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Abstract 

The influx of Big Data has created an ever-growing need for analytic tools targeting 

towards the acquisition of insights and knowledge from large datasets. Visual 

perception as a fundamental tool used by humans to retrieve information from the 

outside world around us has its unique ability to distinguish patterns pre-attentively. 

Visual analytics via data visualisations is therefore a very powerful tool and has become 

ever more important in this era. Data-Driven Documents (D3.js) is a versatile and 

popular web-based data visualisation library that has tended to be the standard toolkit 

for visualising data in recent years. However, the library is technically inherent and 

limited in capability by the single thread model of a single browser window in a single 

machine, and therefore not able to deal with large datasets.  

In this thesis, the main objective is to overcome this limitation and address possible 

challenges by developing the Distributed D3 framework that employs distributed 

mechanism to enable the possibility of delivering web-based visualisations for large-

scale data, which also allows to effectively utilise the graphical computational resources 

of the modern visualisation environments. As a result, the first contribution is that the 

integrated version of Distributed D3 framework has been developed for the Data 

Observatory. The work proves the concept of Distributed D3 is feasible in reality and 

also enables developers to collaborate on large-scale data visualisations by using it on 

the Data Observatory. The second contribution is that the Distributed D3 has been 

optimised by investigating the potential bottlenecks for large-scale data visualisation 

applications. The work finds the key performance bottlenecks of the framework and 

shows an improvement of the overall performance by 35.7% after optimisations, which 

improves the scalability and usability of Distributed D3 for large-scale data 

visualisation applications. The third contribution is that the generic version of 

Distributed D3 framework has been developed for the customised environments. The 

work improves the usability and flexibility of the framework and makes it ready to be 

published in the open-source community for further improvements and usages.  
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Chapter 1 Introduction  

1.1 Motivations  

The Data Science Community has been growing significantly in order to address the 

influx of Big Data. These data sources range from Internet of Things sensor networks 

to the growing Open Data movement [1] as well as the Data Stores holding them [2]. 

Such new data streams are leading to the global economy’s economic benefit using a 

new data economy and start-ups that result in new insight from data. A data-driven 

economy succeeds because of the insight generated from data being shared. At the heart 

of this is data visualisation. Indeed, visualisation and visual analytics continue to be 

major tools for generating insight from data. Recently, high impact infographics and 

data-driven story telling powered by new streams of Big Data and Open Data have been 

observed to be growing. 

On the other hand, the existing visualisation techniques remain less affected by the rise 

of Big Data, with the majority of visualisation tools and environments having the ability 

to show only small datasets and very few data points. For this reason, it is important to 

implement coarsening and aggregation techniques for presenting the data as it prevents 

practitioners from gaining a complete view of the data and reduces the ability to 

permeate into the data for examining the data trends in detail. A key role for universities 

is leading the development of tools for better Data Science. Further, within the Data 

Science Community, the Data-Driven-Documents (also known as D3.js) [3] 

methodology and library has become the standard tool for visualising data. In fact, the 

open-source library has more than 15,000 collaborators [4] and is considered the 

standard tool for several companies including New York Times [5] and the BBC. 
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However, D3.js library is technically inherent as it has limited capability and is unable 

to address large datasets, a few thousand data points being the maximum it can process. 

Essentially, the approach is limited by an out-dated single machine and single-threaded 

model in JavaScript [6]. At the Data Science Institute, a distributed model is being 

developed for data visualisation based on the D3.js approach. This will include the same 

advantages of distributed computation techniques that underpin the Big Data processing 

community, including Hadoop [7] and Spark [8], while implementing them to the 

visualisation community. Therefore, this can ensure easy scalability of visualisations in 

terms of multiple computers, high-resolution screens, and video wall environments that 

are becoming increasingly common, and it will also enable orders of magnitude more 

data points to be visualised for greater insight. 

Furthermore, the potential impact of the realisation of Distributed D3 on a modern 

visualisation facility can be significant. The empowered large visual space not only 

provides a large high-resolution visualisation at a time, but also enables multiple times 

of raw data points to be plotted and visualised on the tiled screens all at once. This 

allows finding subtle patterns in the large datasets, and therefore helps researchers to 

identify trends and make predictions based on real insights rather than assumptions. In 

addition, the interactive features of Distributed D3 can further improve the transparency 

and visibility of the large and growing amount of data, which further allows the high-

volume data flow to be monitored in a real-time manner, and hence providing 

opportunities to control and respond immediately on certain events, such as errors or 

malfunctions in a system, as well as the potential risks. 
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1.2 Objectives  

The main objective in this thesis is to deliver a robust Distributed D3 framework that is 

able to preserve the API compatibility of D3.js library for the simplicity of use. As a 

result, the framework is expected to resolve the performance bottleneck of D3.js which 

prevents the visualisation for large-scale data, and therefore improves the scalability 

and usability of D3.js in general. The framework should further enable a variety of 

visualisation environments to be configured and programmed by a wide community of 

developers for the collaboration and research purposes.  

The work can be divided into the following stages based on the priority of its 

development,  

• Integrated version of Distributed D3 for Data Observatory, which should reveal 

the possibility of utilising distributed approaches to overcome the performance 

bottleneck of D3.js, and therefore allow developers to evaluate and utilise the 

framework on the Data Observatory.  

• Evaluation and optimisations of Distributed D3 with an emphasis on application, 

which should further improve the framework by investigating and addressing the 

potential performance issues, and thus optimise the framework for visualisation 

application with large-scale data in terms of scalability and usability.  

• Generic version of Distributed D3 for a wide range of communities, which 

should allow the framework to be configured and programmed on the customised 

visualisation environments, and it should also provide the flexibility on the 

configurations of its components to enable the framework to be widely used and 

adapted for a variety of purposes.  
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Key Challenges 

The main challenges in the development of Distributed D3 are to build a distributed 

system that allows distributed rendering and distributed data to be realised for both static 

and dynamic visualisations, as well as to build a robust yet flexible underlying 

distributed communication network.  

• Distributed Rendering, apart from the static distributed rendering that can be 

realised by knowing the positions of a segmented visualisation, the dynamic 

distributed rendering for a smooth and synchronised animation across displays 

can be challenging.  

• Distributed Data, the main challenges can be expected to deal with the data 

segmentation for various types of chart, and also to allow transferring the data 

segments to the targeted displays on demand, such as in an animation.  

• Distributed Network, the classic client-server model is expected to resolve the 

most of communication issues in framework initialisation and animation 

synchronisation. Whereas it becomes more challenging if we would like to build 

a pure peer-to-peer network while addressing these issues.  
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1.3 Related Works  

The majority of the existing research focus on distributed displaying and parallel 

rendering [9-25]. As far as this research work is concerned, no other equivalent 

frameworks have been developed thus far. This section will review the developments 

of the relevant existing frameworks and their main features, and then summarise these 

visualisation frameworks as a designing reference for the present study. 

For several years, the computer graphics community has been interested in using high 

resolution images and high-performance rendering pipelines for examining large 

datasets and for preparing these images, respectively. Whitman [9] evaluated how, from 

the late 1970s, numerous attempts have been made to parallel rendering. The 

classification of parallel rendering by Molnar [10] in the mid-1990s was instrumental 

in setting the precedence for numerous innovative approaches concerning dynamic 

rendering of high-resolution graphics. On the other hand, it was only recently that the 

visualisation of these high-resolution graphics in tiled display walls became popular. It 

was 15 years ago that examples including SAGE [11], Chromium [12] and Parallel-SG 

[13] were put forth. Such early examples led to the development of modern Scalable 

Resolution Display Environments (SRDEs) along with different infrastructures 

introduced during the previous 5 to 10 years. Although such systems are varied, they 

use different strategies for resolving similar problems, and they may not always be 

appropriate for all problems that need an SRDE. 

Despite the fact that the SRDEs’ middleware standardisation is yet to be accomplished, 

multiple authors have applied various ways trying to categorise them. For example, 

Chen et al. [14] considered their execution model to classify them into two groups, 

client–server and master–slave. Ni et al. [15] considered their data distribution 

architectures in terms of the distributed rendering software and display data streaming 

software to classify them. Chung et al. [16] took into consideration which applications 

they focus on and classified them into four groups of transparent frameworks 
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concerning legacy applications, interactive application frameworks, distributed scene 

graph (DSG) frameworks concerning 3D graphics applications, and scalable rendering 

frameworks. Further, Renambot et al. [17] considered their deployment models to 

classify them into browser-based and desktop application. Considering such 

classifications of SRDEs’ middleware, the present study began by examining window 

management systems. Such systems offer an integrated workspace to visualise 

distributed data so that various applications can be executed at the same time throughout 

numerous tiled displays. Moreover, Distributed Multi-head X (DMX) [18] was 

developed for offering multi-head support to the system’s X-Windows desktop that 

includes numerous displays. A client–server model is implemented in DMX such that 

the server node dispenses the visual elements that are then rendered in client nodes. 

Scalable Adaptive Graphics Environment (SAGE) [11] is also a well-known window 

management architecture, with SAGE2 [17][19], its second version, being available and 

called Scalable Amplified Group Environment. This second version, SAGE2, is a 

browser-based client–server cross-platform middleware that is distributed using various 

useful applications that aim to effectively resolve remote collaborations in data-

intensive environments. Both these systems have become substantially popular and are 

used extensively on a global scale. DisplayCluster [20], although not as favoured as 

SAGE2, is also a dynamic windowing environment that includes built-in capabilities 

that can help view media and aids in streaming and displaying ultra-high-resolution 

images as well as video content. Although these are transparent frameworks that have 

a non-invasive programming model, they are extensively dependent on pixel streaming 

for the distribution of the majority of server-to-client visual information. Because of 

this, these systems’ scalability is significantly decreased concerning supported 

resolution and their applicability to environments with high-performance networks is 

also limited. 
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Parallel graphics rendering middleware including the Image Composition Engine for 

Tiles (IceT) [21], compared with window management approaches, distribute the 

rendering workload throughout numerous distributed system’s nodes. Because of this, 

applications can classify the display area into tiles and allocate them to one or more 

processors for executing sort-last parallel rendering. Further, every processor can 

simultaneously render content for multiple tiles. IceT allocates the rendering of M tiles’ 

graphical content throughout N processors and implements numerous strategies 

including map-reduce and binary trees for devising the resulting tiles as well as 

producing a distinctive image. Despite the fact that IceT fulfilled the anticipated 

performance as well as scalability requirements, it needs visualisations for it to be 

purpose-built according to its rendering pipelines, thereby restricting its scope. 

Chromium [12] is a framework developed according to the older WireGL [22] system 

from Stanford, which offers a distinct approach. Chromium manipulates and distributes 

streams of graphic API commands on different computers’ clusters. It can execute 

OpenGL-based applications as it intercepts OpenGL commands that are disseminated 

to client nodes. The commands that such clients receive are executed for rendering their 

corresponding part of a larger picture. It should be noted that Chromium has a major 

drawback of suffering from high network usage, even in cases where there is no change 

in the scene, caused by its low-level focus that prioritises precision rather than 

performance. To address such drawbacks of Chromium, Garuda [23] was introduced 

which decreases the consumption of network bandwidth as it gathers and manages the 

transmitted geometry at rendering nodes. To ensure that only the necessary aspects of 

the scene are transferred to every client, it implements an adaptive algorithm through 

which the scene graph is culled to frustums hierarchy for assessing the objects that can 

be seen in every tile of the wall. Although Garuda fulfilled several needs of the present 

study, there are certain performance implications including the requirement of a high-

end server machine as well as a gigabit ethernet for ensuring a stable frame rate for 

animations. A significant limitation of Garuda, however, is that it is capable of 
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supporting applications of only a scene graph type, thus reducing its applicability in 

collaborative visual analytics. 

Equalizer [24] is a toolkit aimed at scalable parallel rendering that follows OpenGL. 

Equalizer offers an application programming interface (API) for devising scalable 

graphics applications which can function in various configurations such as tiled 

displays. Moreover, the Cross-Platform Cluster Graphic Library (CGLX) [25] offers a 

different API which enables same copies of an OpenGL-based application to be 

executed on all clients as well as visualisation data concerning all the clients to be 

replicated. Though the development of CGLX aimed to improve Chromium, it offers a 

significantly broader scope than Garuda and is not limited to scene graph type 

applications, such as Equalizer. Compared to Equalizer, however, CGLX can be easily 

maintained and offers more transparency. On the other hand, scalability is a major 

limitation of CGLX. It was observed that CGLX’s performance (assessed in FPS as is 

common for animated content) decreased with an increase in the number of display tiles 

because of the synchronisation overhead resulting from the head node. Hence, 

compared to displays with several screens, animations would run considerably faster on 

those displays that had fewer screens. 

To summarise the main literature findings above, in the field of distributed displaying 

and rendering, DMX was the first distributed display environment that enabled a fully-

functional windowing environment across a cluster. The SAGE was developed with an 

architecture that had all pixels streamed to the multi-node display from sources over the 

network, which is more focused on scalable rather than environment in comparison with 

DMX. As opposed to SAGE’s streaming architecture, CGLX provides a semi-

transparent OpenGL-based graphics framework for distributed visualisation systems. 

For such rendering environments, the major problems often involved the limitations of 

scalability, which have been significantly enhanced in the later works of SAGE2 and 

DisplayCluster.  
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Moreover, the key features of the main distributed visualisation systems and 

frameworks can be summarised as follows: Windowing environment for multiple 

applications, which is a centralised system that places windows with content 

(applications, multimedia) from various sources on display in the visualisation system. 

Client-server architecture, in which several clients pull requests from a server while also 

receiving pushed data from it. Extensible 2D and 3D applications, which provides a 

possibility for developing and adjusting the existing applications for system integration. 

Off-the-shelf application support, which is a method of sharing the application screen 

and user interface concerning applications that cannot be changed. Multi-user 

interaction and remote collaboration, which helps multiple users use the system 

interactively and remotely. Content with unlimited resolution, wherein content need not 

be limited to any fixed maximum resolution. Cloud-based infrastructure, which is the 

ability to host a server in the cloud so that clients can access this system. 

Finally, by reviewing these existing visualisation systems and frameworks, it was noted 

that frameworks which support dynamic windowing environments rely on pixel 

streaming offered inadequate performance. Meanwhile, frameworks focused on DSG 

were limited and had issues with transparency, and other frameworks were limited in 

their scalability and thus may not be used in SRDEs having varied dimensions. 

Therefore, Distributed D3 is designed with a different approach that aimed to resolve 

such limitations, with its design being influenced by and borrowing from several 

primary concepts of the existing frameworks. 
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1.4 Thesis Structures  

The structure of this thesis is arranged as follows,  

• In Chapter 1, we specify the motivations and objectives of the work, and we 

discuss the related works that are relevant to this research. An overview of the 

thesis structure is then provided with a summary of contributions.  

• In Chapter 2, we discuss the definition and meaning of data visualisation. We 

provide the relevant background of data visualisation, web technologies and 

data-driven documents, and also review the possibilities of building a distributed 

system. In the last section, we also include an overview of the data observatory 

with case studies.   

• In Chapter 3, we propose the integrated version of Distributed D3 framework for 

Data Observatory. We first compare the possible approaches in design, and then 

detail the design and implementations of the framework. The implementation 

results with examples are demonstrated, and the benchmarking results are 

discussed before the conclusion of this chapter.   

• In Chapter 4, we propose the optimised and upgraded version of Distributed D3 

framework for applications with large-scale data. We first investigate the 

bottleneck of the existing Distributed D3, and then optimise the framework by 

addressing the underlying issues and also upgrading the support for newer D3. 

A demonstrating application is illustrated, and the benchmarking results are 

discussed before the chapter conclusion.  

• In Chapter 5, we propose the generic version of Distributed D3 for the 

customised environments. We first illustrate the detachment and serverless 

design of the framework. We then discuss the implementations that include a 

new network interface and two detailed distributed approaches. A customised 
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visualisation environment is also set up for the testing purpose. The 

benchmarking results of the generic version are discussed and compared with the 

previous version.  

• In Chapter 6, we conclude the current development of the work and identify the 

remaining challenges and issues, and we also discuss the potential future works 

in the last section.  
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1.5 Contributions  

In this thesis, we develop the Distributed D3 framework that addresses and resolves the 

performance bottleneck of the D3.js library by implementing the distributed 

mechanisms. The realisation of this work enables the possibility of delivering web-

based visualisations for large-scale data, by effectively utilising the graphical 

computational resources of the state-of-art visualisation environments, such as Data 

Observatory. The work further enables such possibility to be realised on a variety of 

customised visualisation environments that can be configured and programmed by a 

wide community of developers.   

Specifically,  

• We present an integrated version of Distributed D3 for Data Observatory. The 

result shows to overcome the performance limits of the D3.js that proves the 

concept of Distributed D3. The improvement of the overall performance and 

scalability further enables a wide community of developers to work on large-

scale data visualisation in the Data Observatory.  

• We present an optimised and upgraded Distributed D3 for the large-scale data 

visualisation. The test result demonstrates to increase the overall performance by 

35.7% compared with the previous version, and the support of newer D3.js 

further extends the functionality of the framework. The version thus improves 

the scalability and usability of the Distributed D3 for visualisation applications 

with large-scale data.  

• We present a generic version of Distributed D3 for customised environments on 

demand. The test result shows the version is light-weighted and faster than its 

ancestors, and it is also featured by its flexibility of switching networks between 

classic client-server and pure peer-to-peer implementations when needed. The 
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version is ready to be published for the open-source community for further 

impact and improvement.  

 



 

Chapter 2 Background 

 

“Visualisation gives you answers to questions you didn’t know you had.”  

– Ben Schneiderman 

 

2.1 Web Data Visualisation  

2.1.1 Introduction  

The rise of Big Data has led to an increasing need of analytic tools to obtain insights 

from the increasingly large datasets. Visual perception is a primary tool of humans for 

retrieving information from the outside world and thus has the distinguished ability to 

rapidly differentiate patterns in a pre-attentive manner [26]. Hence, visual analytics are 

crucial for data analysis. 

Visualisations has to be seen to be considered truly visual [27]. Hence, it is necessary 

to ensure that a piece of work can be seen by others, for which internet publication is 

the fastest method for distributing information globally. Collaborative work with web-

standard technologies helps the work to be made visual and to be seen by anyone using 

a web browser, because of that the operating system as well as device type (i.e. laptop, 

desktop and smartphone on Windows, Mac and Linux) can be flexible. 

Data-Driven Documents (also known as D3.js) is a popular web-based data 

visualisation library that helps in generating dynamic and interactive data visualisation 



34 Background 

 

in diverse graphical forms. The standardised representation of D3.js improves the 

expressiveness as well as accessibility, while providing significant performance 

improvements and enabling transitions to be animated. Performance benchmarks can 

further help D3.js to be demonstrated as at least two times faster compared to its 

ancestor [3].  
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2.1.2 Data Visualisation  

2.1.2.1 What is Data Visualisation? 

Data visualisation is the process in which graphical representations are used for 

communicating information. Before the written language was formalised, pictures were 

used for communication as images perform in parallel with the human perceptual 

system. Text analysis, however, is a sequential process that is restricted by the speed of 

reading [26]. 

Data visualisation can be perceived as both an art and a science [28]. While several 

consider it a branch of descriptive statistics, others regard it more as a ground theory 

development tool. Internet activity and increased number of sensors have led to the 

development of Big Data. The key challenges for data visualisation involve how this 

data can be processed, analysed, and communicated [29]. 

Data visualisation is the representation and presentation of data that exploits a viewer’s 

visual abilities for amplifying cognition [30]. 

• The representation of data refers to how one decides to present data in a 

physical form, which may be a bar, a line, or a circle. This results in using the 

data as a raw material and generating a representation that presents its key 

features in the best possible way. 

• The presentation of data extends beyond data representation and focuses on how 

data representation is implemented into the overall communication system, such 

as the colours, annotations, and interactive features. 

• The exploitation of visual perception abilities concerns the scientific 

understanding of how the human brain and eyes perceive information in the best 

possible way. It focuses on the way in which individuals’ abilities can be 
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harnessed using spatial reasoning, pattern identification, and big-picture 

thinking. 

• Amplifying cognition concerns the optimising of a persons’ ability to efficiently 

and effectively process the information and convert it into thoughts, insights, and 

knowledge. Data visualisation primarily aims to provide the readers with the 

feeling that they are more knowledgeable about a particular topic. 
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2.1.2.2 Why Data Visualisation? 

There are various reasons for which data visualisation is important. The most apparent 

one is that the sense of sight is fundamental to obtain and understand information as 

humans are visual beings [26]. Using an effective visualisation can help a viewer to 

better analyse and reason data and evidence. Data visualisation simplifies data that is 

complicated and renders it more understandable and usable.  

Furthermore, considering the nature of the human brain, charts and graphs are the best 

way of visualising large numbers of complex data in a simple manner. This is easier 

than reading spreadsheets or reports. Data visualisation is quick and easy and helps 

present concepts in a universal manner, enabling minor adjustments to experiment with 

different situations.  

Visualising information helps in telling a story. It is a primitive communication 

technique, dating as far back as 30,000 BC in the form of cave drawings. Even before 

the development of written language in 3,000 BC, vision was a crucial means of 

communicating. With time, new ways of visualising information were developed. 

Today, although people have become familiar with basic charts such as line chart, bar 

chart, and pie chart, they rarely stop to think about the existing issues and how they can 

be improved. 

 It is important to note that data visualisation is an especially important discipline in the 

modern age. There is a digital consequence to almost everything that people do, with 

everyone’s lives being consistently recorded and quantified. Although this may appear 

scary, the sharing of large quantities of information can generate exciting new 

opportunities for those who possess analytical curiosity and intend to explore the world. 

Data is unarguably an invaluable asset and has become so powerful that it can change 

the world for the better. If data is the oil, then data visualisation is the engine that 

facilitates its true value, which is why it is such a relevant subject to explore nowadays.  
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2.1.2.3 Categories of Data Visualisation  

Data visualisation can be divided into two main categories: exploration and explanation 

[31]. These two categories have different purposes, and thus use unique tools and 

approaches that may not necessarily be suitable for the other. Hence, it is crucial to 

understand their differences to ensure that the correct approach is used for a specific 

visualisation task. 

 

Exploration 

Exploratory data visualisation is suitable in case of a large dataset, when one is unsure 

of its contents, and when needing insight into the data set. Its visual presentation can 

help in quickly identifying its features, such as important curves, lines, trends, or 

anomalous outliers. 

Usually, the exploration is best conducted with high level of granularity. The dataset 

may contain lots of noise, but oversimplifying or removing too much information may 

cause something crucial being missed. Such visualisation is a fundamental aspect of 

data analysis and can be used to reveal the dataset’s story. 

 

Explanation 

Explanatory data visualisation is best used when one already knows the data contents 

and attempts to share them with other parties, such the group head, a grant committee, 

or the public. Regardless of the audience, the individual thus knows the story from the 

beginning and can make designs that are exclusive to the story being presented. Hence, 

the individual must make editorial decisions regarding which information to keep and 

which to remove for being too distracting or irrelevant. For this, the focused data that 

can support the story being told should be selected.  
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If the exploratory data visualisation is part of data analysis phase, then explanatory data 

visualisation will be part of the presentation phase. This type of visualisation can occur 

alone or as part of a larger presentation such as a speech, a newspaper article, or a report. 

For explaining things in more depth in such situations, a supporting narrative is typically 

provided. 

 

The Hybrid 

A hybrid category can also exist involving a curated dataset, for which the data 

presented can help the reader conduct exploration to an extent. Such visualisations are 

often interactive, such as involving a type of graphical interface that enables the reader 

to select specific parameters. They can, therefore, determine insights in the data for 

themselves. Further, these insights may also not have been identified previously by the 

visualisation’s creator.  
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2.1.2.4 Methodology of Data Visualisation  

The common definition for taxonomy originates from biological sciences and typically 

separates organisations into groups of members that share similar characteristics. In this 

case, various charts function as the members while the shared characteristics are the 

functions of the primary data. 

The appropriate visualisation methods are determined by the definition used when 

developing the methodology. This is crucial when clarifying the intention of your 

visualisation communication. The key communication purposes of all the classification 

methods are summarised below [30]: 

• Comparing categories helps make comparisons between the relative and 

absolute sizes of categorical values. For example, a bar chart. 

• Assessing hierarchies and part-to-whole relationships help in breaking down 

categorical values as per their relationship with a group of values or in presenting 

them as constituent elements of hierarchical structures. For example, a pie chart. 

• Presenting changes over time helps exploit temporal data so that changes in 

patterns can be depicted throughout a particular timeframe. For example, a line 

chart. 

• Plotting connections and relationships help in assessing relationships, trends, 

and distributions in multivariate datasets. These tend to involve intricate visual 

solutions that focus on allowing exploratory analysis. For example, a scatter plot. 

• Mapping geo-spatial data aids in presenting datasets that possess geo-spatial 

properties through various mapping frameworks. For example, a choropleth 

map. 
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2.1.2.5 Data Visualisation on the Web 

Traditional static visualisations can only present precomposed data views, but multiple 

static views are often necessary for presenting various perspectives concerning the same 

information [27]. Moreover, there is a limited amount of data dimensions if all visual 

elements are shown on the same surface at the same time. Depicting multidimensional 

datasets fairly using static images is very difficult. Hence, using a fixed image is the 

best method if differing views are not necessary to create a static medium, such as a 

print. 

