

Distributed D3: A web-based distributed data

visualisation framework for Big Data

Xiaoping Fan

Department of Computing

Imperial College London

This dissertation is submitted for the degree of

Doctor of Philosophy

Data Science Institute 2019

Dedication

I would like to dedicate this thesis to my dearest parents.

Declarations

I hereby declare that except where specific reference is made to the work of others, the

contents of this thesis are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other University. This

thesis is the result of my own work and all of the previous works mentioned in this

thesis have been referenced and listed in the bibliography.

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives license. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they do

not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the license

terms of this work.

Acknowledgements

I would like to thank my supervisor Prof. Yike Guo, for his guidance, inspirations and

advice on my personal development throughout my PhD study.

Secondly, I would like to thank to my second supervisor Dr. David Birch, for his

patience, supports and suggestions in my research.

Meanwhile, I would like to thank my collaborators and colleagues at Data Science

Institute, Mr. Evann Courdier, Mr. Guillaume Paillot, Dr. Jingwen Bai, Mr. Senaka

Fernando, Dr. Miguel Molina Solana, for their helps and discussions during my PhD at

Imperial College London.

I also would like to thank my department administrator Dr. Amani El-Kholy, for her

understandings and supports during the hard times in my PhD study.

Finally, I would like to thank my parents, they have always encouraged me to overcome

unexpected challenges and to develop myself to be a better person.

Abstract

The influx of Big Data has created an ever-growing need for analytic tools targeting

towards the acquisition of insights and knowledge from large datasets. Visual

perception as a fundamental tool used by humans to retrieve information from the

outside world around us has its unique ability to distinguish patterns pre-attentively.

Visual analytics via data visualisations is therefore a very powerful tool and has become

ever more important in this era. Data-Driven Documents (D3.js) is a versatile and

popular web-based data visualisation library that has tended to be the standard toolkit

for visualising data in recent years. However, the library is technically inherent and

limited in capability by the single thread model of a single browser window in a single

machine, and therefore not able to deal with large datasets.

In this thesis, the main objective is to overcome this limitation and address possible

challenges by developing the Distributed D3 framework that employs distributed

mechanism to enable the possibility of delivering web-based visualisations for large-

scale data, which also allows to effectively utilise the graphical computational resources

of the modern visualisation environments. As a result, the first contribution is that the

integrated version of Distributed D3 framework has been developed for the Data

Observatory. The work proves the concept of Distributed D3 is feasible in reality and

also enables developers to collaborate on large-scale data visualisations by using it on

the Data Observatory. The second contribution is that the Distributed D3 has been

optimised by investigating the potential bottlenecks for large-scale data visualisation

applications. The work finds the key performance bottlenecks of the framework and

shows an improvement of the overall performance by 35.7% after optimisations, which

improves the scalability and usability of Distributed D3 for large-scale data

visualisation applications. The third contribution is that the generic version of

Distributed D3 framework has been developed for the customised environments. The

work improves the usability and flexibility of the framework and makes it ready to be

published in the open-source community for further improvements and usages.

Contents

Contents ... 10
List of Figures .. 13
List of Tables ... 17
Chapter 1 Introduction ... 20

1.1 Motivations .. 20
1.2 Objectives .. 22
1.3 Related Works ... 24
1.4 Thesis Structures ... 29
1.5 Contributions ... 31

Chapter 2 Background .. 33
2.1 Web Data Visualisation ... 33

2.1.1 Introduction ... 33
2.1.2 Data Visualisation ... 35
2.1.3 Web Technologies ... 42
2.1.4 Data-Driven Documents .. 64
2.1.5 Summary .. 94

2.2 Distributed Systems ... 96
2.2.1 Introduction ... 96
2.2.2 Architecture Designs ... 98
2.2.3 Architectural Styles ... 120
2.2.4 Summary .. 124

2.3 Data Observatories .. 126
2.3.1 KPMG Data Observatory .. 126
2.3.2 Other Data Observatories .. 128

Chapter 3 Distributed D3 Framework Integrated with Data Observatory 130
3.1 Introduction ... 130
3.2 Approach Comparisons ... 132

3.2.1 WebRTC vs. WebSocket ... 132
3.2.2 WebGL vs. HTML5 .. 133
3.2.3 D3.js vs. Other Libraries ... 136

3.3 Distributed D3 Framework Design ... 139
3.3.1 Distributed Rendering ... 139

3.3.2 Distributed Data ... 141
3.3.3 Overall Structure ... 142

3.4 Distributed D3 Framework Implementation ... 143
3.4.1 The Rendering Layer ... 143
3.4.2 The Data-accessing Layer ... 150
3.4.3 The Network Layer .. 153

3.5 Results ... 157
3.5.1 Demonstrating Examples ... 157
3.5.2 Performance Benchmarking .. 161

3.6 Discussion .. 165
3.7 Conclusion ... 166

Chapter 4 Distributed D3 Framework Optimisation with a Demonstrating Application .. 167
4.1 Introduction ... 167
4.2 Distributed D3 Framework Bottleneck Analysis .. 169

4.2.1 Excessive Garbage Collections ... 169
4.2.2 Massive DOM Interactions .. 172
4.2.3 Unoptimised Animation Timeout .. 174

4.3 Distributed D3 Framework Optimisations .. 176
4.3.1 Optimising Animation Timeout .. 176
4.3.2 Supporting D3 Version 4.0.0 ... 177

4.4 Distributed D3 Framework Demonstrating Application 181
4.4.1 The Design of the Demonstrating Application .. 181
4.4.2 The Implementations of the Demonstrating Application 182

4.5 Results ... 183
4.5.1 Benchmarking Comparisons ... 183
4.5.2 Demonstrating Application ... 186

4.6 Discussion .. 187
4.7 Conclusion ... 188

Chapter 5 Distributed D3 Framework Generic and Standalone Versions 189
5.1 Introduction ... 189
5.2 Generic Distributed D3 Framework Design .. 191

5.2.1 The Detachment Design .. 191
5.2.2 The Serverless Design ... 193

5.3 Generic Distributed D3 Framework Implementations .. 195
5.3.1 The Network Interface ... 195
5.3.2 The SocketIO Approach .. 198
5.3.3 The Pure PeerJS Approach .. 201

5.4 Generic Distributed D3 Framework Demonstrations .. 205
5.4.1 The Configurations on a Customised Environment 205
5.4.2 The Demonstrations of the Customised Environment 206

5.5 Results ... 207
5.5.1 Benchmarking on Data Observatory ... 207
5.5.2 Benchmarking on Customised Environment ... 209

5.6 Discussion .. 210
5.7 Conclusion ... 211

Chapter 6 Conclusions ... 212
References ... 216

List of Figures

Figure 2.1.1 The stages of CSS cascading mechanism ... 45

Figure 2.1.2 The state of variables and parameters of the object argument example (a) prior to
the initial statement of the objArgs function is executed (b) following the execution of this
statement (c) after the function's second statement is executed .. 53

Figure 2.1.3 For each element in an HTML document there is a corresponding Object which
can be accessed using getElementById, and the HTML attributes of an element can be
specified using the setAttribute. .. 55

Figure 2.1.4 An illustration of the band scale which can be created by d3.scaleBand 71

Figure 2.1.5 An illustration of the point scale which can be created by d3.scalePoint 71

Figure 2.1.6 An illustration of using D3 axes to create horizontal and vertical axes 72

Figure 2.1.7 An illustration of using d3.pie with arc to create pie and donut charts 79

Figure 2.1.8 An illustration of using d3.line to create a line chart .. 80

Figure 2.1.9 An example of using d3.area to create the area chart ... 81

Figure 2.1.10 An example of using D3 curve to create a curve illustration 82

Figure 2.1.11 An example of using d3.stack to create the stacked chart 83

Figure 2.1.12 An example of using D3 cluster to create the tree diagram 86

Figure 2.1.13 An example of using d3.treemap to create the treemap diagram 87

Figure 2.1.14 An example of using d3.pack to create an enclosure diagram 88

Figure 2.1.15 An example of using d3.geoGraticule to generate the graticules 92

Figure 2.2.1 An illustration of the common interaction between a client and a server 98

Figure 2.2.2 The three levels of a simplified Internet search engine 102

Figure 2.2.3 The alternative client-server organisations .. 104

Figure 2.2.4 An example of a server acting as a client ... 106

Figure 2.2.5 The mapping of data items on nodes in Chord .. 110

Figure 2.2.6 Actions of the active thread (a) Actions of the passive thread (b) 113

Figure 2.2.7 An organisation of nodes in a super-peer network .. 115

Figure 2.2.8 The Internet that consists of a collection of edge servers 117

Figure 2.2.9 An illustration of the working mechanism of BitTorrent 118

Figure 2.2.10 The layered and object-based architectural styles ... 121

Figure 2.2.11 The event-based architectural style ... 122

Figure 2.3.1 The Data Observatory in Decision Support Mode .. 127

Figure 2.3.2 The first generation of CAVE system ... 128

Figure 2.3.3 The second generation of CAVE2 system .. 129

Figure 3.2.1 A test experiment by comparing the performance in frame rate (FPS) between
HTML SVG, Canvas and WebGL .. 135

Figure 3.3.1 The illustration of a scatter plot with data line in the distributed rendering 139

Figure 3.3.2 The overall structural design of the Distributed D3 framework 142

Figure 3.4.1 The illustration of the static rendering method by obtaining the margins (limits)
of the dataset for each screen ... 144

Figure 3.4.2 The algorithm of the getBounds function with pseudo commands 146

Figure 3.4.3 The illustration of the dynamic rendering by sending and receiving the shapes
via real-time peer-to-peer network .. 147

Figure 3.4.4: The algorithm of findRecipients function with pseudo commands 148

Figure 3.4.5: The algorithm of findBrowserAt function with pseudo commands 149

Figure 3.4.6 The structure of the data-accessing layer with OData APIs and MongoDB 150

Figure 3.4.7 The main components of a typical OData query string with individual fields 151

Figure 3.4.8 The algorithm of the query and queryWith method with an OData client module
 ... 152

Figure 3.4.9 The underlying fully-connected peer network (with WebRTC) and the star-shape
controlling network (with SignalR) in the network layer implementation 153

Figure 3.4.10 The pseudocode for establishing the fully-connected peer network via the
established SignalR network ... 156

Figure 3.5.1 The demonstrating example of the scatter plot visualised by Distributed D3 .. 158

Figure 3.5.2 The inspecting results of counting circular data points in each screen 158

Figure 3.5.3 The demonstrating example of the bar chart that is visualised by Distributed D3
 ... 159

Figure 3.5.4 The demonstrating example of the pie chart that is visualised by Distributed D3
 ... 159

Figure 3.5.5 An demonstration of the London Tube map with animated entries and exits on
the peak and off-peak time of the tube stations, which is built with Distributed D3 160

Figure 3.5.6 The screenshot of the benchmarking toolkit in test of 2-screen setting with 100
animated circle elements ... 161

Figure 3.5.7 The screenshot of the benchmarking toolkit in the test of 2-screen setting with
1,000 animated circle elements ... 162

Figure 3.5.8 The benchmarking result of the integrated version of Distributed D3 in
comparison with running D3 alone (in red) .. 162

Figure 3.5.9 The benchmarking result of the integrated version of Distributed D3 for
investigating the optimised animation threshold in all configurations 163

Figure 4.2.1 The Garbage Collection (GC) frame that is captured in the benchmarking test169

Figure 4.2.2 The comparison of the frame rates (FPS) between D3 v3.5.6 and v4.0.0 170

Figure 4.2.3 The screenshot of the timeline in benchmarking test using react-faux-dom 173

Figure 4.2.4 The comparison of frame rates (FPS) between requestAnimationFrame and
setTimeout in the benchmarking test ... 175

Figure 4.3.1 The code snippet of initialising animation timeout function in D3 timer 176

Figure 4.3.2 The life cycle of a transition in the current Distributed D3 framework 178

Figure 4.4.1 The visualisation example of the parallel coordinates with a dataset of cars ... 181

Figure 4.5.1 The benchmarking result of the average FPS for the optimised Distributed D3 in
the configurations of 1 to 64 screens which is tested on the Data Observatory 184

Figure 4.5.2 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 2-screen configuration 184

Figure 4.5.3 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 4-screen configuration 185

Figure 4.5.4 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 8-screen configuration 185

Figure 4.5.5 The visualisation result of deploying the demonstrating application on Data
Observatory based on the unoptimised Distributed D3 framework with 38,070 elements ... 186

Figure 4.5.6 The visualisation result of deploying the demonstrating application on Data
Observatory based on the optimised Distributed D3 framework with 47,470 elements 186

Figure 5.2.1 The architecture of replacing the SignalR hub with an independent server in
order to detach the framework from the integration of Data Observatory 192

Figure 5.2.2 The architecture of the serverless design by assigning a master node and
removing the independent server from the framework ... 194

Figure 5.3.1 The abstraction layer of the network interface for the purpose of switching
networks on demand, which also allows to hybridise the existing networks if needed 195

Figure 5.3.2 The pseudocode of network interface class with an example of the pure peer
network protocol subclass ... 197

Figure 5.3.3 The illustration of replacing the SignalR hub (server) by a SocketIO server ... 198

Figure 5.3.4 The pseudocode of creating, joining and removing from a room in SocketIO . 200

Figure 5.3.5 The illustration of implementing the serverless pure peer network by PeerJS . 201

Figure 5.3.6 The pseudocode of initialising the pure peer network by assigning a master node
 ... 204

Figure 5.4.1 The screenshots of demonstrating the scatter plot example on the small
customised environment with 3-screen setting .. 206

Figure 5.4.2 The screenshots of demonstrating the bar chart example on the small customised
environment with 3-screen setting ... 206

Figure 5.5.1 The benchrmarking result of the generic Distributed D3 with the independent
server network implemented by SocketIO .. 207

Figure 5.5.2 The benchrmarking result of the generic Distributed D3 with the pure peer-to-
peer network implemented by PeerJS ... 208

Figure 5.5.3 The benchmaking result of the generic Distributed D3 (with pure peer network)
which is tested on the cutomised visualisation envinronment with 3-screen setting 209

List of Tables

Table 2.1.1 Values returned by typeof for common operands ... 48

Table 2.1.2 The list of HTML intrinsic event attributes .. 56

Table 2.1.3 The list of non-method properties of Node object ... 58

Table 2.1.4 The list of method properties of Node object ... 58

Table 2.1.5 The list of possible values for the nodeType property of Node object 58

Table 2.1.6 The list of DOM2 methods for generating common events 63

Table 3.2.1 The test experiment result of HTML SVG, Canvas and WebGL 135

Table 3.2.2 A comparison of the selected web-based data visualisation libraries 137

Table 3.4.1 The list of data loading functions that are used to filter data by data types 151

20 Introduction

Chapter 1 Introduction

1.1 Motivations

The Data Science Community has been growing significantly in order to address the

influx of Big Data. These data sources range from Internet of Things sensor networks

to the growing Open Data movement [1] as well as the Data Stores holding them [2].

Such new data streams are leading to the global economy’s economic benefit using a

new data economy and start-ups that result in new insight from data. A data-driven

economy succeeds because of the insight generated from data being shared. At the heart

of this is data visualisation. Indeed, visualisation and visual analytics continue to be

major tools for generating insight from data. Recently, high impact infographics and

data-driven story telling powered by new streams of Big Data and Open Data have been

observed to be growing.

On the other hand, the existing visualisation techniques remain less affected by the rise

of Big Data, with the majority of visualisation tools and environments having the ability

to show only small datasets and very few data points. For this reason, it is important to

implement coarsening and aggregation techniques for presenting the data as it prevents

practitioners from gaining a complete view of the data and reduces the ability to

permeate into the data for examining the data trends in detail. A key role for universities

is leading the development of tools for better Data Science. Further, within the Data

Science Community, the Data-Driven-Documents (also known as D3.js) [3]

methodology and library has become the standard tool for visualising data. In fact, the

open-source library has more than 15,000 collaborators [4] and is considered the

standard tool for several companies including New York Times [5] and the BBC.

1.1 Motivations 21

However, D3.js library is technically inherent as it has limited capability and is unable

to address large datasets, a few thousand data points being the maximum it can process.

Essentially, the approach is limited by an out-dated single machine and single-threaded

model in JavaScript [6]. At the Data Science Institute, a distributed model is being

developed for data visualisation based on the D3.js approach. This will include the same

advantages of distributed computation techniques that underpin the Big Data processing

community, including Hadoop [7] and Spark [8], while implementing them to the

visualisation community. Therefore, this can ensure easy scalability of visualisations in

terms of multiple computers, high-resolution screens, and video wall environments that

are becoming increasingly common, and it will also enable orders of magnitude more

data points to be visualised for greater insight.

Furthermore, the potential impact of the realisation of Distributed D3 on a modern

visualisation facility can be significant. The empowered large visual space not only

provides a large high-resolution visualisation at a time, but also enables multiple times

of raw data points to be plotted and visualised on the tiled screens all at once. This

allows finding subtle patterns in the large datasets, and therefore helps researchers to

identify trends and make predictions based on real insights rather than assumptions. In

addition, the interactive features of Distributed D3 can further improve the transparency

and visibility of the large and growing amount of data, which further allows the high-

volume data flow to be monitored in a real-time manner, and hence providing

opportunities to control and respond immediately on certain events, such as errors or

malfunctions in a system, as well as the potential risks.

22 Introduction

1.2 Objectives

The main objective in this thesis is to deliver a robust Distributed D3 framework that is

able to preserve the API compatibility of D3.js library for the simplicity of use. As a

result, the framework is expected to resolve the performance bottleneck of D3.js which

prevents the visualisation for large-scale data, and therefore improves the scalability

and usability of D3.js in general. The framework should further enable a variety of

visualisation environments to be configured and programmed by a wide community of

developers for the collaboration and research purposes.

The work can be divided into the following stages based on the priority of its

development,

• Integrated version of Distributed D3 for Data Observatory, which should reveal

the possibility of utilising distributed approaches to overcome the performance

bottleneck of D3.js, and therefore allow developers to evaluate and utilise the

framework on the Data Observatory.

• Evaluation and optimisations of Distributed D3 with an emphasis on application,

which should further improve the framework by investigating and addressing the

potential performance issues, and thus optimise the framework for visualisation

application with large-scale data in terms of scalability and usability.

• Generic version of Distributed D3 for a wide range of communities, which

should allow the framework to be configured and programmed on the customised

visualisation environments, and it should also provide the flexibility on the

configurations of its components to enable the framework to be widely used and

adapted for a variety of purposes.

1.2 Objectives 23

Key Challenges

The main challenges in the development of Distributed D3 are to build a distributed

system that allows distributed rendering and distributed data to be realised for both static

and dynamic visualisations, as well as to build a robust yet flexible underlying

distributed communication network.

• Distributed Rendering, apart from the static distributed rendering that can be

realised by knowing the positions of a segmented visualisation, the dynamic

distributed rendering for a smooth and synchronised animation across displays

can be challenging.

• Distributed Data, the main challenges can be expected to deal with the data

segmentation for various types of chart, and also to allow transferring the data

segments to the targeted displays on demand, such as in an animation.

• Distributed Network, the classic client-server model is expected to resolve the

most of communication issues in framework initialisation and animation

synchronisation. Whereas it becomes more challenging if we would like to build

a pure peer-to-peer network while addressing these issues.

24 Introduction

1.3 Related Works

The majority of the existing research focus on distributed displaying and parallel

rendering [9-25]. As far as this research work is concerned, no other equivalent

frameworks have been developed thus far. This section will review the developments

of the relevant existing frameworks and their main features, and then summarise these

visualisation frameworks as a designing reference for the present study.

For several years, the computer graphics community has been interested in using high

resolution images and high-performance rendering pipelines for examining large

datasets and for preparing these images, respectively. Whitman [9] evaluated how, from

the late 1970s, numerous attempts have been made to parallel rendering. The

classification of parallel rendering by Molnar [10] in the mid-1990s was instrumental

in setting the precedence for numerous innovative approaches concerning dynamic

rendering of high-resolution graphics. On the other hand, it was only recently that the

visualisation of these high-resolution graphics in tiled display walls became popular. It

was 15 years ago that examples including SAGE [11], Chromium [12] and Parallel-SG

[13] were put forth. Such early examples led to the development of modern Scalable

Resolution Display Environments (SRDEs) along with different infrastructures

introduced during the previous 5 to 10 years. Although such systems are varied, they

use different strategies for resolving similar problems, and they may not always be

appropriate for all problems that need an SRDE.

Despite the fact that the SRDEs’ middleware standardisation is yet to be accomplished,

multiple authors have applied various ways trying to categorise them. For example,

Chen et al. [14] considered their execution model to classify them into two groups,

client–server and master–slave. Ni et al. [15] considered their data distribution

architectures in terms of the distributed rendering software and display data streaming

software to classify them. Chung et al. [16] took into consideration which applications

they focus on and classified them into four groups of transparent frameworks

1.3 Related Works 25

concerning legacy applications, interactive application frameworks, distributed scene

graph (DSG) frameworks concerning 3D graphics applications, and scalable rendering

frameworks. Further, Renambot et al. [17] considered their deployment models to

classify them into browser-based and desktop application. Considering such

classifications of SRDEs’ middleware, the present study began by examining window

management systems. Such systems offer an integrated workspace to visualise

distributed data so that various applications can be executed at the same time throughout

numerous tiled displays. Moreover, Distributed Multi-head X (DMX) [18] was

developed for offering multi-head support to the system’s X-Windows desktop that

includes numerous displays. A client–server model is implemented in DMX such that

the server node dispenses the visual elements that are then rendered in client nodes.

Scalable Adaptive Graphics Environment (SAGE) [11] is also a well-known window

management architecture, with SAGE2 [17][19], its second version, being available and

called Scalable Amplified Group Environment. This second version, SAGE2, is a

browser-based client–server cross-platform middleware that is distributed using various

useful applications that aim to effectively resolve remote collaborations in data-

intensive environments. Both these systems have become substantially popular and are

used extensively on a global scale. DisplayCluster [20], although not as favoured as

SAGE2, is also a dynamic windowing environment that includes built-in capabilities

that can help view media and aids in streaming and displaying ultra-high-resolution

images as well as video content. Although these are transparent frameworks that have

a non-invasive programming model, they are extensively dependent on pixel streaming

for the distribution of the majority of server-to-client visual information. Because of

this, these systems’ scalability is significantly decreased concerning supported

resolution and their applicability to environments with high-performance networks is

also limited.

26 Introduction

Parallel graphics rendering middleware including the Image Composition Engine for

Tiles (IceT) [21], compared with window management approaches, distribute the

rendering workload throughout numerous distributed system’s nodes. Because of this,

applications can classify the display area into tiles and allocate them to one or more

processors for executing sort-last parallel rendering. Further, every processor can

simultaneously render content for multiple tiles. IceT allocates the rendering of M tiles’

graphical content throughout N processors and implements numerous strategies

including map-reduce and binary trees for devising the resulting tiles as well as

producing a distinctive image. Despite the fact that IceT fulfilled the anticipated

performance as well as scalability requirements, it needs visualisations for it to be

purpose-built according to its rendering pipelines, thereby restricting its scope.

Chromium [12] is a framework developed according to the older WireGL [22] system

from Stanford, which offers a distinct approach. Chromium manipulates and distributes

streams of graphic API commands on different computers’ clusters. It can execute

OpenGL-based applications as it intercepts OpenGL commands that are disseminated

to client nodes. The commands that such clients receive are executed for rendering their

corresponding part of a larger picture. It should be noted that Chromium has a major

drawback of suffering from high network usage, even in cases where there is no change

in the scene, caused by its low-level focus that prioritises precision rather than

performance. To address such drawbacks of Chromium, Garuda [23] was introduced

which decreases the consumption of network bandwidth as it gathers and manages the

transmitted geometry at rendering nodes. To ensure that only the necessary aspects of

the scene are transferred to every client, it implements an adaptive algorithm through

which the scene graph is culled to frustums hierarchy for assessing the objects that can

be seen in every tile of the wall. Although Garuda fulfilled several needs of the present

study, there are certain performance implications including the requirement of a high-

end server machine as well as a gigabit ethernet for ensuring a stable frame rate for

animations. A significant limitation of Garuda, however, is that it is capable of

1.3 Related Works 27

supporting applications of only a scene graph type, thus reducing its applicability in

collaborative visual analytics.

Equalizer [24] is a toolkit aimed at scalable parallel rendering that follows OpenGL.

Equalizer offers an application programming interface (API) for devising scalable

graphics applications which can function in various configurations such as tiled

displays. Moreover, the Cross-Platform Cluster Graphic Library (CGLX) [25] offers a

different API which enables same copies of an OpenGL-based application to be

executed on all clients as well as visualisation data concerning all the clients to be

replicated. Though the development of CGLX aimed to improve Chromium, it offers a

significantly broader scope than Garuda and is not limited to scene graph type

applications, such as Equalizer. Compared to Equalizer, however, CGLX can be easily

maintained and offers more transparency. On the other hand, scalability is a major

limitation of CGLX. It was observed that CGLX’s performance (assessed in FPS as is

common for animated content) decreased with an increase in the number of display tiles

because of the synchronisation overhead resulting from the head node. Hence,

compared to displays with several screens, animations would run considerably faster on

those displays that had fewer screens.

To summarise the main literature findings above, in the field of distributed displaying

and rendering, DMX was the first distributed display environment that enabled a fully-

functional windowing environment across a cluster. The SAGE was developed with an

architecture that had all pixels streamed to the multi-node display from sources over the

network, which is more focused on scalable rather than environment in comparison with

DMX. As opposed to SAGE’s streaming architecture, CGLX provides a semi-

transparent OpenGL-based graphics framework for distributed visualisation systems.

For such rendering environments, the major problems often involved the limitations of

scalability, which have been significantly enhanced in the later works of SAGE2 and

DisplayCluster.

28 Introduction

Moreover, the key features of the main distributed visualisation systems and

frameworks can be summarised as follows: Windowing environment for multiple

applications, which is a centralised system that places windows with content

(applications, multimedia) from various sources on display in the visualisation system.

Client-server architecture, in which several clients pull requests from a server while also

receiving pushed data from it. Extensible 2D and 3D applications, which provides a

possibility for developing and adjusting the existing applications for system integration.

Off-the-shelf application support, which is a method of sharing the application screen

and user interface concerning applications that cannot be changed. Multi-user

interaction and remote collaboration, which helps multiple users use the system

interactively and remotely. Content with unlimited resolution, wherein content need not

be limited to any fixed maximum resolution. Cloud-based infrastructure, which is the

ability to host a server in the cloud so that clients can access this system.

Finally, by reviewing these existing visualisation systems and frameworks, it was noted

that frameworks which support dynamic windowing environments rely on pixel

streaming offered inadequate performance. Meanwhile, frameworks focused on DSG

were limited and had issues with transparency, and other frameworks were limited in

their scalability and thus may not be used in SRDEs having varied dimensions.

Therefore, Distributed D3 is designed with a different approach that aimed to resolve

such limitations, with its design being influenced by and borrowing from several

primary concepts of the existing frameworks.

1.4 Thesis Structures 29

1.4 Thesis Structures

The structure of this thesis is arranged as follows,

• In Chapter 1, we specify the motivations and objectives of the work, and we

discuss the related works that are relevant to this research. An overview of the

thesis structure is then provided with a summary of contributions.

• In Chapter 2, we discuss the definition and meaning of data visualisation. We

provide the relevant background of data visualisation, web technologies and

data-driven documents, and also review the possibilities of building a distributed

system. In the last section, we also include an overview of the data observatory

with case studies.

• In Chapter 3, we propose the integrated version of Distributed D3 framework for

Data Observatory. We first compare the possible approaches in design, and then

detail the design and implementations of the framework. The implementation

results with examples are demonstrated, and the benchmarking results are

discussed before the conclusion of this chapter.

• In Chapter 4, we propose the optimised and upgraded version of Distributed D3

framework for applications with large-scale data. We first investigate the

bottleneck of the existing Distributed D3, and then optimise the framework by

addressing the underlying issues and also upgrading the support for newer D3.

A demonstrating application is illustrated, and the benchmarking results are

discussed before the chapter conclusion.

• In Chapter 5, we propose the generic version of Distributed D3 for the

customised environments. We first illustrate the detachment and serverless

design of the framework. We then discuss the implementations that include a

new network interface and two detailed distributed approaches. A customised

30 Introduction

visualisation environment is also set up for the testing purpose. The

benchmarking results of the generic version are discussed and compared with the

previous version.

• In Chapter 6, we conclude the current development of the work and identify the

remaining challenges and issues, and we also discuss the potential future works

in the last section.

1.5 Contributions 31

1.5 Contributions

In this thesis, we develop the Distributed D3 framework that addresses and resolves the

performance bottleneck of the D3.js library by implementing the distributed

mechanisms. The realisation of this work enables the possibility of delivering web-

based visualisations for large-scale data, by effectively utilising the graphical

computational resources of the state-of-art visualisation environments, such as Data

Observatory. The work further enables such possibility to be realised on a variety of

customised visualisation environments that can be configured and programmed by a

wide community of developers.

Specifically,

• We present an integrated version of Distributed D3 for Data Observatory. The

result shows to overcome the performance limits of the D3.js that proves the

concept of Distributed D3. The improvement of the overall performance and

scalability further enables a wide community of developers to work on large-

scale data visualisation in the Data Observatory.

• We present an optimised and upgraded Distributed D3 for the large-scale data

visualisation. The test result demonstrates to increase the overall performance by

35.7% compared with the previous version, and the support of newer D3.js

further extends the functionality of the framework. The version thus improves

the scalability and usability of the Distributed D3 for visualisation applications

with large-scale data.

