensively used for Earth observation regardless of their limited spectral resolution. In this paper, we studied seven of these optical sensors: Pleiades, QuickBird, SPOT5, Ikonos, Landsat TM, Formosat and Meris. This study focuses on the ability of each sensor to discriminate different materials according to its spectral resolution. We used four different spectral libraries which contains around 2500 spectra of materials and land covers with a fine spectral resolution. These spectra were convolved with the Relative Spectral Responses (RSR) of each sensor to create spectra at the sensors’ resolutions. Then, these reduced spectra were compared using separability indexes (Divergence, Transformed divergence, Bhattacharyya, Jeffreys-Matusita) and machine learning tools. In the experiments, we highlighted that the spectral bands configuration could lead to important differences in classification accuracy according to the context of application (e.g. urban area)

    Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    Get PDF
    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earth’s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS

    Cross Calibration and Validation of Landsat 8 OLI and Sentinel 2A MSI

    Get PDF
    This work describes a proposed radiometric cross calibration between the Landsat 8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI) sensors. The cross calibration procedure involves i) correction of the MSI data to account for spectral band differences with the OLI; and ii) correction of BRDF effects in the data from both sensors using a new model accounting for the view zenith/azimuth angles in addition to the solar zenith/view angles. Following application of the spectral and BRDF corrections, standard least-squares linear regression is used to determine the cross calibration gain and offset in each band. Uncertainties related to each step in the proposed process are determined, as is the overall uncertainty associated with the complete processing sequence. Validation of the proposed cross calibration gains and offsets is performed on image data acquired over the Algodones Dunes site. In general, the estimated cross calibration offsets in all bands were small, on the order of 0.0075 or less in magnitude. The cross calibration gains generally varied less than 1.0% from unity; for the Blue and Red bands, the gains varied by approximately -2.5% and - 1.4% from unity, respectively. For a forced zero offset, the estimated gain in all but the Blue band changed little; the Blue band gain varied by approximately 1.86% from unity. Consequently, cross calibration of the Blue band requires both the gain and nonzero offset. To maintain processing consistency, it is recommended to use the gain and (nonzero) offset in all bands. Overall, the net uncertainty in the proposed process was estimated to be on the order of 6.76%, with the largest uncertainty component due to each sensor’s calibration uncertainty, on the order of 5% and 3% for the MSI and OLI, respectively. Other significant contributions to the uncertainty include: seasonal changes in solar zenith and azimuth angles, on the order of 2.27%; target site non-uniformity, on the order of 1.8%; variability in atmospheric water vapor and/or aerosol concentration, on the order of 1.29%; and potential shifts in each sensor’s spectral filter central wavelength and/or bandwidth, on the order of 0.82% and 0.28%, respectively

    Vicarious Methodologies to Assess and Improve the Quality of the Optical Remote Sensing Images: A Critical Review

    Get PDF
    Over the past decade, number of optical Earth observing satellites performing remote sensing has increased substantially, dramatically increasing the capability to monitor the Earth. The quantity of remote sensing satellite increase is primarily driven by improved technology, miniaturization of components, reduced manufacturing, and launch cost. These satellites often lack on-board calibrators that a large satellite utilizes to ensure high quality (e.g., radiometric, geometric, spatial quality, etc.) scientific measurement. To address this issue, this work presents “best” vicarious image quality assessment and improvement techniques for those kinds of optical satellites which lacks on-board calibration system. In this article, image quality categories have been explored, and essential quality parameters (e.g., absolute and relative calibration, aliasing, etc.) have been identified. For each of the parameters, appropriate characterization methods are identified along with its specifications or requirements. In cases of multiple methods, recommendation has been made based-on the strengths and weaknesses of each method. Furthermore, processing steps have been presented, including examples. Essentially, this paper provides a comprehensive study of the criteria that needs to be assessed to evaluate remote sensing satellite data quality, and best vicarious methodologies to evaluate identified quality parameters such as coherent noise, ground sample distance, etc