People can self-explore data using dynamic, web-based interactive visualisations. This 

is applicable to numerous interactive visualisation tools and has remained relatively 

unchanged since the initial introduction of ‘Visual Information Seeking Mantra’ by Ben 

Shneiderman of the University of Maryland in 1996 [32]. For the majority of 

contemporary interactive visualisations, an overview is first conducted, followed by 

zoom and filter and then details-on-demand. Using multiple functions is effective for 

ensuring that the data can be accessed by various audiences, from mere browsers to 

those seeking answers to specific questions. 

The interactive visualisation can present an overview of data using tools best suited for 

‘drilling down’ the details, and can help simultaneously address numerous tasks. This 

helps in addressing the problems of audiences, from those who have little current 

understanding of a new subject matter to those with an excellent grasp of the 

information. Interactivity also promotes engagement with data in ways that static 

images cannot. Moreover, animated transitions and well-designed interfaces can make 

data explorations feel like playing a game. Hence, interactive visualisation is an 

effective method of engaging people who are otherwise uninterested in the topic or data. 
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2.1.3 Web Technologies  

2.1.3.1 HTML and CSS  

Hypertext Markup Language (HTML) was first introduced in 1990 by Tim Berners-Lee 

during his time at the high-energy physics research centre CERN, which is the European 

Laboratory for Particle Physics. It was originally designed for scientific and engineering 

purposes. For several years after its invention, even with many amendments, it was still 

possible to detail the aspects of the language in a concise document (W3C-HTML-

HIST). By November 1992, in addition to the previously mentioned title and paragraph 

components, HTML incorporated only aspects to enable the creation of hyperlinks, 

headings, basic lists, glossaries, examples or text that utilises monospace fonts and 

preserves any white space, and address blocks, which are usually in italics and 

comprised of the authors’ information. Beyond this, there was nothing else at this stage.  

Extensible Markup Language (XML) was then introduced by the W3C in February 

1998. It is a limited form of Standard Generalised Markup Language (SGML). SGML 

has a greater degree of generality than XML, but the latter nonetheless is capable of 

defining syntaxes for languages, including HTML. A number of HTML versions have 

been delineated using XML instead of SGML. These are referred to as XHTML 

languages, the first of which was XHTML 1.0. Semantically, there are no differences 

between XHTML 1.0 and HTML 4.01; while syntactically, they are identical aside from 

a few minor limitations of HTML’s generality in XHTML.  

 

Document Type Declarations  

Every specification of HTML includes a declaration that can be employed at the start 

of documents that are going to follow the specification. The HTML 4.01 and XHTML 

1.0 specifications have three flavours. Each of these has a unique document type 

declaration, characteristics, and components, and they are as follows,  
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1. The Strict version which evolved in late 1997, when W3C was addressing more 
reliable parsing of HTML documents.  

2. The Transitional flavour which is a superset of Strict HTML and contains 
deprecated elements and attributes. In other words, while the Strict version is 
considered best practice, the Transitional version possesses elements and 
attributes which should be avoided whenever possible since they can potentially 
be removed from HTML recommendations in the future.  

3. The Frameset version constitutes a superset of a Transitional flavour. It 
incorporates a feature which permits multiple sub-windows or frames to be 
displayed within the client area of a web browser.  

The following are the advised document type declarations for XHTML 1.0 Strict, 

XHTML 1.0 Frameset, and HTML 4.01 Transitional:  

<!DOCTYPE html 
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 
 
<!DOCTYPE html 
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd"> 
 
<!DOCTYPE HTML 
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd"> 

 

Unrecognised Elements and Attributes  

At times, new web developers can become puzzled by another aspect of HTML, which 

is that browsers do not highlight unrecognisable element or attribute names contained 

in a document. This differs from the norm of programming, as if a keyword is mistyped 

in a Java program for instance, the error will be flagged, causing the program to stop 

running. However, the browser will try to display an entire web page, even if, for 

example, an element name ‘p’ is mistyped. In the case of attribute names that are not 

recognised, the browser simply ignores the attribute, whilst in the case of element names 
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that are unfamiliar, the browser will show the elements’ contents as if the mark-up was 

absent. 

 

The Cascading Style Sheets 

It is possible that both a documents’ semantics and presentation can be represented by 

using the HTML markup. However, it is recommended that this should mainly be the 

case for the documents’ semantics, whereas the presentation of information in a 

document is best determined by using a different mechanism. One such mechanism is 

Cascading Style Sheets (CSS), which is a style sheet technology that can be utilised 

with both HTML and XML documents.   

 

CSS Features  

The primary purpose of style sheet technology is to distinguish the presentation of 

information from the main content of the information and semantic tagging. There are 

many benefits to doing so; one of which is that it enables the unamended presentation 

of the documents’ information in several ways. This is in evidence in user selectable 

alternative style sheets. However, CSS has additional functions. For instance, the link 

element defines a media attribute that can be employed to identify the forms of media 

for a style sheets’ design, in which amongst other aspects, could refer to printer output 

or the content to be displayed on a specific monitor or screen.  

 

Style Inheritance  

Cascading style sheets are structure-based, however in contrast, inheritance is 

determined by the documents’ tree structure. Essentially, this means that a component 
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inherits a value by examining whether a property value already exists in the parent 

element in the document. If this is the case, the parents’ value is inherited. Similarly, 

the parents’ property value can be inherited from its’ parent and so forth. For instance, 

taking id value theValue, an element will search its ancestral tree from its parent 

upwards until it reaches an element with a property value or the root HTML element. 

Figure 2.1.1 presents a model of this cascading mechanism [33].  

When the search finds an element with a property value, that value will be taken by 

theValue as its property value. If the search of the ancestral tree returns no result, then 

ultimately the property will be given a value as per the CSS specification, and this is 

referred to as the property’s initial value [34]. This is reasonable if you consider that an 

initial value is assigned to each element property upon the first reading of the document, 

which is subsequently amended if a value is later found to be supplied either by the 

cascade or the inheritance mechanism.  

 

Figure 2.1.1 The stages of CSS cascading mechanism 
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Another significant aspect of inheritance is that although many CSS properties are 

inheritable, some are not. Usually, whether a property is inherited is apparent to the user 

based on their intrinsic knowledge. For instance, it is reasonable that an elements’ height 

property is not inherited from its parent, as frequently, the parent has numerous children 

on numerous lines, and hence, children would normally have lower height.  
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2.1.3.2 JavaScript and Objects  

JavaScript, as a component of the Netscape 2.0 release, was first developed by Brendan 

Eich [35]. During its preliminary phase, the language was referred to as LiveScript, 

however, prior to the final release of Netscape 2.0, there was a public announcement on 

December 4th, 1995 revealing the language name to be JavaScript. The purpose of this 

name change was to connect the scripting language with the growing interest in Sun’s 

Java programming language, however since then, this has created a substantial degree 

of confusion. Whilst there are many likenesses between JavaScript’s and Java’s core 

syntaxes, there are also significant disparities that exist between them in other areas.  

 

Scripting Language 

Programming languages that do not require assembly prior to execution are referred to 

as interpreted languages. JavaScript program is one such language. An interpreter is 

software that reads and executes a program that has been written in an interpreted 

language. A JavaScript interpreter is present in the majority of contemporary browsers.  

Typically, there is a greater degree of difficulty in maintaining programs written in 

compiled languages such as Java then in managing programs written in interpreted 

languages. With the latter, there is no requirement to recompile interpreted programs 

following modification, and as there are no compiled versions of source files, there are 

less files overall that must be managed.  

Furthermore, there are frequently less complications with programs written in an 

interpreted language than comparable programs written in a conventional compiled 

language. To illustrate this point, JavaScript has a single Number data type, whereas 

conversely, Java entails a broad range of numeric data types (i.e. int, float, double, etc.). 
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Data Types  

As discussed earlier, in JavaScript, the variables do not have very explicit data types, 

however each one contains a value. There are six JavaScript data type categories as 

follows, into which each value can be classified as Numbers – for numeric values, String 

– for string values, Boolean – for the literals true and false values, Null – for the literal 

null values, Object – for object values and Undefined – for Variables that have been 

recognised but do not yet have a value.  

In Java, the Java compiler flags the variables in the undefined category as errors, 

however in JavaScript, this is the responsibility of the developer. With the exception of 

the object category, the JavaScript data types are sometimes referred to collectively as 

primitive data types.  

Operand Values                                                typeof Returns 

Null                                                          object 

Boolean boolean 

Number number 

String string 

Object representing function    function 

Object not representing function                             object 

Declared variable without value                                   undefined 

Undeclared variable                                            undefined 

Undeclared property of an Object                                 undefined 

Table 2.1.1 Values returned by typeof for common operands 

As presented in Table 2.1.1 [33], typeof is a JavaScript operator that gives detail about 

the value data type of a variable. The typeof operator is frequently employed to assess 

whether a variable has already been defined prior to use. It is important to note that 
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there are a number of reasons for the typeof operator marking a string undefined, rather 

than it simply being the case that it is the variable values’ classification. The following 

is an example of JavaScript employing the typeof operator to test the data type,  

var x; 
var y; 
y = "this is a string"; 
alert("x is " + (typeof x) + "\n" + // output as undefined  
      "y is " + (typeof y));  // output as string  

The term of identifiers are the strings utilised to name variables and are case sensitive. 

In JavaScript, an acceptable identifier is any string starting with a letter or underscore, 

made up solely of these characters and digits, and is not a reserved word. Lastly, in a 

JavaScript program, in circumstances where a variable is assigned a value without first 

being declared with var statement, the variable will automatically be generated by the 

scripting engine.  

 

Object Properties  

In JavaScript, an object is defined as a set of properties, in which each one is comprised 

of an individual name and a value classified as one of the six aforementioned JavaScript 

data types. JavaScript properties are similar to Java instance variables, in that they are 

non-static variables which have been declared outside any method.  

Object properties are similar to JavaScript variables in that they do not have data types, 

as only property values do so. In the example given below, which is syntactically valid 

in JavaScript, there is a sequence of statements that sequentially assigns Boolean, 

String, and Number values to an individual property (prop) of an object (obj) (which is 

taken to have been previously declared),  

obj.prop = false; 
obj.prop = "null"; 
obj.prop = 0; 
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Another significant disparity between Java and JavaScript programs is that the 

JavaScript does not define classes, although there are several aspects that are class-like. 

For instance, object constructors can be defined to generate objects and automatically 

determine their properties (this is discussed in more detail later in this section). 

Furthermore, JavaScript employs a prototype mechanism that gives a type of 

inheritance (this is not discussed in more detail as it is outside the scope of this paper). 

It is possible to add or remove properties and methods from a JavaScript object after its 

creation, however this is not the case with Java, where an objects’ class defines its 

variables and methods. The lines below illustrate this point,  

var obj1 = new Object(); 
obj1.prop = "test object"; 
delete obj1.prop; 

The flexibility of JavaScript is also demonstrated by its dynamic property creation. 

However, a downside of this flexibility is that JavaScript is missing some security 

aspects. For instance, in an assignment statement, if a property name is mistyped, an 

error message will not be generated. Instead, an entirely new property will be produced. 

This is an important element to monitor in the process of debugging JavaScript code.   

A new empty object is generated by a new expression, following which the specified 

constructor is called and provided with this new object, in addition to the specified 

values of the argument. At that point, the constructor can carry out initialisation on the 

object, which can entail the creating and initialising properties, adding methods to the 

object, and adding the object to an inheritance hierarchy where further properties and 

methods can be inherited.  

With regards to the Object() constructor, the constructor does not add any properties or 

methods directly to the new object. However, the object is amended, thereby inheriting 

a number of genetic methods, such as default to String() and valueOf() methods, which 

are used when converting the object to both String and Number values. There is no 
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major benefit to the value generated by these default methods, but they do avert a 

runtime error when data type conversion is trying to be applied to the object.   

An object initialiser is a useful shortcut tool in JavaScript that enables the creation of 

an empty object, and generating properties on this object to which values are assigned. 

It is called a new Object(). The following is an example of this,  

var obj2 = { prop1:6, prop2:null, prop3:"some text" }; 

The object generated by the statement contains three properties, labelled prop1 

(assigned the value 6), prop2 (assigned the value null), and prop3 (assigned the value 

“some text”). Subsequently, the variable obj2 is assigned a reference to this object.  

 

Object References  

In JavaScript, the values of type Object are not actually objects; rather they are 

references to objects. Therefore, the JavaScript code below will generate an output of a 

“some text” string,  

var obj1 = new Object(); 
obj1.data = "some"; 
var obj2 = obj1; 
obj2.data += " text"; 
window.alert(obj1.data); 

Comparably, an Object value is employed as an argument to a function or method, the 

object reference is delivered, and it is not a reproduction of the object itself. The 

JavaScript code below illustrates this point:  

function objArgs(param1, param2) { 
  param1.data = "changed"; 
  param2 = param1; 
  window.alert("param1 is " + param1.data + "\n" + 
               "param2 is " + param2.data); 
return; }  
 
var o1 = new Object(); 
o1.data = "original"; 
var o2 = new Object(); 
o2.data = "original"; 
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objArgs(o1, o2); 
window.alert("o1 is " + o1.data + "\n" + 
             "o2 is " + o2.data); 

The program generates two objects labelled object1 (o1) and object2 (o2), which are 

subsequently passed to the function objArgs() as arguments. Therefore, once the 

function is called, instantly param1 and param2 are copies of the object references in 

object1 and object2, respectively. This is shown in Figure 2.1.2(a) [33]. The data 

property of the object referenced by param1 and object1 is amended by the first 

statement of the function, as depicted in Figure 2.1.2(b). Next, the function amends 

param2 to be a replication of the object referenced in param1. An important point here 

is that this does not affect the variable object2 or the object referenced by this variable 

in any way, as shown in figure 2.1.2(c). As the result, param1, param2, and object1 will 

all present as “changed”, while object2 shows “original”.  
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Figure 2.1.2 The state of variables and parameters of the object argument example (a) prior to 
the initial statement of the objArgs function is executed (b) following the execution of this 
statement (c) after the function's second statement is executed  
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2.1.3.3 Browser and DOM  

A host object called document allows JavaScript programs to access the Document 

Object Model (DOM). Several other host objects are provided by frequently used 

browsers, however in contrast to document, these objects do not have any official 

standards. Hence, this section will provide a short overview of several common host 

objects, as well as discussing the document object. These objects have several functions, 

including enabling a JavaScript program to modify the size of browser windows, and 

move the browser to another URL.  

The HTML specification includes intrinsic event attributes and the meta element, 

therefore nothing is directly related to the DOM at the moment. This will be first 

introduced in Figure 2.1.3 [33], which presents the JavaScript show() function. The 

function initially calls the getElementById() method of the document object, delivering 

the value of the first argument passed to it. This is the string img1 in both calls to show(). 

To do so, a String is taken, and a JavaScript Object is returned, in which the id attribute 

value of the document element is the specified String. Subsequently, this object has a 

method setAttribute(), which permits JavaScript code to assign values to the attributes 

of an img element, for example, the src attribute. In order to assign the value of its 

second argument (a String representing a URL) to the src attribute of the img element, 

the show function() employs this method. Following this amendment, the browser will 

display a different image for this img element as shown,  

function show(id, url) { 
  var el = window.document.getElementById(id); 
  el.setAttribute("src", url); 
  return; 
} 
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Figure 2.1.3 For each element in an HTML document there is a corresponding Object which 
can be accessed using getElementById, and the HTML attributes of an element can be specified 
using the setAttribute.  

 

Intrinsic Event Handling  

When something of potential interest takes place in a browser, this is referred to as an 

event. These could include occurrences when moving the mouse over an element, 

clicking the mouse button and pressing a key. Each of these is assigned an abbreviated 

name; for example, the first event listed above is a “mouseover”. As observed earlier, 

an intrinsic event attribute is employed to give scripting code that is called at the point 

of occurrence of a specific event that is connected with the element. Lastly, the 

connected event follows the name given to each event attribute.  

Table 2.1.2 provides the list of intrinsic event attributes as defined by the HTML 4.0 

recommendation. They are applicable to the body element and to the vast majority of 

elements that are visually embodied in an XHTML 1.0 Strict document [33].  

Attribute                                                Events  

onload                                                          The body of the document has been fully loaded and parsed by browser  
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onunload A new document is ready to be loaded instead of the current one by 

browser  

onclick A mouse button has been clicked and released on the element  

ondblclick        The mouse has been double-clicked on the element  

onmousedown    The mouse has been pressed on the element  

onmouseup The mouse has been released on the element  

onmouseover The mouse has moved over the element  

onfocus The element has just received the focus  

onblur The element has just lost the focus  

onkeypress The key has been pressed and then realised on the element 

onkeydown The key has been pressed on the element  

onkeyup The key has been released on the element  

onsubmit The element is ready to be submitted  

onreset The element is ready to be reset  

onselect The element’s text has been selected  

onchange The element’s value has been changed  

Table 2.1.2 The list of HTML intrinsic event attributes 

Usually, a meta element is utilised to detail the information that would typically be 

located in the HTTP header field of the response message containing the HTML 

document: http-equiv is employed to denote the name and content value of the HTTP 

header field. Content-Script-Type is the name given to the HTTP header field defined 

by the meta element. It is utilised within the document to state the default language for 

scripts. It should be remembered that within web documents, whilst JavaScript is the 

most frequently used, other scripting languages are also effective when employed. So, 

the ultimate outcome is that the meta element informs the browser that the intrinsic 

event attributes are in JavaScript language.  
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<meta http-equiv="Content-Script-Type" content="text/javascript" /> 

(In the majority of browsers, if the content script type header field is undefined within 

a document, the default will be JavaScript.)  

 

The Document Tree  

For JavaScript programs that run within a DOM2-compliant browser, there are a range 

of node types comprising the accessible document tree. Some of these nodes are 

JavaScript objects that match HTML elements including html or body, whilst others 

may be comprised of text which signifies an elements’ content or the white space 

between elements. Moreover, other nodes may be representative of HTML comments’ 

text. The document type declaration is also represented by a node. Instances of a specific 

host object represent each form of node. For example, instances of the host object called 

Element represent document elements; likewise, instances of the host object named 

Text represent text and the white space between elements. The DOM determines a 

generic host object called Node that is comprised of properties that are also part of any 

of the document trees’ objects, such as Element, Text and a number of other host 

objects. This is done to streamline the definition of these disparate host objects. Tables 

2.1.3 and 2.1.4 provide lists of the core properties of the Node object [33].  

Property                                                Description  

nodeType                                                          Represents the type of node in Number  

nodeName  Provides the name of this Node in String  

parentNode References to the object of the node’s parent   

childNodes Returns array that contains child nodes of this node  

previousSibling  Returns previous sibling of this node, or null if not existed  

nextSibling Returns next sibling of this node, or null if not existed  
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attributes Returns array that contains attributes of this node  

Table 2.1.3 The list of non-method properties of Node object 

Method                                                Function  

hasAttributes()                                                          Returns true if this node has attributes  

hasChildNodes()  Returns true if this node has children 

appendChild(Node) Adds the Node to the end of the children list  

insertBefore(Node, Node) Adds the first Node to the children list  

removeChild(Node) Removes the Node from the children list  

replaceChild(Node, Node) Replace the second Node with the first in the children list  

Table 2.1.4 The list of method properties of Node object 

In detail, the documentElement property of the document object stores the Element 

instance that represents the html element of the document. By beginning at this node, it 

is a simple process to traverse the document tree using the Node methods, thereby 

ascertaining the required information about the tree.  

Value Constant  Type  

1 Node.ELEMENT_NODE Element 

2 Node.ATTRIBUTE_NODE Attr 

3 Node.TEXT_NODE Text 

4 Node.COMMENT_NODE Comment 

5 Node.DOCUMENT_NODE Document 

6 Node. DOCUMENT_TYPE_NODE DocumentType 

Table 2.1.5 The list of possible values for the nodeType property of Node object 
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Although the root of a HTML document is the html element, it is actually in the DOM 

that the document object is considered the Node trees’ root. It is the HTML Element 

instances’ parent, whereas the value of its own parentNode is null. Therefore, external 

to the html element, document provides a parent for nodes representing mark up. As 

illustrated in Table 2.1.5, this includes comments and the document type declaration 

(which has a nodeType value of Node.DOCUMENT_TYPE_NODE).  

Furthermore, ELEMENT_NODE type nodes are instances of the element host object. 

Similar to document, they have particular extra properties in addition to those belonging 

to Node. TagName is the only non-method property that is specific to Element, and 

fundamentally, it is simply another name for the nodeName property. Character data is 

represented by instances of the TextDOM object. This basically refers to anything that 

is not markup in the HTML document. Node.TEXT_NODE is the node type for these 

elements. Data is the key property of text instances and is represented by the Text node. 

Text content that is presented by the browser is modified by assigning a value to this 

property.  

 

DOM Event Handling  

When an event takes place in the DOM event model, an instance of a host object is 

created, which is named Event. This instance is comprised of event information which 

details the type of event, for example, click or mouseover that were previously 

mentioned, and a reference to the document node that matches the markup element that 

caused the event. This node is referred to as the event target. This information is given 

by the event instance properties type and target.  

An event instance is deployed to specific event listeners as soon as it is generated. In 

the JavaScript form of the DOM, an event listener is defined as an operation that selects 

a single argument from the instance of event. An association between an event listener 
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and the type of event taking place on a node object is generated by a call to the 

addEventListener() method on that node. For instance, in the case of a document 

encompassing an element with a msgBtn id, the JavaScript code below is executed,  

var btn = window.document.getElementById("msgBtn"); 
btn.addEventListener("click", msgBox, false); 
 
function msgBox(el) { 
  window.alert( 
    "Some Text\n" + 
    "Event type: " + el.type + "\n" + 
    "Event target element type: " + el.target.nodeName); 
return; }  
 
In the later section, there will be further discussion of the third (Boolean) argument to 

addEventListener() in association with event capture, however for the moment, this is 

set to false. The second argument relates to the event listeners identifier. The first 

argument is a String detailing the type of event listened for, which is not case sensitive. 

Most of the event types are the same for the DOM2 and those employed for the HTML 

intrinsic event attributes, but the following three intrinsic event types do not have a 

corresponding DOM2 event type: keypress, keydown and keyup. In addition, there is 

no DOM2 double-click event, which is one that matches the ondblclick attribute.   

 

Event Propagation 

Besides defining event instances, the DOM2 event model also manages event 

propagation. Within the document tree, the target node of a mouse event is the most 

deeply nested screen visible node that covers the mouse location. For instance, the 

anchor node is the target of the mouseover event when the following criteria are met: 

(1) the mouse travels over an anchor (i.e. a hyperlink) within a paragraph element, that 

(2) itself is in a td element, that (3) is nested within a table elements hierarchy, which 

(4) itself is part of the document body element.  
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Whilst an event has a single target node, it can result in the calling of numerous event 

listeners. This can initially transpire if a number of event listeners have been added to 

the target node. To be more specific, when an event takes place, a DOM2-compliant 

browser theoretically generates a list of event listeners, which are then called based on 

the list order. This list is comprised of three types of event listener, which, in order, are: 

capturing listeners, target listeners, and bubbling listeners. A capturing event listener is 

connected with a document tree ancestor of the target node and was generated via a call 

to addEventListener() with a true third argument. A target listener is directly added to 

the target node with a false third argument. Finally, a bubbling listener is connected 

with a document tree ancestor of the target node and was generated via a call to 

addEventListener() with a false third argument.  

In the case that there are numerous ancestors with capturing listeners, their order runs 

from those closest to the document tree root, moving to those nearest the target node. 

The opposite occurs for bubbling listeners, as the order begins with nodes closest to the 

target and concludes with those nearest to the root. For some event types such as load, 

unload, focus, and blur, bubbling listeners are excluded from the listener list.  

Following the creation of this list of listeners, the browser calls them individually as per 

the order of the list. There are two previously unmentioned DOM2 properties of event 

which inform the listener function about event propagation. The first property, 

eventPhase, contains a Number value that denotes the browsers’ event processing 

phase. A number value of 1 signifies that the call is to capturing event listener, which 

means that the browser is in the capture phase. A number value of 2 indicates a target 

listener is being called; whilst a number value of 3 represents a bubbling listener. The 

second property, currentTarget, encompasses a reference to the listeners’ registered 

node.  

It is possible but the browser will not call all of the listeners from the ordered list if any 

one of the listeners calls the stopPropagation() method on its Event instance argument, 
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as it takes no arguments. Specifically, as soon as stopPropagation() is called, any 

listeners that would be called during the present processing phase and that are registered 

listeners on the current node (currentTarget) will be executed; however, at that point, 

there will be no additional listener processing for this event. It is important to note that 

a call to stopPropagation() in an event listener for one event does not affect any other 

events.  

Capturing event listeners are especially effective for tasks that are related to the top 

levels of the document tree. For instance, this would apply to the cursor trail example 

that was given earlier in this document. Typically, it is preferable that tasks such as 

these are carried out on every event possible. When an event is captured prior to 

reaching listeners at lower levels of the document tree, it means that the capturing 

listener can process the event regardless of whether stopPropagation() is called by a 

listener further down the ordered list.  

 

Generating Events  

When invalid data is entered into a text box, it is preferable that firstly, the user is 

informed that there is an error, and secondly, that the contents of the text box are 

selected. The purpose of this is to both highlight the information and to automatically 

replace the contents when new valid data is entered. Ideally, the browser it would 

modify its display in the same way it changes when the contents of the textbox are 

selected with the mouse by the user. This would also cause the occurrence of a select 

event.  