• We present a generic version of Distributed D3 for customised environments on

demand. The test result shows the version is light-weighted and faster than its

ancestors, and it is also featured by its flexibility of switching networks between

classic client-server and pure peer-to-peer implementations when needed. The

32 Introduction

version is ready to be published for the open-source community for further

impact and improvement.

Chapter 2 Background

“Visualisation gives you answers to questions you didn’t know you had.”

– Ben Schneiderman

2.1 Web Data Visualisation

2.1.1 Introduction

The rise of Big Data has led to an increasing need of analytic tools to obtain insights

from the increasingly large datasets. Visual perception is a primary tool of humans for

retrieving information from the outside world and thus has the distinguished ability to

rapidly differentiate patterns in a pre-attentive manner [26]. Hence, visual analytics are

crucial for data analysis.

Visualisations has to be seen to be considered truly visual [27]. Hence, it is necessary

to ensure that a piece of work can be seen by others, for which internet publication is

the fastest method for distributing information globally. Collaborative work with web-

standard technologies helps the work to be made visual and to be seen by anyone using

a web browser, because of that the operating system as well as device type (i.e. laptop,

desktop and smartphone on Windows, Mac and Linux) can be flexible.

Data-Driven Documents (also known as D3.js) is a popular web-based data

visualisation library that helps in generating dynamic and interactive data visualisation

34 Background

in diverse graphical forms. The standardised representation of D3.js improves the

expressiveness as well as accessibility, while providing significant performance

improvements and enabling transitions to be animated. Performance benchmarks can

further help D3.js to be demonstrated as at least two times faster compared to its

ancestor [3].

2.1 Web Data Visualisation 35

2.1.2 Data Visualisation

2.1.2.1 What is Data Visualisation?

Data visualisation is the process in which graphical representations are used for

communicating information. Before the written language was formalised, pictures were

used for communication as images perform in parallel with the human perceptual

system. Text analysis, however, is a sequential process that is restricted by the speed of

reading [26].

Data visualisation can be perceived as both an art and a science [28]. While several

consider it a branch of descriptive statistics, others regard it more as a ground theory

development tool. Internet activity and increased number of sensors have led to the

development of Big Data. The key challenges for data visualisation involve how this

data can be processed, analysed, and communicated [29].

Data visualisation is the representation and presentation of data that exploits a viewer’s

visual abilities for amplifying cognition [30].

• The representation of data refers to how one decides to present data in a

physical form, which may be a bar, a line, or a circle. This results in using the

data as a raw material and generating a representation that presents its key

features in the best possible way.

• The presentation of data extends beyond data representation and focuses on how

data representation is implemented into the overall communication system, such

as the colours, annotations, and interactive features.

• The exploitation of visual perception abilities concerns the scientific

understanding of how the human brain and eyes perceive information in the best

possible way. It focuses on the way in which individuals’ abilities can be

36 Background

harnessed using spatial reasoning, pattern identification, and big-picture

thinking.

• Amplifying cognition concerns the optimising of a persons’ ability to efficiently

and effectively process the information and convert it into thoughts, insights, and

knowledge. Data visualisation primarily aims to provide the readers with the

feeling that they are more knowledgeable about a particular topic.

2.1 Web Data Visualisation 37

2.1.2.2 Why Data Visualisation?

There are various reasons for which data visualisation is important. The most apparent

one is that the sense of sight is fundamental to obtain and understand information as

humans are visual beings [26]. Using an effective visualisation can help a viewer to

better analyse and reason data and evidence. Data visualisation simplifies data that is

complicated and renders it more understandable and usable.

Furthermore, considering the nature of the human brain, charts and graphs are the best

way of visualising large numbers of complex data in a simple manner. This is easier

than reading spreadsheets or reports. Data visualisation is quick and easy and helps

present concepts in a universal manner, enabling minor adjustments to experiment with

different situations.

Visualising information helps in telling a story. It is a primitive communication

technique, dating as far back as 30,000 BC in the form of cave drawings. Even before

the development of written language in 3,000 BC, vision was a crucial means of

communicating. With time, new ways of visualising information were developed.

Today, although people have become familiar with basic charts such as line chart, bar

chart, and pie chart, they rarely stop to think about the existing issues and how they can

be improved.

 It is important to note that data visualisation is an especially important discipline in the

modern age. There is a digital consequence to almost everything that people do, with

everyone’s lives being consistently recorded and quantified. Although this may appear

scary, the sharing of large quantities of information can generate exciting new

opportunities for those who possess analytical curiosity and intend to explore the world.

Data is unarguably an invaluable asset and has become so powerful that it can change

the world for the better. If data is the oil, then data visualisation is the engine that

facilitates its true value, which is why it is such a relevant subject to explore nowadays.

38 Background

2.1.2.3 Categories of Data Visualisation

Data visualisation can be divided into two main categories: exploration and explanation

[31]. These two categories have different purposes, and thus use unique tools and

approaches that may not necessarily be suitable for the other. Hence, it is crucial to

understand their differences to ensure that the correct approach is used for a specific

visualisation task.

Exploration

Exploratory data visualisation is suitable in case of a large dataset, when one is unsure

of its contents, and when needing insight into the data set. Its visual presentation can

help in quickly identifying its features, such as important curves, lines, trends, or

anomalous outliers.

Usually, the exploration is best conducted with high level of granularity. The dataset

may contain lots of noise, but oversimplifying or removing too much information may

cause something crucial being missed. Such visualisation is a fundamental aspect of

data analysis and can be used to reveal the dataset’s story.

Explanation

Explanatory data visualisation is best used when one already knows the data contents

and attempts to share them with other parties, such the group head, a grant committee,

or the public. Regardless of the audience, the individual thus knows the story from the

beginning and can make designs that are exclusive to the story being presented. Hence,

the individual must make editorial decisions regarding which information to keep and

which to remove for being too distracting or irrelevant. For this, the focused data that

can support the story being told should be selected.

2.1 Web Data Visualisation 39

If the exploratory data visualisation is part of data analysis phase, then explanatory data

visualisation will be part of the presentation phase. This type of visualisation can occur

alone or as part of a larger presentation such as a speech, a newspaper article, or a report.

For explaining things in more depth in such situations, a supporting narrative is typically

provided.

The Hybrid

A hybrid category can also exist involving a curated dataset, for which the data

presented can help the reader conduct exploration to an extent. Such visualisations are

often interactive, such as involving a type of graphical interface that enables the reader

to select specific parameters. They can, therefore, determine insights in the data for

themselves. Further, these insights may also not have been identified previously by the

visualisation’s creator.

40 Background

2.1.2.4 Methodology of Data Visualisation

The common definition for taxonomy originates from biological sciences and typically

separates organisations into groups of members that share similar characteristics. In this

case, various charts function as the members while the shared characteristics are the

functions of the primary data.

The appropriate visualisation methods are determined by the definition used when

developing the methodology. This is crucial when clarifying the intention of your

visualisation communication. The key communication purposes of all the classification

methods are summarised below [30]:

• Comparing categories helps make comparisons between the relative and

absolute sizes of categorical values. For example, a bar chart.

• Assessing hierarchies and part-to-whole relationships help in breaking down

categorical values as per their relationship with a group of values or in presenting

them as constituent elements of hierarchical structures. For example, a pie chart.

• Presenting changes over time helps exploit temporal data so that changes in

patterns can be depicted throughout a particular timeframe. For example, a line

chart.

• Plotting connections and relationships help in assessing relationships, trends,

and distributions in multivariate datasets. These tend to involve intricate visual

solutions that focus on allowing exploratory analysis. For example, a scatter plot.

• Mapping geo-spatial data aids in presenting datasets that possess geo-spatial

properties through various mapping frameworks. For example, a choropleth

map.

2.1 Web Data Visualisation 41

2.1.2.5 Data Visualisation on the Web

Traditional static visualisations can only present precomposed data views, but multiple

static views are often necessary for presenting various perspectives concerning the same

information [27]. Moreover, there is a limited amount of data dimensions if all visual

elements are shown on the same surface at the same time. Depicting multidimensional

datasets fairly using static images is very difficult. Hence, using a fixed image is the

best method if differing views are not necessary to create a static medium, such as a

print.

People can self-explore data using dynamic, web-based interactive visualisations. This

is applicable to numerous interactive visualisation tools and has remained relatively

unchanged since the initial introduction of ‘Visual Information Seeking Mantra’ by Ben

Shneiderman of the University of Maryland in 1996 [32]. For the majority of

contemporary interactive visualisations, an overview is first conducted, followed by

zoom and filter and then details-on-demand. Using multiple functions is effective for

ensuring that the data can be accessed by various audiences, from mere browsers to

those seeking answers to specific questions.

The interactive visualisation can present an overview of data using tools best suited for

‘drilling down’ the details, and can help simultaneously address numerous tasks. This

helps in addressing the problems of audiences, from those who have little current

understanding of a new subject matter to those with an excellent grasp of the

information. Interactivity also promotes engagement with data in ways that static

images cannot. Moreover, animated transitions and well-designed interfaces can make

data explorations feel like playing a game. Hence, interactive visualisation is an

effective method of engaging people who are otherwise uninterested in the topic or data.

42 Background

2.1.3 Web Technologies

2.1.3.1 HTML and CSS

Hypertext Markup Language (HTML) was first introduced in 1990 by Tim Berners-Lee

during his time at the high-energy physics research centre CERN, which is the European

Laboratory for Particle Physics. It was originally designed for scientific and engineering

purposes. For several years after its invention, even with many amendments, it was still

possible to detail the aspects of the language in a concise document (W3C-HTML-

HIST). By November 1992, in addition to the previously mentioned title and paragraph

components, HTML incorporated only aspects to enable the creation of hyperlinks,

headings, basic lists, glossaries, examples or text that utilises monospace fonts and

preserves any white space, and address blocks, which are usually in italics and

comprised of the authors’ information. Beyond this, there was nothing else at this stage.

Extensible Markup Language (XML) was then introduced by the W3C in February

1998. It is a limited form of Standard Generalised Markup Language (SGML). SGML

has a greater degree of generality than XML, but the latter nonetheless is capable of

defining syntaxes for languages, including HTML. A number of HTML versions have

been delineated using XML instead of SGML. These are referred to as XHTML

languages, the first of which was XHTML 1.0. Semantically, there are no differences

between XHTML 1.0 and HTML 4.01; while syntactically, they are identical aside from

a few minor limitations of HTML’s generality in XHTML.

Document Type Declarations

Every specification of HTML includes a declaration that can be employed at the start

of documents that are going to follow the specification. The HTML 4.01 and XHTML

1.0 specifications have three flavours. Each of these has a unique document type

declaration, characteristics, and components, and they are as follows,

2.1 Web Data Visualisation 43

1. The Strict version which evolved in late 1997, when W3C was addressing more
reliable parsing of HTML documents.

2. The Transitional flavour which is a superset of Strict HTML and contains
deprecated elements and attributes. In other words, while the Strict version is
considered best practice, the Transitional version possesses elements and
attributes which should be avoided whenever possible since they can potentially
be removed from HTML recommendations in the future.

3. The Frameset version constitutes a superset of a Transitional flavour. It
incorporates a feature which permits multiple sub-windows or frames to be
displayed within the client area of a web browser.

The following are the advised document type declarations for XHTML 1.0 Strict,

XHTML 1.0 Frameset, and HTML 4.01 Transitional:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<!DOCTYPE HTML
PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

Unrecognised Elements and Attributes

At times, new web developers can become puzzled by another aspect of HTML, which

is that browsers do not highlight unrecognisable element or attribute names contained

in a document. This differs from the norm of programming, as if a keyword is mistyped

in a Java program for instance, the error will be flagged, causing the program to stop

running. However, the browser will try to display an entire web page, even if, for

example, an element name ‘p’ is mistyped. In the case of attribute names that are not

recognised, the browser simply ignores the attribute, whilst in the case of element names

44 Background

that are unfamiliar, the browser will show the elements’ contents as if the mark-up was

absent.

The Cascading Style Sheets

It is possible that both a documents’ semantics and presentation can be represented by

using the HTML markup. However, it is recommended that this should mainly be the

case for the documents’ semantics, whereas the presentation of information in a

document is best determined by using a different mechanism. One such mechanism is

Cascading Style Sheets (CSS), which is a style sheet technology that can be utilised

with both HTML and XML documents.

CSS Features

The primary purpose of style sheet technology is to distinguish the presentation of

information from the main content of the information and semantic tagging. There are

many benefits to doing so; one of which is that it enables the unamended presentation

of the documents’ information in several ways. This is in evidence in user selectable

alternative style sheets. However, CSS has additional functions. For instance, the link

element defines a media attribute that can be employed to identify the forms of media

for a style sheets’ design, in which amongst other aspects, could refer to printer output

or the content to be displayed on a specific monitor or screen.

Style Inheritance

Cascading style sheets are structure-based, however in contrast, inheritance is

determined by the documents’ tree structure. Essentially, this means that a component

2.1 Web Data Visualisation 45

inherits a value by examining whether a property value already exists in the parent

element in the document. If this is the case, the parents’ value is inherited. Similarly,

the parents’ property value can be inherited from its’ parent and so forth. For instance,

taking id value theValue, an element will search its ancestral tree from its parent

upwards until it reaches an element with a property value or the root HTML element.

Figure 2.1.1 presents a model of this cascading mechanism [33].

When the search finds an element with a property value, that value will be taken by

theValue as its property value. If the search of the ancestral tree returns no result, then

ultimately the property will be given a value as per the CSS specification, and this is

referred to as the property’s initial value [34]. This is reasonable if you consider that an

initial value is assigned to each element property upon the first reading of the document,

which is subsequently amended if a value is later found to be supplied either by the

cascade or the inheritance mechanism.

Figure 2.1.1 The stages of CSS cascading mechanism

46 Background

Another significant aspect of inheritance is that although many CSS properties are

inheritable, some are not. Usually, whether a property is inherited is apparent to the user

based on their intrinsic knowledge. For instance, it is reasonable that an elements’ height

property is not inherited from its parent, as frequently, the parent has numerous children

on numerous lines, and hence, children would normally have lower height.

2.1 Web Data Visualisation 47

2.1.3.2 JavaScript and Objects

JavaScript, as a component of the Netscape 2.0 release, was first developed by Brendan

Eich [35]. During its preliminary phase, the language was referred to as LiveScript,

however, prior to the final release of Netscape 2.0, there was a public announcement on

December 4th, 1995 revealing the language name to be JavaScript. The purpose of this

name change was to connect the scripting language with the growing interest in Sun’s

Java programming language, however since then, this has created a substantial degree

of confusion. Whilst there are many likenesses between JavaScript’s and Java’s core

syntaxes, there are also significant disparities that exist between them in other areas.

Scripting Language

Programming languages that do not require assembly prior to execution are referred to

as interpreted languages. JavaScript program is one such language. An interpreter is

software that reads and executes a program that has been written in an interpreted

language. A JavaScript interpreter is present in the majority of contemporary browsers.

Typically, there is a greater degree of difficulty in maintaining programs written in

compiled languages such as Java then in managing programs written in interpreted

languages. With the latter, there is no requirement to recompile interpreted programs

following modification, and as there are no compiled versions of source files, there are

less files overall that must be managed.

Furthermore, there are frequently less complications with programs written in an

interpreted language than comparable programs written in a conventional compiled

language. To illustrate this point, JavaScript has a single Number data type, whereas

conversely, Java entails a broad range of numeric data types (i.e. int, float, double, etc.).

48 Background

Data Types

As discussed earlier, in JavaScript, the variables do not have very explicit data types,

however each one contains a value. There are six JavaScript data type categories as

follows, into which each value can be classified as Numbers – for numeric values, String

– for string values, Boolean – for the literals true and false values, Null – for the literal

null values, Object – for object values and Undefined – for Variables that have been

recognised but do not yet have a value.

In Java, the Java compiler flags the variables in the undefined category as errors,

however in JavaScript, this is the responsibility of the developer. With the exception of

the object category, the JavaScript data types are sometimes referred to collectively as

primitive data types.

Operand Values typeof Returns

Null object

Boolean boolean

Number number

String string

Object representing function function

Object not representing function object

Declared variable without value undefined

Undeclared variable undefined

Undeclared property of an Object undefined

Table 2.1.1 Values returned by typeof for common operands

As presented in Table 2.1.1 [33], typeof is a JavaScript operator that gives detail about

the value data type of a variable. The typeof operator is frequently employed to assess

whether a variable has already been defined prior to use. It is important to note that

2.1 Web Data Visualisation 49

there are a number of reasons for the typeof operator marking a string undefined, rather

than it simply being the case that it is the variable values’ classification. The following

is an example of JavaScript employing the typeof operator to test the data type,

var x;
var y;
y = "this is a string";
alert("x is " + (typeof x) + "\n" + // output as undefined
 "y is " + (typeof y)); // output as string

The term of identifiers are the strings utilised to name variables and are case sensitive.

In JavaScript, an acceptable identifier is any string starting with a letter or underscore,

made up solely of these characters and digits, and is not a reserved word. Lastly, in a

JavaScript program, in circumstances where a variable is assigned a value without first

being declared with var statement, the variable will automatically be generated by the

scripting engine.

Object Properties

In JavaScript, an object is defined as a set of properties, in which each one is comprised

of an individual name and a value classified as one of the six aforementioned JavaScript

data types. JavaScript properties are similar to Java instance variables, in that they are

non-static variables which have been declared outside any method.

Object properties are similar to JavaScript variables in that they do not have data types,

as only property values do so. In the example given below, which is syntactically valid

in JavaScript, there is a sequence of statements that sequentially assigns Boolean,

String, and Number values to an individual property (prop) of an object (obj) (which is

taken to have been previously declared),

obj.prop = false;
obj.prop = "null";
obj.prop = 0;

50 Background

Another significant disparity between Java and JavaScript programs is that the

JavaScript does not define classes, although there are several aspects that are class-like.

For instance, object constructors can be defined to generate objects and automatically

determine their properties (this is discussed in more detail later in this section).

Furthermore, JavaScript employs a prototype mechanism that gives a type of

inheritance (this is not discussed in more detail as it is outside the scope of this paper).

It is possible to add or remove properties and methods from a JavaScript object after its

creation, however this is not the case with Java, where an objects’ class defines its

variables and methods. The lines below illustrate this point,

var obj1 = new Object();
obj1.prop = "test object";
delete obj1.prop;

The flexibility of JavaScript is also demonstrated by its dynamic property creation.

However, a downside of this flexibility is that JavaScript is missing some security

aspects. For instance, in an assignment statement, if a property name is mistyped, an

error message will not be generated. Instead, an entirely new property will be produced.

This is an important element to monitor in the process of debugging JavaScript code.

A new empty object is generated by a new expression, following which the specified

constructor is called and provided with this new object, in addition to the specified

values of the argument. At that point, the constructor can carry out initialisation on the

object, which can entail the creating and initialising properties, adding methods to the

object, and adding the object to an inheritance hierarchy where further properties and

methods can be inherited.

With regards to the Object() constructor, the constructor does not add any properties or

methods directly to the new object. However, the object is amended, thereby inheriting

a number of genetic methods, such as default to String() and valueOf() methods, which

are used when converting the object to both String and Number values. There is no

2.1 Web Data Visualisation 51

major benefit to the value generated by these default methods, but they do avert a

runtime error when data type conversion is trying to be applied to the object.

An object initialiser is a useful shortcut tool in JavaScript that enables the creation of

an empty object, and generating properties on this object to which values are assigned.

It is called a new Object(). The following is an example of this,

var obj2 = { prop1:6, prop2:null, prop3:"some text" };

The object generated by the statement contains three properties, labelled prop1

(assigned the value 6), prop2 (assigned the value null), and prop3 (assigned the value

“some text”). Subsequently, the variable obj2 is assigned a reference to this object.

Object References

In JavaScript, the values of type Object are not actually objects; rather they are

references to objects. Therefore, the JavaScript code below will generate an output of a

“some text” string,

var obj1 = new Object();
obj1.data = "some";
var obj2 = obj1;
obj2.data += " text";
window.alert(obj1.data);

Comparably, an Object value is employed as an argument to a function or method, the

object reference is delivered, and it is not a reproduction of the object itself. The

JavaScript code below illustrates this point:

function objArgs(param1, param2) {
 param1.data = "changed";
 param2 = param1;
 window.alert("param1 is " + param1.data + "\n" +
 "param2 is " + param2.data);
return; }

var o1 = new Object();
o1.data = "original";
var o2 = new Object();
o2.data = "original";

52 Background

objArgs(o1, o2);
window.alert("o1 is " + o1.data + "\n" +
 "o2 is " + o2.data);

The program generates two objects labelled object1 (o1) and object2 (o2), which are

subsequently passed to the function objArgs() as arguments. Therefore, once the

function is called, instantly param1 and param2 are copies of the object references in

object1 and object2, respectively. This is shown in Figure 2.1.2(a) [33]. The data

property of the object referenced by param1 and object1 is amended by the first

statement of the function, as depicted in Figure 2.1.2(b). Next, the function amends

param2 to be a replication of the object referenced in param1. An important point here

is that this does not affect the variable object2 or the object referenced by this variable

in any way, as shown in figure 2.1.2(c). As the result, param1, param2, and object1 will

all present as “changed”, while object2 shows “original”.

2.1 Web Data Visualisation 53

Figure 2.1.2 The state of variables and parameters of the object argument example (a) prior to
the initial statement of the objArgs function is executed (b) following the execution of this
statement (c) after the function's second statement is executed

54 Background

2.1.3.3 Browser and DOM

A host object called document allows JavaScript programs to access the Document

Object Model (DOM). Several other host objects are provided by frequently used

browsers, however in contrast to document, these objects do not have any official

standards. Hence, this section will provide a short overview of several common host

objects, as well as discussing the document object. These objects have several functions,

including enabling a JavaScript program to modify the size of browser windows, and

move the browser to another URL.

The HTML specification includes intrinsic event attributes and the meta element,

therefore nothing is directly related to the DOM at the moment. This will be first

introduced in Figure 2.1.3 [33], which presents the JavaScript show() function. The

function initially calls the getElementById() method of the document object, delivering

the value of the first argument passed to it. This is the string img1 in both calls to show().

To do so, a String is taken, and a JavaScript Object is returned, in which the id attribute

value of the document element is the specified String. Subsequently, this object has a

method setAttribute(), which permits JavaScript code to assign values to the attributes

of an img element, for example, the src attribute. In order to assign the value of its

second argument (a String representing a URL) to the src attribute of the img element,

the show function() employs this method. Following this amendment, the browser will

display a different image for this img element as shown,

function show(id, url) {
 var el = window.document.getElementById(id);
 el.setAttribute("src", url);
 return;
}

2.1 Web Data Visualisation 55

Figure 2.1.3 For each element in an HTML document there is a corresponding Object which
can be accessed using getElementById, and the HTML attributes of an element can be specified
using the setAttribute.

Intrinsic Event Handling

When something of potential interest takes place in a browser, this is referred to as an

event. These could include occurrences when moving the mouse over an element,

clicking the mouse button and pressing a key. Each of these is assigned an abbreviated

name; for example, the first event listed above is a “mouseover”. As observed earlier,

an intrinsic event attribute is employed to give scripting code that is called at the point

of occurrence of a specific event that is connected with the element. Lastly, the

connected event follows the name given to each event attribute.

Table 2.1.2 provides the list of intrinsic event attributes as defined by the HTML 4.0

recommendation. They are applicable to the body element and to the vast majority of

elements that are visually embodied in an XHTML 1.0 Strict document [33].

Attribute Events

onload The body of the document has been fully loaded and parsed by browser

56 Background

onunload A new document is ready to be loaded instead of the current one by

browser

onclick A mouse button has been clicked and released on the element

ondblclick The mouse has been double-clicked on the element

onmousedown The mouse has been pressed on the element

onmouseup The mouse has been released on the element

onmouseover The mouse has moved over the element

onfocus The element has just received the focus

onblur The element has just lost the focus

onkeypress The key has been pressed and then realised on the element

onkeydown The key has been pressed on the element

onkeyup The key has been released on the element

onsubmit The element is ready to be submitted

onreset The element is ready to be reset

onselect The element’s text has been selected

onchange The element’s value has been changed

Table 2.1.2 The list of HTML intrinsic event attributes

Usually, a meta element is utilised to detail the information that would typically be

located in the HTTP header field of the response message containing the HTML

document: http-equiv is employed to denote the name and content value of the HTTP

header field. Content-Script-Type is the name given to the HTTP header field defined

by the meta element. It is utilised within the document to state the default language for

scripts. It should be remembered that within web documents, whilst JavaScript is the

most frequently used, other scripting languages are also effective when employed. So,

the ultimate outcome is that the meta element informs the browser that the intrinsic

event attributes are in JavaScript language.

2.1 Web Data Visualisation 57

<meta http-equiv="Content-Script-Type" content="text/javascript" />

(In the majority of browsers, if the content script type header field is undefined within

a document, the default will be JavaScript.)

The Document Tree

For JavaScript programs that run within a DOM2-compliant browser, there are a range

of node types comprising the accessible document tree. Some of these nodes are

JavaScript objects that match HTML elements including html or body, whilst others

may be comprised of text which signifies an elements’ content or the white space

between elements. Moreover, other nodes may be representative of HTML comments’

text. The document type declaration is also represented by a node. Instances of a specific

host object represent each form of node. For example, instances of the host object called

Element represent document elements; likewise, instances of the host object named

Text represent text and the white space between elements. The DOM determines a

generic host object called Node that is comprised of properties that are also part of any

of the document trees’ objects, such as Element, Text and a number of other host

objects. This is done to streamline the definition of these disparate host objects. Tables

2.1.3 and 2.1.4 provide lists of the core properties of the Node object [33].

Property Description

nodeType Represents the type of node in Number

nodeName Provides the name of this Node in String

parentNode References to the object of the node’s parent

childNodes Returns array that contains child nodes of this node

previousSibling Returns previous sibling of this node, or null if not existed

nextSibling Returns next sibling of this node, or null if not existed

58 Background

attributes Returns array that contains attributes of this node

Table 2.1.3 The list of non-method properties of Node object

Method Function

hasAttributes() Returns true if this node has attributes

hasChildNodes() Returns true if this node has children

appendChild(Node) Adds the Node to the end of the children list

insertBefore(Node, Node) Adds the first Node to the children list

removeChild(Node) Removes the Node from the children list

replaceChild(Node, Node) Replace the second Node with the first in the children list

Table 2.1.4 The list of method properties of Node object

In detail, the documentElement property of the document object stores the Element

instance that represents the html element of the document. By beginning at this node, it

is a simple process to traverse the document tree using the Node methods, thereby

ascertaining the required information about the tree.

Value Constant Type

1 Node.ELEMENT_NODE Element

2 Node.ATTRIBUTE_NODE Attr

3 Node.TEXT_NODE Text

4 Node.COMMENT_NODE Comment

5 Node.DOCUMENT_NODE Document

6 Node. DOCUMENT_TYPE_NODE DocumentType

Table 2.1.5 The list of possible values for the nodeType property of Node object

2.1 Web Data Visualisation 59

Although the root of a HTML document is the html element, it is actually in the DOM

that the document object is considered the Node trees’ root. It is the HTML Element

instances’ parent, whereas the value of its own parentNode is null. Therefore, external

to the html element, document provides a parent for nodes representing mark up. As

illustrated in Table 2.1.5, this includes comments and the document type declaration

(which has a nodeType value of Node.DOCUMENT_TYPE_NODE).

Furthermore, ELEMENT_NODE type nodes are instances of the element host object.

Similar to document, they have particular extra properties in addition to those belonging

to Node. TagName is the only non-method property that is specific to Element, and

fundamentally, it is simply another name for the nodeName property. Character data is

represented by instances of the TextDOM object. This basically refers to anything that

is not markup in the HTML document. Node.TEXT_NODE is the node type for these

elements. Data is the key property of text instances and is represented by the Text node.

Text content that is presented by the browser is modified by assigning a value to this

property.

DOM Event Handling

When an event takes place in the DOM event model, an instance of a host object is

created, which is named Event. This instance is comprised of event information which

details the type of event, for example, click or mouseover that were previously

mentioned, and a reference to the document node that matches the markup element that

caused the event. This node is referred to as the event target. This information is given

by the event instance properties type and target.

An event instance is deployed to specific event listeners as soon as it is generated. In

the JavaScript form of the DOM, an event listener is defined as an operation that selects

a single argument from the instance of event. An association between an event listener

60 Background

and the type of event taking place on a node object is generated by a call to the

addEventListener() method on that node. For instance, in the case of a document

encompassing an element with a msgBtn id, the JavaScript code below is executed,

var btn = window.document.getElementById("msgBtn");
btn.addEventListener("click", msgBox, false);

function msgBox(el) {
 window.alert(
 "Some Text\n" +
 "Event type: " + el.type + "\n" +
 "Event target element type: " + el.target.nodeName);
return; }

In the later section, there will be further discussion of the third (Boolean) argument to

addEventListener() in association with event capture, however for the moment, this is

set to false. The second argument relates to the event listeners identifier. The first

argument is a String detailing the type of event listened for, which is not case sensitive.

Most of the event types are the same for the DOM2 and those employed for the HTML

intrinsic event attributes, but the following three intrinsic event types do not have a

corresponding DOM2 event type: keypress, keydown and keyup. In addition, there is

no DOM2 double-click event, which is one that matches the ondblclick attribute.

