337 research outputs found

    Future Directions in Astronomy Visualisation

    Full text link
    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.Comment: 13 pages, 2 figures, accepted for publication in PAS

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Towards music-driven procedural animation

    Get PDF
    We present our approach towards the development of a framework for the creation of music-driven procedural animations. We intend to explore the potential that elementary musical features hold for driving engaging audio-visual animations. To do so, we bring forward an integrated environment where real-time musical information is available and may be flexibly used for manipulating different aspects of a dynamic animation. In general terms, our approach consists of developing a virtual scene, populated by controllable entities, termed actors, and using scripting to define how these actors' behaviour or appearance change in response to musical information. Scripting operates by establishing associations, or mappings, between musical events, such as the ringing of notes or chords, or sound information, such as the frequency spectrum, and changes in the animation. The scenario we chose to explore is comprised of two main actors: trees and wind. Trees grow in an iterative process, and may develop leaves, while swaying in response to the wind field. The wind is represented as a vector field whose configuration and strength can be altered in real-time. Scripting then allows for synchronising these changes with musical events, providing a natural sense of harmony with the accompanying music. By having real-time access to musical information, as well as control over a reactive animation we believe to have taken a first step towards exploring a novel interdisciplinary concept with vast expressive potential.This work has been supported by national funds through FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019

    Interactive musical visualization based on emotional and color theory

    Get PDF
    Influenced by synesthesia, the creators of such ‘visual musics’ as abstract art, color organs, abstract film, and most recently visualizers, have attempted to illustrate correspondences between the senses. This thesis attempts to develop a framework for music visualization founded on emotional analogues between visual art and music. The framework implements audio signal spectrum analysis, mood modeling, and color theory to produce pertinent data for use in visualizations. The research is manifest as a computer program that creates a simple visualizer. Built in Max/MSP/Jitter, a programming environment especially for musical and multimedia processing, it analyzes data and produces images in real-time. The program employs spectrum analysis to extract musical data such as loudness, brightness, and note attacks from the audio signals of AIFF song files. These musical features are used to calculate the Energy and Stress of the song, which determine the general mood of the music. The mood can fall into one of the four general categories of Exuberance, Contentment, Depression, and Anxious/Frantic. This method of automatic mood classification resulted in an eighty-five percent accuracy rate. Applying color expression theory yields a color palette that reflects the musical mood. The color palette and the musical features are then supplied to four different animation schemes to produce visuals. The visualizer generates shapes and forms in a three-dimensional environment and animates them in response to the real-time musical data. The visualizer allows user input to actively direct the creation of a variety of different visualizations. This personalization of the synesthetic effects of the visualizer invites the viewer to actively consider his or her own unique associations and facilitates understanding of the phenomenon of synesthesia and sensory fusion

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    Computational composition strategies in audiovisual laptop performance

    Get PDF
    We live in a cultural environment in which computer based musical performances have become ubiquitous. Particularly the use of laptops as instruments is a thriving practice in many genres and subcultures. The opportunity to command the most intricate level of control on the smallest of time scales in music composition and computer graphics introduces a number of complexities and dilemmas for the performer working with algorithms. Writing computer code to create audiovisuals offers abundant opportunities for discovering new ways of expression in live performance while simultaneously introducing challenges and presenting the user with difficult choices. There are a host of computational strategies that can be employed in live situations to assist the performer, including artificially intelligent performance agents who operate according to predefined algorithmic rules. This thesis describes four software systems for real time multimodal improvisation and composition in which a number of computational strategies for audiovisual laptop performances is explored and which were used in creation of a portfolio of accompanying audiovisual compositions

    Real-time Global Illumination by Simulating Photon Mapping

    Get PDF

    Two-dimensional unsteady flow visualization by animating evenly-spaced streamlets

    Get PDF
    Flow visualization has been widely used to display and discover patterns and features in vector fields. Common applications include the representation of ocean currents and weather model data. In this thesis, a flexible method for animating vector fields is developed, based on a generalization of a Poisson disc sampling method. The algorithm has two stages; in the first streamlets are drawn into an image buffer, larger than their intended size. Before they are drawn they are tested to see if they impact on already drawn areas; if they do, they are rejected. In the second stage the ones that pass the test are drawn normal size. The concept of a 3D streamlet object, which groups consecutive time step streamlets as a primitive rendering object, is introduced as part of a method for animating streamlets so that they have minimal overlap and show frame-to-frame coherence providing visual continuity when animating time varying vector fields. Acceptance schemes that allow for occasional overlap between streamlets are explored and found to improve both the speed and the overall quality. Both model data and real weather data are used to evaluate the method. The results show that the method produces good results and is flexible, allows for variable size and density of streamlets, and produces good results

    Automatic light source placement for maximum visual information recovery

    Get PDF
    The definitive version is available at http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2007.00944.x/abstractThe automatic selection of good viewing parameters is a very complex problem. In most cases, the notion of good strongly depends on the concrete application. Moreover, when an intuitive definition of good view is available, it is often difficult to establish a measure that brings it to the practice. Commonly, two kinds of viewing parameters must be set: camera parameters (position and orientation) and lighting parameters (number of light sources, its position and eventually the orientation of the spot). The first ones will determine how much of the geometry can be captured and the latter will influence on how much of it is revealed (i. e. illuminated) to the user. Unfortunately, ensuring that certain parts of a scene are lit does not make sure that the details will be communicated to the user, as the amount of illumination might be too small or too high. In this paper we define a metric to calculate the amount of information relative to an object that is effectively communicated to the user given a fixed camera position. This measure is based on an information-based concept, the Shannon entropy, and will be applied to the problem of automatic selection of light positions in order to adequately illuminate an object. In order to validate the results, we have carried out an experiment on users, this experiment helped us to explore other related measures.Preprin

    Distributed D3: A web-based distributed data visualisation framework for Big Data

    Get PDF
    The influx of Big Data has created an ever-growing need for analytic tools targeting towards the acquisition of insights and knowledge from large datasets. Visual perception as a fundamental tool used by humans to retrieve information from the outside world around us has its unique ability to distinguish patterns pre-attentively. Visual analytics via data visualisations is therefore a very powerful tool and has become ever more important in this era. Data-Driven Documents (D3.js) is a versatile and popular web-based data visualisation library that has tended to be the standard toolkit for visualising data in recent years. However, the library is technically inherent and limited in capability by the single thread model of a single browser window in a single machine, and therefore not able to deal with large datasets. The main objective of this thesis is to overcome this limitation and address possible challenges by developing the Distributed D3 framework that employs distributed mechanism to enable the possibility of delivering web-based visualisations for large-scale data, which also allows to effectively utilise the graphical computational resources of the modern visualisation environments. As a result, the first contribution is that the integrated version of Distributed D3 framework has been developed for the Data Observatory. The work proves the concept of Distributed D3 is feasible in reality and also enables developers to collaborate on large-scale data visualisations by using it on the Data Observatory. The second contribution is that the Distributed D3 has been optimised by investigating the potential bottlenecks for large-scale data visualisation applications. The work finds the key performance bottlenecks of the framework and shows an improvement of the overall performance by 35.7% after optimisations, which improves the scalability and usability of Distributed D3 for large-scale data visualisation applications. The third contribution is that the generic version of Distributed D3 framework has been developed for the customised environments. The work improves the usability and flexibility of the framework and makes it ready to be published in the open-source community for further improvements and usages.Open Acces
    corecore