Method                                                Elements  

blur                                                          anchor, input, select, textarea 

click  input (button, checkbox, radio, submit) 
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focus anchor, input, select, textarea 

select input (text, file), textarea 

Table 2.1.6 The list of DOM2 methods for generating common events 

As shown in Table 2.1.6, DOM2 establishes four methods that can be employed to 

simulate effects such as these. These methods take no arguments and have no return 

value. Each one creates an event, the type of which is determined by the name of the 

method, and the object becomes the Events’ target value. Moreover, the browser 

displays any visual adjustments that are usually connected with the event, including 

selecting the text within a textbox. Whilst these four methods are adequate for most 

typical requirements, they are actually special cases that are components of a more 

general DOM mechanism. This mechanism can be employed to create random events.     
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2.1.4 Data-Driven Documents  

2.1.4.1 Selections and Data  

Selections enable the various data-driven transformation of the Document Object Model 

(DOM) including set attributes, styles, properties, HTML or text content [36]. Elements 

can be added or removed to match the data by using the data joins’ enter and exit 

selections.  

Usually, selection methods return the current or a new selection, allowing the brief 

application of multiple operations through method chaining on a specific selection. For 

instance, the following demonstrates appointing the class and colour style of all aspects 

of a paragraph in the specified document,  

d3.selectAll("p") 
    .attr("class", "main") 
    .style("color", "green"); 

which is equal to,  

var p = d3.selectAll("p"); 
p.attr("class", "main"); 
p.style("color", "green"); 

All selections are immutable, and a new selection is returned by every selection method 

that impacts which elements are selected, rather than the existing selection being 

amended. However, a significant point is that elements are necessarily changeable as 

the document transformations are selection-driven.  

 

Element Selection 

W3C selector strings are accepted by selection methods. These include “.box”, which 

selects elements with the class box, or “div”, which selects the DIV elements. There are 

two forms of selection methods: firstly, select, and secondly, selectAll select only 

chooses the first matching element whereas selectAll chooses all matching elements in 

document order. The top-level selection methods query the whole document (d3.select 
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& d3.selectAll), while the sub-selection methods limit selection to the descendants of 

the selected elements (selection.select & selection.selectAll).  

Specifically, d3.select selects the first element that corresponds to the specified selector 

string. An empty selection is returned if there are no corresponding elements. If several 

elements correspond to the selector, the first matching element per the document order 

will be selected alone. For instance, to select the first DIV element,  

var div = d3.select("div"); 

The specified node is selected instead in circumstances where the selector is not a string. 

This is beneficial if the node reference is already known, as is the case within an event 

listener or a global such as the document body. The following demonstrates making a 

clicked DIV element green, 

d3.selectAll("div").on("click", function() { 
  d3.select(this).style("color", "green"); 
}); 

d3.selectAll selects all elements that correspond to the selector string specified. The 

elements are selected based on the document order, running from top to bottom. An 

empty selection is returned if there are no elements that correspond to the selector in 

the document or if the selector is null or undefined. The following demonstrates 

selecting all DIV elements,  

var divs = d3.selectAll("div"); 

The array of nodes specified are selected when the selector is not a string. This is 

beneficial if the node reference is already known, as with the this.child.Nodes within an 

event listener, or a global such as document.links. As an alternative, the nodes may be 

a pseudo-array such as a NodeList or arguments. The following demonstrates making 

all links green,  

d3.selectAll(document.links).style("color", "green"); 
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Binding Data 

The elements are successfully bound to the data when the specified array of data binds 

with the selected elements and a new selection representing the update selection is 

returned [36]. In addition, the enter and exit selections are defined on the returned 

selection, and they can subsequently be employed to add or remove elements that match 

the new data. The specified data is an array of random values such as numbers or 

objects, or a function that returns an array of values for each group. The data assigned 

to an element is stored in the property __data__, thereby causing it to be “sticky” data 

that is available on reselection.  

Each group in the selection has specified data. In general. the data should be specified 

as a function if the selection has multiple groups, which include d3.selectAll followed 

by selection.selectAll. This function will be assessed for each group in order and is 

subsequently passed the following components: the parent datum of the group d, which 

could be undefined, the group index i, and the parent node of the selection nodes, which 

serves as the parent element of the group. Selection.data can be utilised and combined 

with selection.join to enter, update, and exit elements to correspond to data, and 

explicitly selection.join is comprised of selection.enter, selection.exit, selection.append, 

and selection.remove. 

In circumstances where the key function is not specified, the first datum in data is 

assigned to the first selected element, followed by the second datum to the second 

selected element, and so forth. A key function can be specified to control the data-

element assignment. This substitutes the default join-by-index, as it computes a string 

identifier for each data element.  

In detail, the update and enter selections are returned in data order, and before the join, 

the exit selection preserves the selection order. When the key function is specified, the 

element order in the selection may not correspond to their document order. In this case, 

selection.order or selection.sort can be applied where necessary. If the data is not 
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specified, this approach means that the array of data for the selected elements will be 

returned.  

 

Fetching Data  

Typically, data is formatted in a standardised format file, irrespective of the source of 

data. Some of the more frequently used formats are XML, CSV, and JSON [37]. D3 has 

made data fetching functions available to support these data which has proved to be 

useful. With regards to formats, JSON and XML can incorporate the nested structure of 

the data; however, CSV is not capable of supporting this. 

D3 also offers handy integral parsing on top of the fetch module. The following 

demonstrates how to load a text file,  

d3.text("/text-file.txt").then(function(data) { 
  console.log(data); // output text from the file 
}); 

And to load and parse a CSV file,  

d3.csv("/csv-file.csv").then(function(data) { 
  console.log(data); // output data in CSV format  
}); 

A standard D3 has five integral data fetching functions which support the main data 

formats. These include d3.text(), d3.xml(), d3.html (), d3.csv() and d3.json(). Of these 

five, d3.json() and d3.csv() are the two most often used functions.   
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2.1.4.2 Scales and Axes  

Scales are a helpful construct for a fundamental visualisation task of mapping an aspect 

of abstract data to a visual representation [38]. Whilst scales are most frequently utilised 

for position encoding quantitative data (including mapping a measurement in metres to 

a position in pixels for dots in a scatter plot), scales can denote almost any visual 

encoding, including deviating colours, stroke widths, or symbol size. Furthermore, 

scales and almost any type of data are compatible, including named categorical data or 

discrete data that needs reasonable breaks.  

Normally, a linear scale is most appropriate for continuous quantitative data. In contrast, 

a time scale is best suited to time series data. Based on the requirements of the 

distribution, transforming data utilising a power or large scale could be an optional 

avenue. A quantise scale can support differentiation by rounding the continuous data to 

a fixed set of discrete values. In the same manner, a quantile scale calculates quantile 

from a sample population, and a threshold scale facilitates the specification of random 

breaks in continuous data.  

With regards to discrete ordinal or categorical data, which are ordered and unordered 

data respectively, an ordinal scale specifies a definitive mapping from a set of data 

values to a matching set of visual attributes; for example, colours. The associated band 

and point scales are helpful for position-encoding ordinal data. This could refer to bars 

in a bar chart or dots in a categorical scatter plot. Scales do not have an inherent visual 

representation, however most of them can produce and format ticks for reference marks, 

which is beneficial to the construction of axes.  

 

Continuous Scales  

The function of continuous scales is to mark a continuous quantitative input domain to 

a continuous output range. The mapping maybe inverted if the range is also numeric. A 
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continuous scale is indirectly constructed; therefore, a linear, power, log, identity, time, 

or sequential colour scale could be utilised in its place. 

A specified value from the domain returns a matching value from the range. If 

circumstances arise that a given value is outside the domain and clamping is not 

possible, the mapping can be extrapolated to the point that the returned value is outside 

the range. Here is an example of how to apply a position encoding,  

var x = d3.scaleLinear() 
    .domain([0, 100]) 
    .range([0, 800]); 
 
x(10); // 80 
x(30); // 240 

 

Sequential Scales  

There are similarities between continuous scales and sequential scales, like diverging 

scales. Both map a continuous numeric input domain to a continuous output range. The 

output range of a sequential scale is determined by its interpolator and is not 

configurable, which differentiates it from a continuous scale. Invert, range, 

rangeRound, and interpolate methods are not exposed by these scales.  

d3.scaleSequential produces a new sequential scale with a given domain and 

interpolator function. An unspecified domain defaults to [0, 1], whilst an unspecified 

internal interpolator defaults to the identity function. Upon application of the scale, the 

interpolator will be called upon with the value that is normally in the range [0, 1], where 

0 and 1 are the minimum and maximum values respectively. The implementation of the 

prevalent rainbow scale with d3.interpolateRainbow is shown as,   

var rainbowScale = d3.scaleSequential(d3.interpolateRainbow); 
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Diverging Scales  

There are similarities between diverging scales, like sequential scales, and continuous 

scales. Both map a continuous numeric input domain to a continuous output range. 

However, in contrast to continuous scales, a diverging scales’ output range is 

determined by its interpolator and is not configurable. Invert, range, rangeRound, and 

interpolate methods are not exposed by these scales.  

d3.scaleDiverging builds a new diverging scale within a given domain and interpolator 

function. An unspecified domain defaults to [0, 1]; and an unspecified interpolator 

defaults to the identity function. Upon application of the scale, the interpolator will be 

instigated with the value normally in the range [0, 1]. Here, 0, 0.5, and 1 represent 

extreme negative, neutral, and extreme positive values, respectively. The following is 

an example of how to implement a diverging spectral scale,  

var spectral = d3.scaleDiverging(d3.interpolateSpectral); 

 

Ordinal Scales  

Ordinal scales differ from continuous scales in that they contain a discrete domain and 

range. d3.scaleOrdinal generates a new ordinal scale with a given domain and range. 

Both an unspecified domain and an unspecified range will default to the empty array. 

Until the point that a non-empty range is determined, an ordinal scale will always return 

undefined.    

 

Band Scales 

Aside from their output range being continuous and numeric, band scales are similar to 

ordinal scales. The band scale automatically computes discrete output values by 

dividing the continuous range into homogeneous bands. Normally, band scales are 

utilised for bar charts that have an ordinal or categorical dimension. A band scale has 
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an unknown value; hence, it is essentially undefined. Additionally, band scales do not 

permit indirect construction of domains. Figure 2.1.4 presents an example of the band 

scale [38].  

 

Figure 2.1.4 An illustration of the band scale which can be created by d3.scaleBand 

Within a specified domain and range, and without padding, rounding, or centre 

alignment, the d3.scaleBand constructs a new band scale. An unspecified domain 

defaults to the empty domain, whilst an unspecified range defaults to the unit range [0, 

1].   

 

Point Scales  

Point scales are a type of band scale where the bandwidth is set at zero. Usually, point 

scales are utilised for scatter plots that have an ordinal or categorical dimension. The 

value of a point scale is unknown, so it is always undefined; therefore, a point scale 

does not permit indirect construction of a domain. Figure 2.1.5 presents an example of 

the point scale [38].  

 

Figure 2.1.5 An illustration of the point scale which can be created by d3.scalePoint  
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Within the given domain and range, and without padding, rounding, or centre 

alignment, the d3.scalePoint builds a new point scale. An unspecified domain defaults 

to the empty domain, whilst an unspecified range defaults to the unit range [0, 1]. 

 

The Axes 

The axis element provides reference marks for scales that can be read by the human 

users. Axes are always rendered at their origin, regardless of their orientation [39]. In 

terms of chart position, to change the axis, the transform attribute on the containing 

element must be specified. For instance,  

d3.select("body").append("svg") 
    .attr("width", 600) 
    .attr("height", 30) 
  .append("g") 
    .attr("transform", "translate(0,30)") 
    .call(axis); 

The elements comprising an axis are firstly a path element of class “domain”, which 

represents the degree of the scales’ domain; and secondly, transformed g elements of 

class “tick”, which denotes each of the scales’ ticks. Each one contains a line element 

to facilitate drawing the tick line, and a text element that is used for the tick label. Figure 

2.1.6 provides an illustration of the D3 generated axes in horizontal and vertical [40].  

 

Figure 2.1.6 An illustration of using D3 axes to create horizontal and vertical axes  
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2.1.4.3 Transition and Timer  

D3 transition is a selection-like interface that is used to animate amendments to the 

DOM [41]. Rather than immediately applying modifications, the transitions gradually 

interpolate the DOM over a specified period, from the present to the chosen target states. 

The stages of applying a transition are firstly, to select elements, secondly, to call 

select.transition, and thirdly, to make the necessary amendments. For instance,  

d3.select("div") 
  .transition() 
    .style("height", "600px"); 

The majority of selection methods are supported by transitions, which include 

transition.attr and transition.style in place of selection.attr and selection.style. However, 

not all methods are supported; for instance, prior to beginning a transition, elements 

must be appended, or data must be bound. In order to simplify the removal of elements 

following the end of a transition, a transition.remove operator is provided.  

Transitions leverage a range of integral interpolators for the purpose of computing the 

intermediate state. There is automatic detection of colours, numbers, and transforms. 

Additionally, strings with embedded numbers are identified, which is the case with 

many styles, including padding and font sizes, and paths. transition.attrTween, 

transition.styleTween or transition.tween can be employed to specify a custom 

interpolator.  

 

Transition Selection 

Transitions originate from selections through selection.transition, and d3.transition can 

be utilised to generate a transition on the document root element. To be more specific, 

selection.transition returns a new transition on the specified selection with the given 

name. Null is returned if a name is not specified. Transitions must have the same name 

for them to be exclusive with another.  
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In circumstances, where the name is a transition instance, the returned and specified 

transitions will have identical IDs and names. The existing transition is returned for an 

element if there is a pre-existing transition with the same ID on the given element. if 

not the timing of the returned transition is according to the inheritance from the existing 

transition of the same ID on the closest ancestor of each specified element. Therefore, 

this method is effective for synchronising a transition across multiple selections, or re-

selecting a transition for specific elements and amending its configuration. For instance,  

var t = d3.transition().duration(900); 
 
d3.selectAll(".leaves").transition(t) 
    .style("fill", "green"); 
 
d3.selectAll(".flower").transition(t) 
    .style("fill", "red"); 

The default timing parameters are employed when a specified transition is not identified 

on a selected node or its ancestors, which would indicate that the transition had 

concluded.   

In addition, selection.interrupt suspends the specified name’s active transmission on 

selected elements, and terminates any upcoming transitions with the specified name. 

Null is used if a name is not specified.  

If a transition element is interrupted, there are no repercussions for any transitions on 

any descendant elements. For instance, an axis transition is comprised of numerous 

independent synchronised transitions on the descendants of the axis element, which 

refers to the tick lines, the tick labels, the domain path, and so forth. Therefore, the 

descendants must be interrupted in order to interrupt the axis transition.  

selection.selectAll("*").interrupt(); 
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Transition Lifecycle 

As soon as a transition is generated by selection.transition or transition.transition, the 

transition can be configured utilising approaches such as transition.delay, 

transition.duration, transition.attr, and transition.style. Methods with specified target 

values such as transition.attr are assessed concurrently; however, other methods that 

need the starting value for interpolation such as transition.attrTween and 

transition.styleTween must be postponed until the transition has started.  

The transition is scheduled soon after creation, either at the end of the current frame or 

during the subsequent frame. When this happens, it is no longer possible to amend the 

delay and start event listeners.  

When the next transition starts, if there is an active transition which has the same name 

on the same element, it is interrupted. Then, an interrupt event is passed to the registered 

listeners. Note that the interruption occurs at the start rather than at the creation; and 

therefore, even a transition that has no delay will not immediately interrupt the active 

transition, because the old transition is provided with a final frame. If it is necessary to 

interrupt immediately, selection.interrupt can be utilised. In addition, the starting 

transition terminates any pending transactions of the same name on the same element 

that had been generated prior to start the transition. Subsequently, the transition passes 

a start event to the registered listeners. Once this point has passed, the transition can no 

longer be amended, as when it is running, the transition’s timing, tweens, and listeners 

cannot be adjusted.  

The transition begins during the frame, but it is after all transitions starting this frame 

have started that the transition initially calls upon its tweens. Usually, batching tween 

initialisation entails reading from the DOM, and its advantage is that it enhances 

performance by circumventing interleaved DOM reads and writes.  
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Each frame of an active transition initiates its tweens with an eased t-value that ranges 

from 0 to 1. The tweens are invoked by the transition as per their registration order 

within each frame.  

A transition invokes its tweens for the last time with a non-eased t-value of 1 when it is 

ending. It subsequently deliveries an event to registered listeners. This is the final point 

at which the transition can be examined. Upon its conclusion, the transition is deleted 

from the element and its configuration is terminated.  

 

The Timer  

A D3 timer offers an efficient queue that can handle thousands of animations 

simultaneously, whilst ensuring consistent synchronised timing with animations that are 

concurrent or staged. Internally, if it is available, it employs a requestAnimationFrame 

for fluid animation. In the case of delays lasting longer than 24ms, it can be switched to 

setTimeout [42]. 

Specifically, d3.now returns the current time according to the performance.now, if 

available, and the date.now if not. At the beginning of each frame, the current time is 

updated, thereby ensuring its consistency during the frame. Also, any timers that have 

been scheduled during the same frame will therefore be synchronised. In the event that 

this method is called outside of a frame, the current time is calculated and fixed until 

the next frame, which also safeguards the consistency of timing during the event 

management. 

A new timer is scheduled by the D3 timer, which subsequently calls upon the given 

callback back continually, until the timer is stopped. The user can choose to add a 

numeric delay in milliseconds to invoke the specified callback after a delay. If the delay 

is unspecified, it will default to 0. The delay is associated with the specified time in 

milliseconds; therefore, if the time is unspecified it will default to now.  



2.1 Web Data Visualisation 77 

 

The apparent elapsed time since the timer had an active status is passed to the callback. 

For instance,  

var timer = d3.timer(function(t) { 
  console.log(t); 
  if (t > 200)  
    timer.stop(); 
}, 50); 

The following console output can be expected:  

3 
25 
.. 
209 

The initial elapsed time t is 3ms. This refers to the elapsed time from the commencement 

of the timer, not from when the timer was scheduled. The timer, in fact, started 50ms 

after the scheduled time, because of the delay that had been specified. However, the 

apparent elapsed time may actually be shorter than the real (true) elapsed time if it 

transpired that the page is backgrounded and requestAnimationFrame is paused, 

because this means that the apparent time is frozen in the background.  

If it occurs that the timer is called during the callback of another timer, the new timer 

callback will be initiated immediately at the end of the current frame, instead of waiting 

for the next frame. This depends on whether the new timer callback is eligible according 

to the criteria of the specified delay and time. Within the frame, it is a certainty that the 

timer callbacks will be invoked in the order that they were scheduled, irrespective of 

their start time.   
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2.1.4.4 Shapes and Colours 

In general, visualisations are comprised of discrete graphical marks, including symbols, 

arcs, lines, and areas. Certain shapes such as rounded annular sectors and centripetal 

splines are complicated, whereas the rectangles of a bar chart are relatively simple to 

generate directly using SVG or Canvas. D3 shape provides a range of shape generators 

for the convenience of the developers [43]. 

Like other components of D3, these shapes are data-driven, in that each shape generator 

reveals accessors that determine how the input data is mapped to a visual representation. 

For instance, scaling fields of data to fit a chart can expose a line generator for a time 

series, 

var lineGen = d3.line() 
    .x(function(d) { return x(d.x); }) 
    .y(function(d) { return y(d.y); }); 

This line generator can subsequently be utilised to calculate the d attribute of an SVG 

path element, 

path.datum(data).attr("d", lineGen); 

 

Arc  

Like those shapes in a pie or donut chart, the arc generator creates a circular or annular 

sector. It would create a complex a complete circle or annulus if there is a difference of 

greater than τ between the beginning and end angles, which is the angular span. In 

contrast, if the angular span is less than τ, the arcs could have angular padding and 

rounded corners. Arcs are constantly countered at ⟨0,0⟩; hence transform is employed 

to transfer the arc to another position.    
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Pie  

A shape is not directly produced by the pie generator; instead the pie generator 

calculates the necessary angles to show a tabular dataset in a pie or donut chart form. 

Subsequently, these angles can be passed to an arc generator. Figure 2.1.7 presents an 

illustration of the pie with an arc generator.  

 

Figure 2.1.7 An illustration of using d3.pie with arc to create pie and donut charts 

A new pie generator with the default settings is constructed by d3.pie. It produces a pie 

for the current array of data, returning an array of objects that signify the arc angles of 

each item of information. Any further arguments are random, and they are merely 

distributed to the accessor functions of the pie generator with this object. The length of 

the return array and the data are identical, and each element i in the return array has a 

matching element i in the input data. The following properties are resent in all the 

objects in the returned range,  

• data - the input data for arc 
• value - the arc’s numeric value 
• index - the arc’s zero-based sorted index 
• startAngle - the arc’s start angle 
• endAngle - the arc’s end angle  
• padAngle - the arc’s pad angle 
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This representation is intended to complement the arc generators default start.angle, 

end.angle, and pad.angle accessors. Whilst the angular units are random, if the pie 

generator is going to be used with an arc generator, it is important that the angles are 

specified in radians.  

 

Line 

As with a line chart, the line generator generates a spline or polyline. Lines will also be 

present in numerous other visualisation types, including the links in hierarchical edge 

bundling. Figure 2.1.8 presents an example of a D3 generated line [44].  

 

Figure 2.1.8 An illustration of using d3.line to create a line chart 

d3.line produces a line for the selected data array. According to the associated curve of 

this line generator, the selected input data may require sorting by x-value prior to being 

passed to the line generator. The line is rendered to the context of the line generator (if 

present) as a sequence of path method calls, and a void result is returned with this 

function. If not, a path data string is returned.  
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Area 

As with an area chart, the area generator generates an area which is delineated by 2 

bounding lines that are either splines or polylines. Usually, both lines have identical x-

values (x0 = x1), however they have different y-values (y0 and y1). In most cases, y0 

is stated as a constant representing zero. The first line, which is the top-line, is defined 

by x1 and y1, and is firstly rendered. The second line, which is the baseline, is defined 

by x0 and y0, and is second rendered. Here, the points are in reverse order. Figure 2.1.6 

provides an example of a D3 generated area chart .  

 

Figure 2.1.9 An example of using d3.area to create the area chart 

d3.area produces an area for the selected data array. According to the associated curve 

of this area generator, it may be necessary to sort the selected input data by x-value prior 

to being passed to the area generator. The area is rendered to the context of the area 

generator (if present) as a sequence of path method calls, and a void result is returned 

with this function. If not, a path data string is returned.   
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Curves 

As discussed, lines are sequences of two-dimensional [x, y] points, and areas are 

delineated by a top line and a baseline. However, the question remains as how to 

transform this discrete representation into a continuous shape; namely, how to 

interpolate between the points. A range of curves are given to show this. Figure 2.1.10 

presents an example of a D3 generated curve.  

 

 Figure 2.1.10 An example of using D3 curve to create a curve illustration 

d3.curveBasis generates a cubic basis spline by utilising the specified control points. 

The first and final points are triplicated. This is done so that the spline begins and ends 

at the first and last points respectively, and is tangent to the line between the first and 

second points, and to the line between the second-last and last points.  

 

Stacks 

Stacking is possible for certain types of shapes, and is done by placing one shape 

alongside another. For instance, considering a monthly sales bar chart; it could be 

broken down by product category into a multi-series bar chart, in which the bars are 

stacked vertically. This is akin to subdividing a bar chart via an ordinal dimension, for 

example, a product category, and subsequently applying coloured encoding.  
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Figure 2.1.11 An example of using d3.stack to create the stacked chart  

Stacked charts can illustrate the overall value and the per category value at the same 

time. However, doing so makes comparison across categories more complicated, as 

with the exception of the bottom layer, the layers of the stack are not aligned. Figure 

2.1.11 presents an illustration of a generated stacked chart [45].  

In the case with the pie generator, the stack generator does not directly generate a shape. 

Instead, it calculates the positions at which passing to an area generator or direct 

employment is possible; for instance, to position bars. To be more specific, the d3.stack 

generates a stack for the data array at hand, returning an array that represents each series. 

Any further arguments are random, and they are merely distributed to accessors 

alongside this object.   
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The Colours  

Typically, browsers have an in-depth understanding of colours, however with 

JavaScript, there is only little guidance about manipulating them. Hence, D3 colour 

gives representations for a range of colour spaces, and facilitates colour specification, 

conversion, and manipulation [46]. For instance, considering the colour named 

“forestgreen”,   

var colour = d3.color("forestgreen");  

If converting it to HSL,  

var colour = d3.hsl("forestgreen");  

Now the hue can be rotated by 180°, the saturation can be added, and it can be formatted 

as a string for CSS,  

colour.h += 180; 
colour.s += 0.3; 
var colourStr = colour + "";  

D3-color supports the abundant and machine-friendly RGB and HSL colour space, as 

well as other less common colour spaces [46]. 

Specifically, d3.color parses the selected CSS Colour Module Level 3 specifier string 

and an RGB or HSL colour is returned. A null value is returned if the specifier was 

invalid. CSS details the list of supported named colours. A noteworthy point is that the 

function can also be employed with instanceof in order to test if an object is a colour 

instance. This is also the case with colour subclasses, where the user can examine 

whether a colour is in a specified colour space.  
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2.1.4.5 Hierarchies and Geographies  

By the nature, many data sets are inherently hierarchical, such as the geographic aspects 

including census blocks, census tracts, counties and states; the command structures in 

businesses and governments, as well as the software packages and file systems. Even 

data which is not hierarchical in nature can actually be hierarchically organised via 

approaches such as phylogenetic trees or k-means clustering.  