Event Propagation

Besides defining event instances, the DOM2 event model also manages event

propagation. Within the document tree, the target node of a mouse event is the most

deeply nested screen visible node that covers the mouse location. For instance, the

anchor node is the target of the mouseover event when the following criteria are met:

(1) the mouse travels over an anchor (i.e. a hyperlink) within a paragraph element, that

(2) itself is in a td element, that (3) is nested within a table elements hierarchy, which

(4) itself is part of the document body element.

2.1 Web Data Visualisation 61

Whilst an event has a single target node, it can result in the calling of numerous event

listeners. This can initially transpire if a number of event listeners have been added to

the target node. To be more specific, when an event takes place, a DOM2-compliant

browser theoretically generates a list of event listeners, which are then called based on

the list order. This list is comprised of three types of event listener, which, in order, are:

capturing listeners, target listeners, and bubbling listeners. A capturing event listener is

connected with a document tree ancestor of the target node and was generated via a call

to addEventListener() with a true third argument. A target listener is directly added to

the target node with a false third argument. Finally, a bubbling listener is connected

with a document tree ancestor of the target node and was generated via a call to

addEventListener() with a false third argument.

In the case that there are numerous ancestors with capturing listeners, their order runs

from those closest to the document tree root, moving to those nearest the target node.

The opposite occurs for bubbling listeners, as the order begins with nodes closest to the

target and concludes with those nearest to the root. For some event types such as load,

unload, focus, and blur, bubbling listeners are excluded from the listener list.

Following the creation of this list of listeners, the browser calls them individually as per

the order of the list. There are two previously unmentioned DOM2 properties of event

which inform the listener function about event propagation. The first property,

eventPhase, contains a Number value that denotes the browsers’ event processing

phase. A number value of 1 signifies that the call is to capturing event listener, which

means that the browser is in the capture phase. A number value of 2 indicates a target

listener is being called; whilst a number value of 3 represents a bubbling listener. The

second property, currentTarget, encompasses a reference to the listeners’ registered

node.

It is possible but the browser will not call all of the listeners from the ordered list if any

one of the listeners calls the stopPropagation() method on its Event instance argument,

62 Background

as it takes no arguments. Specifically, as soon as stopPropagation() is called, any

listeners that would be called during the present processing phase and that are registered

listeners on the current node (currentTarget) will be executed; however, at that point,

there will be no additional listener processing for this event. It is important to note that

a call to stopPropagation() in an event listener for one event does not affect any other

events.

Capturing event listeners are especially effective for tasks that are related to the top

levels of the document tree. For instance, this would apply to the cursor trail example

that was given earlier in this document. Typically, it is preferable that tasks such as

these are carried out on every event possible. When an event is captured prior to

reaching listeners at lower levels of the document tree, it means that the capturing

listener can process the event regardless of whether stopPropagation() is called by a

listener further down the ordered list.

Generating Events

When invalid data is entered into a text box, it is preferable that firstly, the user is

informed that there is an error, and secondly, that the contents of the text box are

selected. The purpose of this is to both highlight the information and to automatically

replace the contents when new valid data is entered. Ideally, the browser it would

modify its display in the same way it changes when the contents of the textbox are

selected with the mouse by the user. This would also cause the occurrence of a select

event.

Method Elements

blur anchor, input, select, textarea

click input (button, checkbox, radio, submit)

2.1 Web Data Visualisation 63

focus anchor, input, select, textarea

select input (text, file), textarea

Table 2.1.6 The list of DOM2 methods for generating common events

As shown in Table 2.1.6, DOM2 establishes four methods that can be employed to

simulate effects such as these. These methods take no arguments and have no return

value. Each one creates an event, the type of which is determined by the name of the

method, and the object becomes the Events’ target value. Moreover, the browser

displays any visual adjustments that are usually connected with the event, including

selecting the text within a textbox. Whilst these four methods are adequate for most

typical requirements, they are actually special cases that are components of a more

general DOM mechanism. This mechanism can be employed to create random events.

64 Background

2.1.4 Data-Driven Documents

2.1.4.1 Selections and Data

Selections enable the various data-driven transformation of the Document Object Model

(DOM) including set attributes, styles, properties, HTML or text content [36]. Elements

can be added or removed to match the data by using the data joins’ enter and exit

selections.

Usually, selection methods return the current or a new selection, allowing the brief

application of multiple operations through method chaining on a specific selection. For

instance, the following demonstrates appointing the class and colour style of all aspects

of a paragraph in the specified document,

d3.selectAll("p")
 .attr("class", "main")
 .style("color", "green");

which is equal to,

var p = d3.selectAll("p");
p.attr("class", "main");
p.style("color", "green");

All selections are immutable, and a new selection is returned by every selection method

that impacts which elements are selected, rather than the existing selection being

amended. However, a significant point is that elements are necessarily changeable as

the document transformations are selection-driven.

Element Selection

W3C selector strings are accepted by selection methods. These include “.box”, which

selects elements with the class box, or “div”, which selects the DIV elements. There are

two forms of selection methods: firstly, select, and secondly, selectAll select only

chooses the first matching element whereas selectAll chooses all matching elements in

document order. The top-level selection methods query the whole document (d3.select

2.1 Web Data Visualisation 65

& d3.selectAll), while the sub-selection methods limit selection to the descendants of

the selected elements (selection.select & selection.selectAll).

Specifically, d3.select selects the first element that corresponds to the specified selector

string. An empty selection is returned if there are no corresponding elements. If several

elements correspond to the selector, the first matching element per the document order

will be selected alone. For instance, to select the first DIV element,

var div = d3.select("div");

The specified node is selected instead in circumstances where the selector is not a string.

This is beneficial if the node reference is already known, as is the case within an event

listener or a global such as the document body. The following demonstrates making a

clicked DIV element green,

d3.selectAll("div").on("click", function() {
 d3.select(this).style("color", "green");
});

d3.selectAll selects all elements that correspond to the selector string specified. The

elements are selected based on the document order, running from top to bottom. An

empty selection is returned if there are no elements that correspond to the selector in

the document or if the selector is null or undefined. The following demonstrates

selecting all DIV elements,

var divs = d3.selectAll("div");

The array of nodes specified are selected when the selector is not a string. This is

beneficial if the node reference is already known, as with the this.child.Nodes within an

event listener, or a global such as document.links. As an alternative, the nodes may be

a pseudo-array such as a NodeList or arguments. The following demonstrates making

all links green,

d3.selectAll(document.links).style("color", "green");

66 Background

Binding Data

The elements are successfully bound to the data when the specified array of data binds

with the selected elements and a new selection representing the update selection is

returned [36]. In addition, the enter and exit selections are defined on the returned

selection, and they can subsequently be employed to add or remove elements that match

the new data. The specified data is an array of random values such as numbers or

objects, or a function that returns an array of values for each group. The data assigned

to an element is stored in the property __data__, thereby causing it to be “sticky” data

that is available on reselection.

Each group in the selection has specified data. In general. the data should be specified

as a function if the selection has multiple groups, which include d3.selectAll followed

by selection.selectAll. This function will be assessed for each group in order and is

subsequently passed the following components: the parent datum of the group d, which

could be undefined, the group index i, and the parent node of the selection nodes, which

serves as the parent element of the group. Selection.data can be utilised and combined

with selection.join to enter, update, and exit elements to correspond to data, and

explicitly selection.join is comprised of selection.enter, selection.exit, selection.append,

and selection.remove.

In circumstances where the key function is not specified, the first datum in data is

assigned to the first selected element, followed by the second datum to the second

selected element, and so forth. A key function can be specified to control the data-

element assignment. This substitutes the default join-by-index, as it computes a string

identifier for each data element.

In detail, the update and enter selections are returned in data order, and before the join,

the exit selection preserves the selection order. When the key function is specified, the

element order in the selection may not correspond to their document order. In this case,

selection.order or selection.sort can be applied where necessary. If the data is not

2.1 Web Data Visualisation 67

specified, this approach means that the array of data for the selected elements will be

returned.

Fetching Data

Typically, data is formatted in a standardised format file, irrespective of the source of

data. Some of the more frequently used formats are XML, CSV, and JSON [37]. D3 has

made data fetching functions available to support these data which has proved to be

useful. With regards to formats, JSON and XML can incorporate the nested structure of

the data; however, CSV is not capable of supporting this.

D3 also offers handy integral parsing on top of the fetch module. The following

demonstrates how to load a text file,

d3.text("/text-file.txt").then(function(data) {
 console.log(data); // output text from the file
});

And to load and parse a CSV file,

d3.csv("/csv-file.csv").then(function(data) {
 console.log(data); // output data in CSV format
});

A standard D3 has five integral data fetching functions which support the main data

formats. These include d3.text(), d3.xml(), d3.html (), d3.csv() and d3.json(). Of these

five, d3.json() and d3.csv() are the two most often used functions.

68 Background

2.1.4.2 Scales and Axes

Scales are a helpful construct for a fundamental visualisation task of mapping an aspect

of abstract data to a visual representation [38]. Whilst scales are most frequently utilised

for position encoding quantitative data (including mapping a measurement in metres to

a position in pixels for dots in a scatter plot), scales can denote almost any visual

encoding, including deviating colours, stroke widths, or symbol size. Furthermore,

scales and almost any type of data are compatible, including named categorical data or

discrete data that needs reasonable breaks.

Normally, a linear scale is most appropriate for continuous quantitative data. In contrast,

a time scale is best suited to time series data. Based on the requirements of the

distribution, transforming data utilising a power or large scale could be an optional

avenue. A quantise scale can support differentiation by rounding the continuous data to

a fixed set of discrete values. In the same manner, a quantile scale calculates quantile

from a sample population, and a threshold scale facilitates the specification of random

breaks in continuous data.

With regards to discrete ordinal or categorical data, which are ordered and unordered

data respectively, an ordinal scale specifies a definitive mapping from a set of data

values to a matching set of visual attributes; for example, colours. The associated band

and point scales are helpful for position-encoding ordinal data. This could refer to bars

in a bar chart or dots in a categorical scatter plot. Scales do not have an inherent visual

representation, however most of them can produce and format ticks for reference marks,

which is beneficial to the construction of axes.

Continuous Scales

The function of continuous scales is to mark a continuous quantitative input domain to

a continuous output range. The mapping maybe inverted if the range is also numeric. A

2.1 Web Data Visualisation 69

continuous scale is indirectly constructed; therefore, a linear, power, log, identity, time,

or sequential colour scale could be utilised in its place.

A specified value from the domain returns a matching value from the range. If

circumstances arise that a given value is outside the domain and clamping is not

possible, the mapping can be extrapolated to the point that the returned value is outside

the range. Here is an example of how to apply a position encoding,

var x = d3.scaleLinear()
 .domain([0, 100])
 .range([0, 800]);

x(10); // 80
x(30); // 240

Sequential Scales

There are similarities between continuous scales and sequential scales, like diverging

scales. Both map a continuous numeric input domain to a continuous output range. The

output range of a sequential scale is determined by its interpolator and is not

configurable, which differentiates it from a continuous scale. Invert, range,

rangeRound, and interpolate methods are not exposed by these scales.

d3.scaleSequential produces a new sequential scale with a given domain and

interpolator function. An unspecified domain defaults to [0, 1], whilst an unspecified

internal interpolator defaults to the identity function. Upon application of the scale, the

interpolator will be called upon with the value that is normally in the range [0, 1], where

0 and 1 are the minimum and maximum values respectively. The implementation of the

prevalent rainbow scale with d3.interpolateRainbow is shown as,

var rainbowScale = d3.scaleSequential(d3.interpolateRainbow);

70 Background

Diverging Scales

There are similarities between diverging scales, like sequential scales, and continuous

scales. Both map a continuous numeric input domain to a continuous output range.

However, in contrast to continuous scales, a diverging scales’ output range is

determined by its interpolator and is not configurable. Invert, range, rangeRound, and

interpolate methods are not exposed by these scales.

d3.scaleDiverging builds a new diverging scale within a given domain and interpolator

function. An unspecified domain defaults to [0, 1]; and an unspecified interpolator

defaults to the identity function. Upon application of the scale, the interpolator will be

instigated with the value normally in the range [0, 1]. Here, 0, 0.5, and 1 represent

extreme negative, neutral, and extreme positive values, respectively. The following is

an example of how to implement a diverging spectral scale,

var spectral = d3.scaleDiverging(d3.interpolateSpectral);

Ordinal Scales

Ordinal scales differ from continuous scales in that they contain a discrete domain and

range. d3.scaleOrdinal generates a new ordinal scale with a given domain and range.

Both an unspecified domain and an unspecified range will default to the empty array.

Until the point that a non-empty range is determined, an ordinal scale will always return

undefined.

Band Scales

Aside from their output range being continuous and numeric, band scales are similar to

ordinal scales. The band scale automatically computes discrete output values by

dividing the continuous range into homogeneous bands. Normally, band scales are

utilised for bar charts that have an ordinal or categorical dimension. A band scale has

2.1 Web Data Visualisation 71

an unknown value; hence, it is essentially undefined. Additionally, band scales do not

permit indirect construction of domains. Figure 2.1.4 presents an example of the band

scale [38].

Figure 2.1.4 An illustration of the band scale which can be created by d3.scaleBand

Within a specified domain and range, and without padding, rounding, or centre

alignment, the d3.scaleBand constructs a new band scale. An unspecified domain

defaults to the empty domain, whilst an unspecified range defaults to the unit range [0,

1].

Point Scales

Point scales are a type of band scale where the bandwidth is set at zero. Usually, point

scales are utilised for scatter plots that have an ordinal or categorical dimension. The

value of a point scale is unknown, so it is always undefined; therefore, a point scale

does not permit indirect construction of a domain. Figure 2.1.5 presents an example of

the point scale [38].

Figure 2.1.5 An illustration of the point scale which can be created by d3.scalePoint

72 Background

Within the given domain and range, and without padding, rounding, or centre

alignment, the d3.scalePoint builds a new point scale. An unspecified domain defaults

to the empty domain, whilst an unspecified range defaults to the unit range [0, 1].

The Axes

The axis element provides reference marks for scales that can be read by the human

users. Axes are always rendered at their origin, regardless of their orientation [39]. In

terms of chart position, to change the axis, the transform attribute on the containing

element must be specified. For instance,

d3.select("body").append("svg")
 .attr("width", 600)
 .attr("height", 30)
 .append("g")
 .attr("transform", "translate(0,30)")
 .call(axis);

The elements comprising an axis are firstly a path element of class “domain”, which

represents the degree of the scales’ domain; and secondly, transformed g elements of

class “tick”, which denotes each of the scales’ ticks. Each one contains a line element

to facilitate drawing the tick line, and a text element that is used for the tick label. Figure

2.1.6 provides an illustration of the D3 generated axes in horizontal and vertical [40].

Figure 2.1.6 An illustration of using D3 axes to create horizontal and vertical axes

2.1 Web Data Visualisation 73

2.1.4.3 Transition and Timer

D3 transition is a selection-like interface that is used to animate amendments to the

DOM [41]. Rather than immediately applying modifications, the transitions gradually

interpolate the DOM over a specified period, from the present to the chosen target states.

The stages of applying a transition are firstly, to select elements, secondly, to call

select.transition, and thirdly, to make the necessary amendments. For instance,

d3.select("div")
 .transition()
 .style("height", "600px");

The majority of selection methods are supported by transitions, which include

transition.attr and transition.style in place of selection.attr and selection.style. However,

not all methods are supported; for instance, prior to beginning a transition, elements

must be appended, or data must be bound. In order to simplify the removal of elements

following the end of a transition, a transition.remove operator is provided.

Transitions leverage a range of integral interpolators for the purpose of computing the

intermediate state. There is automatic detection of colours, numbers, and transforms.

Additionally, strings with embedded numbers are identified, which is the case with

many styles, including padding and font sizes, and paths. transition.attrTween,

transition.styleTween or transition.tween can be employed to specify a custom

interpolator.

Transition Selection

Transitions originate from selections through selection.transition, and d3.transition can

be utilised to generate a transition on the document root element. To be more specific,

selection.transition returns a new transition on the specified selection with the given

name. Null is returned if a name is not specified. Transitions must have the same name

for them to be exclusive with another.

74 Background

In circumstances, where the name is a transition instance, the returned and specified

transitions will have identical IDs and names. The existing transition is returned for an

element if there is a pre-existing transition with the same ID on the given element. if

not the timing of the returned transition is according to the inheritance from the existing

transition of the same ID on the closest ancestor of each specified element. Therefore,

this method is effective for synchronising a transition across multiple selections, or re-

selecting a transition for specific elements and amending its configuration. For instance,

var t = d3.transition().duration(900);

d3.selectAll(".leaves").transition(t)
 .style("fill", "green");

d3.selectAll(".flower").transition(t)
 .style("fill", "red");

The default timing parameters are employed when a specified transition is not identified

on a selected node or its ancestors, which would indicate that the transition had

concluded.

In addition, selection.interrupt suspends the specified name’s active transmission on

selected elements, and terminates any upcoming transitions with the specified name.

Null is used if a name is not specified.

If a transition element is interrupted, there are no repercussions for any transitions on

any descendant elements. For instance, an axis transition is comprised of numerous

independent synchronised transitions on the descendants of the axis element, which

refers to the tick lines, the tick labels, the domain path, and so forth. Therefore, the

descendants must be interrupted in order to interrupt the axis transition.

selection.selectAll("*").interrupt();

2.1 Web Data Visualisation 75

Transition Lifecycle

As soon as a transition is generated by selection.transition or transition.transition, the

transition can be configured utilising approaches such as transition.delay,

transition.duration, transition.attr, and transition.style. Methods with specified target

values such as transition.attr are assessed concurrently; however, other methods that

need the starting value for interpolation such as transition.attrTween and

transition.styleTween must be postponed until the transition has started.

The transition is scheduled soon after creation, either at the end of the current frame or

during the subsequent frame. When this happens, it is no longer possible to amend the

delay and start event listeners.

When the next transition starts, if there is an active transition which has the same name

on the same element, it is interrupted. Then, an interrupt event is passed to the registered

listeners. Note that the interruption occurs at the start rather than at the creation; and

therefore, even a transition that has no delay will not immediately interrupt the active

transition, because the old transition is provided with a final frame. If it is necessary to

interrupt immediately, selection.interrupt can be utilised. In addition, the starting

transition terminates any pending transactions of the same name on the same element

that had been generated prior to start the transition. Subsequently, the transition passes

a start event to the registered listeners. Once this point has passed, the transition can no

longer be amended, as when it is running, the transition’s timing, tweens, and listeners

cannot be adjusted.

The transition begins during the frame, but it is after all transitions starting this frame

have started that the transition initially calls upon its tweens. Usually, batching tween

initialisation entails reading from the DOM, and its advantage is that it enhances

performance by circumventing interleaved DOM reads and writes.

76 Background

Each frame of an active transition initiates its tweens with an eased t-value that ranges

from 0 to 1. The tweens are invoked by the transition as per their registration order

within each frame.

A transition invokes its tweens for the last time with a non-eased t-value of 1 when it is

ending. It subsequently deliveries an event to registered listeners. This is the final point

at which the transition can be examined. Upon its conclusion, the transition is deleted

from the element and its configuration is terminated.

The Timer

A D3 timer offers an efficient queue that can handle thousands of animations

simultaneously, whilst ensuring consistent synchronised timing with animations that are

concurrent or staged. Internally, if it is available, it employs a requestAnimationFrame

for fluid animation. In the case of delays lasting longer than 24ms, it can be switched to

setTimeout [42].

Specifically, d3.now returns the current time according to the performance.now, if

available, and the date.now if not. At the beginning of each frame, the current time is

updated, thereby ensuring its consistency during the frame. Also, any timers that have

been scheduled during the same frame will therefore be synchronised. In the event that

this method is called outside of a frame, the current time is calculated and fixed until

the next frame, which also safeguards the consistency of timing during the event

management.

A new timer is scheduled by the D3 timer, which subsequently calls upon the given

callback back continually, until the timer is stopped. The user can choose to add a

numeric delay in milliseconds to invoke the specified callback after a delay. If the delay

is unspecified, it will default to 0. The delay is associated with the specified time in

milliseconds; therefore, if the time is unspecified it will default to now.

2.1 Web Data Visualisation 77

The apparent elapsed time since the timer had an active status is passed to the callback.

For instance,

var timer = d3.timer(function(t) {
 console.log(t);
 if (t > 200)
 timer.stop();
}, 50);

The following console output can be expected:

3
25
..
209

The initial elapsed time t is 3ms. This refers to the elapsed time from the commencement

of the timer, not from when the timer was scheduled. The timer, in fact, started 50ms

after the scheduled time, because of the delay that had been specified. However, the

apparent elapsed time may actually be shorter than the real (true) elapsed time if it

transpired that the page is backgrounded and requestAnimationFrame is paused,

because this means that the apparent time is frozen in the background.

If it occurs that the timer is called during the callback of another timer, the new timer

callback will be initiated immediately at the end of the current frame, instead of waiting

for the next frame. This depends on whether the new timer callback is eligible according

to the criteria of the specified delay and time. Within the frame, it is a certainty that the

timer callbacks will be invoked in the order that they were scheduled, irrespective of

their start time.

78 Background

2.1.4.4 Shapes and Colours

In general, visualisations are comprised of discrete graphical marks, including symbols,

arcs, lines, and areas. Certain shapes such as rounded annular sectors and centripetal

splines are complicated, whereas the rectangles of a bar chart are relatively simple to

generate directly using SVG or Canvas. D3 shape provides a range of shape generators

for the convenience of the developers [43].

Like other components of D3, these shapes are data-driven, in that each shape generator

reveals accessors that determine how the input data is mapped to a visual representation.

For instance, scaling fields of data to fit a chart can expose a line generator for a time

series,

var lineGen = d3.line()
 .x(function(d) { return x(d.x); })
 .y(function(d) { return y(d.y); });

This line generator can subsequently be utilised to calculate the d attribute of an SVG

path element,

path.datum(data).attr("d", lineGen);

Arc

Like those shapes in a pie or donut chart, the arc generator creates a circular or annular

sector. It would create a complex a complete circle or annulus if there is a difference of

greater than τ between the beginning and end angles, which is the angular span. In

contrast, if the angular span is less than τ, the arcs could have angular padding and

rounded corners. Arcs are constantly countered at ⟨0,0⟩; hence transform is employed

to transfer the arc to another position.

2.1 Web Data Visualisation 79

Pie

A shape is not directly produced by the pie generator; instead the pie generator

calculates the necessary angles to show a tabular dataset in a pie or donut chart form.

Subsequently, these angles can be passed to an arc generator. Figure 2.1.7 presents an

illustration of the pie with an arc generator.

Figure 2.1.7 An illustration of using d3.pie with arc to create pie and donut charts

A new pie generator with the default settings is constructed by d3.pie. It produces a pie

for the current array of data, returning an array of objects that signify the arc angles of

each item of information. Any further arguments are random, and they are merely

distributed to the accessor functions of the pie generator with this object. The length of

the return array and the data are identical, and each element i in the return array has a

matching element i in the input data. The following properties are resent in all the

objects in the returned range,

• data - the input data for arc
• value - the arc’s numeric value
• index - the arc’s zero-based sorted index
• startAngle - the arc’s start angle
• endAngle - the arc’s end angle
• padAngle - the arc’s pad angle

80 Background

This representation is intended to complement the arc generators default start.angle,

end.angle, and pad.angle accessors. Whilst the angular units are random, if the pie

generator is going to be used with an arc generator, it is important that the angles are

specified in radians.

Line

As with a line chart, the line generator generates a spline or polyline. Lines will also be

present in numerous other visualisation types, including the links in hierarchical edge

bundling. Figure 2.1.8 presents an example of a D3 generated line [44].

Figure 2.1.8 An illustration of using d3.line to create a line chart

d3.line produces a line for the selected data array. According to the associated curve of

this line generator, the selected input data may require sorting by x-value prior to being

passed to the line generator. The line is rendered to the context of the line generator (if

present) as a sequence of path method calls, and a void result is returned with this

function. If not, a path data string is returned.

2.1 Web Data Visualisation 81

Area

As with an area chart, the area generator generates an area which is delineated by 2

bounding lines that are either splines or polylines. Usually, both lines have identical x-

values (x0 = x1), however they have different y-values (y0 and y1). In most cases, y0

is stated as a constant representing zero. The first line, which is the top-line, is defined

by x1 and y1, and is firstly rendered. The second line, which is the baseline, is defined

by x0 and y0, and is second rendered. Here, the points are in reverse order. Figure 2.1.6

provides an example of a D3 generated area chart .

Figure 2.1.9 An example of using d3.area to create the area chart

d3.area produces an area for the selected data array. According to the associated curve

of this area generator, it may be necessary to sort the selected input data by x-value prior

to being passed to the area generator. The area is rendered to the context of the area

generator (if present) as a sequence of path method calls, and a void result is returned

with this function. If not, a path data string is returned.

82 Background

Curves

As discussed, lines are sequences of two-dimensional [x, y] points, and areas are

delineated by a top line and a baseline. However, the question remains as how to

transform this discrete representation into a continuous shape; namely, how to

interpolate between the points. A range of curves are given to show this. Figure 2.1.10

presents an example of a D3 generated curve.

 Figure 2.1.10 An example of using D3 curve to create a curve illustration

d3.curveBasis generates a cubic basis spline by utilising the specified control points.

The first and final points are triplicated. This is done so that the spline begins and ends

at the first and last points respectively, and is tangent to the line between the first and

second points, and to the line between the second-last and last points.

Stacks

Stacking is possible for certain types of shapes, and is done by placing one shape

alongside another. For instance, considering a monthly sales bar chart; it could be

broken down by product category into a multi-series bar chart, in which the bars are

stacked vertically. This is akin to subdividing a bar chart via an ordinal dimension, for

example, a product category, and subsequently applying coloured encoding.

2.1 Web Data Visualisation 83

Figure 2.1.11 An example of using d3.stack to create the stacked chart

Stacked charts can illustrate the overall value and the per category value at the same

time. However, doing so makes comparison across categories more complicated, as

with the exception of the bottom layer, the layers of the stack are not aligned. Figure

2.1.11 presents an illustration of a generated stacked chart [45].

In the case with the pie generator, the stack generator does not directly generate a shape.

Instead, it calculates the positions at which passing to an area generator or direct

employment is possible; for instance, to position bars. To be more specific, the d3.stack

generates a stack for the data array at hand, returning an array that represents each series.

Any further arguments are random, and they are merely distributed to accessors

alongside this object.

84 Background

The Colours

Typically, browsers have an in-depth understanding of colours, however with

JavaScript, there is only little guidance about manipulating them. Hence, D3 colour

gives representations for a range of colour spaces, and facilitates colour specification,

conversion, and manipulation [46]. For instance, considering the colour named

“forestgreen”,

var colour = d3.color("forestgreen");

If converting it to HSL,

var colour = d3.hsl("forestgreen");

Now the hue can be rotated by 180°, the saturation can be added, and it can be formatted

as a string for CSS,

colour.h += 180;
colour.s += 0.3;
var colourStr = colour + "";

D3-color supports the abundant and machine-friendly RGB and HSL colour space, as

well as other less common colour spaces [46].

Specifically, d3.color parses the selected CSS Colour Module Level 3 specifier string

and an RGB or HSL colour is returned. A null value is returned if the specifier was

invalid. CSS details the list of supported named colours. A noteworthy point is that the

function can also be employed with instanceof in order to test if an object is a colour

instance. This is also the case with colour subclasses, where the user can examine

whether a colour is in a specified colour space.

2.1 Web Data Visualisation 85

2.1.4.5 Hierarchies and Geographies

By the nature, many data sets are inherently hierarchical, such as the geographic aspects

including census blocks, census tracts, counties and states; the command structures in

businesses and governments, as well as the software packages and file systems. Even

data which is not hierarchical in nature can actually be hierarchically organised via

approaches such as phylogenetic trees or k-means clustering.

Regarding D3 hierarchy, there are a number of frequently employed techniques to

visualise hierarchical data as follows [47],

• Node-link diagrams: which display topology by utilising discrete marks for

nodes and links. For example, a circle represents each node and a line links each

parent and child. The neatness of the ‘tidy’ tree is very appealing, and the

dendrogram sets leaves at the same level, in both polar and cartesian styles. The

ease of interactive browsing is increased with the use of indented trees.

• Adjacency diagrams: which display topology via the comparative nodes’

placement. For each node area, they can also encode a measurable facet. There

are several purposes for this, including displaying the revenue or file size.

Rectangles and annular segments are utilised in the ‘icicle’ and ‘sunburst’

diagrams, respectively.

• Enclosure diagrams: which also have an encoded area; however, they display

topology through containment. The area is subdivided into rectangles

repetitively by a tree map, and the circles are nestled compactly via circle-

packing. Whilst it arguably more easily displays the topology, it is less efficient

in terms of space than a tree map.

An effective hierarchical visualisation enables rapid multiscale inference. This entails

micro-observations of single aspects, and macro-observations of large groups.

86 Background

Cluster

The cluster layout can generate dendrograms, which are node-link diagrams that set the

trees’ leaf nodes at identical depths. Generally, dendrograms are less condensed than

tidy trees; however, they are beneficial when it is necessary to place all leaves at the

same level, as in phylogenetic tree diagrams or hierarchical clustering. Figure 2.1.12

presents an example of the tree diagram [48].

Figure 2.1.12 An example of using D3 cluster to create the tree diagram

A d3.cluster function sets out the particular root hierarchy, and the following properties

on the root and its descendants are assigned,

• node.x - the node coordinate in x axis

• node.y - the node coordinate in y axis

Treemap

A treemap recursively segments an area into rectangles, as per the relevant value of

each node. It was first developed by Ben Shneiderman in 1991 [49]. The establishment

of a D3 treemap aids an extensible tiling method. The standard approach is to attempt

to produce rectangles with a golden aspect ratio. The reason for this is that it enhances

2.1 Web Data Visualisation 87

readability and size estimation in comparison to slice-and-dice, which essentially just

switches between horizontal and vertical segmentation based on depth. Figure 2.1.13

presents an example of the treemap diagram [50].

