7 research outputs found

    Cropland Capture – A Game for Improving Global Cropland Maps

    Get PDF
    Current satellite-derived global land-cover products, which are crucial for many modelling and monitoring applications, show large disagreements when compared with each another. To help improve global land cover (in particular the cropland class), we developed a game called Cropland Capture. This is a simple cross-platform game for collecting image classifications that will be used to develop and validate global cropland maps in the future. In this paper, we describe the game design of Cropland Capture in detail, including aspects such as simplicity,efficiency in data collection and what mechanisms were implemented to ensure data quality.We also discuss the impact of incentives on attracting and sustaining players in the game

    VGI quality control

    Get PDF
    This paper presents a framework for considering quality control of volunteered geographic information (VGI). Different issues need to be considered during the conception, acquisition and post-acquisition phases of VGI creation. This includes items such as collecting metadata on the volunteer, providing suitable training, giving corrective feedback during the mapping process and use of control data, among others. Two examples of VGI data collection are then considered with respect to this quality control framework, i.e. VGI data collection by National Mapping Agencies and by the most recent Geo-Wiki tool, a game called Cropland Capture. Although good practices are beginning to emerge, there is still the need for the development and sharing of best practice, especially if VGI is to be integrated with authoritative map products or used for calibration and/or validation of land cover in the future

    The Picture Pile Tool for Rapid Image Assessment: A Demonstration using Hurricane Matthew

    Get PDF
    In 2016, Hurricane Matthew devastated many parts of the Caribbean, in particular the country of Haiti. More than 500 people died and the damage was estimated at 1.9billionUSD. At the time, the Humanitarian OpenStreetMap Team (HOT) activated their network of volunteers to create base maps of areas affected by the hurricane, in particular coastal communities in the path of the storm. To help improve HOT’s information workflow for disaster response, one strand of the Crowd4Sat project, which was funded by the European Space Agency, focussed on examining where the Picture Pile Tool, an application for rapid image interpretation and classification, could potentially contribute. Satellite images obtained from the time that Hurricane Matthew occurred were used to simulate a situation post-event, where the aim was to demonstrate how Picture Pile could be used to create a map of building damage. The aim of this paper is to present the Picture Pile tool and show the results from this simulation, which produced a crowdsourced map of damaged buildings for a selected area of Haiti in 1 week (but with increased confidence in the results over a 3 week period). A quality assessment of the results showed that the volunteers agreed with experts and the majority of individual classifications around 92% of the time, indicating that the crowd performed well in this task. The next stage will involve optimizing the workflow for the use of Picture Pile in future natural disaster situations

    Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery

    Get PDF
    The land area covered by freely available very high-resolution (VHR) imagery has grown dramatically over recent years, which has considerable relevance for forest observation and monitoring. For example, it is possible to recognize and extract a number of features related to forest type, forest management, degradation and disturbance using VHR imagery. Moreover, time series of medium-to-high-resolution imagery such as MODIS, Landsat or Sentinel has allowed for monitoring of parameters related to forest cover change. Although automatic classification is used regularly to monitor forests using medium-resolution imagery, VHR imagery and changes in web-based technology have opened up new possibilities for the role of visual interpretation in forest observation. Visual interpretation of VHR is typically employed to provide training and/or validation data for other remote sensing-based techniques or to derive statistics directly on forest cover/forest cover change over large regions. Hence, this paper reviews the state of the art in tools designed for visual interpretation of VHR, including Geo-Wiki, LACO-Wiki and Collect Earth as well as issues related to interpretation of VHR imagery and approaches to quality assurance. We have also listed a number of success stories where visual interpretation plays a crucial role, including a global forest mask harmonized with FAO FRA country statistics; estimation of dryland forest area; quantification of deforestation; national reporting to the UNFCCC; and drivers of forest change

    Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring

    Get PDF
    The SDGs are a universal agenda to address the world’s most pressing societal, environmental and economic challenges. The supply of timely, relevant and reliable data is essential in guiding policies and decisions for successful implementation of the SDGs. Yet official statistics cannot provide all of the data needed to populate the SDG indicator framework. Citizen science offers a novel solution and an untapped opportunity to complement traditional sources of data, such as household surveys, for monitoring progress towards the SDGs, while at the same time mobilizing action and raising awareness for their achievement. This paper presents the potential offered by one specific citizen science tool, Picture Pile, to complement and enhance official statistics to monitor several SDGs and targets. Designed to be a generic and flexible tool, Picture Pile is a web-based and mobile application for ingesting imagery from satellites, orthophotos, unmanned aerial vehicles or geotagged photographs that can then be rapidly classified by volunteers. The results show that Picture Pile could contribute to the monitoring of fifteen SDG indicators under goals 1, 2, 11, 13, 14 and 15 based on the Picture Pile campaigns undertaken to date. Picture Pile could also be modified to support other SDGs and indicators in the areas of ecosystem health, eutrophication and built-up areas, among others. In order to leverage this particular tool for SDG monitoring, its potential must be showcased through the development of use cases in collaboration with governments, NSOs and relevant custodian agencies. Additionally, mutual trust needs to be built among key stakeholders to agree on common goals that would facilitate the use of Picture Pile or other citizen science tools and data for SDG monitoring and impact

    Crowdsourcing In-Situ Data on Land Cover and Land Use Using Gamification and Mobile Technology

    Get PDF
    Citizens are increasingly becoming involved in data collection, whether for scientific purposes, to carry out micro-tasks, or as part of a gamified, competitive application. In some cases, volunteered data collection overlaps with that of mapping agencies, e.g., the citizen-based mapping of features in OpenStreetMap. LUCAS (Land Use Cover Area frame Sample) is one source of authoritative in-situ data that are collected every three years across EU member countries by trained personnel at a considerable cost to taxpayers. This paper presents a mobile application called FotoQuest Austria, which involves citizens in the crowdsourcing of in-situ land cover and land use data, including at locations of LUCAS sample points in Austria. The results from a campaign run during the summer of 2015 suggest that land cover and land use can be crowdsourced using a simple protocol based on LUCAS. This has implications for remote sensing as this data stream represents a new source of potentially valuable information for the training and validation of land cover maps as well as for area estimation purposes. Although the most detailed and challenging classes were more difficult for untrained citizens to recognize, the agreement between the crowdsourced data and the LUCAS data for basic high level land cover and land use classes in homogeneous areas (ca. 80%) shows clear potential. Recommendations for how to further improve the quality of the crowdsourced data in the context of LUCAS are provided so that this source of data might one day be accurate enough for land cover mapping purposes

    Citizen Science

    Get PDF
    Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development. This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today
    corecore