Regarding D3 hierarchy, there are a number of frequently employed techniques to 

visualise hierarchical data as follows [47],  

• Node-link diagrams: which display topology by utilising discrete marks for 

nodes and links. For example, a circle represents each node and a line links each 

parent and child. The neatness of the ‘tidy’ tree is very appealing, and the 

dendrogram sets leaves at the same level, in both polar and cartesian styles. The 

ease of interactive browsing is increased with the use of indented trees.  

• Adjacency diagrams: which display topology via the comparative nodes’ 

placement. For each node area, they can also encode a measurable facet. There 

are several purposes for this, including displaying the revenue or file size. 

Rectangles and annular segments are utilised in the ‘icicle’ and ‘sunburst’ 

diagrams, respectively.  

• Enclosure diagrams: which also have an encoded area; however, they display 

topology through containment. The area is subdivided into rectangles 

repetitively by a tree map, and the circles are nestled compactly via circle-

packing. Whilst it arguably more easily displays the topology, it is less efficient 

in terms of space than a tree map.  

An effective hierarchical visualisation enables rapid multiscale inference. This entails 

micro-observations of single aspects, and macro-observations of large groups. 
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Cluster 

The cluster layout can generate dendrograms, which are node-link diagrams that set the 

trees’ leaf nodes at identical depths. Generally, dendrograms are less condensed than 

tidy trees; however, they are beneficial when it is necessary to place all leaves at the 

same level, as in phylogenetic tree diagrams or hierarchical clustering. Figure 2.1.12 

presents an example of the tree diagram [48].  

 

Figure 2.1.12 An example of using D3 cluster to create the tree diagram 

A d3.cluster function sets out the particular root hierarchy, and the following properties 

on the root and its descendants are assigned,  

• node.x - the node coordinate in x axis 

• node.y - the node coordinate in y axis 

 

Treemap  

A treemap recursively segments an area into rectangles, as per the relevant value of 

each node. It was first developed by Ben Shneiderman in 1991 [49]. The establishment 

of a D3 treemap aids an extensible tiling method. The standard approach is to attempt 

to produce rectangles with a golden aspect ratio. The reason for this is that it enhances 
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readability and size estimation in comparison to slice-and-dice, which essentially just 

switches between horizontal and vertical segmentation based on depth. Figure 2.1.13 

presents an example of the treemap diagram [50].  

 

Figure 2.1.13 An example of using d3.treemap to create the treemap diagram 

A d3.treemap sets out the particular root hierarchy, and the following properties on the 

root and its descendants are assigned,  

• node.x0 - the node’s left edge of the rectangle  

• node.y0 - the node’s top edge of the rectangle  

• node.x1 - the node’s right edge of the rectangle  

• node.y1 - the node’s bottom edge of the rectangle  

 

Pack  

Enclosure diagrams represents hierarchy by using containment or nesting. The leaf 

circles’ size encodes a measurable facet of the data. The approximate cumulative size 

of each subtree is displayed by the enclosing circles; however, it is important to note 

that there is some wasted space, which causes a degree of misrepresentation. Hence, an 

accurate comparison can only be made with the leaf nodes. While circle packing is less 
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efficient then a treemap in terms of use of space, the wasted space actually better shows 

the hierarchical structure. Figure 2.1.14 presents an example of an enclosure diagram 

[51].  

 

Figure 2.1.14 An example of using d3.pack to create an enclosure diagram 

A d3.pack sets out the particular root hierarchy, and the following properties on the root 

and its descendants are assigned,  

• node.x - the coordinate of the circle’s centre in x axis  

• node.y - the coordinate of the circle’s centre in y axis  

• node.r - the value of the circle’s radius  
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D3 Geographies 

Sometimes, point transformations are utilised to implement map projections. For 

example, the spherical Mercator,  

function mercator(x, y) { 
  return [x, Math.log(Math.tan(Math.PI / 4 + y / 2))]; 
} 

If the geometry in question is comprised of continuous, infinite point sets, this is a 

sensible mathematical strategy. However, computers do not have infinite memory, 

therefore it is more appropriate to employ discrete geometry such as polygons and 

polylines.  

Discrete geometry increases the difficulty of projecting from the sphere to the plane. 

Spherical polygon edges are geodesics, which means that they are segments of great 

circles rather than straight lines. With the exception of gnomonic map projections, when 

they are projected to the plane, geodesics are curves in all map projections. Therefore, 

in order to ensure precise projection, interpolation along each arc is necessary. D3 

employs adaptive sampling that is based on a prevalent line simplification method so as 

to strike an effective balance between precision and accuracy [52].  

Topological disparities between the sphere and the plane must be taken into account 

when projecting polygons and polylines. Cutting geometry that crosses the anti-

meridian is necessary in some projections, and clipping geometry to a great circle is 

required in others. 

Furthermore, in order to ascertain their internal side, spherical polygons require a 

winding order convention. When the polygon is smaller than a hemisphere, the exterior 

ring must be clockwise. Conversely, it must be anticlockwise when it is larger than a 

hemisphere. Interior rings that signify holes must employ a winding order that is 

opposite to that which is used in the exterior ring. TopoJSON [53] and ESRI [54] 
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shapefiles also utilise this winding order convention; in contrast, GeoJSON’s RFC 7946 

[55] does the opposite.   

D3 provides significant flexibility, in that the user can select the correct projection and 

aspect based on the data at hand. Furthermore, D3 supports a broad range of map 

projections, both conventional and uncommon. In JavaScript, D3 utilises GeoJSON to 

embody geographic characteristics.     

 

Geo Paths  

There are comparisons between the shape generators in d3-shape and the geographic 

path generator, d3.geoPath. In a specific GeoJSON geometry or feature object, it either 

produces an SVG path data string or renders the path to a Canvas. It is advisable to use 

Canvas for interactive or dynamic projections, as it will enhance the performance. Paths 

are most appropriate for use with projections or transforms, or in circumstances when 

the user is rendering planar geometry directly to SVG or Canvas. 

A new geographic path generator with default settings is created by the d3.geoPath. 

Subsequently, it renders the specific object, which could be any GeoJSON facet or 

geometry object, as follows,   

• Point - a single position 

• MultiPoint - an array of positions 

• LineString - an array of positions creating a continuous line 

• MultiLineString - an array of arrays of positions creating multiple lines 

• Polygon - an array of arrays of positions creating a polygon (and holes) 

• MultiPolygon - a multidimensional array of positions creating multiple polygons 

• GeometryCollection – a collection of geometry objects 

• Feature - a feature containing one of the above geometry objects 

• FeatureCollection – a collection of feature objects 



2.1 Web Data Visualisation 91 

 

The sphere type is also supported. As a sphere does not have coordinates, this is 

advantageous for rendering the globe outline. Any further arguments are passed to the 

pointRadius accessor.  

 

Raw Projections 

Point transformation functions that are employed to carry out custom projections are 

referred to as raw projections. Conventionally, they are passed to d3.geoProjection or  

d3.geoProjectionMutator. At this point, they are exposed to enable the origination of 

associated projections. Raw projections take spherical coordinates in radians and return 

a point [x, y]. This is usually in the unit square that is surrounding the origin.  

A new projection is created from the specified raw projection project by 

d3.geoProjection. This is done by taking the longitude and latitude of a specific radian 

point, which are frequently referred to as λ (lambda) and φ (phi), and this returns a two-

element array [x, y], which signifies its unit projection. It is not necessary for the project 

function to scale or translate the point, because projection.scale, projection.translate, 

and projection.centre apply them automatically. Similarly, the project function is not 

required to conduct any spherical rotation, as prior to the projection, projection.rotate is 

applied.  

 

Spherical Shapes 

The process to produce a great arc, which is a segment of a great circle, is simple and 

straightforward. The GeoJSON LineString geometry object can be simply passed to a 

d3.geoPath; there is no requirement for an arc shape generator, because D3 projections 

employ great arc interpolation for intermediate points. Figure 2.1.15 presents a D3 

generated example of the graticules [52].  
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Figure 2.1.15 An example of using d3.geoGraticule to generate the graticules 

d3.geoGraticule builds a geometry generator that produces graticules. Graticules are a 

homogenous grid of meridians and parallels that demonstrate projection distortion. The 

default graticule has meridians and parallels every 10° between ±80° latitude. However, 

there are meridians every 90° for the polar regions.  

 

Steams  

D3 employs a sequence of function calls to transform geometry, which minimises 

overhead in comparison to using materialising intermediate representations. It is 

essential that streams establish a variety of methods to receive input geometry. By 

nature, streams are stateful. This means that the meaning of a point is based on whether 

it is positioned inside a line. Similarly, a line and a ring are differentiated by a polygon. 

At present, these method calls are synchronous, regardless of being referred to as a 

‘stream’.  
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d3.geoStream streams the selected GeoJSON object to the particular projection stream. 

Although the features and geometry objects are both supported as input, the stream 

interface details the geometry only. Therefore, any additional feature traits are 

undetectable to streams.  

 

Transforms  

Transforms are defined as a generalization of projections. They carry out 

projection.stream and can be passed to path.projection. It is important to note though, 

that they only execute a subsection of the other projection methods. Furthermore, they 

represent random geometric transformations rather than projections from spherical to 

planar coordinates.  

d3.geoTransform delineates a random transform utilising the approaches defined on the 

selected methods object. Pass-through methods that transmit inputs to the output stream 

are applied to any undefined methods. For instance, to reflect the y-dimension by using 

the following transform,  

var reflectY = d3.geoTransform({ 
  point: function(x, y) { 
    this.stream.point(x, -y); 
  } 
}); 

 

 

  



94 Background 

 

2.1.5 Summary  

In the digital age of today, data visualisation has become an essential discipline as data 

continues to grow as a new resource in modern society that has very unique values. Data 

visualisation is classified as exploratory and explanatory depending on its purpose. The 

data visualisations methodology is also classified into seven methods, which are 

comparing categories, assessing hierarchies, presenting changes overtime, plotting 

connections and relationships, and mapping geo-spatial data. In terms of presenting data 

visualisations, compared to the traditional static visualisations such as print, web-based 

interactive visualisations are becoming increasingly popular and essential in today’s 

daily lives.  

The modern web technologies can help in delivering highly interactive data 

visualisations in web-based environments, ranging from an immersive data 

visualisation observatory to a pocket-sized smartphone. Such flexibility is enabled by 

the very fundamental elements of HTML, the cascading mechanism of CSS, and the 

highly adaptive scripting language of JavaScript, wherein JavaScript is featured 

according to its capability of manipulating dynamic object properties. Moreover, the 

wide support of DOM that JavaScript provides in various popular browsers also play a 

vital role in enabling various events and functions because modern browsers are 

commonly developed with the intention of them being compatible with various devices.  

D3.js is a powerful data visualisation library that allows the realisation and creation of 

novelty data visualisations from imagination. Its selections and data functions aid in 

effective data-driven transformation of the DOM, while allowing data to be easily 

manipulated using selected elements. D3 scales and axes can simplify the fundamental 

and common tasks concerning visualisation for developers. The transition and timer 

modules also help to animate changes to the DOM while keeping the concurrent 

animations synchronised and consistent. Further, D3 shapes and colours aid the 

developers to conveniently develop the desired geometry with colours, along with the 
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D3 hierarchies and geographies that are the more advanced modules to create relatively 

complicated and structured diagrams and maps. 
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2.2 Distributed Systems  

2.2.1 Introduction  

Although there are several definitions of distributed systems in the literature, not one of 

them is adequate or agrees with the other definitions. In terms of this thesis, a general 

characterization is sufficient. A distributed system can be considered as a collection of 

independent computers which seems to be a single coherent system to its users [56]. 

Distributed systems tend to be complicated software whose components are, as per the 

definition, distributed throughout numerous machines. It is important to thoroughly 

organise these systems so that their complexity can be mastered. A distributed system’s 

organisation can be perceived in diverse ways. A clear method is distinguishing between 

the software component collections’ logical organization and the actual physical 

realisation. 

Distributed systems’ organisation largely concerns the software components that form 

the system. Such software architectures indicate the organisation of the diverse software 

components and the way in which they must interact. It is important that the software 

components are incorporated and established on real machines to ensure actual 

realisation of a distributed system. For this, various methods can be implemented. 

Moreover, a software architecture’s final instantiation is also called a system 

architecture.  

The following sections will examine traditional centralised architectures wherein one 

server executes the majority of the software components, and hence also functionality, 

and where remote clients are able to gain access to that server through simple 

communication means. Further, decentralised architectures where machines are largely 

equal, and hybrid organizations will also be examined. 
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It is vital to use such a layer in terms of architectural decision, and it primarily intends 

to ensure distribution transparency. On the other hand, trade-offs must be made for 

attaining transparency, resulting in diverse methods of ensuring that middleware is 

adaptive. A latter part of this section will explore some more commonly applied ones 

that impact the middleware organisation. 

  



98 Background 

 

2.2.2 Architecture Designs  

2.2.2.1 Centralised Design  

Although there is no consensus regarding the several problems of distributed systems, 

multiple practitioners agree that it can be helpful to think that clients request services 

from servers as it can address the complicated nature of distributed systems.  

The basic client-server model depicts the processes in a distributed system being 

classified into two groups that may overlap. A server refers to a process that uses a 

particular service such as a database service or a file system service. A client refers to a 

process requesting from a server a service for which a request is sent, and the server’s 

reply is awaited. Figure 2.2.1 illustrates this client–server interaction which is also 

called request–reply behaviour [56].  

 

Figure 2.2.1 An illustration of the common interaction between a client and a server 

A simple connectionless protocol can be used for enabling communication between 

client and server, similar to several local-area networks, the underlying network is quite 

reliable. Thus, when a service is being requested by a client, the process involves a 

message being packages for the server and the intended service being determined as 

well as the required input data. Following this, the message is sent to the server which 

always awaits an incoming request, then processes it, and creates a reply message with 

the results which it sends to the client.  
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The benefit of using a connectionless protocol is that it is efficient. The request/reply 

protocol that has been sketched works well until the messages are not lost or corrupted. 

However, it is important to ensure that the protocol can resist occasional transmission 

failures. The possible solution here when there is no reply is to allow the client to resend 

the request. The fact that the client is unable to identify if the reply’s transmission failed 

or if original request message was lost is a problem. Resending a request when the reply 

is lost can lead to the operation being performed twice. In case the operation was similar 

to ‘transfer some cash from my bank account’, reporting an error will be a better 

response. In case, however, the operation was ‘tell me how much money I have left’, 

resending the request will be more suitable. An operation is considered idempotent 

when it is can be repeated without adverse effects multiple times. As certain requests 

are idempotent while others are not, it is evident that no particular solution can be 

implemented to address the lost messages.  

The alternative solution is that several client–server systems implement a reliable 

connection-oriented protocol. Despite this solution not being completely suitable in a 

local-area network because of relatively poor performance, it works well in wide-area 

systems with inherently unreliable communication. Almost all Internet application 

protocols, for example, are founded on dependable TCP/IP connections. Here, every 

time a service is requested by a client, a connection is first established with the server 

before the request is sent. Typically, the server makes use of that same connection for 

sending the reply, and then the connection is eliminated. Establishing and eliminating a 

connection is, however, expensive, particularly in cases where the request as well as 

reply messages are small.  

In recent years, there have been numerous debates regarding the client–server model. A 

major problem concerns how a clear distinction can be made between client and server. 

It has often been noted that no clear distinction is possible. A server regarding a 

distributed database, for example, can continuously function as a client as it forwards 
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requests to various file servers that implement the database tables. Here, the database 

server itself only processes the queries.  

However, as several client–server applications focus on enabling user access to 

databases, it has commonly been recommended that a distinction be made between the 

user-interface level, the processing level, and the data level, particularly considering the 

layered architectural style previously explored. 

The user-interface level includes everything, such as display management, required for 

interfacing directly with the user. Usually, the processing level includes the 

applications. Moreover, the data level is responsible for managing the data being acted 

on. The user –interface level is generally used by clients typically implement the user-

interface level. At this level, programs which help end users’ interaction with 

applications are included. The level of sophistication between user-interface programs 

is considerable. 

A character-based screen is the simplest user-interface program. This type of interface 

is often used in mainframe environments. When the mainframe is in controls of all 

interaction including monitor and keyboard, a client–server environment is not very 

likely. On the other hand, there are several cases where the user’s terminal performs 

certain local processing including typed keystrokes being echoed or providing support 

to form-like interfaces wherein an entry which is complete must be edited prior to it 

being sent to the main computer. 

Today, advanced interfaces are included even in mainframe environments. The client 

machine usually provides a graphical display that uses pop-up or pull-down menus and 

where several screen controls are used through a mouse rather than keyboard. Examples 

of these interfaces are the X-Windows interfaces that several UNIX environments use, 

and earlier interfaces which were developed for Apple Macintoshes and MS-DOS PCs.  
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As modern user interfaces enable applications in which a single graphical window is 

shared that can be used for data exchange through user actions, it can provide more 

functionality. For example, it deletes a file by moving the icon which represents the file 

to another icon which represents a trash can. Similarly, in several word processors, users 

can move text within a document by using the mouse alone. 

It is possible to construct several client–server applications using approximately three 

distinct pieces which are a part which takes care of user interaction, a part which 

operates on file system or a database, and a part which tends to include an application’s 

core functionality. This latter part is placed logically at the processing level. Compared 

to databases and user interfaces, few aspects are common to the processing level. Hence, 

several examples will be provided so that this level is clearer. 

Consider for example, an Internet search engine. Apart from the animated banners and 

images, a search engine has a simple user interface in which a string of keywords are 

typed in by the user and a list of Web pages’ titles is then provided to them. The back 

end is developed through a substantial database of prefetched and indexed Web pages. 

Central to the search engine is a program which can transform the user’s keywords into 

database queries. Following this, the results are ranked into a list and this list is changed 

into HTML pages. In the client–server model, as shown in Figure 2.2.2, this information 

retrieval part tends to be included at the processing level [56].  
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Figure 2.2.2 The three levels of a simplified Internet search engine 

In the client–server, the data level includes the programs responsible for maintaining 

the actual application-operated data. At this level, data tends to be persistent so that data 

will continue to be stored to be used again despite there being no application running. 

The data level in its simplest form includes a file system, though using a complete 

database is more common. The data level in the client–server model tends to be 

implemented at the server side.  

Apart from storing data, the data level also ensures that data is consistent in various 

applications. In cases where databases are used, sustaining consistency includes storing 

metadata such as entry constraints, application-specific metadata, and table 

descriptions. For example, regarding a bank, it may be important to develop a 

notification for a customer’s credit card debt reaching a specific value. A database 

trigger can help in maintaining such information as it can activate a handler at the 

suitable moment.  
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The data level is structured similar to a relational database in the majority of business-

oriented environments. Here, data independence is important. The organisation of the 

data does not depend on the applications so that organisational changes do not impact 

applications and the applications do not impact the data organization. It can be helpful 

to use relational databases regarding the client–server model for differentiating between 

the data level and processing level as they are both independent. 

On the other hand, relational databases cannot always be considered as the ideal choice. 

A significant feature of several applications is their operation on complicated data types 

which can be modelled better regarding objects rather than relations. Some examples of 

this type are simple polygons and circles and aircraft designs representations such as 

computer-aided design (CAD) systems [57].  

When data operations can be expressed better using object manipulations, 

implementing the data level through an object-relational or object-oriented database is 

a more appropriate idea. It is important to note that the object-relational database type 

has been popular because such databases expand the relational data model which is 

widely dispersed and provide the object-orientation advantages. 

The differentiation between the three logical levels as previously discussed indicates 

several possibilities concerning physical distribution of a client–server application 

through multiple machines. Having two types of machines is the simplest organization 

structure.  

• The first is a client machine which includes only those programs that implement 

part of the user-interface level  

• The second is a server machine which includes the programs that implement the 

data level and processing.  
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The server is responsible for everything in such an organization and the client is only a 

terminal, with perhaps a suitable graphical interface. Several other possibilities are 

available, and the ones that are more common are explored in this section.  

One of the approaches to organise the servers and clients is distributing the programs in 

the previous section’s application layers throughout various machines, as illustrated in 

Figure 2.2.3 [56]. The first step is to differentiate between the two types of machines 

which are client machines and server machines, also called a physically two-tiered 

architecture.  

 

Figure 2.2.3  The alternative client-server organisations 

A possible organization is, as shown in Figure 2.2.3 (a), the client machine having only 

the terminal-dependent part of the user interface, while the applications have remote 

control over their data presentation. Another option is the client side having the 

complete user-interface software, as indicated in Figure 2.2.3 (b). If this is the case, the 

application is divided into a graphical front end that communicates with the other 

application part at the server using an application-specific protocol. The front end or the 



2.2 Distributed Systems 105 

 

client software in this model does not conduct any processing apart from what is 

required to present the application’s interface.  

Moreover, it is also possible to move some aspects of the application, as illustrated in 

Figure 2.2.3 (c), to the front end. An example of this is when the application uses a form 

which must be completely filled before being processed. Then, the front end can verify 

the form’s consistency and accuracy as well as interact with the user if required. An 

example of Figure 2.2.3 (c) organisation structure is a word processor wherein the 

fundamental editing functions are conducted on the client side operating on locally 

cached or in-memory data, whereas the advanced support tools including checking the 

grammar and spelling is executed on the server side.  

The organizations presented in Figure 2.2.3 (d) and Figure 2.2.3 (e) are quite popular in 

several client–server environments. Such organizations are used in case the client 

machine is a workstation or a PC, connected to a distributed file system or database 

through a network. While the majority of the application tends to run on the client 

machine, operations that run on files or on database entries go to the server. Several 

banking applications, for example, function on a machine of the end-user where 

transactions are prepared. After this is done, the application makes contact with the 

database on the server of the bank for uploading the transactions to be processed further. 

Figure 2.2.3 (e) shows a scenario in which the client’s local disk includes part of the 

data. For example, when a client is browsing the Web, they may gradually develop a 

significant cache on the local disk regarding the Web pages that were most recently 

examined.  

In the past few years, it has been commonly seen that the configurations presented in 

Figure 2.2.3 (d) and Figure 2.2.3 (e) have not been implemented when client software 

is placed at end-user machines. Here, the majority of the processing as well as data 

storage is taken care of at the server side because even if client machines perform many 

functions, they can be difficult to manage. The client machine having more functionality 
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results in the client-side software becoming more prone to errors as well as more reliant 

on the underlying platform of the client which includes operating system and resources. 

Considering a system’s management, it is not the best to have so-called fat clients and 

better to have thin clients, as shown in the organisations in Figure 2.2.3 (a) to (c), which 

may lead to less-sophisticated user interfaces and client-perceived performance.  

It should be noted that this trend is not suggesting that distributed systems are not 

needed. In fact, it shows that server-side solutions are becoming more distributed 

because multiple servers that function on various machines are replacing a single server. 

Particularly, when differentiation between only client machine and server machine, it is 

often overseen that a server can have to function as a client, as illustrated in Figure 2.2.4, 

resulting in a physically three-tiered architecture. Programs in this architecture which 

are part of the processing level are placed on a separate server, though they may be 

partly distributed through the client as well as server machines. Transaction processing 

is an example of the use of a three-tiered architecture. 

 

Figure 2.2.4  An example of a server acting as a client 

Moreover, the organisation of Web sites is another example of a three-tiered 

architecture. Here, a Web server functions a place of entry to a site which passes 

requests to an application server so that the actual processing can occur. Then, this 
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application server and a database server interact. An application server, for example, 

can run the code for examining the available inventory concerning some goods which 

an electronic bookstore offers. For this, it may have to interact with a database that 

includes the raw inventory data.   
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2.2.2.2 Decentralised Design  

When applications are classified into processing components, data level, and user-

interface, it leads to multitiered client-server architectures. The various tiers are 

equivalent to the applications’ logical organisation. Regarding several business 

environments, distributed processing is similar to a client-server application being 

organised as a multitiered architecture. Such a distribution is called vertical distribution. 

Further, a characteristic feature concerning vertical distribution is that it can be attained 

by positioning logically different components on various machines. This term concerns 

the concept of vertical fragmentation the way it is implemented in distributed relational 

databases, in which tables are divided according to columns and then distributed 

throughout diverse machines. 

In addition, in terms of system management, it can be helpful to have a vertical 

distribution, and functions are divided logically as well as physically throughout several 

machines, with every machine being customised as per a particular group of functions. 

On the other hand, there are numerous other ways apart from vertical distribution to 

organise client-server applications. Regarding modem architectures, distribution of the 

clients as well as the servers is often what matters, which is called horizontal distribution. 

A client or sever in such a distribution can be divided physically into logically 

equivalent parts, with every part functioning as its own of part the complete data set, 

and hence, the load is balanced. This section will examine a class of modern system 

architectures called peer-to-peer systems which supports horizontal distribution. 

Considering a high-level perspective, the peer-to-peer system processes are all equal; 

that is, the functions necessary to be executed are represented by processes that form 

the distributed system. Because of this, the interaction between processes was 

symmetric to a large extent with every process functioning like a client as well as a 

server at the same time. This is also called acting as a servant. 
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Peer-to-peer architectures in terms of this symmetric behaviour progress concerning 

how the processes can be organised in an overlay network, which is a network where 

the processed form the nodes and the links indicate the possible communication 

channels that are typically developed by TCP connections. Overall, a process is unable 

to directly communicate with another arbitrary process while being required to use the 

available communication channels to send messages. There are two types of overlay 

networks, structured and unstructured. Lua et a1. [58] extensively surveyed these two 

overlay networks using several examples. Moreover, Aberer et al. [59] provides a 

reference architecture which enables the various peer-to-peer systems to be compared 

more formally. 