Figure 2.1.13 An example of using d3.treemap to create the treemap diagram

A d3.treemap sets out the particular root hierarchy, and the following properties on the

root and its descendants are assigned,

• node.x0 - the node’s left edge of the rectangle

• node.y0 - the node’s top edge of the rectangle

• node.x1 - the node’s right edge of the rectangle

• node.y1 - the node’s bottom edge of the rectangle

Pack

Enclosure diagrams represents hierarchy by using containment or nesting. The leaf

circles’ size encodes a measurable facet of the data. The approximate cumulative size

of each subtree is displayed by the enclosing circles; however, it is important to note

that there is some wasted space, which causes a degree of misrepresentation. Hence, an

accurate comparison can only be made with the leaf nodes. While circle packing is less

88 Background

efficient then a treemap in terms of use of space, the wasted space actually better shows

the hierarchical structure. Figure 2.1.14 presents an example of an enclosure diagram

[51].

Figure 2.1.14 An example of using d3.pack to create an enclosure diagram

A d3.pack sets out the particular root hierarchy, and the following properties on the root

and its descendants are assigned,

• node.x - the coordinate of the circle’s centre in x axis

• node.y - the coordinate of the circle’s centre in y axis

• node.r - the value of the circle’s radius

2.1 Web Data Visualisation 89

D3 Geographies

Sometimes, point transformations are utilised to implement map projections. For

example, the spherical Mercator,

function mercator(x, y) {
 return [x, Math.log(Math.tan(Math.PI / 4 + y / 2))];
}

If the geometry in question is comprised of continuous, infinite point sets, this is a

sensible mathematical strategy. However, computers do not have infinite memory,

therefore it is more appropriate to employ discrete geometry such as polygons and

polylines.

Discrete geometry increases the difficulty of projecting from the sphere to the plane.

Spherical polygon edges are geodesics, which means that they are segments of great

circles rather than straight lines. With the exception of gnomonic map projections, when

they are projected to the plane, geodesics are curves in all map projections. Therefore,

in order to ensure precise projection, interpolation along each arc is necessary. D3

employs adaptive sampling that is based on a prevalent line simplification method so as

to strike an effective balance between precision and accuracy [52].

Topological disparities between the sphere and the plane must be taken into account

when projecting polygons and polylines. Cutting geometry that crosses the anti-

meridian is necessary in some projections, and clipping geometry to a great circle is

required in others.

Furthermore, in order to ascertain their internal side, spherical polygons require a

winding order convention. When the polygon is smaller than a hemisphere, the exterior

ring must be clockwise. Conversely, it must be anticlockwise when it is larger than a

hemisphere. Interior rings that signify holes must employ a winding order that is

opposite to that which is used in the exterior ring. TopoJSON [53] and ESRI [54]

90 Background

shapefiles also utilise this winding order convention; in contrast, GeoJSON’s RFC 7946

[55] does the opposite.

D3 provides significant flexibility, in that the user can select the correct projection and

aspect based on the data at hand. Furthermore, D3 supports a broad range of map

projections, both conventional and uncommon. In JavaScript, D3 utilises GeoJSON to

embody geographic characteristics.

Geo Paths

There are comparisons between the shape generators in d3-shape and the geographic

path generator, d3.geoPath. In a specific GeoJSON geometry or feature object, it either

produces an SVG path data string or renders the path to a Canvas. It is advisable to use

Canvas for interactive or dynamic projections, as it will enhance the performance. Paths

are most appropriate for use with projections or transforms, or in circumstances when

the user is rendering planar geometry directly to SVG or Canvas.

A new geographic path generator with default settings is created by the d3.geoPath.

Subsequently, it renders the specific object, which could be any GeoJSON facet or

geometry object, as follows,

• Point - a single position

• MultiPoint - an array of positions

• LineString - an array of positions creating a continuous line

• MultiLineString - an array of arrays of positions creating multiple lines

• Polygon - an array of arrays of positions creating a polygon (and holes)

• MultiPolygon - a multidimensional array of positions creating multiple polygons

• GeometryCollection – a collection of geometry objects

• Feature - a feature containing one of the above geometry objects

• FeatureCollection – a collection of feature objects

2.1 Web Data Visualisation 91

The sphere type is also supported. As a sphere does not have coordinates, this is

advantageous for rendering the globe outline. Any further arguments are passed to the

pointRadius accessor.

Raw Projections

Point transformation functions that are employed to carry out custom projections are

referred to as raw projections. Conventionally, they are passed to d3.geoProjection or

d3.geoProjectionMutator. At this point, they are exposed to enable the origination of

associated projections. Raw projections take spherical coordinates in radians and return

a point [x, y]. This is usually in the unit square that is surrounding the origin.

A new projection is created from the specified raw projection project by

d3.geoProjection. This is done by taking the longitude and latitude of a specific radian

point, which are frequently referred to as λ (lambda) and φ (phi), and this returns a two-

element array [x, y], which signifies its unit projection. It is not necessary for the project

function to scale or translate the point, because projection.scale, projection.translate,

and projection.centre apply them automatically. Similarly, the project function is not

required to conduct any spherical rotation, as prior to the projection, projection.rotate is

applied.

Spherical Shapes

The process to produce a great arc, which is a segment of a great circle, is simple and

straightforward. The GeoJSON LineString geometry object can be simply passed to a

d3.geoPath; there is no requirement for an arc shape generator, because D3 projections

employ great arc interpolation for intermediate points. Figure 2.1.15 presents a D3

generated example of the graticules [52].

92 Background

Figure 2.1.15 An example of using d3.geoGraticule to generate the graticules

d3.geoGraticule builds a geometry generator that produces graticules. Graticules are a

homogenous grid of meridians and parallels that demonstrate projection distortion. The

default graticule has meridians and parallels every 10° between ±80° latitude. However,

there are meridians every 90° for the polar regions.

Steams

D3 employs a sequence of function calls to transform geometry, which minimises

overhead in comparison to using materialising intermediate representations. It is

essential that streams establish a variety of methods to receive input geometry. By

nature, streams are stateful. This means that the meaning of a point is based on whether

it is positioned inside a line. Similarly, a line and a ring are differentiated by a polygon.

At present, these method calls are synchronous, regardless of being referred to as a

‘stream’.

2.1 Web Data Visualisation 93

d3.geoStream streams the selected GeoJSON object to the particular projection stream.

Although the features and geometry objects are both supported as input, the stream

interface details the geometry only. Therefore, any additional feature traits are

undetectable to streams.

Transforms

Transforms are defined as a generalization of projections. They carry out

projection.stream and can be passed to path.projection. It is important to note though,

that they only execute a subsection of the other projection methods. Furthermore, they

represent random geometric transformations rather than projections from spherical to

planar coordinates.

d3.geoTransform delineates a random transform utilising the approaches defined on the

selected methods object. Pass-through methods that transmit inputs to the output stream

are applied to any undefined methods. For instance, to reflect the y-dimension by using

the following transform,

var reflectY = d3.geoTransform({
 point: function(x, y) {
 this.stream.point(x, -y);
 }
});

94 Background

2.1.5 Summary

In the digital age of today, data visualisation has become an essential discipline as data

continues to grow as a new resource in modern society that has very unique values. Data

visualisation is classified as exploratory and explanatory depending on its purpose. The

data visualisations methodology is also classified into seven methods, which are

comparing categories, assessing hierarchies, presenting changes overtime, plotting

connections and relationships, and mapping geo-spatial data. In terms of presenting data

visualisations, compared to the traditional static visualisations such as print, web-based

interactive visualisations are becoming increasingly popular and essential in today’s

daily lives.

The modern web technologies can help in delivering highly interactive data

visualisations in web-based environments, ranging from an immersive data

visualisation observatory to a pocket-sized smartphone. Such flexibility is enabled by

the very fundamental elements of HTML, the cascading mechanism of CSS, and the

highly adaptive scripting language of JavaScript, wherein JavaScript is featured

according to its capability of manipulating dynamic object properties. Moreover, the

wide support of DOM that JavaScript provides in various popular browsers also play a

vital role in enabling various events and functions because modern browsers are

commonly developed with the intention of them being compatible with various devices.

D3.js is a powerful data visualisation library that allows the realisation and creation of

novelty data visualisations from imagination. Its selections and data functions aid in

effective data-driven transformation of the DOM, while allowing data to be easily

manipulated using selected elements. D3 scales and axes can simplify the fundamental

and common tasks concerning visualisation for developers. The transition and timer

modules also help to animate changes to the DOM while keeping the concurrent

animations synchronised and consistent. Further, D3 shapes and colours aid the

developers to conveniently develop the desired geometry with colours, along with the

2.1 Web Data Visualisation 95

D3 hierarchies and geographies that are the more advanced modules to create relatively

complicated and structured diagrams and maps.

96 Background

2.2 Distributed Systems

2.2.1 Introduction

Although there are several definitions of distributed systems in the literature, not one of

them is adequate or agrees with the other definitions. In terms of this thesis, a general

characterization is sufficient. A distributed system can be considered as a collection of

independent computers which seems to be a single coherent system to its users [56].

Distributed systems tend to be complicated software whose components are, as per the

definition, distributed throughout numerous machines. It is important to thoroughly

organise these systems so that their complexity can be mastered. A distributed system’s

organisation can be perceived in diverse ways. A clear method is distinguishing between

the software component collections’ logical organization and the actual physical

realisation.

Distributed systems’ organisation largely concerns the software components that form

the system. Such software architectures indicate the organisation of the diverse software

components and the way in which they must interact. It is important that the software

components are incorporated and established on real machines to ensure actual

realisation of a distributed system. For this, various methods can be implemented.

Moreover, a software architecture’s final instantiation is also called a system

architecture.

The following sections will examine traditional centralised architectures wherein one

server executes the majority of the software components, and hence also functionality,

and where remote clients are able to gain access to that server through simple

communication means. Further, decentralised architectures where machines are largely

equal, and hybrid organizations will also be examined.

2.2 Distributed Systems 97

It is vital to use such a layer in terms of architectural decision, and it primarily intends

to ensure distribution transparency. On the other hand, trade-offs must be made for

attaining transparency, resulting in diverse methods of ensuring that middleware is

adaptive. A latter part of this section will explore some more commonly applied ones

that impact the middleware organisation.

98 Background

2.2.2 Architecture Designs

2.2.2.1 Centralised Design

Although there is no consensus regarding the several problems of distributed systems,

multiple practitioners agree that it can be helpful to think that clients request services

from servers as it can address the complicated nature of distributed systems.

The basic client-server model depicts the processes in a distributed system being

classified into two groups that may overlap. A server refers to a process that uses a

particular service such as a database service or a file system service. A client refers to a

process requesting from a server a service for which a request is sent, and the server’s

reply is awaited. Figure 2.2.1 illustrates this client–server interaction which is also

called request–reply behaviour [56].

Figure 2.2.1 An illustration of the common interaction between a client and a server

A simple connectionless protocol can be used for enabling communication between

client and server, similar to several local-area networks, the underlying network is quite

reliable. Thus, when a service is being requested by a client, the process involves a

message being packages for the server and the intended service being determined as

well as the required input data. Following this, the message is sent to the server which

always awaits an incoming request, then processes it, and creates a reply message with

the results which it sends to the client.

2.2 Distributed Systems 99

The benefit of using a connectionless protocol is that it is efficient. The request/reply

protocol that has been sketched works well until the messages are not lost or corrupted.

However, it is important to ensure that the protocol can resist occasional transmission

failures. The possible solution here when there is no reply is to allow the client to resend

the request. The fact that the client is unable to identify if the reply’s transmission failed

or if original request message was lost is a problem. Resending a request when the reply

is lost can lead to the operation being performed twice. In case the operation was similar

to ‘transfer some cash from my bank account’, reporting an error will be a better

response. In case, however, the operation was ‘tell me how much money I have left’,

resending the request will be more suitable. An operation is considered idempotent

when it is can be repeated without adverse effects multiple times. As certain requests

are idempotent while others are not, it is evident that no particular solution can be

implemented to address the lost messages.

The alternative solution is that several client–server systems implement a reliable

connection-oriented protocol. Despite this solution not being completely suitable in a

local-area network because of relatively poor performance, it works well in wide-area

systems with inherently unreliable communication. Almost all Internet application

protocols, for example, are founded on dependable TCP/IP connections. Here, every

time a service is requested by a client, a connection is first established with the server

before the request is sent. Typically, the server makes use of that same connection for

sending the reply, and then the connection is eliminated. Establishing and eliminating a

connection is, however, expensive, particularly in cases where the request as well as

reply messages are small.

In recent years, there have been numerous debates regarding the client–server model. A

major problem concerns how a clear distinction can be made between client and server.

It has often been noted that no clear distinction is possible. A server regarding a

distributed database, for example, can continuously function as a client as it forwards

100 Background

requests to various file servers that implement the database tables. Here, the database

server itself only processes the queries.

However, as several client–server applications focus on enabling user access to

databases, it has commonly been recommended that a distinction be made between the

user-interface level, the processing level, and the data level, particularly considering the

layered architectural style previously explored.

The user-interface level includes everything, such as display management, required for

interfacing directly with the user. Usually, the processing level includes the

applications. Moreover, the data level is responsible for managing the data being acted

on. The user –interface level is generally used by clients typically implement the user-

interface level. At this level, programs which help end users’ interaction with

applications are included. The level of sophistication between user-interface programs

is considerable.

A character-based screen is the simplest user-interface program. This type of interface

is often used in mainframe environments. When the mainframe is in controls of all

interaction including monitor and keyboard, a client–server environment is not very

likely. On the other hand, there are several cases where the user’s terminal performs

certain local processing including typed keystrokes being echoed or providing support

to form-like interfaces wherein an entry which is complete must be edited prior to it

being sent to the main computer.

Today, advanced interfaces are included even in mainframe environments. The client

machine usually provides a graphical display that uses pop-up or pull-down menus and

where several screen controls are used through a mouse rather than keyboard. Examples

of these interfaces are the X-Windows interfaces that several UNIX environments use,

and earlier interfaces which were developed for Apple Macintoshes and MS-DOS PCs.

2.2 Distributed Systems 101

As modern user interfaces enable applications in which a single graphical window is

shared that can be used for data exchange through user actions, it can provide more

functionality. For example, it deletes a file by moving the icon which represents the file

to another icon which represents a trash can. Similarly, in several word processors, users

can move text within a document by using the mouse alone.

It is possible to construct several client–server applications using approximately three

distinct pieces which are a part which takes care of user interaction, a part which

operates on file system or a database, and a part which tends to include an application’s

core functionality. This latter part is placed logically at the processing level. Compared

to databases and user interfaces, few aspects are common to the processing level. Hence,

several examples will be provided so that this level is clearer.

Consider for example, an Internet search engine. Apart from the animated banners and

images, a search engine has a simple user interface in which a string of keywords are

typed in by the user and a list of Web pages’ titles is then provided to them. The back

end is developed through a substantial database of prefetched and indexed Web pages.

Central to the search engine is a program which can transform the user’s keywords into

database queries. Following this, the results are ranked into a list and this list is changed

into HTML pages. In the client–server model, as shown in Figure 2.2.2, this information

retrieval part tends to be included at the processing level [56].

102 Background

Figure 2.2.2 The three levels of a simplified Internet search engine

In the client–server, the data level includes the programs responsible for maintaining

the actual application-operated data. At this level, data tends to be persistent so that data

will continue to be stored to be used again despite there being no application running.

The data level in its simplest form includes a file system, though using a complete

database is more common. The data level in the client–server model tends to be

implemented at the server side.

Apart from storing data, the data level also ensures that data is consistent in various

applications. In cases where databases are used, sustaining consistency includes storing

metadata such as entry constraints, application-specific metadata, and table

descriptions. For example, regarding a bank, it may be important to develop a

notification for a customer’s credit card debt reaching a specific value. A database

trigger can help in maintaining such information as it can activate a handler at the

suitable moment.

2.2 Distributed Systems 103

The data level is structured similar to a relational database in the majority of business-

oriented environments. Here, data independence is important. The organisation of the

data does not depend on the applications so that organisational changes do not impact

applications and the applications do not impact the data organization. It can be helpful

to use relational databases regarding the client–server model for differentiating between

the data level and processing level as they are both independent.

On the other hand, relational databases cannot always be considered as the ideal choice.

A significant feature of several applications is their operation on complicated data types

which can be modelled better regarding objects rather than relations. Some examples of

this type are simple polygons and circles and aircraft designs representations such as

computer-aided design (CAD) systems [57].

When data operations can be expressed better using object manipulations,

implementing the data level through an object-relational or object-oriented database is

a more appropriate idea. It is important to note that the object-relational database type

has been popular because such databases expand the relational data model which is

widely dispersed and provide the object-orientation advantages.

The differentiation between the three logical levels as previously discussed indicates

several possibilities concerning physical distribution of a client–server application

through multiple machines. Having two types of machines is the simplest organization

structure.

• The first is a client machine which includes only those programs that implement

part of the user-interface level

• The second is a server machine which includes the programs that implement the

data level and processing.

104 Background

The server is responsible for everything in such an organization and the client is only a

terminal, with perhaps a suitable graphical interface. Several other possibilities are

available, and the ones that are more common are explored in this section.

One of the approaches to organise the servers and clients is distributing the programs in

the previous section’s application layers throughout various machines, as illustrated in

Figure 2.2.3 [56]. The first step is to differentiate between the two types of machines

which are client machines and server machines, also called a physically two-tiered

architecture.

Figure 2.2.3 The alternative client-server organisations

A possible organization is, as shown in Figure 2.2.3 (a), the client machine having only

the terminal-dependent part of the user interface, while the applications have remote

control over their data presentation. Another option is the client side having the

complete user-interface software, as indicated in Figure 2.2.3 (b). If this is the case, the

application is divided into a graphical front end that communicates with the other

application part at the server using an application-specific protocol. The front end or the

2.2 Distributed Systems 105

client software in this model does not conduct any processing apart from what is

required to present the application’s interface.

Moreover, it is also possible to move some aspects of the application, as illustrated in

Figure 2.2.3 (c), to the front end. An example of this is when the application uses a form

which must be completely filled before being processed. Then, the front end can verify

the form’s consistency and accuracy as well as interact with the user if required. An

example of Figure 2.2.3 (c) organisation structure is a word processor wherein the

fundamental editing functions are conducted on the client side operating on locally

cached or in-memory data, whereas the advanced support tools including checking the

grammar and spelling is executed on the server side.

The organizations presented in Figure 2.2.3 (d) and Figure 2.2.3 (e) are quite popular in

several client–server environments. Such organizations are used in case the client

machine is a workstation or a PC, connected to a distributed file system or database

through a network. While the majority of the application tends to run on the client

machine, operations that run on files or on database entries go to the server. Several

banking applications, for example, function on a machine of the end-user where

transactions are prepared. After this is done, the application makes contact with the

database on the server of the bank for uploading the transactions to be processed further.

Figure 2.2.3 (e) shows a scenario in which the client’s local disk includes part of the

data. For example, when a client is browsing the Web, they may gradually develop a

significant cache on the local disk regarding the Web pages that were most recently

examined.

In the past few years, it has been commonly seen that the configurations presented in

Figure 2.2.3 (d) and Figure 2.2.3 (e) have not been implemented when client software

is placed at end-user machines. Here, the majority of the processing as well as data

storage is taken care of at the server side because even if client machines perform many

functions, they can be difficult to manage. The client machine having more functionality

106 Background

results in the client-side software becoming more prone to errors as well as more reliant

on the underlying platform of the client which includes operating system and resources.

Considering a system’s management, it is not the best to have so-called fat clients and

better to have thin clients, as shown in the organisations in Figure 2.2.3 (a) to (c), which

may lead to less-sophisticated user interfaces and client-perceived performance.

It should be noted that this trend is not suggesting that distributed systems are not

needed. In fact, it shows that server-side solutions are becoming more distributed

because multiple servers that function on various machines are replacing a single server.

Particularly, when differentiation between only client machine and server machine, it is

often overseen that a server can have to function as a client, as illustrated in Figure 2.2.4,

resulting in a physically three-tiered architecture. Programs in this architecture which

are part of the processing level are placed on a separate server, though they may be

partly distributed through the client as well as server machines. Transaction processing

is an example of the use of a three-tiered architecture.

Figure 2.2.4 An example of a server acting as a client

Moreover, the organisation of Web sites is another example of a three-tiered

architecture. Here, a Web server functions a place of entry to a site which passes

requests to an application server so that the actual processing can occur. Then, this

2.2 Distributed Systems 107

application server and a database server interact. An application server, for example,

can run the code for examining the available inventory concerning some goods which

an electronic bookstore offers. For this, it may have to interact with a database that

includes the raw inventory data.

108 Background

2.2.2.2 Decentralised Design

When applications are classified into processing components, data level, and user-

interface, it leads to multitiered client-server architectures. The various tiers are

equivalent to the applications’ logical organisation. Regarding several business

environments, distributed processing is similar to a client-server application being

organised as a multitiered architecture. Such a distribution is called vertical distribution.

Further, a characteristic feature concerning vertical distribution is that it can be attained

by positioning logically different components on various machines. This term concerns

the concept of vertical fragmentation the way it is implemented in distributed relational

databases, in which tables are divided according to columns and then distributed

throughout diverse machines.

In addition, in terms of system management, it can be helpful to have a vertical

distribution, and functions are divided logically as well as physically throughout several

machines, with every machine being customised as per a particular group of functions.

On the other hand, there are numerous other ways apart from vertical distribution to

organise client-server applications. Regarding modem architectures, distribution of the

clients as well as the servers is often what matters, which is called horizontal distribution.

A client or sever in such a distribution can be divided physically into logically

equivalent parts, with every part functioning as its own of part the complete data set,

and hence, the load is balanced. This section will examine a class of modern system

architectures called peer-to-peer systems which supports horizontal distribution.

Considering a high-level perspective, the peer-to-peer system processes are all equal;

that is, the functions necessary to be executed are represented by processes that form

the distributed system. Because of this, the interaction between processes was

symmetric to a large extent with every process functioning like a client as well as a

server at the same time. This is also called acting as a servant.

2.2 Distributed Systems 109

Peer-to-peer architectures in terms of this symmetric behaviour progress concerning

how the processes can be organised in an overlay network, which is a network where

the processed form the nodes and the links indicate the possible communication

channels that are typically developed by TCP connections. Overall, a process is unable

to directly communicate with another arbitrary process while being required to use the

available communication channels to send messages. There are two types of overlay

networks, structured and unstructured. Lua et a1. [58] extensively surveyed these two

overlay networks using several examples. Moreover, Aberer et al. [59] provides a

reference architecture which enables the various peer-to-peer systems to be compared

more formally.

Structured Peer-to-Peer Architectures

A deterministic procedure is used to develop the overlay network in a structured peer-

to-peer architecture. Organising the processes using a distributed hash table (DHT) is

by far the procedure that has been used the most. Furthermore, a random key is assigned

to data items in a DHT -based system from a large identifier space, such as a 160-bit or

128-bit identifier. Similarly, a random number is also allocated to nodes in the system

from the same identifier space. Thus, every DHT-based system’s crux is implementing

an effective as well as deterministic scheme which maps a data item key uniquely to a

node identifier as per certain distance metric [60]. In addition, when a data item is being

looked up, the network address of the node in charge of that data item is returned. This

is efficiently conducted by routing a data item request to the responsible node.

In the Chord system [60], for example, the organisation of nodes in a ring is executed

logically so that the mapping of a data item that has key k is done to the node that has

the smallest identifier id ~ k. This node is called key k’s successor and is referred to as

succ(k) in Figure 2.2.5. For looking up the data item, an application that is being

110 Background

executed on an arbitrary node will call the function lookup(k) that will return the

succ(k)’s network address. Then, the application is able to contact the node and attain a

copy of the data item.

Figure 2.2.5 The mapping of data items on nodes in Chord

Focusing on the way in which nodes organise themselves to form an overlay network,

or a membership management, it is necessary to acknowledge that looking up a key is

not in accordance with the nodes’ logical organisation in the ring, as shown in Figure

2.2.5. Nevertheless, every node retains shortcuts that allow access other nodes so that

lookups can usually be conducted in O(log (N)) number of steps, with N indicating the

number of nodes involved in the overlay.

If we consider Chord again, a node that wants to join the system begins with developing

a random identifier id. It should be noted that in case of the identifier space being

sufficiently large, if there is a good quality of random number generator, then there is

close to zero probability of developing an identifier which is already assigned to an

actual node. The node can then conduct a lookup on id because of the network address

of succ(id) will be returned. Here, the joining node can contact succ(id) as well as its

predecessor while placing itself in the ring. Such a scheme undeniably needs every node

2.2 Distributed Systems 111

to store information about its predecessor. Further, insertion indicates that every data

item with key that is related to node id is transferred from succ(id).

Unstructured Peer-to-Peer Architectures

It is remarkable that peer-to-peer systems that are unstructured tend to depend on

randomised algorithms to develop an overlay network. The central concept is that

although every node retains a list of neighbours, the list is generated in a random

manner. Similarly, it is assumed that data items are randomly positioned on nodes. This

results in nodes flooding the network with a search query when it has to locate a

particular data item [61].

Several unstructured peer-to-peer systems aim to develop an overlay network which is

similar to a random graph. The fundamental model includes every node retaining a list

of c neighbours, in which every neighbour depicts a live node that is selected randomly

from the current nodes set. This list of neighbours is also called a partial view which

can be developed in various ways. A framework was created by Jelasity et al. [62][63]

which includes various algorithms concerning overlay construction that enabled

comparisons as well as assessments. This framework assumed that entries are

consistently exchanged by nodes from their partial view. Another node is also identified

by every entry in the network, with each entry having a related age suggesting how old

the node reference is.

Figure 2.2.6 [56] shows that the active thread initiates the communication with another

node by choosing that node from its existing partial view. If the entries have to be

pushed toward the selected peer, it develops a buffer that includes c/2 + I entries which

also includes an entry that identifies itself. The existing partial view is from where other

entries are selected.

112 Background

Generating a new partial view is critically important. The view, in terms of initiation

and as of the contacted peer, includes precisely c entries that will partially be derived

from received buffer. The new view can be essentially constructed in two ways. The

first is where the two nodes can choose to get rid of the entries which they had sent to

one another, which indicates that some of their original views will be swapped. The

second is where old entries are discarded as much as possible. The two approaches seem

to generally be complementary. It has been noted that this framework includes several

membership management protocols concerning unstructured overlays. Several

interesting observations can be made here.

2.2 Distributed Systems 113

Figure 2.2.6 Actions of the active thread (a) Actions of the passive thread (b)

First, assuming that a node gets in contact with another arbitrary node when intending

to join which may be from numerous well-known access points, this access point can

be regarded as a regular part of the overlay, apart from the fact that it can be regarded

as being highly available. If this is the case, protocols using only push or only pull mode

can result in disconnected overlays quite easily. That is, groups of nodes will be isolated

and will be unable to contact each node in the network. This is an obviously undesirable

feature and thus nodes must be allowed to exchange entries.

Second, a fairly straightforward operation is required to leave the network if partial

views are regularly exchanged by the nodes. Here, it is possible for a node to leave and

not inform other nodes. Because of this, a node P choosing an apparent neighbour, let

us assume node Q, and determining that Q is not responding anymore, it will eliminate

the entry and choose another peer from its partial view. Thus, when a new partial view

is being developed, a node functions in tandem with the policy for removing as many

old entries as it can, and the nodes that leave are quickly forgotten. That is, entries

concerning departed nodes are quickly and automatically removed from partial views.

114 Background

On the other hand, following this strategy also has its consequences. Assume a node P

having a set of nodes’ partial view having an entry referring to P. This is called the

indegree of a node. Id node P’s indegree is higher, it will lead to higher probability of

another node contacting P. That is, P is at risk of becoming a popular node that can

easily create an imbalanced position concerning workload. When old entries are

systematically discarded, nodes are promoted into ones with high indegree. Other trade-

offs also exist which are explored by Jelasity et al. [63].

Super-peers

It should be noted that, in peer-to-peer systems that are unstructured, it can be difficult

to locate relevant data items because of growing network. This scalability problem is

because of there being no deterministic method to route a lookup request to a particular

data item, resulting in the node only being able to flood the request. Though it is possible

to dam such flooding in numerous ways, several peer-to-peer systems have suggested

using special nodes as an alternative as they maintain an index of data items.

Leaving the peer-to-peer systems’ symmetric nature is also practical in other situations.

Examine a collaboration of nodes providing one another with resources. Considering a

collaborative content delivery network (CDN), for example, nodes can provide storage

to host Web pages’ copies that would enable Web clients to gain access to nearby pages

so that they can swiftly access them. Here, it is possible that a node P has to search for

resources in a particular part of the network. Hence, it will be helpful to use a broker

which gathers resource usage for numerous nodes that are close to each other as it

enables swift selection of a node through adequate resources.

Typically, nodes that are similar to ones that function as a broker or maintain an index

are called super-peers. Super-peers, as indicated by their name, tend to be organised in

2.2 Distributed Systems 115

a peer-to-peer network which results in a hierarchical organization, as suggested by

Yang and Garcia-Molina [64]. Figure 2.2.7 illustrates one such example of an

organization where each regular peer is connected to a super-peer as a client.