    Overview of Intercalibration of Satellite Instruments

    Get PDF
    Intercalibration of satellite instruments is critical for detection and quantification of changes in the Earth’s environment, weather forecasting, understanding climate processes, and monitoring climate and land cover change. These applications use data from many satellites; for the data to be interoperable, the instruments must be cross-calibrated. To meet the stringent needs of such applications, instruments must provide reliable, accurate, and consistent measurements over time. Robust techniques are required to ensure that observations from different instruments can be normalized to a common scale that the community agrees on. The long-term reliability of this process needs to be sustained in accordance with established reference standards and best practices. Furthermore, establishing physical meaning to the information through robust SystĂšme International d’unitĂ©s traceable calibration and validation (Cal/Val) is essential to fully understand the parameters under observation. The processes of calibration, correction, stabilitymonitoring, and quality assurance need to be underpinned and evidenced by comparison with “peer instruments” and, ideally, highly calibrated in-orbit reference instruments. Intercalibration between instruments is a central pillar of the Cal/Val strategies of many national and international satellite remote sensing organizations. Intercalibration techniques as outlined in this paper not only provide a practical means of identifying and correcting relative biases in radiometric calibration between instruments but also enable potential data gaps between measurement records in a critical time series to be bridged. Use of a robust set of internationally agreed upon and coordinated intercalibration techniques will lead to significant improvement in the consistency between satellite instruments and facilitate accurate monitoring of the Earth’s climate at uncertainty levels needed to detect and attribute the mechanisms of change. This paper summarizes the state-of-the-art of postlaunch radiometric calibration of remote sensing satellite instruments through intercalibration

    Effect of Relative Spectral Response on Multi-Spectral Measurements and NDVI from Different Remote Sensing Systems

    Get PDF
    Spectrally derived metrics from remotely sensed data measurements have been developed to improve understanding of land cover and its dynamics. Today there are an increasing number of remote sensing systems with varying characteristics that provide a wide range of data that can be synthesized for Earth system science. A more detailed understanding is needed on how to correlate measurements between sensors. One factor that is often overlooked is the effect of a sensor's relative spectral response (RSR) on broadband spectral measurements. This study examined the variability in spectral measurements due to RSR differences between different remote sensing systems and the implications of these variations on the accuracy and consistency of the normalized difference vegetation index (NDVI). A theoretical model study and a sensor simulation study of laboratory and remotely sensed hyper-spectral data of known land cover types was developed to provide insight into the effect on NDVI due to differences in RSR measurements of various land cover signatures. This research has shown that the convolution of RSR, signature reflectance and solar irradiance in land cover measurements leads to complex interactions and generally small differences between sensor measurements. Error associated with cross-senor calibration of signature measurements and the method of band radiance conversion to reflectance also contributed to measurement discrepancies. The effect of measurement discrepancies between sensors on the accuracy and consistency of NDVI measurements of vegetation was found to be dependent on the increasing sensitivity of NDVI to decreasing band measurements. A concept of isolines of NDVI error was developed as a construct for understanding and predicting the effect of differences in band measurements between sensors on NDVI. NDVI difference of less than 0.05 can be expected for many sensor comparisons of vegetation, however, some cases will lead to higher differences. For vegetation signatures used in this study, maximum effect on NDVI from measurement differences was 0.063 with an average of 0.023. For sensors with well aligned RSRs such as Landsat 7 ETM+ and MODIS, NDVI differences in the range of 0.01 are possible

    An Integrated physics-based approach to demonstrate the potential of the Landsat Data Continuity Mission (LDCM) for monitoring coastal/inland waters

    Get PDF
    Monitoring coastal or inland waters, recognized as case II waters, using the existing Landsat technology is somewhat restricted because of its low Signal-to-Noise ratio (SNR) as well as its relatively poor radiometric resolution. As a primary task, we introduce a novel technique, which integrates the Landsat-7 data as a surrogate for LDCM with a 3D hydrodynamic model to monitor the dynamics of coastal waters near river discharges as well as in a small lake environment. The proposed approach leverages both the thermal and the reflective Landsat-7 imagery to calibrate the model and to retrieve the concentrations of optically active components of the water. To do so, the model is first calibrated by optimizing its thermal outputs with the surface temperature maps derived from the Landsat-7 data. The constituent retrieval is conducted in the second phase where multiple simulated concentration maps are provided to an in-water radiative transfer code (Hydrolight) to generate modeled surface reflectance maps. Prior to any remote sensing task, one has to ensure that a dataset comes from a well-calibrated imaging system. Although the calibration status of Landsat-7 has been regularly monitored over multiple desert sites, it was desired to evaluate its performance over dark waters relative to a well-calibrated instrument designed specifically for water studies. In the light of this, several Landsat- 7 images were cross-calibrated against the Terra-MODIS data over deep, dark waters whose optical properties remain relatively stable. This study is intended to lay the groundwork and provide a reference point for similar studies planned for the new Landsat. In an independent case study, the potential of the new Landsat sensor was examined using an EO-1 dataset and applying a spectral optimization approach over case II waters. The water constituent maps generated from the EO-1 imagery were compared against those derived from Landsat-7 to fully analyze the improvement levels pertaining to the new Landsat\u27s enhanced features in a water constituent retrieval framework
    corecore