 

Structured Peer-to-Peer Architectures  

A deterministic procedure is used to develop the overlay network in a structured peer-

to-peer architecture. Organising the processes using a distributed hash table (DHT) is 

by far the procedure that has been used the most. Furthermore, a random key is assigned 

to data items in a DHT -based system from a large identifier space, such as a 160-bit or 

128-bit identifier. Similarly, a random number is also allocated to nodes in the system 

from the same identifier space. Thus, every DHT-based system’s crux is implementing 

an effective as well as deterministic scheme which maps a data item key uniquely to a 

node identifier as per certain distance metric [60]. In addition, when a data item is being 

looked up, the network address of the node in charge of that data item is returned. This 

is efficiently conducted by routing a data item request to the responsible node. 

In the Chord system [60], for example, the organisation of nodes in a ring is executed 

logically so that the mapping of a data item that has key k is done to the node that has 

the smallest identifier id ~ k. This node is called key k’s successor and is referred to as 

succ(k) in Figure 2.2.5. For looking up the data item, an application that is being 
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executed on an arbitrary node will call the function lookup(k) that will return the 

succ(k)’s network address. Then, the application is able to contact the node and attain a 

copy of the data item. 

 

Figure 2.2.5  The mapping of data items on nodes in Chord 

Focusing on the way in which nodes organise themselves to form an overlay network, 

or a membership management, it is necessary to acknowledge that looking up a key is 

not in accordance with the nodes’ logical organisation in the ring, as shown in Figure 

2.2.5. Nevertheless, every node retains shortcuts that allow access other nodes so that 

lookups can usually be conducted in O(log (N)) number of steps, with N indicating the 

number of nodes involved in the overlay. 

If we consider Chord again, a node that wants to join the system begins with developing 

a random identifier id. It should be noted that in case of the identifier space being 

sufficiently large, if there is a good quality of random number generator, then there is 

close to zero probability of developing an identifier which is already assigned to an 

actual node. The node can then conduct a lookup on id because of the network address 

of succ(id) will be returned. Here, the joining node can contact succ(id) as well as its 

predecessor while placing itself in the ring. Such a scheme undeniably needs every node 
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to store information about its predecessor. Further, insertion indicates that every data 

item with key that is related to node id is transferred from succ(id).  

 

Unstructured Peer-to-Peer Architectures  

It is remarkable that peer-to-peer systems that are unstructured tend to depend on 

randomised algorithms to develop an overlay network. The central concept is that 

although every node retains a list of neighbours, the list is generated in a random 

manner. Similarly, it is assumed that data items are randomly positioned on nodes. This 

results in nodes flooding the network with a search query when it has to locate a 

particular data item [61].  

Several unstructured peer-to-peer systems aim to develop an overlay network which is 

similar to a random graph. The fundamental model includes every node retaining a list 

of c neighbours, in which every neighbour depicts a live node that is selected randomly 

from the current nodes set. This list of neighbours is also called a partial view which 

can be developed in various ways. A framework was created by Jelasity et al. [62][63] 

which includes various algorithms concerning overlay construction that enabled 

comparisons as well as assessments. This framework assumed that entries are 

consistently exchanged by nodes from their partial view. Another node is also identified 

by every entry in the network, with each entry having a related age suggesting how old 

the node reference is.  

Figure 2.2.6 [56] shows that the active thread initiates the communication with another 

node by choosing that node from its existing partial view. If the entries have to be 

pushed toward the selected peer, it develops a buffer that includes c/2 + I entries which 

also includes an entry that identifies itself. The existing partial view is from where other 

entries are selected.  
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Generating a new partial view is critically important. The view, in terms of initiation 

and as of the contacted peer, includes precisely c entries that will partially be derived 

from received buffer. The new view can be essentially constructed in two ways. The 

first is where the two nodes can choose to get rid of the entries which they had sent to 

one another, which indicates that some of their original views will be swapped. The 

second is where old entries are discarded as much as possible. The two approaches seem 

to generally be complementary. It has been noted that this framework includes several 

membership management protocols concerning unstructured overlays. Several 

interesting observations can be made here.  
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Figure 2.2.6 Actions of the active thread (a) Actions of the passive thread (b)  

First, assuming that a node gets in contact with another arbitrary node when intending 

to join which may be from numerous well-known access points, this access point can 

be regarded as a regular part of the overlay, apart from the fact that it can be regarded 

as being highly available. If this is the case, protocols using only push or only pull mode 

can result in disconnected overlays quite easily. That is, groups of nodes will be isolated 

and will be unable to contact each node in the network. This is an obviously undesirable 

feature and thus nodes must be allowed to exchange entries.  

Second, a fairly straightforward operation is required to leave the network if partial 

views are regularly exchanged by the nodes. Here, it is possible for a node to leave and 

not inform other nodes. Because of this, a node P choosing an apparent neighbour, let 

us assume node Q, and determining that Q is not responding anymore, it will eliminate 

the entry and choose another peer from its partial view. Thus, when a new partial view 

is being developed, a node functions in tandem with the policy for removing as many 

old entries as it can, and the nodes that leave are quickly forgotten. That is, entries 

concerning departed nodes are quickly and automatically removed from partial views.  
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On the other hand, following this strategy also has its consequences. Assume a node P 

having a set of nodes’ partial view having an entry referring to P. This is called the 

indegree of a node. Id node P’s indegree is higher, it will lead to higher probability of 

another node contacting P. That is, P is at risk of becoming a popular node that can 

easily create an imbalanced position concerning workload. When old entries are 

systematically discarded, nodes are promoted into ones with high indegree. Other trade-

offs also exist which are explored by Jelasity et al. [63]. 

 

Super-peers  

It should be noted that, in peer-to-peer systems that are unstructured, it can be difficult 

to locate relevant data items because of growing network. This scalability problem is 

because of there being no deterministic method to route a lookup request to a particular 

data item, resulting in the node only being able to flood the request. Though it is possible 

to dam such flooding in numerous ways, several peer-to-peer systems have suggested 

using special nodes as an alternative as they maintain an index of data items.  

Leaving the peer-to-peer systems’ symmetric nature is also practical in other situations. 

Examine a collaboration of nodes providing one another with resources. Considering a 

collaborative content delivery network (CDN), for example, nodes can provide storage 

to host Web pages’ copies that would enable Web clients to gain access to nearby pages 

so that they can swiftly access them. Here, it is possible that a node P has to search for 

resources in a particular part of the network. Hence, it will be helpful to use a broker 

which gathers resource usage for numerous nodes that are close to each other as it 

enables swift selection of a node through adequate resources.  

Typically, nodes that are similar to ones that function as a broker or maintain an index 

are called super-peers. Super-peers, as indicated by their name, tend to be organised in 
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a peer-to-peer network which results in a hierarchical organization, as suggested by 

Yang and Garcia-Molina [64]. Figure 2.2.7 illustrates one such example of an 

organization where each regular peer is connected to a super-peer as a client. 

Communication taking place from and to a regular peer is conducted using that peer’s 

associated super-peer. 

 

Figure 2.2.7  An organisation of nodes in a super-peer network 

The client-super-peer relation is established in several cases. That is, every time a 

regular peer is included in the network, that peer gets connected to a super-peer and 

continues to be connected until it leaves the network. Super-peers are thus expected to 

be long-lived processes and having high availability. It is possible to compensate for a 

super-peer’s potential unstable behaviour by implementing backup schemes, including 

each super-peer being paired with another super-peer and needing clients to attach to 

both. 

A super-peer with which an established association is made is not always the optimum 

solution in all instances. Take, for example, the file-sharing networks. In this case, 

getting attached to a super-peer maintaining a file index in which the client is interested 

may be a better solution for a client. This will provide better chances compared to the 

client seeking a particular file as its super-peer will be able to find it quicker. Garbacki 
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et al. [65] proposed a scheme that is relatively simple wherein the relationship between 

the client and super-peer can change because clients find better super-peers with which 

to get attached. That is a super-peer that is providing a lookup operation’s results is 

prioritised over other super-peers.  

 

2.2.2.3 Hybrid Design  

The focus so far has been on various peer-to-peer architectures and client-server 

architectures. In several distributed systems, architectural features are merged, as seen 

in super-peer networks. This section will examine certain particular classes of 

distributed systems where client-server solutions and decentralised architectures are 

combined. 

Edge-server systems develop a crucial class of distributed systems organised as per a 

hybrid architecture. Such systems are positioned on the Internet such that servers are 

placed ‘at the edge’ of a given network. Such an edge is developed through the boundary 

that exists between actual Internet and enterprise networks, such as that provided by an 

Internet Service Provider (ISP). Similarly, in cases of end users who are at home using 

their ISPs to connect to the Internet, that ISP can be regarded as being positioned at the 

edge of the Internet. From this, a general organization can be formed which is shown in 

Figure 2.2.8. 
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Figure 2.2.8  The Internet that consists of a collection of edge servers 

End users, or typical clients, use an edge server to connect to the Internet. This edge 

server primarily aims to provide content, feasibly after the content is filtered and the 

functions transcoded. It should be noted that it is possible to use a collection of edge 

servers for enhancing content as well as application distribution. The fundamental 

model involves an edge server for a particular organization functioning as an origin 

server that is the origin for all content. 

Collaborative distribution systems are known to have hybrid structures deployed in 

them. The major problem for several such systems is to get started, and a traditional 

client-server scheme is often deployed for this. When a node connects to the system, it 

is able to utilise a fully decentralised scheme to collaborate. 

To further establish this, take the BitTorrent file-sharing system into account [66]. 

BitTorrent can be referred to as a peer-to-peer file downloading system whose principal 

working is illustrated in Figure 2.2.9. In this system, when an end user seeks a file, 

chunks of the file are downloaded by the end user from other users until it is possible 

to assemble the downloaded chunks to create the complete file. Ensuring collaboration 

is a crucial design goal. Although a large number of participants in the majority of file-
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sharing systems only downloaded files, they contribute almost nothing else 

[67][68][69]. Hence, it is possible to download a file only when the client who is 

downloading is offering content to someone else. 

 

Figure 2.2.9 An illustration of the working mechanism of BitTorrent 

It is crucial that a user accesses a global directory that forms a well-known Web site. 

This directory includes references to .torrent files which contain information required 

for downloading a particular file. That is, it indicates what is called a tracker that is a 

server which maintains a precise account of active nodes containing chunks of the 

requested file. A note that is presently downloading another file is called an active node. 

Hence, though there will undeniably be several trackers, typically only a single tracker 

for every file (or collection of files) exists. 

After determining the nodes from which chunks are downloaded, the node download 

becomes active. It is then compelled to aid others by, for example, offering chunks of 

the file that is being downloaded which is not provided to others yet. Such enforcement 

results from a simple rule which states that in case of node P observing node Q 

downloading more what it is uploading, P can reduce the rate at which it sends data to 

Q. Such a scheme is successful only if P has to download something from Q. This is 

why nodes tend to be provided with references to various other nodes which gives them 

an advantage for trading data. Hence, BitTorrent merges centralised and decentralised 

solutions. It is observed that the system’s bottleneck is developed by the trackers. 
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The Globule collaborative content distribution network [70] is another example. 

Globule has a compelling resemblance with the edge server architecture previously 

mentioned. Here, rather than edge servers, end users as well as organizations provide 

enhanced Web servers voluntarily which can collaborate in replicating Web pages. 

Every such server includes, 

• A component capable of redirecting client requests to other servers,  

• A component that can assess patterns,  

• A component that can replicate Web pages. 

The server that Alice provides is the Web server which typically deals with Alice’s Web 

site traffic and is known as that site’s origin server. This server works together with 

other servers, such as the one Bob provides, for hosting Bob’s site pages. This, Globule 

can be considered as a decentralised distributed system. At first, requests concerning 

Alice’s Web site get sent to her server, after which it is possible that they are redirected 

to another server. Distributed redirection may also be implemented. 

However, a centralised component also exists in Globule as its broker which registers 

servers and makes others known such servers. An analogous communication exists 

between servers and the broker, as against what may be expected from a client-server 

system. Because of availability, it is possible to replicate the broker, and as observed 

eventually in this book, such replication is implemented commonly for ensuing valid 

client-server computing. 
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2.2.3 Architectural Styles  

Considering the architecture in terms of a further abstraction from different architecture 

designs, an architectural style becomes important. This style is developed considering 

components in term of all the components connected, the data exchanged between 

components, and the way in which these elements are together configured into a system. 

A component refers to a modular unit that has well-defined needed and provided 

interfaces which can be replaced within its environment [71]. 

As examined below, a central problem concerning a distributed systems’ component is 

that it is replaceable, once its interfaces are respected. Moreover, a concept that may be 

difficult to comprehend is a connector that is often referred to as a mechanism which 

mediates communication, cooperation, or coordination among components [72][73]. A 

connector, for example, can be developed by the facilities concerning (remote) 

procedure calls, streaming data, or message passing. 

Considering connectors and components, different configurations can be attained that 

have been divided into architectural styles. Thus far, numerous styles have been 

determined. Of these, there are four that are crucial for distributed systems which are 

layered architectures, object-based architectures, data-centred architectures, and event-

based architectures. 

There is a simple concept concerning the fundamental idea for the layered style which 

is that the organisation of components is conducted in a layered manner so that a 

component at layer L is permitted to call components at the underlying layer but it does 

not work the other way around (Figure 2.2.10 (a)). Such a model has been implemented 

extensively in the networking community. It has also been noted that control tends to 

flow from one layer to another and requests flow downwards in the hierarchy while the 

results move in an upward direction. 
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Object-based architectures, shown in Figure 2.2.10 (b), follow a more flexible 

organisation. Here, every object is parallel to a component, with the components 

connected using a (remote) procedure known as mechanism. Hence, such software 

architecture is similar to the above-described client-server system architecture. 

Regarding large software systems, the layered and object-based architectures remain 

the most crucial [74].  

 

Figure 2.2.10 The layered and object-based architectural styles 

The development of data-centred architectures is based on the notion of processes 

communicating using a common repository regardless of whether it is passive or active. 

The importance of these architectures’ distributed systems may be comparable to that 

of the layered and object-based architectures. For example, an extensive amount of 

networked applications have been generated which depend on a shared distributed file 

system wherein almost all communication is conducted using files. Similarly, Web-

based distributed systems tend to be data-centric; that is, the communication of 

processes takes place using shared Web-based data services.  
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Processes in event-based architectures usually communicate using the propagation of 

events that may also include data, as illustrated in Figure 2.2.11. Event propagation 

concerning distributed systems is often connected with publish/subscribe systems [75]. 

This means that once processes publish events, the middleware is responsible for 

ensuring that only the processes subscribed to those particular events receive them. 

Processes being loosely coupled is major benefit of event-based systems. They do not 

have to refer to each other explicitly, which is also called being decoupled in space or 

referentially decoupled. 

 

Figure 2.2.11 The event-based architectural style 

It is possible to combine event-based architectures with data-centred architectures, 

resulting in shared data spaces. In shared data spaces, processes end to essentially be 

decoupled in time; that is, they require not both to be active when communicating. 

Moreover, several shared data spaces implement a SQL-like interface regarding the 

shared repository such that it is possible to access data through a description and not an 

explicit reference, similar to files. 

Such software architectures are crucial for distributed systems because they all intend 

to attain distribution transparency to a reasonable extent. On the other hand, as 

previously stated, for distribution transparency, trade-offs must be made between 

aspects such as performance, ease-of-programming, and fault tolerance. Because no 
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particular solution exists which will cater to all possible distributed applications, 

researchers no longer focus on a single distributed system which can be employed for 

90% of all possible cases. 

  



124 Background 

 

2.2.4 Summary  

There are numerous methods to organise distributed systems. Software architecture can 

be differentiated from system architecture. While software architecture focuses on the 

software’s logical organisation such as how components interact, how they can be 

structured, and how they can be made independent, the system architecture is concerned 

with where the positioning throughout diverse machines of components forming a 

distributed system.  

Distribution systems have several organisations. A vital class is one in which machines 

are classified into servers and clients. After a request is sent by a client to a server, the 

server produces a result which is returned to the client. Such client-server architecture 

indicates the traditional method of modularising software where a module establishes 

the functions that are available in a different module. Functions’ natural physical 

distribution throughout a collection of machines can be attained by positioning various 

components on several machines.  

Client-server architectures tend to be significantly centralised. It is often observed in 

decentralised architectures that the processes play an equal which form a distributed 

system, also called peer-to-peer systems. The organisation of processes in peer-to-peer 

systems forms an overlay network. This is a logical network where each process has a 

local list comprising other peers with which it can communicate. It is possible to 

structure the overlay network so that deterministic schemes may be deployed to route 

messages between processes. The peer list in unstructured networks tends to be random, 

which indicates that it is crucial to deploy search algorithms to locate data or other 

processes.  

Moreover, architectural style is vital when examining architectures. Architectural style 

indicates the basic principle being followed when the interaction between the software 

components forming a distributed system is organised. Specifically, layering, event 
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orientation, data-space orientation and object orientation are four important 

architectures for distributed systems in the context of architectural styles.  



126 Background 

 

2.3 Data Observatories  

Data Observatories (DO) are virtual environments that include human–machine 

interface which offers an immersive experience while providing visualisations of 

extensive data sets as well as collaborative work. DOs are also called ‘cave’ referring 

to the University of Illinois’ Collaborative Automatic Virtual Environment (CAVE) 

project and because of their obscurity and an enveloping circular shape [2]. 

 

2.3.1 KPMG Data Observatory 

The KPMG Data Observatory established in November 2015, is the largest DO in 

Europe. The Data Science Institute has designed, built, as well as housed the KPMG 

DO. This DO helps academics as well as the industry in visualising data so that they 

can discover new insights, while encouraging the use of a multi-dimensional and 

immersive environment for communicating complicated data sets and analysis [76]. 

Moreover, it aids decision makers in determining new implications as well as actions 

by examining data sets in a unique and innovative environment (Figure 2.3.1). 

The DO offers three major modes. First is the Theatre Mode that uses the entire DO as 

one canvas. Second is the Decision Support Mode wherein the team is at the DO’s 

centre as various simulations or outputs can be seen around them, which enables the 

scenario to be run in real time and the data to be explored. Third is Hackathon Mode 

which involves five teams with every team working on one section of the five. 

The hardware aspects are as follows [77]: 

• 64 x 46” full HD Samsung UD46D-P Professional Video Wall Monitors with 

bezels of 3.5mm between two screens 

• Powered by 32 rendering nodes 

• Arranged as 4 rows and 16 columns 
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• Height = 2.53m 

• Internal diameter = 6.00m 

• 313-degree surround vision 

• 16-point surround sound mounted on the top of each screen stack 

• Total pixel count is 132,710,400 pixels (30,720 * 4320) which is believed to be 

the largest in Europe 

 

Figure 2.3.1 The Data Observatory in Decision Support Mode 
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2.3.2 Other Data Observatories  

Both medium-scale and small-scale multi-screen visualisation environments that have 

up to 4 screens have become popular among academics and the industry, whereas large-

scale virtual environments remain rare as they pose extensive resource investment. It 

was in 1992 that the University of Illinois, Chicago, devised the first Collaborative 

Automatic Virtual Environment (CAVE) [78]. As shown in Figure 2.3.2, it presented 

images on screens that were organised in the shape of a cube. 

The next generation of CAVE called CAVE2 [79] was developed in October 2012 and 

implemented actual LCD panels that were placed in a circle surrounding the team, as 

shown in Figure 2.3.3. In fact, this project led to the establishment of the KPMG Global 

Data Observatory, although it did create an in-house framework rather than depending 

on the API of CAVE, CAVELib [80]. 

 

Figure 2.3.2 The first generation of CAVE system 
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Figure 2.3.3 The second generation of CAVE2 system 

Further, within the industry, TechViz designed the TechViz Virtual Reality (VR) 

Showroom [81] that included a cave on the previously mentioned CAVE project’s 

model, involving images being projected on screens organised in a complete cube 

shape, while emphasising on immersion in VR and 3D environments. 
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Chapter 3 Distributed D3 Framework Integrated 

with Data Observatory  

3.1 Introduction  

In Big Data era, there is an increasing need of analytic tools for obtaining insights from 

the growing large datasets is emerging. Visual perception as a primary tool of humans 

to retrieve information from the outside world, has the distinguish ability to rapidly 

differentiate patterns in a pre-attentive manner [26]. Visual analytics via data 

visualisation is therefore a very powerful tool in data analytics.  

The Data Observatory is a state-of-art data visualisation facility that provides a scalable 

ultra-high-resolution displays in an immersive and multi-dimensional environment, 

which helps to uncover new insights and promotes the communication of complicated 

datasets for its users. The environment consists of 32 high-end graphical nodes with 64 

high-resolution screens in total that creates a 313-degree immersive viewing arc for data 

observers and researchers [76].  

In order to leverage the power of Data Observatory, we found that Data-Driven 

Documents (also known as D3.js) is a popular web-based data visualisation library that 

enables producing dynamic and interactive data visualisation in a variety of graphical 

forms. The standardised representation of D3.js improves the expressiveness and 

accessibility, and transforms offer large performance improvement and also enable 

transitions to be animated. Through performance benchmarks, D3.js is demonstrated to 

be at least two times faster than its ancestor [3].  

However, due to the limits on the processing threads per browsing window in modern 

web browsers, the capacity of displaying large numbers of elements for a state-of-the-
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art data visualisation application is limited. To address this bottleneck issue, we have 

designed a distributed framework that is based on D3.js, which is in hope to utilise the 

distributing power of the high-end graphical station cluster in Data Observatory that 

allows to serve a single or multiple data visualisations simultaneously.  
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3.2 Approach Comparisons  

This section presents a comparison of various potentially helpful web technologies for 

determining the most appropriate approach in order to build the distributed framework. 

First, the underlying network communication protocols will be discussed and reviewed, 

followed by the possible web visualisation technologies, and finally a brief comparison 

between the preferred D3.js and other existing data visualisation libraries.  

 

3.2.1 WebRTC vs. WebSocket  

As a proposed web-based distributed visualisation system, the initial stage of 

framework building requires a highly efficient and robust communication method. This 

work begins by comparing the popular web communication plugin called WebSocket 

with the newly developed real-time peer-to-peer communication protocol called 

WebRTC [82].  

 The following observations were made after summarising their features and 
differences: 

• WebSocket is a communication protocol that provides communication channels 

over a single TCP connection [83], whereas WebRTC is a free and open-source 

project that aids web browsers and mobile applications with real-time 

communication capability using simple APIs [82].  

• WebSocket primarily focuses on allowing developers to deliver rich web 

applications, whereas WebRTC focuses on allowing users to establish peer-to-

peer connections quickly and easily [84].  

• WebRTC is designed to ensure high performance and high-quality 

communication of video, audio, and arbitrary data. It may, however, need a 
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signalling service for establishing the connection. WebSocket is designed to 

ensure that bi-directional communication takes place between the client and the 

server. While audio and video can be streamed over WebSocket, the service may 

not be as robust as WebRTC [84].  

• WebSocket is developed in Java, JMS, and C++, whereas WebRTC is developed 

in JavaScript and HTML. Regarding scalability, WebSocket requires a server per 

session, whereas WebRTC can be peer-to-peer based.  

• Compared to WebSockect, WebRTC has less security concerns concerning 

common security issues such as denial of service (DoS), man-in-the-middle, 

cross-site scripting, and client-to-server masking.  

• Although WebRTC and WebSocket are both popular communication protocols, 

WebRTC is more commonly used in real-time communication applications.  

• While being developed, WebRTC is relatively new and may only be available 

on certain browsers, whereas WebSocket is well supported by the majority of the 

browsers.  

Following the comparison of the protocols above, WebRTC was implemented as the 

main network communication protocol. This is because of the potentially better 

performance as well as quality of the real-time communications among rendering peer 

nodes. Besides, WebRTC’s peer-to-peer based network structure can further promote 

the scalability and flexibility of the potential distributed framework.  

 

3.2.2 WebGL vs. HTML5  

It is important to find a reasonable web-based data visualisation graphical presentation 

library or engine on which to build a favourable network communication solution. This 
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leads to comparing three relatively new yet very promising web technologies which are 

WebGL [85], HTML5 SVG [86], and Canvas [87]. Following are the main differences 

and features observed among these three:  

HTML5 SVG 

• Resolution independent 

• Support for event handlers 

• Best suited for applications with large rendering areas  

• Slow rendering if the visualisation is complex  

• Not suited for game applications 

HTML5 Canvas 

• Resolution dependent 

• No support for event handlers 

• Poor text rendering capabilities 

• Faster rendering in complex visualisation 

• Well-suited for graphic-intensive games 

WebGL 

• Resolution dependent (as enclosed in <canvas>) 

• No support for event handlers (same as canvas) 

• Best rendering performance 

• Based on OpenGL ES 2.0 [88] 

• Good support for 3D game applications 
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Figure 3.2.1 A test experiment by comparing the performance in frame rate (FPS) between 
HTML SVG, Canvas and WebGL 

MacBook Pro 13" 2015 HTML5 SVG HTML5 Canvas WebGL 

N = 100 60 (FPS) 60 60 

N = 1000 38 56 60 

N = 2000 20 28 44 

N = 5000 N/A 11 20 

N = 10000 N/A N/A 12 

Table 3.2.1 The test experiment result of HTML SVG, Canvas and WebGL 

Meanwhile, we have also found and conducted a well-designed public-available test 

experiment by comparing these techniques with a different number (N) of animated 

rendering elements in frame rate (FPS) on a laptop as shown in Figure 3.2.1 [89]. The 

test results are consistent with the summary above, where WebGL has the best rendering 

performance among them, and HTML5 Canvas can render slightly faster than SVG as 

we can see in Table 3.2.1.  
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By considering all aspects of them, we consider that HTML5 SVG remains a good 

candidate, particularly considering its feature of resolution independence, although its 

performance is less satisfactory regarding more animated elements as shown in Table 

3.2.1. This performance issue, however, can be improved by implementing it in the 

distributed framework. Moreover, although HTML5 Canvas showed relatively better 

performance, it has limited access to the event handling than SVG. Hence, it can be 

used along with SVG in a visualisation with less animation and more elements. In 

addition, WebGL is relatively new when starting the development, and although it has 

the same limitations concerning resolution and event handling as Canvas, it has 

significant potential regarding future development in terms of its rendering capacity and 

performance.  