Communication taking place from and to a regular peer is conducted using that peer’s

associated super-peer.

Figure 2.2.7 An organisation of nodes in a super-peer network

The client-super-peer relation is established in several cases. That is, every time a

regular peer is included in the network, that peer gets connected to a super-peer and

continues to be connected until it leaves the network. Super-peers are thus expected to

be long-lived processes and having high availability. It is possible to compensate for a

super-peer’s potential unstable behaviour by implementing backup schemes, including

each super-peer being paired with another super-peer and needing clients to attach to

both.

A super-peer with which an established association is made is not always the optimum

solution in all instances. Take, for example, the file-sharing networks. In this case,

getting attached to a super-peer maintaining a file index in which the client is interested

may be a better solution for a client. This will provide better chances compared to the

client seeking a particular file as its super-peer will be able to find it quicker. Garbacki

116 Background

et al. [65] proposed a scheme that is relatively simple wherein the relationship between

the client and super-peer can change because clients find better super-peers with which

to get attached. That is a super-peer that is providing a lookup operation’s results is

prioritised over other super-peers.

2.2.2.3 Hybrid Design

The focus so far has been on various peer-to-peer architectures and client-server

architectures. In several distributed systems, architectural features are merged, as seen

in super-peer networks. This section will examine certain particular classes of

distributed systems where client-server solutions and decentralised architectures are

combined.

Edge-server systems develop a crucial class of distributed systems organised as per a

hybrid architecture. Such systems are positioned on the Internet such that servers are

placed ‘at the edge’ of a given network. Such an edge is developed through the boundary

that exists between actual Internet and enterprise networks, such as that provided by an

Internet Service Provider (ISP). Similarly, in cases of end users who are at home using

their ISPs to connect to the Internet, that ISP can be regarded as being positioned at the

edge of the Internet. From this, a general organization can be formed which is shown in

Figure 2.2.8.

2.2 Distributed Systems 117

Figure 2.2.8 The Internet that consists of a collection of edge servers

End users, or typical clients, use an edge server to connect to the Internet. This edge

server primarily aims to provide content, feasibly after the content is filtered and the

functions transcoded. It should be noted that it is possible to use a collection of edge

servers for enhancing content as well as application distribution. The fundamental

model involves an edge server for a particular organization functioning as an origin

server that is the origin for all content.

Collaborative distribution systems are known to have hybrid structures deployed in

them. The major problem for several such systems is to get started, and a traditional

client-server scheme is often deployed for this. When a node connects to the system, it

is able to utilise a fully decentralised scheme to collaborate.

To further establish this, take the BitTorrent file-sharing system into account [66].

BitTorrent can be referred to as a peer-to-peer file downloading system whose principal

working is illustrated in Figure 2.2.9. In this system, when an end user seeks a file,

chunks of the file are downloaded by the end user from other users until it is possible

to assemble the downloaded chunks to create the complete file. Ensuring collaboration

is a crucial design goal. Although a large number of participants in the majority of file-

118 Background

sharing systems only downloaded files, they contribute almost nothing else

[67][68][69]. Hence, it is possible to download a file only when the client who is

downloading is offering content to someone else.

Figure 2.2.9 An illustration of the working mechanism of BitTorrent

It is crucial that a user accesses a global directory that forms a well-known Web site.

This directory includes references to .torrent files which contain information required

for downloading a particular file. That is, it indicates what is called a tracker that is a

server which maintains a precise account of active nodes containing chunks of the

requested file. A note that is presently downloading another file is called an active node.

Hence, though there will undeniably be several trackers, typically only a single tracker

for every file (or collection of files) exists.

After determining the nodes from which chunks are downloaded, the node download

becomes active. It is then compelled to aid others by, for example, offering chunks of

the file that is being downloaded which is not provided to others yet. Such enforcement

results from a simple rule which states that in case of node P observing node Q

downloading more what it is uploading, P can reduce the rate at which it sends data to

Q. Such a scheme is successful only if P has to download something from Q. This is

why nodes tend to be provided with references to various other nodes which gives them

an advantage for trading data. Hence, BitTorrent merges centralised and decentralised

solutions. It is observed that the system’s bottleneck is developed by the trackers.

2.2 Distributed Systems 119

The Globule collaborative content distribution network [70] is another example.

Globule has a compelling resemblance with the edge server architecture previously

mentioned. Here, rather than edge servers, end users as well as organizations provide

enhanced Web servers voluntarily which can collaborate in replicating Web pages.

Every such server includes,

• A component capable of redirecting client requests to other servers,

• A component that can assess patterns,

• A component that can replicate Web pages.

The server that Alice provides is the Web server which typically deals with Alice’s Web

site traffic and is known as that site’s origin server. This server works together with

other servers, such as the one Bob provides, for hosting Bob’s site pages. This, Globule

can be considered as a decentralised distributed system. At first, requests concerning

Alice’s Web site get sent to her server, after which it is possible that they are redirected

to another server. Distributed redirection may also be implemented.

However, a centralised component also exists in Globule as its broker which registers

servers and makes others known such servers. An analogous communication exists

between servers and the broker, as against what may be expected from a client-server

system. Because of availability, it is possible to replicate the broker, and as observed

eventually in this book, such replication is implemented commonly for ensuing valid

client-server computing.

120 Background

2.2.3 Architectural Styles

Considering the architecture in terms of a further abstraction from different architecture

designs, an architectural style becomes important. This style is developed considering

components in term of all the components connected, the data exchanged between

components, and the way in which these elements are together configured into a system.

A component refers to a modular unit that has well-defined needed and provided

interfaces which can be replaced within its environment [71].

As examined below, a central problem concerning a distributed systems’ component is

that it is replaceable, once its interfaces are respected. Moreover, a concept that may be

difficult to comprehend is a connector that is often referred to as a mechanism which

mediates communication, cooperation, or coordination among components [72][73]. A

connector, for example, can be developed by the facilities concerning (remote)

procedure calls, streaming data, or message passing.

Considering connectors and components, different configurations can be attained that

have been divided into architectural styles. Thus far, numerous styles have been

determined. Of these, there are four that are crucial for distributed systems which are

layered architectures, object-based architectures, data-centred architectures, and event-

based architectures.

There is a simple concept concerning the fundamental idea for the layered style which

is that the organisation of components is conducted in a layered manner so that a

component at layer L is permitted to call components at the underlying layer but it does

not work the other way around (Figure 2.2.10 (a)). Such a model has been implemented

extensively in the networking community. It has also been noted that control tends to

flow from one layer to another and requests flow downwards in the hierarchy while the

results move in an upward direction.

2.2 Distributed Systems 121

Object-based architectures, shown in Figure 2.2.10 (b), follow a more flexible

organisation. Here, every object is parallel to a component, with the components

connected using a (remote) procedure known as mechanism. Hence, such software

architecture is similar to the above-described client-server system architecture.

Regarding large software systems, the layered and object-based architectures remain

the most crucial [74].

Figure 2.2.10 The layered and object-based architectural styles

The development of data-centred architectures is based on the notion of processes

communicating using a common repository regardless of whether it is passive or active.

The importance of these architectures’ distributed systems may be comparable to that

of the layered and object-based architectures. For example, an extensive amount of

networked applications have been generated which depend on a shared distributed file

system wherein almost all communication is conducted using files. Similarly, Web-

based distributed systems tend to be data-centric; that is, the communication of

processes takes place using shared Web-based data services.

122 Background

Processes in event-based architectures usually communicate using the propagation of

events that may also include data, as illustrated in Figure 2.2.11. Event propagation

concerning distributed systems is often connected with publish/subscribe systems [75].

This means that once processes publish events, the middleware is responsible for

ensuring that only the processes subscribed to those particular events receive them.

Processes being loosely coupled is major benefit of event-based systems. They do not

have to refer to each other explicitly, which is also called being decoupled in space or

referentially decoupled.

Figure 2.2.11 The event-based architectural style

It is possible to combine event-based architectures with data-centred architectures,

resulting in shared data spaces. In shared data spaces, processes end to essentially be

decoupled in time; that is, they require not both to be active when communicating.

Moreover, several shared data spaces implement a SQL-like interface regarding the

shared repository such that it is possible to access data through a description and not an

explicit reference, similar to files.

Such software architectures are crucial for distributed systems because they all intend

to attain distribution transparency to a reasonable extent. On the other hand, as

previously stated, for distribution transparency, trade-offs must be made between

aspects such as performance, ease-of-programming, and fault tolerance. Because no

2.2 Distributed Systems 123

particular solution exists which will cater to all possible distributed applications,

researchers no longer focus on a single distributed system which can be employed for

90% of all possible cases.

124 Background

2.2.4 Summary

There are numerous methods to organise distributed systems. Software architecture can

be differentiated from system architecture. While software architecture focuses on the

software’s logical organisation such as how components interact, how they can be

structured, and how they can be made independent, the system architecture is concerned

with where the positioning throughout diverse machines of components forming a

distributed system.

Distribution systems have several organisations. A vital class is one in which machines

are classified into servers and clients. After a request is sent by a client to a server, the

server produces a result which is returned to the client. Such client-server architecture

indicates the traditional method of modularising software where a module establishes

the functions that are available in a different module. Functions’ natural physical

distribution throughout a collection of machines can be attained by positioning various

components on several machines.

Client-server architectures tend to be significantly centralised. It is often observed in

decentralised architectures that the processes play an equal which form a distributed

system, also called peer-to-peer systems. The organisation of processes in peer-to-peer

systems forms an overlay network. This is a logical network where each process has a

local list comprising other peers with which it can communicate. It is possible to

structure the overlay network so that deterministic schemes may be deployed to route

messages between processes. The peer list in unstructured networks tends to be random,

which indicates that it is crucial to deploy search algorithms to locate data or other

processes.

Moreover, architectural style is vital when examining architectures. Architectural style

indicates the basic principle being followed when the interaction between the software

components forming a distributed system is organised. Specifically, layering, event

2.2 Distributed Systems 125

orientation, data-space orientation and object orientation are four important

architectures for distributed systems in the context of architectural styles.

126 Background

2.3 Data Observatories

Data Observatories (DO) are virtual environments that include human–machine

interface which offers an immersive experience while providing visualisations of

extensive data sets as well as collaborative work. DOs are also called ‘cave’ referring

to the University of Illinois’ Collaborative Automatic Virtual Environment (CAVE)

project and because of their obscurity and an enveloping circular shape [2].

2.3.1 KPMG Data Observatory

The KPMG Data Observatory established in November 2015, is the largest DO in

Europe. The Data Science Institute has designed, built, as well as housed the KPMG

DO. This DO helps academics as well as the industry in visualising data so that they

can discover new insights, while encouraging the use of a multi-dimensional and

immersive environment for communicating complicated data sets and analysis [76].

Moreover, it aids decision makers in determining new implications as well as actions

by examining data sets in a unique and innovative environment (Figure 2.3.1).

The DO offers three major modes. First is the Theatre Mode that uses the entire DO as

one canvas. Second is the Decision Support Mode wherein the team is at the DO’s

centre as various simulations or outputs can be seen around them, which enables the

scenario to be run in real time and the data to be explored. Third is Hackathon Mode

which involves five teams with every team working on one section of the five.

The hardware aspects are as follows [77]:

• 64 x 46” full HD Samsung UD46D-P Professional Video Wall Monitors with

bezels of 3.5mm between two screens

• Powered by 32 rendering nodes

• Arranged as 4 rows and 16 columns

2.3 Data Observatories 127

• Height = 2.53m

• Internal diameter = 6.00m

• 313-degree surround vision

• 16-point surround sound mounted on the top of each screen stack

• Total pixel count is 132,710,400 pixels (30,720 * 4320) which is believed to be

the largest in Europe

Figure 2.3.1 The Data Observatory in Decision Support Mode

128 Background

2.3.2 Other Data Observatories

Both medium-scale and small-scale multi-screen visualisation environments that have

up to 4 screens have become popular among academics and the industry, whereas large-

scale virtual environments remain rare as they pose extensive resource investment. It

was in 1992 that the University of Illinois, Chicago, devised the first Collaborative

Automatic Virtual Environment (CAVE) [78]. As shown in Figure 2.3.2, it presented

images on screens that were organised in the shape of a cube.

The next generation of CAVE called CAVE2 [79] was developed in October 2012 and

implemented actual LCD panels that were placed in a circle surrounding the team, as

shown in Figure 2.3.3. In fact, this project led to the establishment of the KPMG Global

Data Observatory, although it did create an in-house framework rather than depending

on the API of CAVE, CAVELib [80].

Figure 2.3.2 The first generation of CAVE system

2.3 Data Observatories 129

Figure 2.3.3 The second generation of CAVE2 system

Further, within the industry, TechViz designed the TechViz Virtual Reality (VR)

Showroom [81] that included a cave on the previously mentioned CAVE project’s

model, involving images being projected on screens organised in a complete cube

shape, while emphasising on immersion in VR and 3D environments.

130 Distributed D3 Framework Integrated with Data Observatory

Chapter 3 Distributed D3 Framework Integrated

with Data Observatory

3.1 Introduction

In Big Data era, there is an increasing need of analytic tools for obtaining insights from

the growing large datasets is emerging. Visual perception as a primary tool of humans

to retrieve information from the outside world, has the distinguish ability to rapidly

differentiate patterns in a pre-attentive manner [26]. Visual analytics via data

visualisation is therefore a very powerful tool in data analytics.

The Data Observatory is a state-of-art data visualisation facility that provides a scalable

ultra-high-resolution displays in an immersive and multi-dimensional environment,

which helps to uncover new insights and promotes the communication of complicated

datasets for its users. The environment consists of 32 high-end graphical nodes with 64

high-resolution screens in total that creates a 313-degree immersive viewing arc for data

observers and researchers [76].

In order to leverage the power of Data Observatory, we found that Data-Driven

Documents (also known as D3.js) is a popular web-based data visualisation library that

enables producing dynamic and interactive data visualisation in a variety of graphical

forms. The standardised representation of D3.js improves the expressiveness and

accessibility, and transforms offer large performance improvement and also enable

transitions to be animated. Through performance benchmarks, D3.js is demonstrated to

be at least two times faster than its ancestor [3].

However, due to the limits on the processing threads per browsing window in modern

web browsers, the capacity of displaying large numbers of elements for a state-of-the-

3.1 Introduction 131

art data visualisation application is limited. To address this bottleneck issue, we have

designed a distributed framework that is based on D3.js, which is in hope to utilise the

distributing power of the high-end graphical station cluster in Data Observatory that

allows to serve a single or multiple data visualisations simultaneously.

132 Distributed D3 Framework Integrated with Data Observatory

3.2 Approach Comparisons

This section presents a comparison of various potentially helpful web technologies for

determining the most appropriate approach in order to build the distributed framework.

First, the underlying network communication protocols will be discussed and reviewed,

followed by the possible web visualisation technologies, and finally a brief comparison

between the preferred D3.js and other existing data visualisation libraries.

3.2.1 WebRTC vs. WebSocket

As a proposed web-based distributed visualisation system, the initial stage of

framework building requires a highly efficient and robust communication method. This

work begins by comparing the popular web communication plugin called WebSocket

with the newly developed real-time peer-to-peer communication protocol called

WebRTC [82].

 The following observations were made after summarising their features and
differences:

• WebSocket is a communication protocol that provides communication channels

over a single TCP connection [83], whereas WebRTC is a free and open-source

project that aids web browsers and mobile applications with real-time

communication capability using simple APIs [82].

• WebSocket primarily focuses on allowing developers to deliver rich web

applications, whereas WebRTC focuses on allowing users to establish peer-to-

peer connections quickly and easily [84].

• WebRTC is designed to ensure high performance and high-quality

communication of video, audio, and arbitrary data. It may, however, need a

3.2 Approach Comparisons 133

signalling service for establishing the connection. WebSocket is designed to

ensure that bi-directional communication takes place between the client and the

server. While audio and video can be streamed over WebSocket, the service may

not be as robust as WebRTC [84].

• WebSocket is developed in Java, JMS, and C++, whereas WebRTC is developed

in JavaScript and HTML. Regarding scalability, WebSocket requires a server per

session, whereas WebRTC can be peer-to-peer based.

• Compared to WebSockect, WebRTC has less security concerns concerning

common security issues such as denial of service (DoS), man-in-the-middle,

cross-site scripting, and client-to-server masking.

• Although WebRTC and WebSocket are both popular communication protocols,

WebRTC is more commonly used in real-time communication applications.

• While being developed, WebRTC is relatively new and may only be available

on certain browsers, whereas WebSocket is well supported by the majority of the

browsers.

Following the comparison of the protocols above, WebRTC was implemented as the

main network communication protocol. This is because of the potentially better

performance as well as quality of the real-time communications among rendering peer

nodes. Besides, WebRTC’s peer-to-peer based network structure can further promote

the scalability and flexibility of the potential distributed framework.

3.2.2 WebGL vs. HTML5

It is important to find a reasonable web-based data visualisation graphical presentation

library or engine on which to build a favourable network communication solution. This

134 Distributed D3 Framework Integrated with Data Observatory

leads to comparing three relatively new yet very promising web technologies which are

WebGL [85], HTML5 SVG [86], and Canvas [87]. Following are the main differences

and features observed among these three:

HTML5 SVG

• Resolution independent

• Support for event handlers

• Best suited for applications with large rendering areas

• Slow rendering if the visualisation is complex

• Not suited for game applications

HTML5 Canvas

• Resolution dependent

• No support for event handlers

• Poor text rendering capabilities

• Faster rendering in complex visualisation

• Well-suited for graphic-intensive games

WebGL

• Resolution dependent (as enclosed in <canvas>)

• No support for event handlers (same as canvas)

• Best rendering performance

• Based on OpenGL ES 2.0 [88]

• Good support for 3D game applications

3.2 Approach Comparisons 135

Figure 3.2.1 A test experiment by comparing the performance in frame rate (FPS) between
HTML SVG, Canvas and WebGL

MacBook Pro 13" 2015 HTML5 SVG HTML5 Canvas WebGL

N = 100 60 (FPS) 60 60

N = 1000 38 56 60

N = 2000 20 28 44

N = 5000 N/A 11 20

N = 10000 N/A N/A 12

Table 3.2.1 The test experiment result of HTML SVG, Canvas and WebGL

Meanwhile, we have also found and conducted a well-designed public-available test

experiment by comparing these techniques with a different number (N) of animated

rendering elements in frame rate (FPS) on a laptop as shown in Figure 3.2.1 [89]. The

test results are consistent with the summary above, where WebGL has the best rendering

performance among them, and HTML5 Canvas can render slightly faster than SVG as

we can see in Table 3.2.1.

136 Distributed D3 Framework Integrated with Data Observatory

By considering all aspects of them, we consider that HTML5 SVG remains a good

candidate, particularly considering its feature of resolution independence, although its

performance is less satisfactory regarding more animated elements as shown in Table

3.2.1. This performance issue, however, can be improved by implementing it in the

distributed framework. Moreover, although HTML5 Canvas showed relatively better

performance, it has limited access to the event handling than SVG. Hence, it can be

used along with SVG in a visualisation with less animation and more elements. In

addition, WebGL is relatively new when starting the development, and although it has

the same limitations concerning resolution and event handling as Canvas, it has

significant potential regarding future development in terms of its rendering capacity and

performance.

3.2.3 D3.js vs. Other Libraries

Following the aim of investigating approaches for building the distributed framework,

the final step is to find whether or not existing graphical libraries are available and

compatible with the previous preferences. Although it is known that D3.js is a strong

candidate for this framework, this section aims to identify and compare all possible

alternatives before committing to use one of them for developing the framework.

Library Flexibility Technology Type of Charts

D3.js [90] Large control via rich APIs SVG All

Infovis [91] Large control via rich APIs WebGL All

Google Viz
API [92]

Large choice
in customisable charts

SVG All

Springy.js [93] Specialised charts Raphael.js Force-directed
graphs

3.2 Approach Comparisons 137

Polymaps.js
[94]

Specialised charts SVG Maps

Dimple.js [95] Same as D3, but more user-
friendly in chart creations

D3.js Axis-based
charts

Sigma.js [96] Specialised charts WebGL Line graphs

Raphael.js [97] Large control via rich APIs SVG, VML All

gRaphael [98] Pre-made charts for Raphael.js Raphael.js All

Leaflet [99] Specialised charts SVG Maps

Table 3.2.2 A comparison of the selected web-based data visualisation libraries

Table 3.2.2 presents the findings of the most helpful libraries in this category. Primarily,

these candidates’ flexibility, underlying web technology, and the supported chart types

were taken into account for summarising their main issues compared to D3.js with

additional candidates as following,

• Less Flexible: Libraries such as Data-wrapper [100] or Flot [101] focus on

rendering simple common charts and leave little room for visualisation

customisation.

• Based on D3.js: D3.js is a popular tool that is often used as a low-level layer for

higher-level libraries such as NVD3.js [102] which provides a collection of off-

the-shelf visualisations.

• Too Specialised: Some libraries tackle one specific type of visualisation,

although they can be added for specialised use cases, such as Three.js [103] can

be used for rendering 3D visualisations.

Following the comparisons, it was decided to implement the original preference of D3.js.

This is due to D3.js is developed based on HTML5 SVG, which has high scalability on

scalable high-resolution screens that can be a good fit for the Data Observatory

environment. Moreover, D3.js provides good support for building the highly interactive

138 Distributed D3 Framework Integrated with Data Observatory

state-of-art data visualisations regarding some of its built-in features. D3.js also has

excellent extensibility as it is an open-source project and can thus allow developers to

build customised plugins that can extend its functionalities.

3.3 Distributed D3 Framework Design 139

3.3 Distributed D3 Framework Design

The design of the Distributed D3 framework is illustrated and discussed in this section.

The concepts of distributed rendering and distributed data as the main features are

detailed in the following subsections of §3.3.1 and §3.3.2. At the end of this section, the

overall structure of the framework will also be discussed in §3.3.3.

3.3.1 Distributed Rendering

As one of the main features in Distributed D3, distributed rendering is designed to

maximise the advantages of utilising distributed graphical computing power for data

visualisations. It is realised by dividing a large visualisation rendering task into smaller

pieces for each underlying distributed rendering node to undertake. Each node and its

screens then only need to render and display their own margined and responsible parts

of an entire visualisation.

Figure 3.3.1 The illustration of a scatter plot with data line in the distributed rendering

140 Distributed D3 Framework Integrated with Data Observatory

As we can see in Figure 3.3.1, four scattering points are mainly distributed and

displayed in screen B, C and D. It is clear that screen C and B will be in charge of the

first two (April, May) and the last (July) data points respectively [104]. However, we

notice the third data point of June is shared by screen B and D. To address this shared

element issue, we will replicate the shared element in all contained screens at the initial

stage of a visualisation. The same concept of sharing elements also applies to the x and

y axes in this visualisation, which means both screen A and C will render a complete x

axis in this case.

Apart from the static rendering at the initial stage of a visualisation, we also need to

consider the case of rendering shared elements that involves animations and transitions,

where the animated shared elements would only appear in an animation at certain

screens. We address this dynamic rendering issue by predicting the potential recipient

screens in a transition path, and then replicate and send this transition information with

relevant elements to those screens via the real-time peer network channels. After that, a

synchronising message will be broadcasted to all corresponding screens to ensure the

transitions are started simultaneously, which is designed to improve the coherence of

the cross-screen animations. We will further detail the implementations of static and

dynamic rendering in the later section of §3.4.1.

3.3 Distributed D3 Framework Design 141

3.3.2 Distributed Data

The mechanism of the distributed rendering enables the possibility of fetching data in a

distributed manner. Since a distributed node may only require the subset of a dataset in

order to render its margined part, it is therefore possible to predict and only fetch such

subset of data from database. The main reason behind this design is that the size and

complexity of a dataset which is stored in DOM tree often have a noticeable correlation

on the performance of a web-based visualisation task.

When applying the concept of distributed data back to the illustration in Figure 3.3.1, it

is clear that screen C needs to load the first and second data points, and thus screen B

has the fourth data point. The third data point as a shared element needs to be pre-loaded

in both screen B and D. However, we understand the extra data points need to be loaded

under certain conditions, such as to draw the data line between data points in Figure

3.3.1. We therefore have allowed the data loading functions to fetch a given number of

extra data points to extend its usability for certain needs.

As we know the shared x axis needs to be generated in both screen A and C, in order to

avoid loading unnecessary data points in a screen just for the purpose of generating an

axis, such as the case of screen A, we have also designed the data dimension function

for obtaining the relevant scale information of a dataset. The implementations of data

dimension and data loading functions will be detailed in the section of §3.4.2.

Moreover, similar to the design of dynamic rendering in the distributed rendering, a

subset of the data may also need to be replicated and sent together with the transition

information during a cross-screen animation. For the purpose of maintaining the size

and complexity of the DOM tree, unnecessary data are designed to be dynamically

removed to reduce the potential impact on the performance due to the replications.

142 Distributed D3 Framework Integrated with Data Observatory

3.3.3 Overall Structure

In order to realise the main distributed features of the framework design that we have

discussed in the last sections, we have sketched the overall structure of Distributed D3

framework as shown in Figure 3.3.2 [104]. In general, the framework is designed to

contain three main layers, which include the rendering layer, the data-accessing layer

and the network layer.

Figure 3.3.2 The overall structural design of the Distributed D3 framework

The rendering layer and data-accessing layer are the implementations of the distributed

rendering and distributed data design. The network layer has the responsibility to

establish the connections between a server and peer nodes, and also to build the fully

connected network within peer nodes. The implementation details of these layers will

be discussed in the sections of §3.4.1 to §3.4.3.

3.4 Distributed D3 Framework Implementation 143

3.4 Distributed D3 Framework Implementation

3.4.1 The Rendering Layer

The distributed rendering design can be fulfilled by creating following two rendering

methods, which are static rendering by margining and dynamic rendering by

transmitting. The implementation details of these two methods will be discussed in the

following subsections.

Static rendering by margining

In the method of static rendering by margining, the rendering functions use the margins

of individual screens to pre-determine the separated rendering tasks for each rendering

node. Each node will then be able to render its margined part with additional shared

elements at the initial stage of a visualisation.

At implementation level, the static rendering can be simplified to be relying on dividing

data values into their corresponding screens. Since D3.js is essentially a data-driven

library, once the library receives the data that are instructed how to render and display

in a certain screen, it will then be able to generate a partial view of the visualisation in

that screen.

144 Distributed D3 Framework Integrated with Data Observatory

Figure 3.4.1 The illustration of the static rendering method by obtaining the margins (limits)

of the dataset for each screen

Taking the scatter plot example in Figure 3.4.1, the static rendering method first uses

dd3_getBounds function to obtain the margins (i.e. upper and lower limits) of the

dataset in both x and y axis for each screen [104]. The corresponding data loading

functions, in which case dd3_getPointData and dd3_getPathData for the data points and

data line, will then be able to fetch a subset of data based on the data types. Hence, the

rendering can be started afterwards by D3.js. Note that data loading functions will be

further discussed in the section of §3.4.2 when we detail the data-accessing layer.

In detail, the dd3_getBounds method returns the upper and lower data limits for a certain

browser window by using the domain and range ratio of data in that local browser

window, as we can find the pseudocode in Figure 3.4.2, where the method will be

divided as the first and second part [104].

In the first part of getBounds method in Figure 3.4.2, we are focused on initialising and

preparing the domain and range for x and y axis. Specifically, if scaleX and scaleY have

been defined from inputs, the method initialises the corresponding domains and ranges.

Otherwise, data keys need to be given from inputs (i.e. xKey and yKey) in order to

initialise the domains and ranges. These defined domains and ranges are checked

afterwards to ensure their data sequences are in an incremental order, the order will be

reversed if this is not the case, and an inverted flag is set to indicate the change.

After that, the second part in Figure 3.4.2 further defines the maximum and minimum

values of ranges in x and y axis, where the values are given by the browser’s margins if

not limited by the data’s ranges. Now we can obtain the corresponding maximum and

minimum limits of domains by using the ratio between the domains and ranges, and

finally the output limit can be returned and obtained.

3.4 Distributed D3 Framework Implementation 145

146 Distributed D3 Framework Integrated with Data Observatory

Figure 3.4.2 The algorithm of the getBounds function with pseudo commands

3.4 Distributed D3 Framework Implementation 147

Dynamic rendering by transmitting

The dynamic rendering by transmitting method is created to allow the distributed

rendering in the case of animations and interactions. By watching the changes of

transitions in an animated visualisation, the dynamic rendering functions will predict

the end positions and calculate relative coordinates of a cross-screen transition, and then

send relevant rendering information to the corresponding screens to prepare the

animations. The animations will then be played and synchronised by a broadcasted

message.

Figure 3.4.3 The illustration of the dynamic rendering by sending and receiving the shapes

via real-time peer-to-peer network

An illustrative example of the dynamic rendering method can be seen in Figure 3.4.3,

suppose we have several circular elements and one of them is moving from screen B to

C, the method first attempts to find all cross-over screens as the recipients of that

circular element by using dd3_findRecipients function, in which case they are screen

B, A, D and C in order [104]. It then uses dd3_findBrowserAt function to obtain the

relative transition paths and coordinates for each screen, in order to visually display the

moving circular element as a continuous animation in a single large screen. Once these

coordinates are obtained, it packs the transition information and forward it to the

148 Distributed D3 Framework Integrated with Data Observatory

corresponding screens via peer-to-peer network. The transition animations will be

rendered and played on those screens after receiving and unpacking the information

while taking account of the potential delay in the network transmission. Meanwhile, a

synchronisation message will be broadcasted to improve the animation coherence

across screens.

