88 research outputs found

    Harnessing the Power of AI based Image Generation Model DALLE 2 in Agricultural Settings

    Full text link
    This study investigates the potential impact of artificial intelligence (AI) on the enhancement of visualization processes in the agricultural sector, using the advanced AI image generator, DALLE 2, developed by OpenAI. By synergistically utilizing the natural language processing proficiency of chatGPT and the generative prowess of the DALLE 2 model, which employs a Generative Adversarial Networks (GANs) framework, our research offers an innovative method to transform textual descriptors into realistic visual content. Our rigorously assembled datasets include a broad spectrum of agricultural elements such as fruits, plants, and scenarios differentiating crops from weeds, maintained for AI-generated versus original images. The quality and accuracy of the AI-generated images were evaluated via established metrics including mean squared error (MSE), peak signal-to-noise ratio (PSNR), and feature similarity index (FSIM). The results underline the significant role of the DALLE 2 model in enhancing visualization processes in agriculture, aiding in more informed decision-making, and improving resource distribution. The outcomes of this research highlight the imminent rise of an AI-led transformation in the realm of precision agriculture.Comment: 22 pages, 13 figures, 2 table

    A Survey on Sugarcane Leaf Disease Identification Using Deep Learning Technique(CNN)

    Get PDF
    The management of plant diseases is vital for the economical production of food and poses important challenges to the employment of soil, water, fuel and alternative inputs for agricultural functions. In each natural and cultivated populations, plants have inherent sickness tolerance, however there also are reports of devastating impacts of plant diseases. The management of diseases, however, within reason effective for many crops. sickness management is allotted through the employment of plants that square measure bred permanently resistance to several diseases and thru approaches to plant cultivation, like crop rotation, the employment of pathogen-free seeds, the given planting date and plant density, field wetness management, and therefore the use of pesticides. so as to enhance sickness management and to stay up with changes within the impact of diseases iatrogenic by the continued evolution and movement of plant pathogens and by changes in agricultural practices, continued progress within the science of soil science is required. Plant diseases cause tremendous economic losses for farmers globally. it's calculable that in additional developed settings across massive regions and lots of crop species, diseases usually cut back plant yields by ten percent per annum, however yield loss for diseases usually exceeds twenty percent in less developed settings. Around twenty-five percent of crop losses square measure caused by pests and diseases, the Food and Agriculture Organization estimates. to unravel this, new strategies for early detection of diseases and pests square measure required, like novel sensors that sight plant odours and spectrographic analysis and bio photonics that may diagnose plant health and metabolism. In artificial neural networks, deep learning is an element of a broader family of machine learning approaches supported realistic learning. Learning is often controlled, semi-supervised or unmonitored. to handle several real-world queries, Deep Learning Approaches are normally used. so as to differentiate pictures and acknowledge their options, coevolutionary neural networks have had a larger result. This article will do a Leaf Disease Identification Survey with Deep Learning Methods. It takes Sugarcane leaf as an instance to our paper

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    A Review on Deep Learning in UAV Remote Sensing

    Full text link
    Deep Neural Networks (DNNs) learn representation from data with an impressive capability, and brought important breakthroughs for processing images, time-series, natural language, audio, video, and many others. In the remote sensing field, surveys and literature revisions specifically involving DNNs algorithms' applications have been conducted in an attempt to summarize the amount of information produced in its subfields. Recently, Unmanned Aerial Vehicles (UAV) based applications have dominated aerial sensing research. However, a literature revision that combines both "deep learning" and "UAV remote sensing" thematics has not yet been conducted. The motivation for our work was to present a comprehensive review of the fundamentals of Deep Learning (DL) applied in UAV-based imagery. We focused mainly on describing classification and regression techniques used in recent applications with UAV-acquired data. For that, a total of 232 papers published in international scientific journal databases was examined. We gathered the published material and evaluated their characteristics regarding application, sensor, and technique used. We relate how DL presents promising results and has the potential for processing tasks associated with UAV-based image data. Lastly, we project future perspectives, commentating on prominent DL paths to be explored in the UAV remote sensing field. Our revision consists of a friendly-approach to introduce, commentate, and summarize the state-of-the-art in UAV-based image applications with DNNs algorithms in diverse subfields of remote sensing, grouping it in the environmental, urban, and agricultural contexts.Comment: 38 pages, 10 figure

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    • …
    corecore