 

3.2.3 D3.js vs. Other Libraries  

Following the aim of investigating approaches for building the distributed framework, 

the final step is to find whether or not existing graphical libraries are available and 

compatible with the previous preferences. Although it is known that D3.js is a strong 

candidate for this framework, this section aims to identify and compare all possible 

alternatives before committing to use one of them for developing the framework.  

Library Flexibility Technology Type of Charts 

D3.js [90] Large control via rich APIs SVG All  

Infovis [91] Large control via rich APIs WebGL All  

Google Viz 
API [92] 

Large choice 
in customisable charts 

SVG All  

Springy.js [93] Specialised charts Raphael.js Force-directed 
graphs 
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Polymaps.js 
[94] 

Specialised charts SVG Maps 

Dimple.js [95] Same as D3, but more user-
friendly in chart creations 

D3.js  Axis-based 
charts 

Sigma.js [96] Specialised charts WebGL Line graphs 

Raphael.js [97] Large control via rich APIs SVG, VML All 

gRaphael [98] Pre-made charts for Raphael.js Raphael.js All 

Leaflet [99] Specialised charts SVG Maps 

Table 3.2.2 A comparison of the selected web-based data visualisation libraries 

Table 3.2.2 presents the findings of the most helpful libraries in this category. Primarily, 

these candidates’ flexibility, underlying web technology, and the supported chart types 

were taken into account for summarising their main issues compared to D3.js with 

additional candidates as following,  

• Less Flexible: Libraries such as Data-wrapper [100] or Flot [101] focus on 

rendering simple common charts and leave little room for visualisation 

customisation.  

• Based on D3.js: D3.js is a popular tool that is often used as a low-level layer for 

higher-level libraries such as NVD3.js [102] which provides a collection of off-

the-shelf visualisations.  

• Too Specialised: Some libraries tackle one specific type of visualisation, 

although they can be added for specialised use cases, such as Three.js [103] can 

be used for rendering 3D visualisations.  

Following the comparisons, it was decided to implement the original preference of D3.js. 

This is due to D3.js is developed based on HTML5 SVG, which has high scalability on 

scalable high-resolution screens that can be a good fit for the Data Observatory 

environment. Moreover, D3.js provides good support for building the highly interactive 
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state-of-art data visualisations regarding some of its built-in features. D3.js also has 

excellent extensibility as it is an open-source project and can thus allow developers to 

build customised plugins that can extend its functionalities.  
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3.3 Distributed D3 Framework Design  

The design of the Distributed D3 framework is illustrated and discussed in this section. 

The concepts of distributed rendering and distributed data as the main features are 

detailed in the following subsections of §3.3.1 and §3.3.2. At the end of this section, the 

overall structure of the framework will also be discussed in §3.3.3.  

3.3.1 Distributed Rendering  

As one of the main features in Distributed D3, distributed rendering is designed to 

maximise the advantages of utilising distributed graphical computing power for data 

visualisations. It is realised by dividing a large visualisation rendering task into smaller 

pieces for each underlying distributed rendering node to undertake. Each node and its 

screens then only need to render and display their own margined and responsible parts 

of an entire visualisation.  

 
Figure 3.3.1  The illustration of a scatter plot with data line in the distributed rendering  
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As we can see in Figure 3.3.1, four scattering points are mainly distributed and 

displayed in screen B, C and D. It is clear that screen C and B will be in charge of the 

first two (April, May) and the last (July) data points respectively [104].  However, we 

notice the third data point of June is shared by screen B and D. To address this shared 

element issue, we will replicate the shared element in all contained screens at the initial 

stage of a visualisation. The same concept of sharing elements also applies to the x and 

y axes in this visualisation, which means both screen A and C will render a complete x 

axis in this case.  

Apart from the static rendering at the initial stage of a visualisation, we also need to 

consider the case of rendering shared elements that involves animations and transitions, 

where the animated shared elements would only appear in an animation at certain 

screens. We address this dynamic rendering issue by predicting the potential recipient 

screens in a transition path, and then replicate and send this transition information with 

relevant elements to those screens via the real-time peer network channels. After that, a 

synchronising message will be broadcasted to all corresponding screens to ensure the 

transitions are started simultaneously, which is designed to improve the coherence of 

the cross-screen animations. We will further detail the implementations of static and 

dynamic rendering in the later section of §3.4.1.  
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3.3.2 Distributed Data  

The mechanism of the distributed rendering enables the possibility of fetching data in a 

distributed manner. Since a distributed node may only require the subset of a dataset in 

order to render its margined part, it is therefore possible to predict and only fetch such 

subset of data from database. The main reason behind this design is that the size and 

complexity of a dataset which is stored in DOM tree often have a noticeable correlation 

on the performance of a web-based visualisation task.  

When applying the concept of distributed data back to the illustration in Figure 3.3.1, it 

is clear that screen C needs to load the first and second data points, and thus screen B 

has the fourth data point. The third data point as a shared element needs to be pre-loaded 

in both screen B and D. However, we understand the extra data points need to be loaded 

under certain conditions, such as to draw the data line between data points in Figure 

3.3.1. We therefore have allowed the data loading functions to fetch a given number of 

extra data points to extend its usability for certain needs.  

As we know the shared x axis needs to be generated in both screen A and C, in order to 

avoid loading unnecessary data points in a screen just for the purpose of generating an 

axis, such as the case of screen A, we have also designed the data dimension function 

for obtaining the relevant scale information of a dataset. The implementations of data 

dimension and data loading functions will be detailed in the section of §3.4.2.  

Moreover, similar to the design of dynamic rendering in the distributed rendering, a 

subset of the data may also need to be replicated and sent together with the transition 

information during a cross-screen animation. For the purpose of maintaining the size 

and complexity of the DOM tree, unnecessary data are designed to be dynamically 

removed to reduce the potential impact on the performance due to the replications.  
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3.3.3 Overall Structure  

In order to realise the main distributed features of the framework design that we have 

discussed in the last sections, we have sketched the overall structure of Distributed D3 

framework as shown in Figure 3.3.2 [104]. In general, the framework is designed to 

contain three main layers, which include the rendering layer, the data-accessing layer 

and the network layer.  

 

Figure 3.3.2  The overall structural design of the Distributed D3 framework 

The rendering layer and data-accessing layer are the implementations of the distributed 

rendering and distributed data design. The network layer has the responsibility to 

establish the connections between a server and peer nodes, and also to build the fully 

connected network within peer nodes. The implementation details of these layers will 

be discussed in the sections of §3.4.1 to §3.4.3.  
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3.4 Distributed D3 Framework Implementation  

3.4.1 The Rendering Layer  

The distributed rendering design can be fulfilled by creating following two rendering 

methods, which are static rendering by margining and dynamic rendering by 

transmitting. The implementation details of these two methods will be discussed in the 

following subsections.  

Static rendering by margining  

In the method of static rendering by margining, the rendering functions use the margins 

of individual screens to pre-determine the separated rendering tasks for each rendering 

node. Each node will then be able to render its margined part with additional shared 

elements at the initial stage of a visualisation.  

At implementation level, the static rendering can be simplified to be relying on dividing 

data values into their corresponding screens. Since D3.js is essentially a data-driven 

library, once the library receives the data that are instructed how to render and display 

in a certain screen, it will then be able to generate a partial view of the visualisation in 

that screen.  
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Figure 3.4.1  The illustration of the static rendering method by obtaining the margins (limits) 

of the dataset for each screen  

Taking the scatter plot example in Figure 3.4.1, the static rendering method first uses 

dd3_getBounds function to obtain the margins (i.e. upper and lower limits) of the 

dataset in both x and y axis for each screen [104]. The corresponding data loading 

functions, in which case dd3_getPointData and dd3_getPathData for the data points and 

data line, will then be able to fetch a subset of data based on the data types. Hence, the 

rendering can be started afterwards by D3.js. Note that data loading functions will be 

further discussed in the section of §3.4.2 when we detail the data-accessing layer.  

In detail, the dd3_getBounds method returns the upper and lower data limits for a certain 

browser window by using the domain and range ratio of data in that local browser 

window, as we can find the pseudocode in Figure 3.4.2, where the method will be 

divided as the first and second part [104].  

In the first part of getBounds method in Figure 3.4.2, we are focused on initialising and 

preparing the domain and range for x and y axis. Specifically, if scaleX and scaleY have 

been defined from inputs, the method initialises the corresponding domains and ranges. 

Otherwise, data keys need to be given from inputs (i.e. xKey and yKey) in order to 

initialise the domains and ranges. These defined domains and ranges are checked 

afterwards to ensure their data sequences are in an incremental order, the order will be 

reversed if this is not the case, and an inverted flag is set to indicate the change.  

After that, the second part in Figure 3.4.2 further defines the maximum and minimum 

values of ranges in x and y axis, where the values are given by the browser’s margins if 

not limited by the data’s ranges. Now we can obtain the corresponding maximum and 

minimum limits of domains by using the ratio between the domains and ranges, and 

finally the output limit can be returned and obtained.  
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Figure 3.4.2 The algorithm of the getBounds function with pseudo commands  
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Dynamic rendering by transmitting  

The dynamic rendering by transmitting method is created to allow the distributed 

rendering in the case of animations and interactions. By watching the changes of 

transitions in an animated visualisation, the dynamic rendering functions will predict 

the end positions and calculate relative coordinates of a cross-screen transition, and then 

send relevant rendering information to the corresponding screens to prepare the 

animations. The animations will then be played and synchronised by a broadcasted 

message.  

 

Figure 3.4.3  The illustration of the dynamic rendering by sending and receiving the shapes 

via real-time peer-to-peer network  

An illustrative example of the dynamic rendering method can be seen in Figure 3.4.3, 

suppose we have several circular elements and one of them is moving from screen B to 

C, the method first attempts to find all cross-over screens as the recipients of that 

circular element by using dd3_findRecipients function, in which case they are screen 

B, A, D and C in order [104]. It then uses dd3_findBrowserAt function to obtain the 

relative transition paths and coordinates for each screen, in order to visually display the 

moving circular element as a continuous animation in a single large screen. Once these 

coordinates are obtained, it packs the transition information and forward it to the 
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corresponding screens via peer-to-peer network. The transition animations will be 

rendered and played on those screens after receiving and unpacking the information 

while taking account of the potential delay in the network transmission. Meanwhile, a 

synchronisation message will be broadcasted to improve the animation coherence 

across screens.  

 

Figure 3.4.4: The algorithm of findRecipients function with pseudo commands  
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Figure 3.4.5: The algorithm of findBrowserAt function with pseudo commands 

Specifically, the mechanism of findRecipients method can be seen in Figure 3.4.4 [104]. 

The method uses a local JavaScript function called getBoundingClientRect [105] to 

obtain the local coordinates of a bounding rectangle, where the rectangle contains the 

target element. The returned coordinates will then be used to check if the rectangle is 

outside the current browser; if this is the case, the method further invokes 

dd3_findBrowserAt as shown in Figure 3.4.5 to find the top left and bottom right 

recipient browser in the coordinates of the column and row, where the target element 

may be able to reach [104]. Once we know the coordinates of the top left (as minimal) 

and bottom right (as maximum) recipient browsers, we will then be able to loop over 

the columns and rows from the minimal value to the maximal, in order to obtain a full 

list of the browser recipients that will contain and receive the target element.  
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3.4.2 The Data-accessing Layer  

For the variety of data structures in the potential visualisations, we have chosen 

MongoDB to be the main database option in this implementation. MongoDB is 

classified as a non-relational (NoSQL) database and featured by storing data in flexible, 

JSON-like documents with schemata [106]. In addition, we chose to use Open Data 

(OData) protocol [107] to build and consume the RESTful APIs [108], as it has multiple 

existing implementations and libraries well written in JavaScript.  

 
Figure 3.4.6 The structure of the data-accessing layer with OData APIs and MongoDB 

The implementation of the data-accessing layer is illustrated in Figure 3.4.6, where 

multiple Distributed D3 instances on different nodes are able to access the OData 

endpoint via the OData client module [104]. On the other hand, the OData endpoint is 

built with MongoDB to allow querying database via the RESTful APIs. Such 

implementation improves the extensibility of deploying additional databases with the 

flexibility in other types for future development, and most of the common types of 

database are well supported by the OData endpoint framework.  

In the aspects of data fetching and loading functions, the static rendering method defines 

the margined areas of data that will be rendered and displayed on the screens, this is 

further realised by selecting a subset of data from the original dataset in database. In 

practice, this distributed data fetching mechanism is useful for the coordinate-based data 

visualisation, such as scatter plots, bar charts and maps. However, for the visualisations 
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that are not based on coordinates usually require to define a customised filtering rule, 

otherwise the whole dataset will be obtained for each node, such as pie charts and 

treemaps. Fortunately, visualisations that are not coordinate-based generally have 

smaller size dataset. In Table 3.4.1, we summarise the data loading functions based on 

several common data types [104].  

Data Types Functions Filtering Rules 

Point Data dd3_getPointData Get the margins (i.e. upper and lower limits) from 
getBounds function  

Path Data dd3_getPathData Get margins from getBounds with extended ranges for 
drawing the trend of a path 

Bar Data dd3_getBarData Get the upper and lower limits based on orderingKey 

Pie Data dd3_getPieData The filtering rule is not currently defined for pie chart 
due to the need of generating the pie shape 

Undefined dd3_getData The filtering rule can be optional or customised on 
demand for any other undefined data types 

Table 3.4.1 The list of data loading functions that are used to filter data by data types 

Moreover, the data loading functions will further create the data queries to fetch the 

corresponding subset of data from database. The queries are handled by OData client 

module, where two fundamental data query functions – query() and queryWith() have 

implemented to interpret the basic and more advanced data queries based on the filtering 

rules.  

http://config.host:config.port/serviceName/dataName?$select=da
ta.name&$orderby=data.order&$filter=data.filterRules 

Figure 3.4.7  The main components of a typical OData query string with individual fields 

In detail, a typical query string in OData can be seen in Figure 3.4.7, where the main 

purpose of query() and queryWith() method is to construct such a data query based on 

the given dataset and its specific filtering rules. As we can see the pseudocode in Figure 

3.4.8, the basic query string consists of $select, $orderby and $filter in addition to the 
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host configurations [104]. The query() method then simply assembles the individual 

components and send this query string to the OData service endpoint via an OData client 

module - o.js [109] for the callback result. In comparison, an advanced data query can 

be assembled by queryWith() method, where additional modifiers are allowed, such as 

$top and $skip. Moreover, a custom parameter is also allowed in the advanced query 

which can be used to apply modifications on the returned data in callback.  

 

Figure 3.4.8 The algorithm of the query and queryWith method with an OData client module 
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3.4.3 The Network Layer  

In the implementation of the network layer, we have chosen the newly developed 

WebRTC to be the main communication protocol in addition to the SignalR [110]. The 

WebRTC protocol is featured by allowing direct peer-to-peer communication without 

installing extra plugins, which is well supported by the most of up-to-date modern 

browsers [82]. To further wrap and implement the protocol, we found the open-sourced 

framework PeerJS which is an easy-to-use and configurable implementation that can be 

useful in the development [111].  

 

Figure 3.4.9 The underlying fully-connected peer network (with WebRTC) and the star-shape 

controlling network (with SignalR) in the network layer implementation 

As we can see the network structure in Figure 3.4.9, we have implemented two types of 

underlying networks in this layer [104]. The peer network, which is fully connected 

with all peer nodes by WebRTC, is mainly designed to deal with the dynamic peer 

updates, including the events and communications in the animations and interactions. 

The controlling network is star-shaped and established by the SignalR hub (server), 

which is mainly responsible for broadcasting messages from the hub to peer nodes, 
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including commands or configurations. In practice, this separated controlling network 

is useful to improve the reliability of the framework, as it helps to fast detect a 

disconnected rendering node and also to better synchronise the animations by direct 

broadcasting.  

When we implement these two integrated networks in detail, the framework is first set 

to establish the SignalR connections between the hub and peer nodes at the initialising 

stage, wherein the peer nodes connect to the hub via the SignalR server address so that 

they can obtain their unique connection IDs on the connections. After that, the nodes 

will attempt to connect to the peer server to get their individual peer IDs, and then send 

them back to the hub.  

On the hub side, after checking the total connected number of clients are equal to the 

configured client number, it broadcasts a full list of the connected nodes with all of their 

connection and configuration information including peer IDs. The peer nodes will then 

be able to establish the fully connected peer network accordingly. The pseudocode of 

this entangled network initialising process can be seen in Figure 3.4.10 [104].  
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Figure 3.4.10 The pseudocode for establishing the fully-connected peer network via the 

established SignalR network  
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3.5 Results  

In order to demonstrate and benchmark the implementation results, we have written a 

number of common chart examples for this integrated version of Distributed D3 on the 

Data Observatory. Meanwhile, we have also designed the benchmarking toolkit in order 

to evaluate the potentially improved scalability and performance of the framework in a 

different number of node configurations. We will demonstrate these chart examples in 

the section of §3.5.1 and then discuss the benchmarking results in §3.5.2.  

 

3.5.1 Demonstrating Examples  

After deploying the chart examples on the integrated Distributed D3, we set up a testing 

environment for the demonstration that includes 2 rendering nodes and 4 high-

resolution screens on Data Observatory. In Figure 3.5.1, the screenshot shows the 

scatter plot chart example that has been successfully running on the testing environment 

in a distributed manner, where each screen only renders a portion of the entire 

visualisation [104].  

This distributed mechanism can be confirmed by investigating the DOM structure in 

Figure 3.5.2, in which each browser window only holds a limited number of rendering 

elements that are essential to visually create the visualisation as one instance for 

distributed rendering [104]. Specifically, if we count the visually visible points on each 

screen, the result is matching the number of circle elements (as points) that are existed 

in DOM tree. Since the circle elements are essentially created by the corresponding 

subset of data in our design, the test can also confirm the distributed data has been 

successfully implemented in this example.  
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Figure 3.5.1 The demonstrating example of the scatter plot visualised by Distributed D3 

 

Figure 3.5.2 The inspecting results of counting circular data points in each screen 

The bar chart and pie chart are also successfully deploying on the testing environment 

as we can see in Figure 3.5.3 and Figure 3.5.4 [104]. By inspecting the DOM structure, 

we can confirm the bar chart only requested and rendered a margined range of data for 

each screen, and it also properly generates x and y scales by only using the dimension 

information of its dataset. In comparison, the pie chart has requested the entire dataset 

Visual: 9 
Actual: 9 

Visual: 9 
Actual: 9 

Visual: 8 
Actual: 8 

Visual: 8 
Actual: 8 
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for each screen due to the needs of generating an entire pie shape, which also can be 

regarded as one large shared element from the view of our design philosophy in this 

version.  

 

Figure 3.5.3  The demonstrating example of the bar chart that is visualised by Distributed D3 

 

Figure 3.5.4 The demonstrating example of the pie chart that is visualised by Distributed D3 

Moreover, these chart examples have also been tested on other numbers of screen 

configurations, and they have been working and running successfully. The framework 
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scalability and its performance will be more precisely evaluated and benchmarked in 

the next section.  

In addition, a London Tube map was developed by a colleague in the Data Science 

Institute at the time of finishing this integrated version of Distributed D3, the 

demonstration in Figure 3.5.5 shows the animated popularity of the tube stations at the 

peak and off-peak time in London [112].  

 
 
Figure 3.5.5 An demonstration of the London Tube map with animated entries and exits on 

the peak and off-peak time of the tube stations, which is built with Distributed D3 
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3.5.2 Performance Benchmarking  

In order to benchmark the framework in all possible configurations on Data Observatory, 

we have designed and implemented the benchmarking toolkit that creates distributed 

random circles on the available screens in a test, and then it randomly moves the 

generated circles across screens. The number of animated circle elements and the 

average FPS during the moving animations will be recorded accordingly in different 

size of node configurations.  

A screenshot of the implemented benchmarking toolkit for 2-screen test environment 

can be seen in Figure 3.5.6 and Figure 3.5.7, where we put the test environment under 

stress in the second screenshot [104]. The full benchmarking tests will include the 

configurations from 1 node (2 screens) to 32 nodes (64 screens) by doubling the node 

number in each step.  The test result has been shown in Figure 3.5.8, in which the charts 

show the average FPS against the number of animated circle elements for different node 

configurations.  

 
 
Figure 3.5.6 The screenshot of the benchmarking toolkit in test of 2-screen setting with 100 

animated circle elements 
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Figure 3.5.7 The screenshot of the benchmarking toolkit in the test of 2-screen setting with 

1,000 animated circle elements  

 

Figure 3.5.8 The benchmarking result of the integrated version of Distributed D3 in 

comparison with running D3 alone (in red)  
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In Figure 3.5.8, we notice that, with more available distributed rendering nodes, the 

visualisation can steadily provide a higher frame rate (FPS) with a larger number of 

animated elements [104]. D3.js alone has its acceptable animation smoothness (i.e. FPS 

> 24) [113] threshold at approximately 1200 elements and optimised animation 

threshold (FPS ≈ 60) at approximately 500 elements, which are regarded as the 

reference points in this test. The performance is slightly decreased with Distributed D3 

with 1 node (1 screen) setting that is potentially caused by the overhead of applying 

distributed implementations on a single node. Whereas such disadvantage starts to be 

outweighed when the configuration changes to 1 node (2 screens) setting, since we 

know that an extra screen can provide an extra browser window with more available 

processing threads to a visualisation despite on a single node. The test results thus far 

demonstrate that the performance bottleneck of original D3 has been successfully 

overcome by utilising Distributed D3.  

 

Figure 3.5.9 The benchmarking result of the integrated version of Distributed D3 for 

investigating the optimised animation threshold in all configurations 

Besides, in order to find and compare the optimised animation thresholds for all 

configurations including 32 and 64 screens, we set the animated number of elements 

from the original D3’s reference point of 500 elements to the last performance declining 
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point. As we can see the results in Figure 3.5.9, with the configuration of 32 and 64 

screens in the test, we have been able to improve the performance bottleneck (for the 

optimised animation) of the original D3 from 500 animated elements to 3,000 and 3,500 

elements respectively, in the development of this integrated version of Distributed D3 

[104].  
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3.6 Discussion  

As a complex distributed system, it is clear that the potential bottlenecks of Distributed 

D3 need to be identified in order to further improve the existing framework. Two main 

relevant areas are worth to be investigated that include the potentially large number of 

DOM interactions and possible network latency during transmitting. Meanwhile, we are 

interested in finding new approaches to further optimise the framework.  

In addition, more demonstrating examples are expected to be developed on the current 

Distributed D3 for the purpose of providing basic visualisation code examples for more 

advanced visualisation applications. In the meantime, developing various examples can 

also help to find potential issues in the current version of Distributed D3, and hence to 

improve the stability of the framework.  

Moreover, although the integration of current Distributed D3 framework provides 

simplicity to leverage the distributed graphical computing power in the Data 

Observatory, it is clear that an independent implementation of the framework will need 

to be designed in the later development for more generic usages. We would expect to 

enable Distributed D3 to be configured and used on a variety of visualisation 

environments, from a small cluster of computers to the modern data observatories.  
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3.7 Conclusion  

In this chapter, we proposed and developed the integrated version of Distributed D3 

framework to resolve the performance limits of running D3.js alone on Data 

Observatory. We illustrated and discussed the framework design and implementations 

after comparing a variety of possible designing approaches. In particular, the static and 

dynamic rendering methods are created in order to fulfil the feature of distributed 

rendering, a variety of data loading functions are developed for the feature of distributed 

data. In overall, three individual layers are designed for Distributed D3 including the 

rendering, data-accessing and network layers. The implementation result of the 

distributed framework is functioning as expected as we can see from the demonstrating 

examples. The benchmarking results further show the improvement of the overall 

performance and scalability comparing to the original D3.js. In addition, we have also 

discussed the potential issues in this integrated version of Distributed D3 and suggested 

possible solutions to further improve the framework in the next stage.  
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Chapter 4 Distributed D3 Framework 

Optimisation with a Demonstrating Application  

4.1 Introduction  

The recent development of the integrated version of Distributed D3 has been beneficial 

to the Data Observatory, in terms of including a powerful and scalable D3-based data 

visualisation framework to the existing visualisation system and library. Several 

remarkable examples have been developed by researchers and developers at Data 

Science Institute, including London and Shanghai Metro Maps [112].  