Figure 3.4.4: The algorithm of findRecipients function with pseudo commands

3.4 Distributed D3 Framework Implementation 149

Figure 3.4.5: The algorithm of findBrowserAt function with pseudo commands

Specifically, the mechanism of findRecipients method can be seen in Figure 3.4.4 [104].

The method uses a local JavaScript function called getBoundingClientRect [105] to

obtain the local coordinates of a bounding rectangle, where the rectangle contains the

target element. The returned coordinates will then be used to check if the rectangle is

outside the current browser; if this is the case, the method further invokes

dd3_findBrowserAt as shown in Figure 3.4.5 to find the top left and bottom right

recipient browser in the coordinates of the column and row, where the target element

may be able to reach [104]. Once we know the coordinates of the top left (as minimal)

and bottom right (as maximum) recipient browsers, we will then be able to loop over

the columns and rows from the minimal value to the maximal, in order to obtain a full

list of the browser recipients that will contain and receive the target element.

150 Distributed D3 Framework Integrated with Data Observatory

3.4.2 The Data-accessing Layer

For the variety of data structures in the potential visualisations, we have chosen

MongoDB to be the main database option in this implementation. MongoDB is

classified as a non-relational (NoSQL) database and featured by storing data in flexible,

JSON-like documents with schemata [106]. In addition, we chose to use Open Data

(OData) protocol [107] to build and consume the RESTful APIs [108], as it has multiple

existing implementations and libraries well written in JavaScript.

Figure 3.4.6 The structure of the data-accessing layer with OData APIs and MongoDB

The implementation of the data-accessing layer is illustrated in Figure 3.4.6, where

multiple Distributed D3 instances on different nodes are able to access the OData

endpoint via the OData client module [104]. On the other hand, the OData endpoint is

built with MongoDB to allow querying database via the RESTful APIs. Such

implementation improves the extensibility of deploying additional databases with the

flexibility in other types for future development, and most of the common types of

database are well supported by the OData endpoint framework.

In the aspects of data fetching and loading functions, the static rendering method defines

the margined areas of data that will be rendered and displayed on the screens, this is

further realised by selecting a subset of data from the original dataset in database. In

practice, this distributed data fetching mechanism is useful for the coordinate-based data

visualisation, such as scatter plots, bar charts and maps. However, for the visualisations

3.4 Distributed D3 Framework Implementation 151

that are not based on coordinates usually require to define a customised filtering rule,

otherwise the whole dataset will be obtained for each node, such as pie charts and

treemaps. Fortunately, visualisations that are not coordinate-based generally have

smaller size dataset. In Table 3.4.1, we summarise the data loading functions based on

several common data types [104].

Data Types Functions Filtering Rules

Point Data dd3_getPointData Get the margins (i.e. upper and lower limits) from
getBounds function

Path Data dd3_getPathData Get margins from getBounds with extended ranges for
drawing the trend of a path

Bar Data dd3_getBarData Get the upper and lower limits based on orderingKey

Pie Data dd3_getPieData The filtering rule is not currently defined for pie chart
due to the need of generating the pie shape

Undefined dd3_getData The filtering rule can be optional or customised on
demand for any other undefined data types

Table 3.4.1 The list of data loading functions that are used to filter data by data types

Moreover, the data loading functions will further create the data queries to fetch the

corresponding subset of data from database. The queries are handled by OData client

module, where two fundamental data query functions – query() and queryWith() have

implemented to interpret the basic and more advanced data queries based on the filtering

rules.

http://config.host:config.port/serviceName/dataName?$select=da
ta.name&$orderby=data.order&$filter=data.filterRules

Figure 3.4.7 The main components of a typical OData query string with individual fields

In detail, a typical query string in OData can be seen in Figure 3.4.7, where the main

purpose of query() and queryWith() method is to construct such a data query based on

the given dataset and its specific filtering rules. As we can see the pseudocode in Figure

3.4.8, the basic query string consists of $select, $orderby and $filter in addition to the

152 Distributed D3 Framework Integrated with Data Observatory

host configurations [104]. The query() method then simply assembles the individual

components and send this query string to the OData service endpoint via an OData client

module - o.js [109] for the callback result. In comparison, an advanced data query can

be assembled by queryWith() method, where additional modifiers are allowed, such as

$top and $skip. Moreover, a custom parameter is also allowed in the advanced query

which can be used to apply modifications on the returned data in callback.

Figure 3.4.8 The algorithm of the query and queryWith method with an OData client module

3.4 Distributed D3 Framework Implementation 153

3.4.3 The Network Layer

In the implementation of the network layer, we have chosen the newly developed

WebRTC to be the main communication protocol in addition to the SignalR [110]. The

WebRTC protocol is featured by allowing direct peer-to-peer communication without

installing extra plugins, which is well supported by the most of up-to-date modern

browsers [82]. To further wrap and implement the protocol, we found the open-sourced

framework PeerJS which is an easy-to-use and configurable implementation that can be

useful in the development [111].

Figure 3.4.9 The underlying fully-connected peer network (with WebRTC) and the star-shape

controlling network (with SignalR) in the network layer implementation

As we can see the network structure in Figure 3.4.9, we have implemented two types of

underlying networks in this layer [104]. The peer network, which is fully connected

with all peer nodes by WebRTC, is mainly designed to deal with the dynamic peer

updates, including the events and communications in the animations and interactions.

The controlling network is star-shaped and established by the SignalR hub (server),

which is mainly responsible for broadcasting messages from the hub to peer nodes,

154 Distributed D3 Framework Integrated with Data Observatory

including commands or configurations. In practice, this separated controlling network

is useful to improve the reliability of the framework, as it helps to fast detect a

disconnected rendering node and also to better synchronise the animations by direct

broadcasting.

When we implement these two integrated networks in detail, the framework is first set

to establish the SignalR connections between the hub and peer nodes at the initialising

stage, wherein the peer nodes connect to the hub via the SignalR server address so that

they can obtain their unique connection IDs on the connections. After that, the nodes

will attempt to connect to the peer server to get their individual peer IDs, and then send

them back to the hub.

On the hub side, after checking the total connected number of clients are equal to the

configured client number, it broadcasts a full list of the connected nodes with all of their

connection and configuration information including peer IDs. The peer nodes will then

be able to establish the fully connected peer network accordingly. The pseudocode of

this entangled network initialising process can be seen in Figure 3.4.10 [104].

3.4 Distributed D3 Framework Implementation 155

156 Distributed D3 Framework Integrated with Data Observatory

Figure 3.4.10 The pseudocode for establishing the fully-connected peer network via the

established SignalR network

3.5 Results 157

3.5 Results

In order to demonstrate and benchmark the implementation results, we have written a

number of common chart examples for this integrated version of Distributed D3 on the

Data Observatory. Meanwhile, we have also designed the benchmarking toolkit in order

to evaluate the potentially improved scalability and performance of the framework in a

different number of node configurations. We will demonstrate these chart examples in

the section of §3.5.1 and then discuss the benchmarking results in §3.5.2.

3.5.1 Demonstrating Examples

After deploying the chart examples on the integrated Distributed D3, we set up a testing

environment for the demonstration that includes 2 rendering nodes and 4 high-

resolution screens on Data Observatory. In Figure 3.5.1, the screenshot shows the

scatter plot chart example that has been successfully running on the testing environment

in a distributed manner, where each screen only renders a portion of the entire

visualisation [104].

This distributed mechanism can be confirmed by investigating the DOM structure in

Figure 3.5.2, in which each browser window only holds a limited number of rendering

elements that are essential to visually create the visualisation as one instance for

distributed rendering [104]. Specifically, if we count the visually visible points on each

screen, the result is matching the number of circle elements (as points) that are existed

in DOM tree. Since the circle elements are essentially created by the corresponding

subset of data in our design, the test can also confirm the distributed data has been

successfully implemented in this example.

158 Distributed D3 Framework Integrated with Data Observatory

Figure 3.5.1 The demonstrating example of the scatter plot visualised by Distributed D3

Figure 3.5.2 The inspecting results of counting circular data points in each screen

The bar chart and pie chart are also successfully deploying on the testing environment

as we can see in Figure 3.5.3 and Figure 3.5.4 [104]. By inspecting the DOM structure,

we can confirm the bar chart only requested and rendered a margined range of data for

each screen, and it also properly generates x and y scales by only using the dimension

information of its dataset. In comparison, the pie chart has requested the entire dataset

Visual: 9
Actual: 9

Visual: 9
Actual: 9

Visual: 8
Actual: 8

Visual: 8
Actual: 8

3.5 Results 159

for each screen due to the needs of generating an entire pie shape, which also can be

regarded as one large shared element from the view of our design philosophy in this

version.

Figure 3.5.3 The demonstrating example of the bar chart that is visualised by Distributed D3

Figure 3.5.4 The demonstrating example of the pie chart that is visualised by Distributed D3

Moreover, these chart examples have also been tested on other numbers of screen

configurations, and they have been working and running successfully. The framework

160 Distributed D3 Framework Integrated with Data Observatory

scalability and its performance will be more precisely evaluated and benchmarked in

the next section.

In addition, a London Tube map was developed by a colleague in the Data Science

Institute at the time of finishing this integrated version of Distributed D3, the

demonstration in Figure 3.5.5 shows the animated popularity of the tube stations at the

peak and off-peak time in London [112].

Figure 3.5.5 An demonstration of the London Tube map with animated entries and exits on

the peak and off-peak time of the tube stations, which is built with Distributed D3

3.5 Results 161

3.5.2 Performance Benchmarking

In order to benchmark the framework in all possible configurations on Data Observatory,

we have designed and implemented the benchmarking toolkit that creates distributed

random circles on the available screens in a test, and then it randomly moves the

generated circles across screens. The number of animated circle elements and the

average FPS during the moving animations will be recorded accordingly in different

size of node configurations.

A screenshot of the implemented benchmarking toolkit for 2-screen test environment

can be seen in Figure 3.5.6 and Figure 3.5.7, where we put the test environment under

stress in the second screenshot [104]. The full benchmarking tests will include the

configurations from 1 node (2 screens) to 32 nodes (64 screens) by doubling the node

number in each step. The test result has been shown in Figure 3.5.8, in which the charts

show the average FPS against the number of animated circle elements for different node

configurations.

Figure 3.5.6 The screenshot of the benchmarking toolkit in test of 2-screen setting with 100

animated circle elements

162 Distributed D3 Framework Integrated with Data Observatory

Figure 3.5.7 The screenshot of the benchmarking toolkit in the test of 2-screen setting with

1,000 animated circle elements

Figure 3.5.8 The benchmarking result of the integrated version of Distributed D3 in

comparison with running D3 alone (in red)

3.5 Results 163

In Figure 3.5.8, we notice that, with more available distributed rendering nodes, the

visualisation can steadily provide a higher frame rate (FPS) with a larger number of

animated elements [104]. D3.js alone has its acceptable animation smoothness (i.e. FPS

> 24) [113] threshold at approximately 1200 elements and optimised animation

threshold (FPS ≈ 60) at approximately 500 elements, which are regarded as the

reference points in this test. The performance is slightly decreased with Distributed D3

with 1 node (1 screen) setting that is potentially caused by the overhead of applying

distributed implementations on a single node. Whereas such disadvantage starts to be

outweighed when the configuration changes to 1 node (2 screens) setting, since we

know that an extra screen can provide an extra browser window with more available

processing threads to a visualisation despite on a single node. The test results thus far

demonstrate that the performance bottleneck of original D3 has been successfully

overcome by utilising Distributed D3.

Figure 3.5.9 The benchmarking result of the integrated version of Distributed D3 for

investigating the optimised animation threshold in all configurations

Besides, in order to find and compare the optimised animation thresholds for all

configurations including 32 and 64 screens, we set the animated number of elements

from the original D3’s reference point of 500 elements to the last performance declining

164 Distributed D3 Framework Integrated with Data Observatory

point. As we can see the results in Figure 3.5.9, with the configuration of 32 and 64

screens in the test, we have been able to improve the performance bottleneck (for the

optimised animation) of the original D3 from 500 animated elements to 3,000 and 3,500

elements respectively, in the development of this integrated version of Distributed D3

[104].

3.6 Discussion 165

3.6 Discussion

As a complex distributed system, it is clear that the potential bottlenecks of Distributed

D3 need to be identified in order to further improve the existing framework. Two main

relevant areas are worth to be investigated that include the potentially large number of

DOM interactions and possible network latency during transmitting. Meanwhile, we are

interested in finding new approaches to further optimise the framework.

In addition, more demonstrating examples are expected to be developed on the current

Distributed D3 for the purpose of providing basic visualisation code examples for more

advanced visualisation applications. In the meantime, developing various examples can

also help to find potential issues in the current version of Distributed D3, and hence to

improve the stability of the framework.

Moreover, although the integration of current Distributed D3 framework provides

simplicity to leverage the distributed graphical computing power in the Data

Observatory, it is clear that an independent implementation of the framework will need

to be designed in the later development for more generic usages. We would expect to

enable Distributed D3 to be configured and used on a variety of visualisation

environments, from a small cluster of computers to the modern data observatories.

166 Distributed D3 Framework Integrated with Data Observatory

3.7 Conclusion

In this chapter, we proposed and developed the integrated version of Distributed D3

framework to resolve the performance limits of running D3.js alone on Data

Observatory. We illustrated and discussed the framework design and implementations

after comparing a variety of possible designing approaches. In particular, the static and

dynamic rendering methods are created in order to fulfil the feature of distributed

rendering, a variety of data loading functions are developed for the feature of distributed

data. In overall, three individual layers are designed for Distributed D3 including the

rendering, data-accessing and network layers. The implementation result of the

distributed framework is functioning as expected as we can see from the demonstrating

examples. The benchmarking results further show the improvement of the overall

performance and scalability comparing to the original D3.js. In addition, we have also

discussed the potential issues in this integrated version of Distributed D3 and suggested

possible solutions to further improve the framework in the next stage.

4.1 Introduction 167

Chapter 4 Distributed D3 Framework

Optimisation with a Demonstrating Application

4.1 Introduction

The recent development of the integrated version of Distributed D3 has been beneficial

to the Data Observatory, in terms of including a powerful and scalable D3-based data

visualisation framework to the existing visualisation system and library. Several

remarkable examples have been developed by researchers and developers at Data

Science Institute, including London and Shanghai Metro Maps [112].

However, due to the complexity of implementing a distributed framework in practice,

we understand that it is essential to maintain the framework usability by continuously

optimising its performance and creating new features to the current framework. We

have noticed a number of emerging new techniques that might be worth to be

implemented with Distributed D3 to further improve its performances on large-scale

visualisations, such as an implementation of the concept of virtual DOM [114] - React.js,

which is recently developed by Facebook [115].

In this chapter, we focus on optimising the previously developed integrated Distributed

D3 by looking into the potential performance bottlenecks of the existing framework.

We then test the possibility of implementing our findings before we propose

modifications and improvements to the framework. After implementing these proposed

optimisation approaches, we will benchmark the optimised framework to be compared

with the previous development. Meanwhile, we will also design and implement an

interactive demonstrating visualisation application on this new version. At the end of

168 Distributed D3 Framework Optimisation with a Demonstrating Application

the chapter, possible further improvements will be included and discussed for the future

work and development.

4.2 Distributed D3 Framework Bottleneck Analysis 169

4.2 Distributed D3 Framework Bottleneck Analysis

Identifying the bottlenecks of the current Distributed D3 framework is essential for the

purpose of optimising the framework performance as a next step in the development.

From the benchmarking results of the integrated framework in the last chapter, we have

known the dropping frame rate (FPS) is correlated to the total number of animated

elements that are rendered on the screens. The result makes common sense that

increasing number of animated elements require more graphical computing resource to

ensure the smoothness of the animation. However, in order to ascertain if it is still

possible to enhance the framework performance under the same visualisation condition

(i.e. the same visualisation environment), we will look into the underlying DOM

interactions between the rendering functions and hosting browsers.

4.2.1 Excessive Garbage Collections

Figure 4.2.1 The Garbage Collection (GC) frame that is captured in the benchmarking test

The investigation of the framework performance bottleneck is started at the lagging

point that we have observed in the benchmarking tests of the integrated Distribute D3

on Data Observatory, in which the benchmarking animation starts to have noticeable

delay from the first frame to the next. We then look into this event by inspecting and

recording the lagging point via the performance metric provided in Chrome DevTools

[116]. As is shown in Figure 4.2.1, we notice an extra-long frame starts to appear during

the animation at the lagging point, which is roughly 3 times (148.5ms) longer than an

average normal frame (51.4ms) [117]; meanwhile, an extra step is appearing and lasting

170 Distributed D3 Framework Optimisation with a Demonstrating Application

in the lagging frames which is called Major GC [118]. According to the research paper

published by Google [119], Major GC in a Chrome browser stands for major garbage

collection of the whole memory heap that is performed if the size of live objects has

exceeded a pre-defined limit in order to reduce the high memory usage. Normally, the

garbage collection marking latency is related to the number of live objects that need to

be marked; in the case of the whole heap, it can potentially take more 100ms for a large

web page [119], which can be corresponding to the time lag we have observed.

Although the garbage collection is an essential step of dynamic memory management

automated by Chrome V8 JavaScript engine [120], we also find the current version of

D3 v3.5.6 does not manage the DOM access in an optimised manner, so that it can avoid

triggering unnecessary major garbage collections in a further investigation. In

particular, the ongoing animations would be paused if the DOM tree is unavailable or

in an inactive state; and they should be resumed in sequence when the DOM becomes

available again. However, the current version of D3 library resumes paused animations

all at once in order to catch up the playtime, which can cause a sudden and massive

workload on the DOM at the animation resuming stage; and it can further lead to

excessive garbage collections if the visualisation is in large-scale that has high impact

on the memory usage.

Figure 4.2.2 The comparison of the frame rates (FPS) between D3 v3.5.6 and v4.0.0

4.2 Distributed D3 Framework Bottleneck Analysis 171

Since D3 has noticed this issue in the animation resuming event, it improves its timer

and animation mechanism in the newer version of v4.0.0 [121]. In which case, the D3

timer will be frozen, and the animation will be held when the DOM is not available, and

then both timer and animation will be resumed after the DOM becomes available again

to avoid unintended animation effects and memory impact [122]. The improvement may

only optimise the framework performance on a certain extent by avoiding triggering

unnecessary garbage collections. By experimenting the benchmarking example on D3

v3.5.6 and v4.0.0, we can see a limited average performance improvement in Figure

4.2.2, wherein the average frame rates (FPS) over a time span of 220 seconds are 22.5

and 24.3 in v3.5.6 and v4.0.0, respectively [117]. Hence, a similar result would be

expected when applying this newer version of D3 to the Distributed D3.

172 Distributed D3 Framework Optimisation with a Demonstrating Application

4.2.2 Massive DOM Interactions

By further inspecting the runtime JavaScript function calls on the DOM in browser, we

notice that there is one remarkable function that has been heavily used in the

benchmarking example, which is setAttribute() [123]. The function simply assigns an

attribute to a specified DOM element as simple as it sounds to be; however, it can be a

huge impact on the visualisation performance if the existing DOM tree contains

thousands of elements that need to be set, such as in the test example.

If we abstract the issue from observation, imagining the animation of randomly moved

circles, thousands of coordinate attributes need to be assigned to their corresponding

DOM elements at a single animation frame, the overall action can lead to a noticeable

drop of frame rate if it repeatedly triggers the garbage collections due to the high

memory usage. Therefore, this performance limitation issue is not only the bottleneck

of Distributed D3, but also a main performance constraint in the D3.js and other

resource-intensive web-based visualisation frameworks.

To address this openly known performance bottleneck [124], we find that the virtual

DOM is a newly emerging concept of managing and manipulating DOM tree structure

with a reduced total number of DOM interactions; React is popular implementation with

integrating this concept [114]. Essentially, it creates a virtual view of the current DOM

tree structure in memory and then only applies the DOM structure changes when they

are necessary [125]. The trade-off of this virtual approach is the potentially higher usage

of the memory for stacking the virtual DOM; however, this may be less problematic

with the high-end graphic-focused stations such as on the Data Observatory.

Although we understand this virtual approach may have its limitation on the animation-

based performance optimisation due to the necessity of applying DOM changes to DOM

tree may be in every animation frame, we are still keen on finding out the truth and

potential changes in the benchmarking example. After researching and comparing

several existing D3-focused virtual DOM frameworks [126][127], we choose react-

4.2 Distributed D3 Framework Bottleneck Analysis 173

faux-dom [128] to be the test implementation as it provides a middle layer between D3

and virtual DOM (by React), namely D3.js is responsible for preparing the DOM in

order to define the visualisation, and then React will be in charge of rendering the DOM

for displaying.

Figure 4.2.3 The screenshot of the timeline in benchmarking test using react-faux-dom

As we deploy the benchmarking test on D3 with react-faux-dom, we find that the

animation frames become considerably long comparing to running on D3.js alone,

where a single average frame of each is approximately 218ms versus 51ms in the test.

In Figure 4.2.3, we can observe the problems are caused by frequently rebuilding the

DOM tree in each animation frame [117]. Given the benchmarking tests were designed

to animate randomly generated circles moving to random locations on the screen, it is

reasonable to see that React.js completely updates the DOM structure in every frame in

order to show the changes as necessary. To further address this approach, the possible

alternative solutions will be discussed in the later section of §4.6.

174 Distributed D3 Framework Optimisation with a Demonstrating Application

4.2.3 Unoptimised Animation Timeout

Despite the fact that the React virtual DOM approach is not an ideal approach to

optimise the animation-based visualisation such as in the last experiment, an interesting

phenomenon was observed while experimenting and comparing the time intervals

between animation frames in those two configurations. With React DOM, the idle time

in its animation frames can be significantly shorter comparing to the ones in D3.js alone.

To take a closer look at the idle time differences, we find that D3 instead of using

setTimeout [129] to trigger rendering the next frame of animation, it invokes

requestAnimationFrame to decide the starting time for preparing the next frame. By

looking into the documents of requestAnimationFrame function, it only updates the

animation of the next repaint after receiving the callback from the browser, where this

callback function is paused when running in the background or hidden, so that it can

prevent the unnecessary animations to be played on the screen [130].

This default D3 timer configuration is reasonable for a personal computer environment

(e.g. on a desktop or laptop), as the personal browser window may become inactive

while a user switches the active main task to other browser windows or applications.

Whereas, in the environment of Data Observatory, all of the visualising browser

windows are constantly active and focused while presenting a visualisation application.

Under these specific conditions, we are interested in to see the differences by setting a

fixed time interval instead of checking the browser condition every time before deciding

whether or not to render the next animation frame.

4.2 Distributed D3 Framework Bottleneck Analysis 175

Figure 4.2.4 The comparison of frame rates (FPS) between requestAnimationFrame and
setTimeout in the benchmarking test

In order to find out the possible performance impact while relying on one of these two

configurations, we have run the benchmarking tests to show the potential difference in

overall performance. As is shown in Figure 4.2.4, we can find the average frame rate

(FPS) of using requestAnimationFrame in the benchmarking test is 20.4, which is to be

compared with the frame rate of using setTimeout that is 27.4 [117]. The results

demonstrate the possibility of performance improvement by 36.5% in the optimised

settings. The underlying reason is potentially due to the fixed time interval set by

setTimeout allows D3 to render the next frame of animation in advance via effectively

reducing the overhead and waiting time of checking browser condition for each

animation frame in requestAnimationFrame. The optimisation of D3 timer will

therefore be implemented and detailed in the next section.

176 Distributed D3 Framework Optimisation with a Demonstrating Application

4.3 Distributed D3 Framework Optimisations

4.3.1 Optimising Animation Timeout

As we have discussed in the last section, the default D3 mechanism of the animation

timeout in the current Distributed D3 framework may not be optimised. This is due to

the conventional user environment has assumed to be on a personal desktop or laptop

computer rather than in a visualisation-focused environment such as on the Data

Observatory. The default D3 timer configuration can be easily changed by modifying

the relevant code in D3.js as which is an open-sourced library. However, as we consider

Distributed D3 to be a separate distributed layer based on D3, a preferred approach is

to restrict the code modification within Distributed D3 if possible.

var d3_timer_queueHead,
 d3_timer_queueTail,
 d3_timer_interval,
 d3_timer_timeout,

d3_timer_active,
d3_timer_frame = this[d3_vendorSymbol(this, "requestAnimationFrame")] ||

function(callback) { setTimeout(callback, 17); };

Figure 4.3.1 The code snippet of initialising animation timeout function in D3 timer

By further looking into D3’s source code when initialising the variables of its timer, we

notice D3 has the backward compatibility to support the less updated browsers that do

not recognise the requestAnimationFrame parameter, as we can see in the last line of

Figure 4.3.1. The compatibility mode can be triggered if the requestAnimationFrame is

undefined when initialising the D3 timer [117]. By checking the browsers and their

versions on Data Observatory, we find this parameter are well supported in all browsers

that have been used in benchmarking tests. Thus, a simple and effective workaround

solution is to assign and force the requestAniamtionFrame parameter to be undefined

before loading the D3 library in Distributed D3 in order to switch off this feature. The

implementation results will be analysed and discussed in the section of §4.5.1.

4.3 Distributed D3 Framework Optimisations 177

4.3.2 Supporting D3 Version 4.0.0

As we have mentioned previously in the section of §4.2.1, upgrading Distributed D3

from the current version of 3.5.6 to the newer version of 4.0.0 could potentially resolve

the performance issues on triggering excessive garbage collections, in addition to

include possible new features in the current framework. In order to integrate the newer

version of D3, we need to review and address a number of potential incompatible

changes and issues in such an upgrade.

• d3-ease methods simplified: In the current version, d3.ease depends on strings

for defining the ease of transition, which is used to define the transition speed

changes during the transition, this is however changed in the newer version

where the method names include the defining strings. For instance, a linear ease’s

method definition in the version of 3.5.6 and 4.0.0, is d3.ease(“linear”) and

d3.easeLinear, respectively.

• d3-collection methods renamed: A number of methods have been renamed in

d3.set and d3.map; for instance, the original method name of map.forEach has

been changed to map.each for the simplicity. Such changes need to be checked

and implemented in Distributed D3, as there are existing instances of method

that may be not explicitly named after d3.set and d3.map.

• d3-timer core changes: Apart from the behavioural changes in D3 timer, which

is now frozen in the background in order to avoid unintended effort, D3 is now

able to use the high-precision time API performance.now() [131] rather than the

previous API date.now(), which is also a key reason to support the newer version

of D3 in Distributed D3.

• d3-transition in a transition’s life cycle: It can be put that d3-transition is the

main change in D3 v4.0.0 which has the most impact on the current development

of the framework. There has been a large reworking of the transition object, and

178 Distributed D3 Framework Optimisation with a Demonstrating Application

the information now available for outside access is significantly less than

previous. Besides, determining whether or not a transition is currently active

becomes more difficult. In the next part, we will review the life cycle of a

transition and also address the changes required for resolving possible issues.

The life cycle of a transition

Reviewing the life cycle of a transition in Distributed D3 can be useful for

understanding the modifications that are necessary to be implemented in the framework

to support newer version of D3. The following Figure 4.3.2 illustrates a transition’s life

cycle with the corresponding functions in steps.

Figure 4.3.2 The life cycle of a transition in the current Distributed D3 framework

4.3 Distributed D3 Framework Optimisations 179

1. Finding transition recipients: As the transition starts, the framework will create

elements which are supposed to be animated and prepare the shape to be

transitioned. The dd3_findRecipients function will then utilise the native

JavaScript getBoundingClientRect method to assist and find which browsers a

shape will undergo during the transition.

2. Changing the referential: As the referential is present for every browser, it is

important for the sender browser to change to a certain relative coordinate by

implementing the dd3.position function, so that it can ensure the transition is

visually understandable. The dd3_findBrowserAt function is responsible for this

converting task.

3. Preparing data to send: As the BinaryPack [132] is used by PeerJS, which is the

library utilised for peer-to-peer connections using WebRTC for serialising the

data prior to sending it, as it is not possible to send unsupported elements

including functions. Hence, it is necessary to serialise the transition-related

functions such as tween(), attrTween() and styleTween(), as well as the ease()

function.

4. Creating peer-to-peer connections: In case of the connection not being

established with browsers, where the elements need to be received, the peer-to-

peer connection is created by PeerJS. All data that is in need to be sent then fills

the buffer once the connection is ready, and then the buffer is flushed and sent to

other peers.

5. Receiving the shape: After receiving the transition, the recipient creates the

element that the transition affects if it is not already present and interrupts the

transition that exists. Moreover, it implements the style properties that are

obtained from the peer and the initial attributes to this object. Then, it generates

the transition object to which it applies the end style properties, the end attributes,

180 Distributed D3 Framework Optimisation with a Demonstrating Application

as well as the duration. Further, tween(), styleTween(), ease() and attrTween()

functions are de-serialised and implemented to the transition object.

6. Sending endTransition: After the transition is completed, the sender which is the

browser that begins the transition sends an endTransition event to each transition

recipient, attributing the end state elements. It also functions as a mitigation

mechanism if anything goes wrong during the transition on the other screen.

By reviewing the transition in Distributed D3, the first issue that needs to be addressed

is how an active transition can be detected. In the current development, it depends on

the transition object’s active attribute. The newer version, however, has replaced this

attribute by a global d3.active that returns the active transition but less reliable.

Therefore, although the framework initially attempts using this method, if it is unable

to detect any active transition, attempts will still be made to identify whether a non-null

transition exists on the relevant object.