However, due to the complexity of implementing a distributed framework in practice, 

we understand that it is essential to maintain the framework usability by continuously 

optimising its performance and creating new features to the current framework. We 

have noticed a number of emerging new techniques that might be worth to be 

implemented with Distributed D3 to further improve its performances on large-scale 

visualisations, such as an implementation of the concept of virtual DOM [114] - React.js, 

which is recently developed by Facebook [115].  

In this chapter, we focus on optimising the previously developed integrated Distributed 

D3 by looking into the potential performance bottlenecks of the existing framework. 

We then test the possibility of implementing our findings before we propose 

modifications and improvements to the framework. After implementing these proposed 

optimisation approaches, we will benchmark the optimised framework to be compared 

with the previous development. Meanwhile, we will also design and implement an 

interactive demonstrating visualisation application on this new version. At the end of 
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the chapter, possible further improvements will be included and discussed for the future 

work and development.  
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4.2 Distributed D3 Framework Bottleneck Analysis  

Identifying the bottlenecks of the current Distributed D3 framework is essential for the 

purpose of optimising the framework performance as a next step in the development. 

From the benchmarking results of the integrated framework in the last chapter, we have 

known the dropping frame rate (FPS) is correlated to the total number of animated 

elements that are rendered on the screens. The result makes common sense that 

increasing number of animated elements require more graphical computing resource to 

ensure the smoothness of the animation. However, in order to ascertain if it is still 

possible to enhance the framework performance under the same visualisation condition 

(i.e. the same visualisation environment), we will look into the underlying DOM 

interactions between the rendering functions and hosting browsers.  

 

4.2.1 Excessive Garbage Collections  

 
 

Figure 4.2.1 The Garbage Collection (GC) frame that is captured in the benchmarking test 

The investigation of the framework performance bottleneck is started at the lagging 

point that we have observed in the benchmarking tests of the integrated Distribute D3 

on Data Observatory, in which the benchmarking animation starts to have noticeable 

delay from the first frame to the next. We then look into this event by inspecting and 

recording the lagging point via the performance metric provided in Chrome DevTools 

[116]. As is shown in Figure 4.2.1, we notice an extra-long frame starts to appear during 

the animation at the lagging point, which is roughly 3 times (148.5ms) longer than an 

average normal frame (51.4ms) [117]; meanwhile, an extra step is appearing and lasting 
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in the lagging frames which is called Major GC [118]. According to the research paper 

published by Google [119], Major GC in a Chrome browser stands for major garbage 

collection of the whole memory heap that is performed if the size of live objects has 

exceeded a pre-defined limit in order to reduce the high memory usage. Normally, the 

garbage collection marking latency is related to the number of live objects that need to 

be marked; in the case of the whole heap, it can potentially take more 100ms for a large 

web page [119], which can be corresponding to the time lag we have observed.  

Although the garbage collection is an essential step of dynamic memory management 

automated by Chrome V8 JavaScript engine [120], we also find the current version of 

D3 v3.5.6 does not manage the DOM access in an optimised manner, so that it can avoid 

triggering unnecessary major garbage collections in a further investigation. In 

particular, the ongoing animations would be paused if the DOM tree is unavailable or 

in an inactive state; and they should be resumed in sequence when the DOM becomes 

available again. However, the current version of D3 library resumes paused animations 

all at once in order to catch up the playtime, which can cause a sudden and massive 

workload on the DOM at the animation resuming stage; and it can further lead to 

excessive garbage collections if the visualisation is in large-scale that has high impact 

on the memory usage.  

 
Figure 4.2.2 The comparison of the frame rates (FPS) between D3 v3.5.6 and v4.0.0 
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Since D3 has noticed this issue in the animation resuming event, it improves its timer 

and animation mechanism in the newer version of v4.0.0 [121]. In which case, the D3 

timer will be frozen, and the animation will be held when the DOM is not available, and 

then both timer and animation will be resumed after the DOM becomes available again 

to avoid unintended animation effects and memory impact [122]. The improvement may 

only optimise the framework performance on a certain extent by avoiding triggering 

unnecessary garbage collections. By experimenting the benchmarking example on D3 

v3.5.6 and v4.0.0, we can see a limited average performance improvement in Figure 

4.2.2, wherein the average frame rates (FPS) over a time span of 220 seconds are 22.5 

and 24.3 in v3.5.6 and v4.0.0, respectively [117]. Hence, a similar result would be 

expected when applying this newer version of D3 to the Distributed D3.  
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4.2.2 Massive DOM Interactions  

By further inspecting the runtime JavaScript function calls on the DOM in browser, we 

notice that there is one remarkable function that has been heavily used in the 

benchmarking example, which is setAttribute() [123]. The function simply assigns an 

attribute to a specified DOM element as simple as it sounds to be; however, it can be a 

huge impact on the visualisation performance if the existing DOM tree contains 

thousands of elements that need to be set, such as in the test example.  

If we abstract the issue from observation, imagining the animation of randomly moved 

circles, thousands of coordinate attributes need to be assigned to their corresponding 

DOM elements at a single animation frame, the overall action can lead to a noticeable 

drop of frame rate if it repeatedly triggers the garbage collections due to the high 

memory usage. Therefore, this performance limitation issue is not only the bottleneck 

of Distributed D3, but also a main performance constraint in the D3.js and other 

resource-intensive web-based visualisation frameworks.  

To address this openly known performance bottleneck [124], we find that the virtual 

DOM is a newly emerging concept of managing and manipulating DOM tree structure 

with a reduced total number of DOM interactions; React is popular implementation with 

integrating this concept [114]. Essentially, it creates a virtual view of the current DOM 

tree structure in memory and then only applies the DOM structure changes when they 

are necessary [125]. The trade-off of this virtual approach is the potentially higher usage 

of the memory for stacking the virtual DOM; however, this may be less problematic 

with the high-end graphic-focused stations such as on the Data Observatory.  

Although we understand this virtual approach may have its limitation on the animation-

based performance optimisation due to the necessity of applying DOM changes to DOM 

tree may be in every animation frame, we are still keen on finding out the truth and 

potential changes in the benchmarking example. After researching and comparing 

several existing D3-focused virtual DOM frameworks [126][127], we choose react-
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faux-dom [128] to be the test implementation as it provides a middle layer between D3 

and virtual DOM (by React), namely D3.js is responsible for preparing the DOM in 

order to define the visualisation, and then React will be in charge of rendering the DOM 

for displaying.  

 

Figure 4.2.3 The screenshot of the timeline in benchmarking test using react-faux-dom 

As we deploy the benchmarking test on D3 with react-faux-dom, we find that the 

animation frames become considerably long comparing to running on D3.js alone, 

where a single average frame of each is approximately 218ms versus 51ms in the test. 

In Figure 4.2.3, we can observe the problems are caused by frequently rebuilding the 

DOM tree in each animation frame [117]. Given the benchmarking tests were designed 

to animate randomly generated circles moving to random locations on the screen, it is 

reasonable to see that React.js completely updates the DOM structure in every frame in 

order to show the changes as necessary. To further address this approach, the possible 

alternative solutions will be discussed in the later section of §4.6.  
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4.2.3 Unoptimised Animation Timeout  

Despite the fact that the React virtual DOM approach is not an ideal approach to 

optimise the animation-based visualisation such as in the last experiment, an interesting 

phenomenon was observed while experimenting and comparing the time intervals 

between animation frames in those two configurations. With React DOM, the idle time 

in its animation frames can be significantly shorter comparing to the ones in D3.js alone.   

To take a closer look at the idle time differences, we find that D3 instead of using 

setTimeout [129] to trigger rendering the next frame of animation, it invokes 

requestAnimationFrame to decide the starting time for preparing the next frame. By 

looking into the documents of requestAnimationFrame function, it only updates the 

animation of the next repaint after receiving the callback from the browser, where this 

callback function is paused when running in the background or hidden, so that it can 

prevent the unnecessary animations to be played on the screen [130].  

This default D3 timer configuration is reasonable for a personal computer environment 

(e.g. on a desktop or laptop), as the personal browser window may become inactive 

while a user switches the active main task to other browser windows or applications. 

Whereas, in the environment of Data Observatory, all of the visualising browser 

windows are constantly active and focused while presenting a visualisation application. 

Under these specific conditions, we are interested in to see the differences by setting a 

fixed time interval instead of checking the browser condition every time before deciding 

whether or not to render the next animation frame.  
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Figure 4.2.4 The comparison of frame rates (FPS) between requestAnimationFrame and 
setTimeout in the benchmarking test 
 

In order to find out the possible performance impact while relying on one of these two 

configurations, we have run the benchmarking tests to show the potential difference in 

overall performance. As is shown in Figure 4.2.4, we can find the average frame rate 

(FPS) of using requestAnimationFrame in the benchmarking test is 20.4, which is to be 

compared with the frame rate of using setTimeout that is 27.4 [117]. The results 

demonstrate the possibility of performance improvement by 36.5% in the optimised 

settings. The underlying reason is potentially due to the fixed time interval set by 

setTimeout allows D3 to render the next frame of animation in advance via effectively 

reducing the overhead and waiting time of checking browser condition for each 

animation frame in requestAnimationFrame. The optimisation of D3 timer will 

therefore be implemented and detailed in the next section.  
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4.3 Distributed D3 Framework Optimisations  

4.3.1 Optimising Animation Timeout  

As we have discussed in the last section, the default D3 mechanism of the animation 

timeout in the current Distributed D3 framework may not be optimised. This is due to 

the conventional user environment has assumed to be on a personal desktop or laptop 

computer rather than in a visualisation-focused environment such as on the Data 

Observatory. The default D3 timer configuration can be easily changed by modifying 

the relevant code in D3.js as which is an open-sourced library. However, as we consider 

Distributed D3 to be a separate distributed layer based on D3, a preferred approach is 

to restrict the code modification within Distributed D3 if possible.  

var d3_timer_queueHead,   
    d3_timer_queueTail,   
    d3_timer_interval,   
    d3_timer_timeout,   

d3_timer_active,   
d3_timer_frame = this[d3_vendorSymbol(this, "requestAnimationFrame")] || 

function(callback) { setTimeout(callback, 17); };  

Figure 4.3.1 The code snippet of initialising animation timeout function in D3 timer 

By further looking into D3’s source code when initialising the variables of its timer, we 

notice D3 has the backward compatibility to support the less updated browsers that do 

not recognise the requestAnimationFrame parameter, as we can see in the last line of 

Figure 4.3.1. The compatibility mode can be triggered if the requestAnimationFrame is 

undefined when initialising the D3 timer [117]. By checking the browsers and their 

versions on Data Observatory, we find this parameter are well supported in all browsers 

that have been used in benchmarking tests. Thus, a simple and effective workaround 

solution is to assign and force the requestAniamtionFrame parameter to be undefined 

before loading the D3 library in Distributed D3 in order to switch off this feature. The 

implementation results will be analysed and discussed in the section of §4.5.1.  
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4.3.2 Supporting D3 Version 4.0.0  

As we have mentioned previously in the section of §4.2.1, upgrading Distributed D3 

from the current version of 3.5.6 to the newer version of 4.0.0 could potentially resolve 

the performance issues on triggering excessive garbage collections, in addition to 

include possible new features in the current framework. In order to integrate the newer 

version of D3, we need to review and address a number of potential incompatible 

changes and issues in such an upgrade.  

• d3-ease methods simplified: In the current version, d3.ease depends on strings 

for defining the ease of transition, which is used to define the transition speed 

changes during the transition, this is however changed in the newer version 

where the method names include the defining strings. For instance, a linear ease’s 

method definition in the version of 3.5.6 and 4.0.0, is d3.ease(“linear”) and 

d3.easeLinear, respectively.  

• d3-collection methods renamed: A number of methods have been renamed in 

d3.set and d3.map; for instance, the original method name of map.forEach has 

been changed to map.each for the simplicity. Such changes need to be checked 

and implemented in Distributed D3, as there are existing instances of method 

that may be not explicitly named after d3.set and d3.map.  

• d3-timer core changes: Apart from the behavioural changes in D3 timer, which 

is now frozen in the background in order to avoid unintended effort, D3 is now 

able to use the high-precision time API performance.now() [131] rather than the 

previous API date.now(), which is also a key reason to support the newer version 

of D3 in Distributed D3.  

• d3-transition in a transition’s life cycle: It can be put that d3-transition is the 

main change in D3 v4.0.0 which has the most impact on the current development 

of the framework. There has been a large reworking of the transition object, and 
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the information now available for outside access is significantly less than 

previous. Besides, determining whether or not a transition is currently active 

becomes more difficult. In the next part, we will review the life cycle of a 

transition and also address the changes required for resolving possible issues.  

 

The life cycle of a transition  

Reviewing the life cycle of a transition in Distributed D3 can be useful for 

understanding the modifications that are necessary to be implemented in the framework 

to support newer version of D3. The following Figure 4.3.2 illustrates a transition’s life 

cycle with the corresponding functions in steps.  

 

Figure 4.3.2 The life cycle of a transition in the current Distributed D3 framework  
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1. Finding transition recipients: As the transition starts, the framework will create 

elements which are supposed to be animated and prepare the shape to be 

transitioned. The dd3_findRecipients function will then utilise the native 

JavaScript getBoundingClientRect method to assist and find which browsers a 

shape will undergo during the transition.  

2. Changing the referential: As the referential is present for every browser, it is 

important for the sender browser to change to a certain relative coordinate by 

implementing the dd3.position function, so that it can ensure the transition is 

visually understandable. The dd3_findBrowserAt function is responsible for this 

converting task.  

3. Preparing data to send: As the BinaryPack [132] is used by PeerJS, which is the 

library utilised for peer-to-peer connections using WebRTC for serialising the 

data prior to sending it, as it is not possible to send unsupported elements 

including functions. Hence, it is necessary to serialise the transition-related 

functions such as tween(), attrTween() and styleTween(), as well as the ease() 

function.  

4. Creating peer-to-peer connections: In case of the connection not being 

established with browsers, where the elements need to be received, the peer-to-

peer connection is created by PeerJS. All data that is in need to be sent then fills 

the buffer once the connection is ready, and then the buffer is flushed and sent to 

other peers.  

5. Receiving the shape: After receiving the transition, the recipient creates the 

element that the transition affects if it is not already present and interrupts the 

transition that exists. Moreover, it implements the style properties that are 

obtained from the peer and the initial attributes to this object. Then, it generates 

the transition object to which it applies the end style properties, the end attributes, 
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as well as the duration. Further, tween(), styleTween(), ease() and attrTween() 

functions are de-serialised and implemented to the transition object.  

6. Sending endTransition: After the transition is completed, the sender which is the 

browser that begins the transition sends an endTransition event to each transition 

recipient, attributing the end state elements. It also functions as a mitigation 

mechanism if anything goes wrong during the transition on the other screen.  

By reviewing the transition in Distributed D3, the first issue that needs to be addressed 

is how an active transition can be detected. In the current development, it depends on 

the transition object’s active attribute. The newer version, however, has replaced this 

attribute by a global d3.active that returns the active transition but less reliable. 

Therefore, although the framework initially attempts using this method, if it is unable 

to detect any active transition, attempts will still be made to identify whether a non-null 

transition exists on the relevant object.  

Secondly, the transition object’s attributes are no longer accessible directly. Although 

the transition properties can be accessed using external code by implementing various 

workaround methods, a number of key attributes such as time, once the transition is 

created, remains inaccessible. This can be resolved, as these information are persistently 

stored in the node, which is to be transitioned and can be obtained by calling 

transition.node().__transition and retrieving all those transition properties.  

Finally, transition.attr and transition.style help in establishing the transition’s final state 

properties. While they do have their own behaviour previously, now transition.attr calls 

transition.attrTween function and transition.style calls transition.styleTween function 

as the adapted pre-defined interpolator functions. However, since Distribute D3 already 

includes the mechanism that can handle the transition without these updates, it is 

therefore necessary to remove them from the current development.  
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4.4 Distributed D3 Framework Demonstrating Application  

4.4.1 The Design of the Demonstrating Application  

In order to demonstrate the performance improvement and the usefulness of the 

Distributed D3 in a real-world use case scenario, we have designed and implemented a 

demonstrating visualisation application for the selected large dataset from a social speed 

dating experiment [133]. The dataset consists of 8,379 speed dates entries with at least 

common 75 attributes for each entry, which could provide a minimum of 627,750 

elements in the demonstration application.  

 
Figure 4.4.1 The visualisation example of the parallel coordinates with a dataset of cars 

By considering the purpose in the design of this application, the demonstration should 

take advantages of using Distributed D3 in the environment of Data Observatory, i.e. 

the type of visualisation should be able to display raw data or information as rich as 

possible in the large tiled display wall comparing to the personal desktop environment. 

We found the parallel coordinates graph, which is a non-aggregated visualisation, can 
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be a good candidate that fulfils this purpose by allowing observers to directly observe 

and interact with the formatted raw data. An example of this type of visualisation can 

be seen in Figure 4.4.1 [134]. As a demonstration, we tend to keep the visualisation as 

simple as possible for the purpose of indicating the potential performance improvement 

by using a different number of raw data points from the dataset. The implementation of 

this demonstration will be discussed in the next section.  

 

4.4.2 The Implementations of the Demonstrating Application  

Since Distributed D3 preserves most of the D3 APIs for the simplicity of use, to 

implement this application on it becomes easy and effortless from the existing example. 

Essentially, we only need to modify the lines of code that are needed to use Distributed 

D3 and then adapt the modified example for the new dataset.  

To be more specific, instead of using d3.scale, we use dd3.scale in both x and y scales. 

Further, in order to load data into the visualisation, we use dd3.getData to fetch data 

from database via the written OData services. After the callback with the result of 

successfully retrieving the data, we can draw and generate the visualisation as normally 

we do in D3.  

Moreover, due to the uniqueness of the Data Observatory environment, using mouse to 

interact with the visualisation is inefficient. We thus have written a small control panel 

to enable the interactions that includes ranges and attributes filters when presenting data. 

We will present and discuss the implementation and benchmarking results of this 

application in section of §4.5.2.  
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4.5 Results  

In this section, we will run a full benchmarking test for the optimised Distributed D3, 

and the test results will then be compared with the previous version to reveal the 

potential improvements. Meanwhile, we will also compare and discuss the potential 

changes in the visualisation capacity of the demonstrating application before and after 

the optimisations.  

 

4.5.1 Benchmarking Comparisons  

In order to compare the benchmarking results of Distributed D3 with and without 

optimisations, we have used the same benchmarking toolkit as we previously mentioned 

in §3.5.2. The benchmarking results have been shown in Figure 4.5.1, where we can 

find improvements in general comparing to the previous benchmarking results in the 

thumbnail with the same x and y scales at the bottom-left corner [117]. In particular, we 

can observe the noticeable difference in the configuration of the 16-screen setting, 

wherein the data line is completely flattened without declining in the optimised 

Distributed D3. This means the performance in this configuration at 2,000 animated 

elements is optimised and fixed at an ideal frame rate (FPS ≈ 60) during the test. 

Besides, we can also find the performance improvement in the 1-screen configuration, 

where the data line is now closer to the reference test result of running D3 alone (in red) 

than the unoptimised Distributed D3.  
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Figure 4.5.1 The benchmarking result of the average FPS for the optimised Distributed D3 in 
the configurations of 1 to 64 screens which is tested on the Data Observatory 

To take a further look into the benchmarking results, we can separately compare the 

improvement details in the configurations of 2, 4 and 8 screens. As we can see in Figure 

4.5.2 to Figure 4.5.4, the average frame rates (FPS) are noticeably increased by 15.9% 

in 2-screen, 22.8% in the 4-screen and 22.5% in the 8-screen configurations [117].  

 

Figure 4.5.2 The benchmarking result of the optimised Distributed D3 in comparison with the 
previous version in the metric of average FPS for the 2-screen configuration 
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Figure 4.5.3 The benchmarking result of the optimised Distributed D3 in comparison with the 
previous version in the metric of average FPS for the 4-screen configuration 

 

 

Figure 4.5.4 The benchmarking result of the optimised Distributed D3 in comparison with the 
previous version in the metric of average FPS for the 8-screen configuration 

Moreover, we have also tested the performance limit of the optimised version in the 

configuration of 64 screens. The framework shows to be able to handle a maximum of 

4,750 animated elements without performance decline in frame rate (FPS ≈ 60), which 

means an increased performance by 35.7% has been realised in the optimised 

Distributed D3.  
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4.5.2 Demonstrating Application  

After we deploy the demonstrating application on the Data Observatory, we are able to 

observe 810 dates with a maximum of 38,070 elements at once on the previous 

unoptimised Distributed D3 framework. As we can see in Figure 4.5.5, the panoramic 

view of the data visualisation on Data Observatory greatly improves the visibility of the 

data trends and connections between different attributes in a larger visualisation area, 

which could help observers and collaborators to obtain the potential correlations more 

straightforward and easier [117].  

 
Figure 4.5.5 The visualisation result of deploying the demonstrating application on Data 
Observatory based on the unoptimised Distributed D3 framework with 38,070 elements 
 
In comparison, when we deploy the demonstrating application on the optimised 

Distributed D3 framework, the Data Observatory with full 64 screens configuration is 

able to handle 1010 dates with 47,470 elements at once as is shown in Figure 4.5.6 [117]. 

The visualisation capacity has been improved by 24.7% in this demonstration, which 

also proves the usefulness of the framework optimisations in a real-world use case 

scenario.  
 

 
Figure 4.5.6 The visualisation result of deploying the demonstrating application on Data 
Observatory based on the optimised Distributed D3 framework with 47,470 elements  
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4.6 Discussion  

As we have identified and experimented in the early sections, the overwhelming DOM 

access and interaction is a major bottleneck of both Distributed D3 and the original D3. 

If we can overcome the current implementing issue of completely rebuilding the virtual 

DOM to the DOM tree every time it deems necessary, we might be able to significantly 

reduce the performance impact from the excessive DOM interactions. Incremental 

DOM [135] is a recent development of the new emerging approach to address the high 

memory usage issue in virtual DOM. In the meantime, it would only incrementally 

apply the necessary changes to the DOM tree, which may help to resolve the issue of 

repeatedly rebuilding DOM tree in the previous experiment. If this future work can be 

realised with a good benchmarking result, it can be expected to be a remarkable 

breakthrough on the performance bottleneck issue in both Distributed D3 and D3.  

The animation timeout mechanism is optimised by switching the function from the 

default requestAnimaitonFrame to setTimeout based on the operating characteristic of 

the Data Observatory. The implementing results of this optimisation are remarkable. 

However, we do realise the potential animation issue when multiple instances of 

visualisation are running on the Data Observatory simultaneously. In which case, 

requestAnimaitonFrame may handle this situation in a more reliable and managed 

manner due to its scheduling mechanism [136]. Meanwhile, the reliability could also 

suffer if the animation timeout interval is not fit for the number of elements in a 

visualisation. To address these concerns, we can build a customised timeout module 

that smartly switches and adjusts these functions and parameters based on the current 

number of visualisation instances and the number of elements in a visualisation.  
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4.7 Conclusion  

In this chapter, we have investigated the performance bottleneck of the framework, 

where two bottlenecks were identified from the performance analysis. We have 

addressed the first bottleneck of excessive garbage collections by integrating the newer 

version of D3 4.0.0 into the Distributed D3. We have also tried to address the second 

bottleneck of massive DOM interactions by implementing react-faux-dom into the 

framework, wherein the test results are less satisfying; however, we noticed a less 

optimised animation timeout mechanism that is caused by the function of 

requestAnimationFrame. The final benchmarking results confirm and show the 

performance improvements of the optimised framework by 35.7%.  

Apart from optimising the framework, we have further designed and implemented a 

demonstrating application for a real-world use case scenario. In which case, we selected 

a random large dataset from a social experiment and then built am illustrative 

visualisation based on that. We use this application not only to demonstrate the 

usefulness of Distributed D3 in reality, but also to show the improvements of the 

optimised framework comparing with the previous version. The future improvements 

and developments of the framework are also discussed, where we proposed the new 

scheduling mechanism for the animation timeout and the potential solution of the 

incremental DOM to address the issue of massive DOM interactions, particularly in the 

large-scale data visualisations.  
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Chapter 5 Distributed D3 Framework Generic and 

Standalone Versions  

5.1 Introduction  

Distributed D3 is a novelty distributed data visualisation framework that provides 

unique features of utilising the cluster computing power to improve the performance 

and scalability of the original D3 library. With the recent developments and 

optimisations of the Distributed D3 framework, we have delivered the first integrated 

version that can work together with Data Observatory (DO) to realise the distributed 

visualisation, and later the optimisations and upgrades to the integrated version that 

further improves the framework performance not only revealed in the benchmarking 

tests, but also demonstrated in a large-scale data visualisation application.  

However, the current developments of Distributed D3 is highly integrated and 

dependent on DO, which could also limit the usability of the framework on other 

visualisation environments. In order to make the framework independent, we realise 

currently the primary attachment to DO as an application is the implementation of the 

SignalR hub network by default. The historical reason was the operating framework of 

DO is written in C#, which can be well supported by deploying a SignalR server on it. 

Therefore, we plan to replace the SignalR hub with a generic independent server for the 

detachment, and then take the step further to completely remove the server by 

implementing the serverless network design for the additional flexibility in generic 

version.  