Secondly, the transition object’s attributes are no longer accessible directly. Although

the transition properties can be accessed using external code by implementing various

workaround methods, a number of key attributes such as time, once the transition is

created, remains inaccessible. This can be resolved, as these information are persistently

stored in the node, which is to be transitioned and can be obtained by calling

transition.node().__transition and retrieving all those transition properties.

Finally, transition.attr and transition.style help in establishing the transition’s final state

properties. While they do have their own behaviour previously, now transition.attr calls

transition.attrTween function and transition.style calls transition.styleTween function

as the adapted pre-defined interpolator functions. However, since Distribute D3 already

includes the mechanism that can handle the transition without these updates, it is

therefore necessary to remove them from the current development.

4.4 Distributed D3 Framework Demonstrating Application 181

4.4 Distributed D3 Framework Demonstrating Application

4.4.1 The Design of the Demonstrating Application

In order to demonstrate the performance improvement and the usefulness of the

Distributed D3 in a real-world use case scenario, we have designed and implemented a

demonstrating visualisation application for the selected large dataset from a social speed

dating experiment [133]. The dataset consists of 8,379 speed dates entries with at least

common 75 attributes for each entry, which could provide a minimum of 627,750

elements in the demonstration application.

Figure 4.4.1 The visualisation example of the parallel coordinates with a dataset of cars

By considering the purpose in the design of this application, the demonstration should

take advantages of using Distributed D3 in the environment of Data Observatory, i.e.

the type of visualisation should be able to display raw data or information as rich as

possible in the large tiled display wall comparing to the personal desktop environment.

We found the parallel coordinates graph, which is a non-aggregated visualisation, can

182 Distributed D3 Framework Optimisation with a Demonstrating Application

be a good candidate that fulfils this purpose by allowing observers to directly observe

and interact with the formatted raw data. An example of this type of visualisation can

be seen in Figure 4.4.1 [134]. As a demonstration, we tend to keep the visualisation as

simple as possible for the purpose of indicating the potential performance improvement

by using a different number of raw data points from the dataset. The implementation of

this demonstration will be discussed in the next section.

4.4.2 The Implementations of the Demonstrating Application

Since Distributed D3 preserves most of the D3 APIs for the simplicity of use, to

implement this application on it becomes easy and effortless from the existing example.

Essentially, we only need to modify the lines of code that are needed to use Distributed

D3 and then adapt the modified example for the new dataset.

To be more specific, instead of using d3.scale, we use dd3.scale in both x and y scales.

Further, in order to load data into the visualisation, we use dd3.getData to fetch data

from database via the written OData services. After the callback with the result of

successfully retrieving the data, we can draw and generate the visualisation as normally

we do in D3.

Moreover, due to the uniqueness of the Data Observatory environment, using mouse to

interact with the visualisation is inefficient. We thus have written a small control panel

to enable the interactions that includes ranges and attributes filters when presenting data.

We will present and discuss the implementation and benchmarking results of this

application in section of §4.5.2.

4.5 Results 183

4.5 Results

In this section, we will run a full benchmarking test for the optimised Distributed D3,

and the test results will then be compared with the previous version to reveal the

potential improvements. Meanwhile, we will also compare and discuss the potential

changes in the visualisation capacity of the demonstrating application before and after

the optimisations.

4.5.1 Benchmarking Comparisons

In order to compare the benchmarking results of Distributed D3 with and without

optimisations, we have used the same benchmarking toolkit as we previously mentioned

in §3.5.2. The benchmarking results have been shown in Figure 4.5.1, where we can

find improvements in general comparing to the previous benchmarking results in the

thumbnail with the same x and y scales at the bottom-left corner [117]. In particular, we

can observe the noticeable difference in the configuration of the 16-screen setting,

wherein the data line is completely flattened without declining in the optimised

Distributed D3. This means the performance in this configuration at 2,000 animated

elements is optimised and fixed at an ideal frame rate (FPS ≈ 60) during the test.

Besides, we can also find the performance improvement in the 1-screen configuration,

where the data line is now closer to the reference test result of running D3 alone (in red)

than the unoptimised Distributed D3.

184 Distributed D3 Framework Optimisation with a Demonstrating Application

Figure 4.5.1 The benchmarking result of the average FPS for the optimised Distributed D3 in
the configurations of 1 to 64 screens which is tested on the Data Observatory

To take a further look into the benchmarking results, we can separately compare the

improvement details in the configurations of 2, 4 and 8 screens. As we can see in Figure

4.5.2 to Figure 4.5.4, the average frame rates (FPS) are noticeably increased by 15.9%

in 2-screen, 22.8% in the 4-screen and 22.5% in the 8-screen configurations [117].

Figure 4.5.2 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 2-screen configuration

4.5 Results 185

Figure 4.5.3 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 4-screen configuration

Figure 4.5.4 The benchmarking result of the optimised Distributed D3 in comparison with the
previous version in the metric of average FPS for the 8-screen configuration

Moreover, we have also tested the performance limit of the optimised version in the

configuration of 64 screens. The framework shows to be able to handle a maximum of

4,750 animated elements without performance decline in frame rate (FPS ≈ 60), which

means an increased performance by 35.7% has been realised in the optimised

Distributed D3.

186 Distributed D3 Framework Optimisation with a Demonstrating Application

4.5.2 Demonstrating Application

After we deploy the demonstrating application on the Data Observatory, we are able to

observe 810 dates with a maximum of 38,070 elements at once on the previous

unoptimised Distributed D3 framework. As we can see in Figure 4.5.5, the panoramic

view of the data visualisation on Data Observatory greatly improves the visibility of the

data trends and connections between different attributes in a larger visualisation area,

which could help observers and collaborators to obtain the potential correlations more

straightforward and easier [117].

Figure 4.5.5 The visualisation result of deploying the demonstrating application on Data
Observatory based on the unoptimised Distributed D3 framework with 38,070 elements

In comparison, when we deploy the demonstrating application on the optimised

Distributed D3 framework, the Data Observatory with full 64 screens configuration is

able to handle 1010 dates with 47,470 elements at once as is shown in Figure 4.5.6 [117].

The visualisation capacity has been improved by 24.7% in this demonstration, which

also proves the usefulness of the framework optimisations in a real-world use case

scenario.

Figure 4.5.6 The visualisation result of deploying the demonstrating application on Data
Observatory based on the optimised Distributed D3 framework with 47,470 elements

4.6 Discussion 187

4.6 Discussion

As we have identified and experimented in the early sections, the overwhelming DOM

access and interaction is a major bottleneck of both Distributed D3 and the original D3.

If we can overcome the current implementing issue of completely rebuilding the virtual

DOM to the DOM tree every time it deems necessary, we might be able to significantly

reduce the performance impact from the excessive DOM interactions. Incremental

DOM [135] is a recent development of the new emerging approach to address the high

memory usage issue in virtual DOM. In the meantime, it would only incrementally

apply the necessary changes to the DOM tree, which may help to resolve the issue of

repeatedly rebuilding DOM tree in the previous experiment. If this future work can be

realised with a good benchmarking result, it can be expected to be a remarkable

breakthrough on the performance bottleneck issue in both Distributed D3 and D3.

The animation timeout mechanism is optimised by switching the function from the

default requestAnimaitonFrame to setTimeout based on the operating characteristic of

the Data Observatory. The implementing results of this optimisation are remarkable.

However, we do realise the potential animation issue when multiple instances of

visualisation are running on the Data Observatory simultaneously. In which case,

requestAnimaitonFrame may handle this situation in a more reliable and managed

manner due to its scheduling mechanism [136]. Meanwhile, the reliability could also

suffer if the animation timeout interval is not fit for the number of elements in a

visualisation. To address these concerns, we can build a customised timeout module

that smartly switches and adjusts these functions and parameters based on the current

number of visualisation instances and the number of elements in a visualisation.

188 Distributed D3 Framework Optimisation with a Demonstrating Application

4.7 Conclusion

In this chapter, we have investigated the performance bottleneck of the framework,

where two bottlenecks were identified from the performance analysis. We have

addressed the first bottleneck of excessive garbage collections by integrating the newer

version of D3 4.0.0 into the Distributed D3. We have also tried to address the second

bottleneck of massive DOM interactions by implementing react-faux-dom into the

framework, wherein the test results are less satisfying; however, we noticed a less

optimised animation timeout mechanism that is caused by the function of

requestAnimationFrame. The final benchmarking results confirm and show the

performance improvements of the optimised framework by 35.7%.

Apart from optimising the framework, we have further designed and implemented a

demonstrating application for a real-world use case scenario. In which case, we selected

a random large dataset from a social experiment and then built am illustrative

visualisation based on that. We use this application not only to demonstrate the

usefulness of Distributed D3 in reality, but also to show the improvements of the

optimised framework comparing with the previous version. The future improvements

and developments of the framework are also discussed, where we proposed the new

scheduling mechanism for the animation timeout and the potential solution of the

incremental DOM to address the issue of massive DOM interactions, particularly in the

large-scale data visualisations.

5.1 Introduction 189

Chapter 5 Distributed D3 Framework Generic and

Standalone Versions

5.1 Introduction

Distributed D3 is a novelty distributed data visualisation framework that provides

unique features of utilising the cluster computing power to improve the performance

and scalability of the original D3 library. With the recent developments and

optimisations of the Distributed D3 framework, we have delivered the first integrated

version that can work together with Data Observatory (DO) to realise the distributed

visualisation, and later the optimisations and upgrades to the integrated version that

further improves the framework performance not only revealed in the benchmarking

tests, but also demonstrated in a large-scale data visualisation application.

However, the current developments of Distributed D3 is highly integrated and

dependent on DO, which could also limit the usability of the framework on other

visualisation environments. In order to make the framework independent, we realise

currently the primary attachment to DO as an application is the implementation of the

SignalR hub network by default. The historical reason was the operating framework of

DO is written in C#, which can be well supported by deploying a SignalR server on it.

Therefore, we plan to replace the SignalR hub with a generic independent server for the

detachment, and then take the step further to completely remove the server by

implementing the serverless network design for the additional flexibility in generic

version.

In this chapter, we will detail the detachment and serverless design and implementations

for the generic and standalone versions of the framework. The implementation results

190 Distributed D3 Framework Generic and Standalone Versions

will be demonstrated by configuring the framework on a customised environment. We

will also conduct the benchmarking tests for the generic and standalone versions on DO

and the customised environment for comparisons. At the end of this chapter, we will

discuss the potential and known issues in the current development before conclusion.

5.2 Generic Distributed D3 Framework Design 191

5.2 Generic Distributed D3 Framework Design

In order to achieve the generic and standalone design of the Distributed D3 framework,

we have designed the two-step approach that aims to improve both usability and

flexibility of the framework. The first step is to detach the Distributed D3 framework

from the integration of Data Observatory by replacing the SignalR hub with an

independent server, and the second step is then to remove the server completely by

assigning a master node instead. We will detail these two steps in the following

subsections of §5.2.1 and §5.2.2.

5.2.1 The Detachment Design

In the current design of Data Observatory (DO), all of its applications are instructed to

include the file structure of App and AppHub in order to fulfil the communication needs

between distributed nodes and the central server. Since the main operating framework

of DO is written in C#, SignalR [137] is thus well supported in such an environment (as

SignalR hub in AppHub). In facts, most of the existing applications on DO are deployed

a SignalR server for various reasons. Hence, the main objective in the detachment

becomes to find a suitable independent server that is able to provide the same features

as the SignalR hub can do. Meanwhile, the relevant application interfaces need to be

created and maintained while replacing with a new server.

If we look into the existing application interfaces between the SignalR hub and the

distributed nodes, we can find their structure and connection as illustrated in Figure

5.2.1, where the SignalR hub (server) is mainly responsible for broadcasting the packed

information to nodes, including the individual node configurations for the peer network

and the controlling commands from a controller (i.e. control node) [117]. Since we also

have plan to adapt a serverless pure peer-to-peer network in the later development, a

good approach is to manage the application interfaces by designing and creating an

192 Distributed D3 Framework Generic and Standalone Versions

extra network interface layer that can flexibly handle the network switching. Such a

network interface will be detailed in the section of §5.3.1.

Figure 5.2.1 The architecture of replacing the SignalR hub with an independent server in

order to detach the framework from the integration of Data Observatory

In addition, since the SignalR server is able to handle the multiple application instances

by dividing the connected nodes into groups as its integral feature, the same mechanism

needs to be addressed in the independent server design. The room concept can be

introduced to deal with this issue for each application (i.e. one room for one

application). Hence a node will create or join a room while connecting to the

independent server, and this node will be removed from the room if it is disconnected

from the server. In which case, the multiple application instances can be handled

simultaneously by having their own separate rooms. The implementation of this design

will be detailed in the section of §5.3.2.

5.2 Generic Distributed D3 Framework Design 193

5.2.2 The Serverless Design

While there are several advantages of designing the underlying network with a central

communication server in terms of dedication and reliability; the serverless and pure

peer-to-peer network design may also have its unique advantages in the aspects of

framework simplicity and scalability, where the framework is able to scale flexibly

without limitations from a server. In the meantime, the unnecessary components that

are related to the server can be removed to promote a lighter weight framework. The

design of the first serverless network structure will be illustrated and detailed in this

section.

The main design philosophy behind this initial serverless version is to completely

remove the server with the support by a master node as shown in Figure 5.2.2 [117].

This master node plays an essential role that acts as a server to broadcast the relevant

node information and controlling commands, which is also known as a super-peer in

the literature [64]. Indeed, the super-peer design may potentially increase the workload

on that assigned rendering node as a master; the overall performance impact, however,

needs to be further evaluated and compared with server dependent design in order to

draw a sensible conclusion. Meanwhile, as the first serverless release of the framework,

further improvements will be in need to reduce the potential performance impact on the

master node, as well as to enhance the reliability of the network in case of the master

failure. The implementation detail of this first serverless design will be discussed in the

section of §5.3.3.

194 Distributed D3 Framework Generic and Standalone Versions

Figure 5.2.2 The architecture of the serverless design by assigning a master node and

removing the independent server from the framework

5.3 Generic Distributed D3 Framework Implementations 195

5.3 Generic Distributed D3 Framework Implementations

5.3.1 The Network Interface

In the design of the generic and standalone Distributed D3 framework, we proposed two

steps for detaching and decentralising the framework from the integration. Such

modifications of the existing framework can be benefited from defining a common

network interface for diversions of the framework. We thus redesign the current

network APIs to include an extra abstraction layer of the network interface, for the

purpose of switching networks based on requirements as we can see in Figure 5.3.1,

where the current design of the network interface allows to switch between SignalR-

based, SocketIO-based and pure PeerJS networks [117]. Such a design further enables

the possibility of mixing hybrid networks and improves the flexibility of utilising the

framework in different usage scenario.

Figure 5.3.1 The abstraction layer of the network interface for the purpose of switching
networks on demand, which also allows to hybridise the existing networks if needed

196 Distributed D3 Framework Generic and Standalone Versions

Corresponding to the network interface design above, we have designed the superclass

of NetInterface to include the common properties and methods that are shared by

diverse network protocols, and each network protocol has its own subclass that

additionally includes private properties and methods for that particular protocol in use.

For example, in the subclass of PeerNet, it has the peerOptions that contains the peer

naming server and port for registering and obtaining peerIds.

The realisation of this abstraction layer at code level can be seen in Figure 5.3.2, where

we employ the JavaScript prototype to build the network interface classes. Hence a

variety of network protocols can be initialised as the network interface instances by

using a common class constructor. At this stage of development, we have included the

instances of pure PeerJS, SignalR-based, SocketIO-based networks. Meanwhile, in

order to enable the inheritance in JavaScript with prototype, we have used an extend

function to inherit the class properties and methods from a superclass to a subclass

[138]. In which case, the subclass of PeerNet is extended from the superclass

NetInterface as we can find in the second part of Figure 5.3.2 [117].

NetInterface:

function Network(protocol, config) {
 var protocol = protocol || null;

 if (protocol === "peerjs") // pure peer network
 return new PeerNet(config);

 else if (protocol === "signalr") // signalR-based net
 return new SignalrNet(config);

 else if (protocol === "socketio") // socketIO-based net
 return new SocketioNet(config);

 else
 throw new Error('Protocol not existed');
}

5.3 Generic Distributed D3 Framework Implementations 197

function extend(subClass, superClass) { // extend function
 function F() {};
 F.prototype = superClass.prototype;
 subClass.prototype = new F();
 subClass.prototype.constructor = subClass.constructor;
}

function NetInterface(config) { // class constructor
 this.config = config || {};
 this.browser = {};
 this.utils = {};
}

NetInterface.prototype.setBrowser = function (browser) {}
NetInterface.prototype.setUtils = function (utils) {}

PeerNet:

function PeerNet(config) {

NetInterface.call(this, config); // inherit from superclass

this.id = this.config.id || ''; // private properties
this.peers = [];
this.connections = [];
this.peerOptions = {};

}

extend(PeerNet, NetInterface); // extend subclass PeerNet

// from superclass NetInterface

Figure 5.3.2 The pseudocode of network interface class with an example of the pure peer
network protocol subclass

198 Distributed D3 Framework Generic and Standalone Versions

5.3.2 The SocketIO Approach

In order to replace the SignalR server, we have found the independent NodeJS-based

real-time web application framework – SocketIO [139] can be a good candidate in this

implementation. It features by its flexibility and scalability of building a portable server,

while providing fast and reliable real-time service [140].

Figure 5.3.3 The illustration of replacing the SignalR hub (server) by a SocketIO server

The original SignalR hub is replaced by a SocketIO server in this implementation as

shown in Figure 5.3.3 [117]. We implement the room concept for the purpose of

enabling the multiple visualisation instance scenario, where a room is uniquely

identified by the roomId that is in the combination of applicationId and the unique

instanceId. The individual node’s socket can be stored and identified by the socketId

when the connection is established, and it will be removed when the connection is lost.

The socket can be further used to join and leave a room for the group broadcasting as

we can see in Figure 5.3.4 [117].

5.3 Generic Distributed D3 Framework Implementations 199

Specifically, once the SocketIO server is established, it creates a room that is listening

and waiting for the nodes to be joined. When a node is initialising, instead of connecting

itself to the SignalR server, it attempts to join the SocketIO room via the newly designed

network interface. Once all nodes are joined, the server will then broadcast and update

the node information, which is the same as the SignalR server would normally do. After

that, the fully connected peer-to-peer network can be established once the node’s

information is received by each peer node.

SocketIO:

var members; // global scope

io.on('connection',function(socket){

 members[socket.id] = socket; // store new member

 socket.on('disconnect', function(){

lib.removeMember(socket); // remove a member
 // if disconnected

 });

 socket.on('joinroom',function(data){

var roomId = '' + data.applicationId + data.instanceId;
// define the roomId by appId and instanceId

lib.joinRoom(socket, roomId); // join the room

 });
})

var lib = {

joinRoom(socket, roomId){
 socket.join(roomId); // join by roomId
},

200 Distributed D3 Framework Generic and Standalone Versions

removeMember(socket){

 socket.leave(socket.roomId); // leave by roomId
 delete members[socket.id]; // delete the member

}
}

Figure 5.3.4 The pseudocode of creating, joining and removing from a room in SocketIO

5.3 Generic Distributed D3 Framework Implementations 201

5.3.3 The Pure PeerJS Approach

In comparison with the SocketIO approach, the implementation of the serverless pure

peer network design requires to define a master node as a representative to broadcast

the timely information for other nodes. We have discussed the network structure and

the advantages of implementing an additional star network comparing to use a single

fully-connected peer network in the section of §5.2.2. Since we have used the PeerJS to

build the peer network among rendering nodes in the previous developments, and we

had positive experience and feedback of implementing this WebRTC-based library on

the framework in terms of speed of connection and network reliability, we therefore

decide to implement the pure peer network structure entirely with PeerJS, which is also

for the overall consistency and simplicity in the aspects of the main framework

components.

Figure 5.3.5 The illustration of implementing the serverless pure peer network by PeerJS

202 Distributed D3 Framework Generic and Standalone Versions

The structure of the serverless pure peer network is illustrated in Figure 5.3.5, which is

implemented by using the PeerJS framework [117]. In which, the first node (Node 0) is

assigned to be the master node by default, who will be in charge of establishing the star

network at the initialising stage. After all peer nodes are connected, the master node

then broadcasts the node information array in order to help establishing the fully

connected peer network afterwards. The implementation detail of the network will be

discussed below.

In detail, the client-server network structure allows the node configuration information

to be easily collected and maintained while a new node is connecting to the server via

a given server address. This step however is lacking in the pure peer-to-peer network

structure, as all peerIds are dynamically generated (a fix and static peerId is possible,

but it is less elegant and not feasible in the case of running multiple application

instances). In order to address this issue, we have found the peer discovery function

listAllPeers in PeerJS, which can be used to fetch the list of registered peerIds and is

particularly helpful for the master node to establish the star network in the initialising

phase. To be more specific, when new peers are connecting to the PeerJS naming server

to obtain their peerIds, their existence are registered, hence a master node can fetch the

list of registered peers that are identified by their individual peerIds.

To further simplify the steps in the network initialisation, we have designed the

structured peerId to consist of the node configuration information. For instance, a

designed peerId with comprised fields would be expressed as,

ctrl3_conf0_client_r3_c0_node1_1571762550369

where the separated fields are controlId, configId, client (or control), the node’s row

number, the node’s column number, nodeId and the timestamp when this peerId created,

respectively.

A unique application instance can be identified by the combination of the controlId and

configId. Such a structured design in every peerId not only reduces the possible

5.3 Generic Distributed D3 Framework Implementations 203

initialising steps via network communications, but also allows to quickly identify a

group of peers in the case of running multiple visualisation instances in one visualisation

environment.

As the JavaScript pseudocode outlined in Figure 5.3.6, in order to establish the star peer

network, the master keeps pooling the connected peers every second (1000ms) at the

initialising phase [117]. The fetched list of peerIds with node information is extracted

and prepared for broadcasting in the master node. In the case that the given clientNum

is equal to the number of connected peers in the list, the star network is established by

the master node; meanwhile, the node information array is also broadcasted. Finally,

the individual peer node information in the array are used to establish the fully

connected peer network afterwards, in which case, each peer node iterates and connects

to all peers in the array except itself.

Master Node:

var infoAry = [nodeInfo]; // initialise info array with
 // storing master node info

poolingConnectedPeers(){
 var peers = peer.listAllPeers(function(list){

list.forEach(function(l, i){
 ls = l.split(“_”) // extract node info

 infoAry.push(ls); // store info into array
}

 });
}

initStarNet(){
 if(nodeId = 0){ // if a master node
 if(clientNum = infoAry.length){ // if all connected

 foreach(info in infoAry){
 connectToThisPeer(info.peerId);
 // connect to all other peers by master
 }

204 Distributed D3 Framework Generic and Standalone Versions

 initPeerNet(); // for master

 } else {
 poolingConnectedPeers(); // every 1000ms
 }
 }
}

initPeerNet(){
 foreach(info in infoAry){

connectToThisPeer(info.peerId);
// connect to all other peers for master

 }
 waitingToBeConnected(function(){
 // waiting to be connected by other peers
 }
}

Peer Node:

var infoAry;

initStarNet(){
 waitingToBeConnected(function(data){ // await master
 infoAry = data; // store info array
 initPeerNet(); // initialise peer net
 }
}

initPeerNet(){
 foreach(info in infoAry){

connectToThisPeer(info.peerId);
// connect to all other peers by each node

 }
 waitingToBeConnected(function(){
 // waiting to be connected by other peers
 }
}

Figure 5.3.6 The pseudocode of initialising the pure peer network by assigning a master node

5.4 Generic Distributed D3 Framework Demonstrations 205

5.4 Generic Distributed D3 Framework Demonstrations

5.4.1 The Configurations on a Customised Environment

Following the development of the generic version of Distributed D3, a test experiment

is designed to deploy the independent framework on a customised visualisation

environment, which consists of a small cluster of 3 desktop computers with 3 screens

in a row. The hardware specifications of each computer are, Intel i5-7200U (2.5 GHz)

with 4Gb RAM, 2Gb Intel HD graphics card with HD screen (1920x1080) and

operating on 64bit Windows 7.

Specifically, to set up Distributed D3 on this customised environment is simple and fast.

First of all, we need to set up the NodeJS [141] environment for the supporting

frameworks including PeerJS, SocketIO and Express [142], and then MongoDB is

required as the main database in this version, finally we can download the framework

by checking out the source code from the repository.

1. Install NodeJS, in order to include the supporting frameworks like PeerJS,

SocketIO and Express, where Express is used to host the framework locally.

2. Install MongoDB, which is supported by the developed OData service modules

in Distributed D3, and data files also need to be imported to the database.

3. Deploy Distributed D3, by checking out the source code from the repository, and

then the framework is ready to use.

At this point, we can simply run commands to launch the framework for the journey of

visualisations.

206 Distributed D3 Framework Generic and Standalone Versions

5.4.2 The Demonstrations of the Customised Environment

For the purpose of testing the configuration result of this environment, we deploy the

fundamental charts examples that are used previously in section of §3.5.1.

Figure 5.4.1 The screenshots of demonstrating the scatter plot example on the small

customised environment with 3-screen setting

Figure 5.4.2 The screenshots of demonstrating the bar chart example on the small customised

environment with 3-screen setting

As we can see in Figure 5.4.1 and Figure 5.4.2, the demonstrating examples show that

the generic version of the pure peer network Distributed D3 has been successfully

configured at its working condition on this customised environment [117]. We will run

a further benchmarking test as a comparison to the Data Observatory for this

environment in the section of §5.5.2.

5.5 Results 207

5.5 Results

5.5.1 Benchmarking on Data Observatory

For the purpose of revealing the potential performance changes in the generic versions,

we have made comparisons between two standalone versions. To keep the metrics

consistent, we have used previously developed the FPS animation benchmarking toolkit

for the tests, which has been discussed in §3.5.2. The test results can be found in Figure

5.5.1 and Figure 5.5.2.

Figure 5.5.1 The benchrmarking result of the generic Distributed D3 with the independent

server network implemented by SocketIO

208 Distributed D3 Framework Generic and Standalone Versions

Figure 5.5.2 The benchrmarking result of the generic Distributed D3 with the pure peer-to-

peer network implemented by PeerJS

By comparing the Figure 5.5.1 and Figure 5.5.2 with the previous benchmarking result

in Figure 4.5.1, we can find that the standalone versions are significantly outperforming

the integrated version on all the configurations with a different number of screen

settings [117]. The pure peer network (PeerJS) version is also slightly outperforming

the client-server (SocketIO) version, which can be observed on the configuration of the

8-screen setting. The potential performance difference is likely caused by the

framework operating overhead in the integrated version. Meanwhile, the pure peer

network version is also lighter than the client-server version, in terms of the serverless

design.

5.5 Results 209

5.5.2 Benchmarking on Customised Environment

Apart from benchmarking the generic framework on Data Observatoy, we have also run

the benchmarking test on the customised environment in order to find the potential

differences and issues from the test. Since the serverless pure peer-to-peer

implementation is the preferred approach in the design of Distributed D3, we mainly

focus on evaluating this implementation in the following test.

Figure 5.5.3 The benchmaking result of the generic Distributed D3 (with pure peer network)
which is tested on the cutomised visualisation envinronment with 3-screen setting

In Figure 5.5.3, we can observe a similar trend as the benchmarking result of the pure

peer-to-peer network version on the Data Observatory [117]. We notice the declining

point of the data line is around 1,700 animated elements, which is only slightly

outperforming the 2-screen configuration on Data Observatory in Figure 5.5.2. The

results are reasonable as there are 3 screens (i.e. 3 browser windows) in the customised

environment; meanwhile, the individual graphical stations on Data Observatory are

more powerful than the desktop computers in this customised environment.

210 Distributed D3 Framework Generic and Standalone Versions

5.6 Discussion

From the benchmarking results of the independent client-server and pure peer-to-peer

network structures, we can see the advantages of using the peer-to-peer network to

construct the framework, in terms of overall performance and simplicity in components.

However, we are aware of the drawbacks of implementing the pure peer network with

the super-peer design, where a master node (i.e. super-peer) is assigned to take the

responsibility of a server.

The super-peer can potential become the single point of failure for the whole cluster

and the potential bottleneck, in which case if a super-peer fails, it can lead to the

disconnections of all other rendering nodes until they find a new super-peer to be

connected with. A possible solution is to implement the super-peer redundancy to

improve the reliability, whereas it may also come at a cost in the network performance

[64]. Therefore, we believe further research in this area might be needed in order to find

more favourable solutions.

In addition, as we know D3.js is based on a very active open-sourced community with

a large number of contributors and collaborators, the iteration of developing new

features and thus new versions of D3 is very fast. Since Distributed D3 is a distributed

framework that is based on D3, we may need to take account of the changes and updates

in order to support the latest stable D3 for the benefits of users. We are in hope to

address this development issue by publishing and creating the open-source community

of Distributed D3 to further update and improve the framework with more collaborators.

5.7 Conclusion 211

5.7 Conclusion

In this chapter, we have proposed and designed the standalone versions of the

Distributed D3 framework. Two branched versions are implemented by SocketIO and

pure PeerJS. The benchmarking results show that both versions are faster and light-

weighted compared with the integrated version. The pure PeerJS version is also slightly

faster than the SocketIO due to the light-weight real-time peer-to-peer data channels

based on WebRTC.

The test experiment of setting up the Distributed D3 standalone version on a customised

small cluster of desktop computers confirms the framework can be flexibly configured

and utilised on a variety of visualisation environment depending on the requirements.

Such a customisable feature of the framework may especially benefit the data

visualisation community with an existing scalable high-resolution display environment.

The development of the standalone version of the Distributed D3 makes the framework

more accessible and useful for the open-source community. The release of the

standalone version may further improve the usability of the framework. We hope this

could fill the gap between the data visualisation and distributed system in the web

environment, and hence to advance the visualisation technologies in this research field.

212 Conclusions

Chapter 6 Conclusions

The rapid growth of data in Big Data era has increases the need for analytic tools to

obtain insights from large datasets. Such data sources may range from Internet of Things

sensor networks to the growing Open Data movement. Visual perception being humans’

primary ability offers the distinct ability of rapidly differentiating patterns in a pre-

attentive manner. Hence, data visualisation for visual analytics is a powerful tool that

has become a significant discipline. Today, D3.js has become a powerful web-based

data visualisation library that can be the standard tool to visualise data. The library,

however, is technically inherent, limited in its ability, as well as being unable to deal

with large datasets.

This thesis focused on overcoming this limitation and resolving the challenges through

the development of the Distributed D3, which uses the distributed mechanism that can

help generate web-based visualisations for large datasets based on D3.js that also helps

in effectively using the graphical computational resources of the modern visualisation

environments. The work mainly intended to provide a robust Distributed D3 that can

preserve the API compatibility of D3.js library for its simplicity of use. Therefore, the

framework resolved D3.js’s performance bottleneck that hindered the visualisation of

large-scale data, thereby enhancing D3.js’s overall scalability as well as usability. The

framework also helped in diverse visualisation environments being configured and

programmed by an extensive community of developers for collaboration and research.

The specified main contributions in the development of Distributed D3 are:

• In Chapter 3, we present the integrated version of Distributed D3 framework for

the Data Observatory. We compare the different designing approaches in order

to properly design the framework for implementations. The implementation

results show that the framework overcomes the performance limits of D3.js,

5.7 Conclusion 213

which also proves the concept of Distributed D3 that is feasible. Meanwhile, the

framework is also benchmarked to evaluate the improvement of the overall

performance and scalability compared with the original D3 with demonstrating

examples. This work further enables a wide community of developers to be able

to collaborate on large-scale data visualisations in the Data Observatory.

• In Chapter 4, we present the optimised and upgraded version of Distributed D3

framework for large-scale data visualisations applications. We investigate the

potential bottlenecks of the existing Distributed D3 in order to optimise the

framework and address the underlying issues. The optimisation benchmarking

results show that an improvement of the overall performance by 35.7% is

achieved and compared with the unoptimised Distributed D3. Meanwhile, the

support of newer D3 also extends the functionality of the framework for potential

applications. A demonstrating application is presented for the purpose of

illustrating these improvements in this version. This work therefore further

improves the scalability and usability of Distributed D3 for the visualisation

applications with large-scale data.

• In Chapter 5, we present a generic version of Distributed D3 framework for the

customised environments on demand. We propose the detachment and serverless

design of the framework in order to enable it to be fully independent for generic

uses. The implementations improve the flexibility of the framework by allowing

switch networks between classic server-based and pure peer-to-peer when

necessary. The benchmarking results show that the version is light-weighted and

slightly faster than the previous versions. A customised visualisation

environment is also set up for the demonstrating and comparing purposes for this

version. The work improves the usability and flexibility of the framework and

makes it ready to be published in the open-source community for further

improvements and usages.

214 Conclusions

With the uniqueness of the framework design, it can provide a novel solution to the

modern data visualisations especially for large datasets. It is therefore in hope to be able

to contribute to the open-source community by advancing the field of large-scale data

visualisation with distributed approach.

Future Works

The academic papers of Distributed D3 framework are in plan for detailing and

demonstrating the approach including the structures and algorithms that are designed to

enable the main distributed features of the framework. Meanwhile, we have the plan to

publish the framework source code and create an online open-source community of

Distributed D3, which is building upon the existing and very active D3.js community.

Apart from the relevant works in publications, the framework can be further improved

by addressing the remaining issues and challenges in the future work,

• In large-scale data visualisations, the overwhelming DOM access and

interactions are the main bottlenecks of D3.js and thus Distributed D3. Virtual

DOM shows the potential to reduce unnecessary interactions in real DOM.

However, the current implementation of virtual DOM maintains a large virtual

DOM tree ineffectively. As a possible solution, Incremental DOM might solve

this issue by incrementally apply the necessary changes to the DOM tree instead

of flushing and rebuilding it completely.

• The current optimisation of switching requestAnimaitonFrame to setTimeout

does remarkably improve the overall performance of the framework, whereas the

potential animation issue might occur when dealing with the case of running

multiple visualisation instances simultaneously such as on the Data Observatory.

The requestAnimaitonFrame may handle this situation in a more reliable and

managed manner. Therefore, a possible solution to this concern is to build a

5.7 Conclusion 215

smart animation timeout module which is able to automatically switch and adjust

the timeout functions and parameters based on the number of instances and

animated elements in a visualisation.

• The pure peer-to-peer network has its advantages compared with the independent

server structure in terms of overall performance and the simplicity in its

components. On the other hand, the potential drawback of the current super-peer

design in pure peer network may lead to the network vulnerability in case of the

super-peer failure. For addressing this issue, a possible approach is to increase

the super-peer redundancy in the network for reliability in the cost of

performance, and we believe further research is needed in this area in order to

find a more suitable or balanced solution.

• The fast iteration and development of D3.js in its very active open-sourced

community have led to the issue of lacking timely support in Distributed D3. The

changes and updates can be potentially useful and important for the users of

Distributed D3. In order to address this development latency and have more

collaborators involved in the later development, we hope the situation can be

resolved or improved by publishing and creating an open-sourced community in

the near future.

To make further progress on the development of Distributed D3, we believe these

research topics and areas need to be addressed and covered in the next stage.

216 Conclusions

References

[1] ‘Open Data - data.gov.uk’. [Online]. Available: https://data.gov.uk/. [Accessed: 17-

Aug-2019].

[2] ‘London Data Store – Greater London Authority’. [Online]. Available:

https://data.london.gov.uk/. [Accessed: 17-Aug-2019].

[3] M. Bostock, V. Ogievetsky, and J. Heer, ‘D3 Data-Driven Documents’, IEEE Trans.

Vis. Comput. Graph., vol. 17, no. 12, pp. 2301–2309, Dec. 2011.

[4] ‘d3/d3: Bring data to life with SVG, Canvas and HTML.’ [Online]. Available:

https://github.com/d3/d3. [Accessed: 02-Sep-2019].

[5] Mike Bostock, ‘Recent and archived D3.js work for The New York Times’. [Online].

Available: https://www.nytimes.com/by/mike-bostock. [Accessed: 18-Jul-2019].

[6] D. Flanagan, JavaScript : the definitive guide. O’Reilly, 2006.

[7] ‘Apache Hadoop’. [Online]. Available: https://hadoop.apache.org/. [Accessed: 02-Sep-

2019].

[8] ‘Apache SparkTM - Unified Analytics Engine for Big Data’. [Online]. Available:

https://spark.apache.org/. [Accessed: 02-Sep-2019].

[9] S. Whitman, ‘A task adaptive parallel graphics renderer’, in Proceedings of 1993 IEEE

Parallel Rendering Symposium, pp. 27-34,.

[10] S. Molnar, D. Ellsworth, H. Fuchs, and M. Cox, ‘A Sorting Classification of Parallel

Rendering’, IEEE Comput. Graph. Appl., vol. 14, no. 4, pp. 23–32, 1994.

[11] V. Mateevitsi and B. Levy, ‘Scalable Adaptive Graphics Environment: A Novel Way

to View and Manipulate Whole-Slide Images’, Anal. Cell. Pathol., vol. 2014, pp. 1–1,

Dec. 2014.

5.7 Conclusion 217

[12] G. Humphreys et al., ‘Chromium: A stream-processing framework for interactive

rendering on clusters’, in ACM Transactions on Graphics, 2002, vol. 21, no. 3, pp.

693–702.

[13] H. Peng, H. Xiong, and J. Shi, ‘Parallel-SG: Research of parallel graphics rendering

system on PC-Cluster’, in Proceedings - VRCIA 2006: ACM International Conference

on Virtual Reality Continuum and its Applications, 2006, pp. 27–33.

[14] H. Chen et al., ‘Data distribution strategies for high-resolution displays’, Comput.

Graph., vol. 25, no. 5, pp. 811–818, Oct. 2001.

[15] T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston, R. Ball, and R. May, ‘A survey

of large high-resolution display technologies, techniques, and applications’, in

Proceedings - IEEE Virtual Reality, 2006, vol. 2006, p. 31.

[16] H. Chung, C. Andrews, and C. North, ‘A survey of software frameworks for cluster-

based large high-resolution displays’, IEEE Transactions on Visualization and

Computer Graphics, vol. 20, no. 8. IEEE Computer Society, pp. 1158–1177, 2014.

[17] L. Renambot et al., ‘SAGE2: A collaboration portal for scalable resolution displays’,

Futur. Gener. Comput. Syst., vol. 54, pp. 296–305, Jan. 2016.

[18] R. E. F. and K. E. Martin, ‘DMX: Distributed Multi- headed X’. 2004.

[19] T. Marrinan et al., ‘SAGE2: A New Approach for Data Intensive Collaboration Using

Scalable Resolution Shared Displays’, in Proceedings of the 10th IEEE International

Conference on Collaborative Computing: Networking, Applications and Worksharing,

2014.

[20] G. P. Johnson, G. D. Abram, B. Westing, P. Navr’til, and K. Gaither, ‘DisplayCluster:

An Interactive Visualization Environment for Tiled Displays’, in 2012 IEEE

International Conference on Cluster Computing, 2012, pp. 239–247.

[21] K. D. Moreland, ‘IceT users’ guide and reference.’, Albuquerque, NM, and Livermore,

CA (United States), Jan. 2011.

218 Conclusions

[22] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan, ‘WireGL:

A scalable graphics system for clusters’, in Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001,

2001, pp. 129–140.

[23] Nirnimesh, P. Harish, and P. J. Narayanan, ‘Garuda: A scalable tiled display wall

using commodity PCs’, in IEEE Transactions on Visualization and Computer

Graphics, 2007, vol. 13, no. 5, pp. 864–877.

[24] S. Eilemann, M. Makhinya, and R. Pajarola, ‘Equalizer: A scalable parallel rendering

framework’, IEEE Trans. Vis. Comput. Graph., vol. 15, no. 3, pp. 436–452, May 2009.

[25] K. Doerr and F. Kuester, ‘CGLX: A Scalable, High-Performance Visualization

Framework for Networked Display Environments’, IEEE Trans. Vis. Comput. Graph.,

vol. 17, no. 3, pp. 320–332, Mar. 2011.

[26] M. Ward, G. G. Grinstein, and D. Keim, Interactive data visualization : foundations,

techniques, and applications. A K Peters, 2010.

[27] S. Murray, Interactive Data Visualization for the Web: AN INTRODUCTION TO

DESIGNING WITH D3. 2017.

[28] M. Aparicio and C. J. Costa, ‘Data visualization’, Commun. Des. Q. Rev., vol. 3, no. 1,

pp. 7–11, Jan. 2015.

[29] N. Bikakis, ‘Big Data Visualization Tools’, in Encyclopedia of Big Data Technologies,

2019.

[30] A. Kirk, Data visualization : a successful design process : a structured design

approach to equip you with the knowledge of how to successfully accomplish any data

visualization challenge efficiently and effectively. Packt Pub, 2012.

[31] N. P. N. Iliinsky and J. (Graphic designer) Steele, Designing data visualizations.

O’Reilly, 2011.

[32] B. Shneiderman, ‘Eyes have it: a task by data type taxonomy for information

5.7 Conclusion 219

visualizations’, in IEEE Symposium on Visual Languages, Proceedings, 1996.

[33] J. C. Jackson, Web technologies : a computer science perspective. Pearson/Prentice

Hall, 2007.

[34] ‘Cascading Style Sheets, Level 2’. [Online]. Available:

https://www.w3.org/TR/1998/REC-CSS2-19980512/. [Accessed: 03-Jun-2019].

[35] A. Rauschmayer, Speaking JavaScript. O’Reilly Media, 2014.

[36] ‘d3/d3-selection: Transform the DOM by selecting elements and joining to data.’

[Online]. Available: https://github.com/d3/d3-selection. [Accessed: 10-Jul-2019].

[37] ‘d3/d3-fetch: Convenient parsing for Fetch.’ [Online]. Available:

https://github.com/d3/d3-fetch. [Accessed: 10-Jul-2019].

[38] ‘d3/d3-scale: Encodings that map abstract data to visual representation.’ [Online].

Available: https://github.com/d3/d3-scale. [Accessed: 12-Jul-2019].

[39] ‘d3/d3-axis: Human-readable reference marks for scales.’ [Online]. Available:

https://github.com/d3/d3-axis. [Accessed: 12-Jul-2019].

[40] ‘Styled Axes / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/styled-axes. [Accessed: 12-Jul-2019].

[41] ‘d3/d3-transition: Animated transitions for D3 selections.’ [Online]. Available:

https://github.com/d3/d3-transition. [Accessed: 20-Jun-2019].

[42] ‘d3/d3-timer: An efficient queue for managing thousands of concurrent animations.’

[Online]. Available: https://github.com/d3/d3-timer. [Accessed: 20-Jun-2019].

[43] ‘d3/d3-shape: Graphical primitives for visualization, such as lines and areas.’ [Online].

Available: https://github.com/d3/d3-shape. [Accessed: 20-Jun-2019].

[44] ‘Line Chart / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/line-chart. [Accessed: 06-Jul-2019].

220 Conclusions

[45] ‘Stacked Bar Chart / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/stacked-bar-chart. [Accessed: 06-Jul-2019].

[46] ‘d3/d3-color: Color spaces! RGB, HSL, Cubehelix, CIELAB, and more.’ [Online].

Available: https://github.com/d3/d3-color. [Accessed: 20-Jun-2019].

[47] ‘d3/d3-hierarchy: 2D layout algorithms for visualizing hierarchical data.’ [Online].

Available: https://github.com/d3/d3-hierarchy. [Accessed: 20-Jun-2019].

[48] ‘Tidy Tree / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/tidy-tree. [Accessed: 20-Jun-2019].

[49] ‘Treemaps for space-constrained visualization of hierarchies’. [Online]. Available:

http://www.cs.umd.edu/hcil/treemap-history/. [Accessed: 30-May-2019].

[50] ‘Treemap / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/treemap. [Accessed: 20-Jun-2019].

[51] ‘Circle Packing / D3 / Observable’. [Online]. Available:

https://observablehq.com/@d3/circle-packing. [Accessed: 20-Jun-2019].

[52] ‘d3/d3-geo: Geographic projections, spherical shapes and spherical trigonometry.’

[Online]. Available: https://github.com/d3/d3-geo. [Accessed: 05-Jul-2019].

[53] ‘topojson/topojson: An extension of GeoJSON that encodes topology’. [Online].

Available: https://github.com/topojson/topojson. [Accessed: 12-Jun-2019].

[54] ‘ESRI Shapefile Technical Description’. [Online]. Available:

https://support.esri.com/en/white-paper/279. [Accessed: 12-Jun-2019].

[55] ‘GeoJSON’. [Online]. Available: https://geojson.org/. [Accessed: 20-Jun-2019].

[56] A. S. Tanenbaum and M. van Steen, Distributed systems : principles and paradigms. .

[57] K. L. Narayan, K. M. Rao, and M. M. M. Sarcar, Computer aided design and

manufacturing. Prentice-Hall of India, 2008.

5.7 Conclusion 221

[58] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, ‘A survey and

comparison of peer-to-peer overlay network schemes’, IEEE Commun. Surv. Tutorials,

vol. 7, no. 2, pp. 72–93, 2005.

[59] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and M. Hauswirth,

‘The Essence of P2P: A Reference Architecture for Overlay Networks’, in Fifth IEEE

International Conference on Peer-to-Peer Computing (P2P’05), pp. 11–20.

[60] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and I. Stoica,

‘Looking up data in P2P systems’, Commun. ACM, vol. 46, no. 2, p. 43, Feb. 2003.

[61] J. Risson and T. Moors, ‘Survey of research towards robust peer-to-peer networks:

Search methods’, Comput. Networks, vol. 50, no. 17, pp. 3485–3521, Dec. 2006.

[62] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, ‘The Peer Sampling

Service: Experimental Evaluation of Unstructured Gossip-Based Implementations’,

Springer, Berlin, Heidelberg, 2004, pp. 79–98.

[63] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen, ‘Gossip-

based peer sampling’, ACM Trans. Comput. Syst., vol. 25, no. 3, pp. 8-es, Aug. 2007.

[64] B. Yang and H. Garcia-Molina, ‘Designing a super-peer network’, in Proceedings -

International Conference on Data Engineering, 2003.

[65] P. Garbacki, D. H. J. Epema, and M. van Steen, ‘A two-level semantic caching scheme

for super-peer networks’, in 10th International Workshop on Web Content Caching

and Distribution (WCW’05), 2005, pp. 47–55.

[66] B. Cohen and B. Cohen, ‘Incentives Build Robustness in BitTorrent’, 2003.

[67] E. Adar, E. Adar, and B. A. Huberman, ‘Free Riding on Gnutella’, FIRST MONDAY,

vol. 5, p. 2000, 2000.

[68] S. Saroiu, K. P. Gummadi, and S. D. Gribble, ‘Measuring and analyzing the

characteristics of Napster and Gnutella hosts’, Multimed. Syst., vol. 9, no. 2, pp. 170–

184, Aug. 2003.

222 Conclusions

[69] M. Yang, Z. Zhang, X. Li, and Y. Dai, ‘An Empirical Study of Free-Riding Behavior

in the Maze P2P File-Sharing System’, Springer, Berlin, Heidelberg, 2005, pp. 182–

192.

[70] G. Pierre and M. van Steen, ‘Globule: a collaborative content delivery network’, IEEE

Commun. Mag., vol. 44, no. 8, pp. 127–133, Aug. 2006.

[71] OMG, ‘UML 2.4.1 Superstructure Specification’, October, 2004.

[72] M. Shaw and P. Clements, ‘Field guide to boxology: Preliminary classification of

architectural styles for software systems’, in Proceedings - IEEE Computer Society’s

International Computer Software and Applications Conference, 1997.

[73] N. R. Mehta, N. Medvidovic, and S. Phadke, ‘Towards a taxonomy of software

connectors’, in Proceedings of the 22nd international conference on Software

engineering - ICSE ’00, 2000, pp. 178–187.

[74] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-

Wesley, 2013.

[75] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘The many faces of

publish/subscribe’, ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003.

[76] ‘Data Observatory | Data Science Institute | Imperial College London’. [Online].

Available: http://www.imperial.ac.uk/data-science/data-observatory/. [Accessed: 17-

Aug-2019].

[77] ‘Technical Specifications | Data Science Institute | Imperial College London’.

[Online]. Available: http://www.imperial.ac.uk/data-science/data-

observatory/technical-specifications/. [Accessed: 17-Aug-2019].

[78] S. Manjrekar, S. Sandilya, D. Bhosale, S. Kanchi, A. Pitkar, and M. Gondhalekar,

‘CAVE: An Emerging Immersive Technology -- A Review’, in 2014 UKSim-AMSS

16th International Conference on Computer Modelling and Simulation, 2014, pp. 131–

136.

5.7 Conclusion 223

[79] A. Febretti et al., ‘CAVE2: a hybrid reality environment for immersive simulation and

information analysis’, 2013, vol. 8649, p. 864903.

[80] ‘CAVELib V3.2 | Scientific Computing World’. [Online]. Available:

https://www.scientific-computing.com/press-releases/cavelib-v32. [Accessed: 12-Jun-

2019].

[81] ‘Industries in VR - Virtual Collaboration - TechViz Virtual Reality Software’.

[Online]. Available: https://www.techviz.net/industries/. [Accessed: 17-Aug-2019].

[82] ‘WebRTC Home | WebRTC’. [Online]. Available: https://webrtc.org/. [Accessed: 19-

Jun-2019].

[83] ‘About HTML5 WebSocket - Powered by Kaazing’. [Online]. Available:

https://www.websocket.org/aboutwebsocket.html. [Accessed: 19-Jun-2019].

[84] ‘websockets vs webrtc | 7 Most Amazing Comparisons To Learn’. [Online]. Available:

https://www.educba.com/websockets-vs-webrtc/. [Accessed: 19-Jun-2019].

[85] ‘WebGL: 2D and 3D graphics for the web - Web APIs | MDN’. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API. [Accessed: 06-Jun-

2019].

[86] ‘HTML5 SVG’. [Online]. Available: https://www.w3schools.com/html/html5_svg.asp.

[Accessed: 06-Jun-2019].

[87] ‘HTML5 Canvas’. [Online]. Available:

https://www.w3schools.com/html/html5_canvas.asp. [Accessed: 06-Jun-2019].

[88] ‘OpenGL ES Overview - The Khronos Group Inc’. [Online]. Available:

https://www.khronos.org/opengles/. [Accessed: 09-Sep-2019].

[89] ‘Large Graphs Demo [yFiles for HTML]’. [Online]. Available:

https://live.yworks.com/demos/view/largegraphs/. [Accessed: 06-Jun-2019].

[90] ‘D3.js - Data-Driven Documents’. [Online]. Available: https://d3js.org/. [Accessed:

224 Conclusions

18-May-2019].

[91] ‘JavaScript InfoVis Toolkit’. [Online]. Available: https://philogb.github.io/jit/.

[Accessed: 12-Jun-2019].

[92] ‘Google Visualization API Reference | Charts | Google Developers’. [Online].

Available: https://developers.google.com/chart/interactive/docs/reference. [Accessed:

12-Jun-2019].

[93] ‘Springy - A force directed graph layout algorithm in JavaScript.’ [Online]. Available:

http://getspringy.com/. [Accessed: 12-Jun-2019].

[94] ‘Polymaps’. [Online]. Available: http://polymaps.org/. [Accessed: 12-Jun-2019].

[95] ‘dimple - A simple charting API for d3 data visualisations’. [Online]. Available:

http://dimplejs.org/. [Accessed: 12-Jun-2019].

[96] ‘Sigma js’. [Online]. Available: http://sigmajs.org/. [Accessed: 12-Jun-2019].

[97] ‘Raphaël—JavaScript Library’. [Online]. Available:

https://dmitrybaranovskiy.github.io/raphael/. [Accessed: 05-Jul-2019].

[98] ‘linkorb/graphael: Graphael: GraphQL Server library’. [Online]. Available:

https://github.com/linkorb/graphael. [Accessed: 12-Jun-2019].

[99] ‘Leaflet - a JavaScript library for interactive maps’. [Online]. Available:

https://leafletjs.com/. [Accessed: 06-Jun-2019].

[100] ‘Create charts and maps with Datawrapper’. [Online]. Available:

https://www.datawrapper.de/. [Accessed: 12-Jun-2019].

[101] ‘Flot: Attractive JavaScript plotting for jQuery’. [Online]. Available:

https://www.flotcharts.org/. [Accessed: 12-Jun-2019].

[102] ‘NVD3’. [Online]. Available: http://nvd3.org/. [Accessed: 25-Jun-2019].

[103] ‘three.js – JavaScript 3D library’. [Online]. Available: https://threejs.org/. [Accessed:

25-Jun-2019].

5.7 Conclusion 225

[104] X. Fan, E. Courdier, G. Paillot, D. Birch, and Y. Guo, ‘Distributed D3: A D3.js-based

Distributed Data Visualisation Framework for Big Data’, 2019.

[105] ‘HTML DOM getBoundingClientRect() Method’. [Online]. Available:

https://www.w3schools.com/jsref/met_element_getboundingclientrect.asp. [Accessed:

30-May-2019].

[106] ‘The most popular database for modern apps | MongoDB’. [Online]. Available:

https://www.mongodb.com/. [Accessed: 25-Jun-2019].

[107] ‘OData - the Best Way to REST’. [Online]. Available: https://www.odata.org/.

[Accessed: 25-Jun-2019].

[108] ‘What is REST – Learn to create timeless REST APIs’. [Online]. Available:

https://restfulapi.net/. [Accessed: 25-Jun-2019].

[109] ‘OData JavaScript library - o.js’. [Online]. Available:

https://www.odata.org/blog/OData-JavaScript-library-o.js-explained/. [Accessed: 30-

May-2019].

[110] ‘Real-time ASP.NET with SignalR | .NET’. [Online]. Available:

https://dotnet.microsoft.com/apps/aspnet/signalr. [Accessed: 25-Jun-2019].

[111] ‘PeerJS - Simple peer-to-peer with WebRTC’. [Online]. Available: https://peerjs.com/.

[Accessed: 25-Jun-2019].

[112] ‘Visualisation Case Studies - Data Science Institute’. [Online]. Available:

http://www.imperial.ac.uk/data-science/data-observatory/visualisation-case-studies/.

[Accessed: 05-Jul-2019].

[113] S. Woods, Building touch interfaces with HTML5 : speed up your site and create

amazing user experiences. Peachpit Press, 2013.

[114] ‘Virtual DOM and Internals – React’. [Online]. Available: https://reactjs.org/docs/faq-

internals.html. [Accessed: 05-Jul-2019].

226 Conclusions

[115] ‘React – A JavaScript library for building user interfaces’. [Online]. Available:

https://reactjs.org/. [Accessed: 18-May-2019].

[116] ‘Chrome DevTools | Tools for Web Developers | Google Developers’. [Online].

Available: https://developers.google.com/web/tools/chrome-devtools. [Accessed: 30-

May-2019].

[117] X. Fan, G. Paillot, J. Bai, D. Birch, and Y. Guo, ‘Generic DD3: A Generic

Implementation of the Distributed D3 Framework with Optimisations’, 2019.

[118] ‘Minor GC vs Major GC vs Full GC | Plumbr – User Experience & Application

Performance Monitoring’. [Online]. Available: https://plumbr.io/blog/garbage-

collection/minor-gc-vs-major-gc-vs-full-gc. [Accessed: 06-Jul-2019].

[119] U. Degenbaev, J. Eisinger, M. Ernst, R. McIlroy, H. Payer, and G. Germany, ‘Idle

Time Garbage Collection Scheduling’.

[120] ‘Documentation · V8’. [Online]. Available: https://v8.dev/docs. [Accessed: 30-May-

2019].

[121] ‘d3/CHANGES.md at master · d3/d3’. [Online]. Available:

https://github.com/d3/d3/blob/master/CHANGES.md#timers-d3-timer. [Accessed: 30-

May-2019].

[122] ‘Release v4.0.0 · d3/d3’. [Online]. Available:

https://github.com/d3/d3/releases/tag/v4.0.0. [Accessed: 30-May-2019].

[123] ‘DOM Element setAttribute() Method’. [Online]. Available:

https://www.w3schools.com/jsref/met_element_setattribute.asp. [Accessed: 30-May-

2019].

[124] N. C. Zakas, High performance JavaScript. O’Reilly, 2010.

[125] S. A. Robbestad, ReactJS blueprints : create powerful applications with ReactJS, the

most popular platform for web developers today. .

5.7 Conclusion 227

[126] ‘esbullington/react-d3: Modular React charts made with d3.js’. [Online]. Available:

https://github.com/esbullington/react-d3. [Accessed: 30-May-2019].

[127] ‘AnSavvides/d3act: d3 with React’. [Online]. Available:

https://github.com/AnSavvides/d3act. [Accessed: 30-May-2019].

[128] ‘Olical/react-faux-dom: DOM like structure that renders to React’. [Online].

Available: https://github.com/Olical/react-faux-dom. [Accessed: 06-Jul-2019].

[129] ‘Window setTimeout() Method’. [Online]. Available:

https://www.w3schools.com/jsref/met_win_settimeout.asp. [Accessed: 06-Jul-2019].

[130] ‘window.requestAnimationFrame() - Web APIs | MDN’. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame.

[Accessed: 17-Jul-2019].

[131] ‘performance.now() - Web APIs | MDN’. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now. [Accessed: 12-

Jun-2019].

[132] ‘binaryjs/js-binarypack’. [Online]. Available: https://github.com/binaryjs/js-

binarypack. [Accessed: 06-Jul-2019].

[133] R. J. Fisman, S. S. Iyengar, E. Kamenica, and I. Simonson, ‘Gender Differences in

Mate Selection: Evidence from a Speed Dating Experiment’, vol. 121, no. 2, pp. 673–

697, 2006.

[134] ‘Parallel Coordinates - bl.ocks.org’. [Online]. Available:

https://bl.ocks.org/jasondavies/1341281. [Accessed: 10-Jul-2019].

[135] ‘google/incremental-dom: An in-place DOM diffing library’. [Online]. Available:

https://github.com/google/incremental-dom. [Accessed: 10-Jul-2019].

[136] ‘Timing control for script-based animations’. [Online]. Available:

https://www.w3.org/TR/animation-timing/. [Accessed: 23-May-2019].

228 Conclusions

[137] ‘SignalR/SignalR: Incredibly simple real-time web for .NET’. [Online]. Available:

https://github.com/SignalR/SignalR. [Accessed: 09-Oct-2019].

[138] R. Harmes and D. Diaz, Pro JavaScript design patterns. Apress, 2008.

[139] ‘Socket.IO’. [Online]. Available: https://socket.io/. [Accessed: 06-Jul-2019].

[140] ‘socketio/socket.io: Realtime application framework (Node.JS server)’. [Online].

Available: https://github.com/socketio/socket.io. [Accessed: 20-Jun-2019].

[141] ‘Node.js’. [Online]. Available: https://nodejs.org/en/. [Accessed: 06-Jul-2019].

[142] ‘Express - Node.js web application framework’. [Online]. Available:

https://expressjs.com/. [Accessed: 06-Jul-2019].