In this chapter, we will detail the detachment and serverless design and implementations 

for the generic and standalone versions of the framework. The implementation results 
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will be demonstrated by configuring the framework on a customised environment. We 

will also conduct the benchmarking tests for the generic and standalone versions on DO 

and the customised environment for comparisons. At the end of this chapter, we will 

discuss the potential and known issues in the current development before conclusion.   
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5.2 Generic Distributed D3 Framework Design  

In order to achieve the generic and standalone design of the Distributed D3 framework, 

we have designed the two-step approach that aims to improve both usability and 

flexibility of the framework. The first step is to detach the Distributed D3 framework 

from the integration of Data Observatory by replacing the SignalR hub with an 

independent server, and the second step is then to remove the server completely by 

assigning a master node instead. We will detail these two steps in the following 

subsections of §5.2.1 and §5.2.2.  

5.2.1 The Detachment Design  

In the current design of Data Observatory (DO), all of its applications are instructed to 

include the file structure of App and AppHub in order to fulfil the communication needs 

between distributed nodes and the central server. Since the main operating framework 

of DO is written in C#, SignalR [137] is thus well supported in such an environment (as 

SignalR hub in AppHub). In facts, most of the existing applications on DO are deployed 

a SignalR server for various reasons. Hence, the main objective in the detachment 

becomes to find a suitable independent server that is able to provide the same features 

as the SignalR hub can do. Meanwhile, the relevant application interfaces need to be 

created and maintained while replacing with a new server.  

If we look into the existing application interfaces between the SignalR hub and the 

distributed nodes, we can find their structure and connection as illustrated in Figure 

5.2.1, where the SignalR hub (server) is mainly responsible for broadcasting the packed 

information to nodes, including the individual node configurations for the peer network 

and the controlling commands from a controller (i.e. control node) [117]. Since we also 

have plan to adapt a serverless pure peer-to-peer network in the later development, a 

good approach is to manage the application interfaces by designing and creating an 
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extra network interface layer that can flexibly handle the network switching. Such a 

network interface will be detailed in the section of §5.3.1.  

 

Figure 5.2.1 The architecture of replacing the SignalR hub with an independent server in 

order to detach the framework from the integration of Data Observatory 

In addition, since the SignalR server is able to handle the multiple application instances 

by dividing the connected nodes into groups as its integral feature, the same mechanism 

needs to be addressed in the independent server design. The room concept can be 

introduced to deal with this issue for each application (i.e. one room for one 

application). Hence a node will create or join a room while connecting to the 

independent server, and this node will be removed from the room if it is disconnected 

from the server. In which case, the multiple application instances can be handled 

simultaneously by having their own separate rooms. The implementation of this design 

will be detailed in the section of §5.3.2.  
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5.2.2 The Serverless Design  

While there are several advantages of designing the underlying network with a central 

communication server in terms of dedication and reliability; the serverless and pure 

peer-to-peer network design may also have its unique advantages in the aspects of 

framework simplicity and scalability, where the framework is able to scale flexibly 

without limitations from a server. In the meantime, the unnecessary components that 

are related to the server can be removed to promote a lighter weight framework. The 

design of the first serverless network structure will be illustrated and detailed in this 

section.  

The main design philosophy behind this initial serverless version is to completely 

remove the server with the support by a master node as shown in Figure 5.2.2 [117]. 

This master node plays an essential role that acts as a server to broadcast the relevant 

node information and controlling commands, which is also known as a super-peer in 

the literature [64]. Indeed, the super-peer design may potentially increase the workload 

on that assigned rendering node as a master; the overall performance impact, however, 

needs to be further evaluated and compared with server dependent design in order to 

draw a sensible conclusion. Meanwhile, as the first serverless release of the framework, 

further improvements will be in need to reduce the potential performance impact on the 

master node, as well as to enhance the reliability of the network in case of the master 

failure. The implementation detail of this first serverless design will be discussed in the 

section of §5.3.3.  
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Figure 5.2.2 The architecture of the serverless design by assigning a master node and 

removing the independent server from the framework  
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5.3 Generic Distributed D3 Framework Implementations 

5.3.1 The Network Interface  

In the design of the generic and standalone Distributed D3 framework, we proposed two 

steps for detaching and decentralising the framework from the integration. Such 

modifications of the existing framework can be benefited from defining a common 

network interface for diversions of the framework. We thus redesign the current 

network APIs to include an extra abstraction layer of the network interface, for the 

purpose of switching networks based on requirements as we can see in Figure 5.3.1, 

where the current design of the network interface allows to switch between SignalR-

based, SocketIO-based and pure PeerJS networks [117]. Such a design further enables 

the possibility of mixing hybrid networks and improves the flexibility of utilising the 

framework in different usage scenario.  

 

Figure 5.3.1 The abstraction layer of the network interface for the purpose of switching 
networks on demand, which also allows to hybridise the existing networks if needed 
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Corresponding to the network interface design above, we have designed the superclass 

of NetInterface to include the common properties and methods that are shared by 

diverse network protocols, and each network protocol has its own subclass that 

additionally includes private properties and methods for that particular protocol in use. 

For example, in the subclass of PeerNet, it has the peerOptions that contains the peer 

naming server and port for registering and obtaining peerIds.  

The realisation of this abstraction layer at code level can be seen in Figure 5.3.2, where 

we employ the JavaScript prototype to build the network interface classes. Hence a 

variety of network protocols can be initialised as the network interface instances by 

using a common class constructor. At this stage of development, we have included the 

instances of pure PeerJS, SignalR-based, SocketIO-based networks. Meanwhile, in 

order to enable the inheritance in JavaScript with prototype, we have used an extend 

function to inherit the class properties and methods from a superclass to a subclass 

[138]. In which case, the subclass of PeerNet is extended from the superclass 

NetInterface as we can find in the second part of Figure 5.3.2 [117].  

NetInterface: 
 
function Network(protocol, config) { 
    var protocol = protocol || null; 
 
    if (protocol === "peerjs")   // pure peer network  
        return new PeerNet(config); 
     
    else if (protocol === "signalr")  // signalR-based net 
        return new SignalrNet(config); 
 
    else if (protocol === "socketio") // socketIO-based net 
        return new SocketioNet(config); 
 
    else 
        throw new Error('Protocol not existed');  
} 
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function extend(subClass, superClass) {  // extend function  
    function F() {}; 
    F.prototype = superClass.prototype; 
    subClass.prototype = new F(); 
    subClass.prototype.constructor = subClass.constructor; 
} 
 
function NetInterface(config) {  // class constructor  
    this.config = config || {}; 
    this.browser = {}; 
    this.utils = {}; 
} 
 
NetInterface.prototype.setBrowser = function (browser) {} 
NetInterface.prototype.setUtils = function (utils) {} 
 
 

PeerNet:  
 
function PeerNet(config) { 

NetInterface.call(this, config); // inherit from superclass 
 
this.id = this.config.id || ''; // private properties  
this.peers = []; 
this.connections = []; 
this.peerOptions = {};  

} 
 
extend(PeerNet, NetInterface); // extend subclass PeerNet      

// from superclass NetInterface 
 

Figure 5.3.2 The pseudocode of network interface class with an example of the pure peer 
network protocol subclass  
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5.3.2 The SocketIO Approach  

In order to replace the SignalR server, we have found the independent NodeJS-based 

real-time web application framework – SocketIO [139] can be a good candidate in this 

implementation. It features by its flexibility and scalability of building a portable server, 

while providing fast and reliable real-time service [140].  

 

Figure 5.3.3 The illustration of replacing the SignalR hub (server) by a SocketIO server 

The original SignalR hub is replaced by a SocketIO server in this implementation as 

shown in Figure 5.3.3 [117]. We implement the room concept for the purpose of 

enabling the multiple visualisation instance scenario, where a room is uniquely 

identified by the roomId that is in the combination of applicationId and the unique 

instanceId. The individual node’s socket can be stored and identified by the socketId 

when the connection is established, and it will be removed when the connection is lost. 

The socket can be further used to join and leave a room for the group broadcasting as 

we can see in Figure 5.3.4 [117].  



5.3 Generic Distributed D3 Framework Implementations 199 

 

Specifically, once the SocketIO server is established, it creates a room that is listening 

and waiting for the nodes to be joined. When a node is initialising, instead of connecting 

itself to the SignalR server, it attempts to join the SocketIO room via the newly designed 

network interface. Once all nodes are joined, the server will then broadcast and update 

the node information, which is the same as the SignalR server would normally do. After 

that, the fully connected peer-to-peer network can be established once the node’s 

information is received by each peer node.  

 
SocketIO:  
 
var members;     // global scope  
 
io.on('connection',function(socket){  
 
  members[socket.id] = socket;  // store new member  
 
  socket.on('disconnect', function(){  
 

lib.removeMember(socket);  // remove a member  
      // if disconnected  

  }); 
 
  socket.on('joinroom',function(data){ 
 

var roomId = '' + data.applicationId + data.instanceId;  
// define the roomId by appId and instanceId  
 
lib.joinRoom(socket, roomId);  // join the room 
 

  }); 
}) 
 
var lib = { 
 

joinRoom(socket, roomId){ 
  socket.join(roomId);  // join by roomId 
}, 
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removeMember(socket){ 

      socket.leave(socket.roomId); // leave by roomId 
      delete members[socket.id]; // delete the member  

} 
} 
 

Figure 5.3.4 The pseudocode of creating, joining and removing from a room in SocketIO 
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5.3.3 The Pure PeerJS Approach  

In comparison with the SocketIO approach, the implementation of the serverless pure 

peer network design requires to define a master node as a representative to broadcast 

the timely information for other nodes. We have discussed the network structure and 

the advantages of implementing an additional star network comparing to use a single 

fully-connected peer network in the section of §5.2.2. Since we have used the PeerJS to 

build the peer network among rendering nodes in the previous developments, and we 

had positive experience and feedback of implementing this WebRTC-based library on 

the framework in terms of speed of connection and network reliability, we therefore 

decide to implement the pure peer network structure entirely with PeerJS, which is also 

for the overall consistency and simplicity in the aspects of the main framework 

components.  

 

Figure 5.3.5 The illustration of implementing the serverless pure peer network by PeerJS 
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The structure of the serverless pure peer network is illustrated in Figure 5.3.5, which is 

implemented by using the PeerJS framework [117]. In which, the first node (Node 0) is 

assigned to be the master node by default, who will be in charge of establishing the star 

network at the initialising stage. After all peer nodes are connected, the master node 

then broadcasts the node information array in order to help establishing the fully 

connected peer network afterwards. The implementation detail of the network will be 

discussed below.  

In detail, the client-server network structure allows the node configuration information 

to be easily collected and maintained while a new node is connecting to the server via 

a given server address. This step however is lacking in the pure peer-to-peer network 

structure, as all peerIds are dynamically generated (a fix and static peerId is possible, 

but it is less elegant and not feasible in the case of running multiple application 

instances). In order to address this issue, we have found the peer discovery function 

listAllPeers in PeerJS, which can be used to fetch the list of registered peerIds and is 

particularly helpful for the master node to establish the star network in the initialising 

phase. To be more specific, when new peers are connecting to the PeerJS naming server 

to obtain their peerIds, their existence are registered, hence a master node can fetch the 

list of registered peers that are identified by their individual peerIds.  

To further simplify the steps in the network initialisation, we have designed the 

structured peerId to consist of the node configuration information. For instance, a 

designed peerId with comprised fields would be expressed as,  

ctrl3_conf0_client_r3_c0_node1_1571762550369 

where the separated fields are controlId, configId, client (or control), the node’s row 

number, the node’s column number, nodeId and the timestamp when this peerId created, 

respectively.  

A unique application instance can be identified by the combination of the controlId and 

configId. Such a structured design in every peerId not only reduces the possible 
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initialising steps via network communications, but also allows to quickly identify a 

group of peers in the case of running multiple visualisation instances in one visualisation 

environment.  

As the JavaScript pseudocode outlined in Figure 5.3.6, in order to establish the star peer 

network, the master keeps pooling the connected peers every second (1000ms) at the 

initialising phase [117]. The fetched list of peerIds with node information is extracted 

and prepared for broadcasting in the master node. In the case that the given clientNum 

is equal to the number of connected peers in the list, the star network is established by 

the master node; meanwhile, the node information array is also broadcasted. Finally, 

the individual peer node information in the array are used to establish the fully 

connected peer network afterwards, in which case, each peer node iterates and connects 

to all peers in the array except itself.  

 
Master Node:  
 
var infoAry = [ nodeInfo ];  // initialise info array with 
        // storing master node info 
 
poolingConnectedPeers(){ 
  var peers = peer.listAllPeers(function(list){ 

list.forEach(function(l, i){ 
  ls = l.split(“_”)      // extract node info 

      infoAry.push(ls);     // store info into array 
} 

  }); 
} 
 
initStarNet(){ 
   if(nodeId = 0){    // if a master node  
     if(clientNum = infoAry.length){ // if all connected  

   foreach(info in infoAry){ 
     connectToThisPeer(info.peerId);   
     // connect to all other peers by master  
   } 
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   initPeerNet();   // for master   

     } else { 
       poolingConnectedPeers();   // every 1000ms 
     } 
   }  
}   
 
initPeerNet(){ 
  foreach(info in infoAry){ 

connectToThisPeer(info.peerId); 
// connect to all other peers for master  

  } 
  waitingToBeConnected(function(){ 
    // waiting to be connected by other peers  
  } 
} 
 
Peer Node:  
 
var infoAry;  
 
initStarNet(){ 
  waitingToBeConnected(function(data){ // await master   
    infoAry = data;    // store info array  
    initPeerNet();     // initialise peer net  
  } 
} 
 
initPeerNet(){  
  foreach(info in infoAry){ 

connectToThisPeer(info.peerId); 
// connect to all other peers by each node  

  } 
  waitingToBeConnected(function(){ 
    // waiting to be connected by other peers  
  } 
} 
 

Figure 5.3.6 The pseudocode of initialising the pure peer network by assigning a master node   
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5.4 Generic Distributed D3 Framework Demonstrations  

5.4.1 The Configurations on a Customised Environment  

Following the development of the generic version of Distributed D3, a test experiment 

is designed to deploy the independent framework on a customised visualisation 

environment, which consists of a small cluster of 3 desktop computers with 3 screens 

in a row. The hardware specifications of each computer are, Intel i5-7200U (2.5 GHz) 

with 4Gb RAM, 2Gb Intel HD graphics card with HD screen (1920x1080) and 

operating on 64bit Windows 7.  

Specifically, to set up Distributed D3 on this customised environment is simple and fast. 

First of all, we need to set up the NodeJS [141] environment for the supporting 

frameworks including PeerJS, SocketIO and Express [142], and then MongoDB is 

required as the main database in this version, finally we can download the framework 

by checking out the source code from the repository.  

1. Install NodeJS, in order to include the supporting frameworks like PeerJS, 

SocketIO and Express, where Express is used to host the framework locally.  

2. Install MongoDB, which is supported by the developed OData service modules 

in Distributed D3, and data files also need to be imported to the database.  

3. Deploy Distributed D3, by checking out the source code from the repository, and 

then the framework is ready to use.  

At this point, we can simply run commands to launch the framework for the journey of 

visualisations.  
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5.4.2 The Demonstrations of the Customised Environment  

For the purpose of testing the configuration result of this environment, we deploy the 

fundamental charts examples that are used previously in section of §3.5.1.  

 

Figure 5.4.1 The screenshots of demonstrating the scatter plot example on the small 

customised environment with 3-screen setting 

 

Figure 5.4.2 The screenshots of demonstrating the bar chart example on the small customised 

environment with 3-screen setting 

As we can see in Figure 5.4.1 and Figure 5.4.2, the demonstrating examples show that 

the generic version of the pure peer network Distributed D3 has been successfully 

configured at its working condition on this customised environment [117]. We will run 

a further benchmarking test as a comparison to the Data Observatory for this 

environment in the section of §5.5.2.  
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5.5 Results  

5.5.1 Benchmarking on Data Observatory  

For the purpose of revealing the potential performance changes in the generic versions, 

we have made comparisons between two standalone versions. To keep the metrics 

consistent, we have used previously developed the FPS animation benchmarking toolkit 

for the tests, which has been discussed in §3.5.2. The test results can be found in Figure 

5.5.1 and Figure 5.5.2.  

 

Figure 5.5.1 The benchrmarking result of the generic Distributed D3 with the independent 

server network implemented by SocketIO 
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Figure 5.5.2 The benchrmarking result of the generic Distributed D3 with the pure peer-to-

peer network implemented by PeerJS 

By comparing the Figure 5.5.1 and Figure 5.5.2 with the previous benchmarking result 

in Figure 4.5.1, we can find that the standalone versions are significantly outperforming 

the integrated version on all the configurations with a different number of screen 

settings [117]. The pure peer network (PeerJS) version is also slightly outperforming 

the client-server (SocketIO) version, which can be observed on the configuration of the 

8-screen setting. The potential performance difference is likely caused by the 

framework operating overhead in the integrated version. Meanwhile, the pure peer 

network version is also lighter than the client-server version, in terms of the serverless 

design.  
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5.5.2 Benchmarking on Customised Environment  

Apart from benchmarking the generic framework on Data Observatoy, we have also run 

the benchmarking test on the customised environment in order to find the potential 

differences and issues from the test. Since the serverless pure peer-to-peer 

implementation is the preferred approach in the design of Distributed D3, we mainly 

focus on evaluating this implementation in the following test.  

 

Figure 5.5.3 The benchmaking result of the generic Distributed D3 (with pure peer network) 
which is tested on the cutomised visualisation envinronment with 3-screen setting  

In Figure 5.5.3, we can observe a similar trend as the benchmarking result of the pure 

peer-to-peer network version on the Data Observatory [117]. We notice the declining 

point of the data line is around 1,700 animated elements, which is only slightly 

outperforming the 2-screen configuration on Data Observatory in Figure 5.5.2. The 

results are reasonable as there are 3 screens (i.e. 3 browser windows) in the customised 

environment; meanwhile, the individual graphical stations on Data Observatory are 

more powerful than the desktop computers in this customised environment.  
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5.6 Discussion  

From the benchmarking results of the independent client-server and pure peer-to-peer 

network structures, we can see the advantages of using the peer-to-peer network to 

construct the framework, in terms of overall performance and simplicity in components. 

However, we are aware of the drawbacks of implementing the pure peer network with 

the super-peer design, where a master node (i.e. super-peer) is assigned to take the 

responsibility of a server.  

The super-peer can potential become the single point of failure for the whole cluster 

and the potential bottleneck, in which case if a super-peer fails, it can lead to the 

disconnections of all other rendering nodes until they find a new super-peer to be 

connected with. A possible solution is to implement the super-peer redundancy to 

improve the reliability, whereas it may also come at a cost in the network performance 

[64]. Therefore, we believe further research in this area might be needed in order to find 

more favourable solutions.  

In addition, as we know D3.js is based on a very active open-sourced community with 

a large number of contributors and collaborators, the iteration of developing new 

features and thus new versions of D3 is very fast. Since Distributed D3 is a distributed 

framework that is based on D3, we may need to take account of the changes and updates 

in order to support the latest stable D3 for the benefits of users. We are in hope to 

address this development issue by publishing and creating the open-source community 

of Distributed D3 to further update and improve the framework with more collaborators.  
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5.7 Conclusion  

In this chapter, we have proposed and designed the standalone versions of the 

Distributed D3 framework. Two branched versions are implemented by SocketIO and 

pure PeerJS. The benchmarking results show that both versions are faster and light-

weighted compared with the integrated version. The pure PeerJS version is also slightly 

faster than the SocketIO due to the light-weight real-time peer-to-peer data channels 

based on WebRTC.  

The test experiment of setting up the Distributed D3 standalone version on a customised 

small cluster of desktop computers confirms the framework can be flexibly configured 

and utilised on a variety of visualisation environment depending on the requirements. 

Such a customisable feature of the framework may especially benefit the data 

visualisation community with an existing scalable high-resolution display environment.  

The development of the standalone version of the Distributed D3 makes the framework 

more accessible and useful for the open-source community. The release of the 

standalone version may further improve the usability of the framework. We hope this 

could fill the gap between the data visualisation and distributed system in the web 

environment, and hence to advance the visualisation technologies in this research field.  
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Chapter 6 Conclusions  

The rapid growth of data in Big Data era has increases the need for analytic tools to 

obtain insights from large datasets. Such data sources may range from Internet of Things 

sensor networks to the growing Open Data movement. Visual perception being humans’ 

primary ability offers the distinct ability of rapidly differentiating patterns in a pre-

attentive manner. Hence, data visualisation for visual analytics is a powerful tool that 

has become a significant discipline. Today, D3.js has become a powerful web-based 

data visualisation library that can be the standard tool to visualise data. The library, 

however, is technically inherent, limited in its ability, as well as being unable to deal 

with large datasets.  

This thesis focused on overcoming this limitation and resolving the challenges through 

the development of the Distributed D3, which uses the distributed mechanism that can 

help generate web-based visualisations for large datasets based on D3.js that also helps 

in effectively using the graphical computational resources of the modern visualisation 

environments. The work mainly intended to provide a robust Distributed D3 that can 

preserve the API compatibility of D3.js library for its simplicity of use. Therefore, the 

framework resolved D3.js’s performance bottleneck that hindered the visualisation of 

large-scale data, thereby enhancing D3.js’s overall scalability as well as usability. The 

framework also helped in diverse visualisation environments being configured and 

programmed by an extensive community of developers for collaboration and research.  

The specified main contributions in the development of Distributed D3 are:  

• In Chapter 3, we present the integrated version of Distributed D3 framework for 

the Data Observatory. We compare the different designing approaches in order 

to properly design the framework for implementations. The implementation 

results show that the framework overcomes the performance limits of D3.js, 
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which also proves the concept of Distributed D3 that is feasible. Meanwhile, the 

framework is also benchmarked to evaluate the improvement of the overall 

performance and scalability compared with the original D3 with demonstrating 

examples. This work further enables a wide community of developers to be able 

to collaborate on large-scale data visualisations in the Data Observatory. 

• In Chapter 4, we present the optimised and upgraded version of Distributed D3 

framework for large-scale data visualisations applications. We investigate the 

potential bottlenecks of the existing Distributed D3 in order to optimise the 

framework and address the underlying issues. The optimisation benchmarking 

results show that an improvement of the overall performance by 35.7% is 

achieved and compared with the unoptimised Distributed D3. Meanwhile, the 

support of newer D3 also extends the functionality of the framework for potential 

applications. A demonstrating application is presented for the purpose of 

illustrating these improvements in this version. This work therefore further 

improves the scalability and usability of Distributed D3 for the visualisation 

applications with large-scale data.  

• In Chapter 5, we present a generic version of Distributed D3 framework for the 

customised environments on demand. We propose the detachment and serverless 

design of the framework in order to enable it to be fully independent for generic 

uses. The implementations improve the flexibility of the framework by allowing 

switch networks between classic server-based and pure peer-to-peer when 

necessary. The benchmarking results show that the version is light-weighted and 

slightly faster than the previous versions. A customised visualisation 

environment is also set up for the demonstrating and comparing purposes for this 

version. The work improves the usability and flexibility of the framework and 

makes it ready to be published in the open-source community for further 

improvements and usages.  
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With the uniqueness of the framework design, it can provide a novel solution to the 

modern data visualisations especially for large datasets. It is therefore in hope to be able 

to contribute to the open-source community by advancing the field of large-scale data 

visualisation with distributed approach.  

 

Future Works 

The academic papers of Distributed D3 framework are in plan for detailing and 

demonstrating the approach including the structures and algorithms that are designed to 

enable the main distributed features of the framework. Meanwhile, we have the plan to 

publish the framework source code and create an online open-source community of 

Distributed D3, which is building upon the existing and very active D3.js community.  

Apart from the relevant works in publications, the framework can be further improved 

by addressing the remaining issues and challenges in the future work,  

• In large-scale data visualisations, the overwhelming DOM access and 

interactions are the main bottlenecks of D3.js and thus Distributed D3. Virtual 

DOM shows the potential to reduce unnecessary interactions in real DOM. 

However, the current implementation of virtual DOM maintains a large virtual 

DOM tree ineffectively. As a possible solution, Incremental DOM might solve 

this issue by incrementally apply the necessary changes to the DOM tree instead 

of flushing and rebuilding it completely.  

• The current optimisation of switching requestAnimaitonFrame to setTimeout 

does remarkably improve the overall performance of the framework, whereas the 

potential animation issue might occur when dealing with the case of running 

multiple visualisation instances simultaneously such as on the Data Observatory. 

The requestAnimaitonFrame may handle this situation in a more reliable and 

managed manner. Therefore, a possible solution to this concern is to build a 
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smart animation timeout module which is able to automatically switch and adjust 

the timeout functions and parameters based on the number of instances and 

animated elements in a visualisation.  

• The pure peer-to-peer network has its advantages compared with the independent 

server structure in terms of overall performance and the simplicity in its 

components. On the other hand, the potential drawback of the current super-peer 

design in pure peer network may lead to the network vulnerability in case of the 

super-peer failure. For addressing this issue, a possible approach is to increase 

the super-peer redundancy in the network for reliability in the cost of 

performance, and we believe further research is needed in this area in order to 

find a more suitable or balanced solution.  

• The fast iteration and development of D3.js in its very active open-sourced 

community have led to the issue of lacking timely support in Distributed D3. The 

changes and updates can be potentially useful and important for the users of 

Distributed D3. In order to address this development latency and have more 

collaborators involved in the later development, we hope the situation can be 

resolved or improved by publishing and creating an open-sourced community in 

the near future.  

To make further progress on the development of Distributed D3, we believe these 

research topics and areas need to be addressed and covered in the next stage.  
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