137 research outputs found

    Generalized Finite Element Systems for smooth differential forms and Stokes problem

    Full text link
    We provide both a general framework for discretizing de Rham sequences of differential forms of high regularity, and some examples of finite element spaces that fit in the framework. The general framework is an extension of the previously introduced notion of Finite Element Systems, and the examples include conforming mixed finite elements for Stokes' equation. In dimension 2 we detail four low order finite element complexes and one infinite family of highorder finite element complexes. In dimension 3 we define one low order complex, which may be branched into Whitney forms at a chosen index. Stokes pairs with continuous or discontinuous pressure are provided in arbitrary dimension. The finite element spaces all consist of composite polynomials. The framework guarantees some nice properties of the spaces, in particular the existence of commuting interpolators. It also shows that some of the examples are minimal spaces.Comment: v1: 27 pages. v2: 34 pages. Numerous details added. v3: 44 pages. 8 figures and several comments adde

    B-spline-like bases for C2C^2 cubics on the Powell-Sabin 12-split

    Get PDF
    For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a B\'ezier-like manner. In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for C0C^0-, C1C^1-, and C2C^2-smoothness are derived

    Quadratic Spline Quasi-interpolants on Powell-Sabin Partitions

    No full text
    2004-16International audienceIn this paper we address the problem of constructing quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-interpolants of optimal approximation order are proposed and numerical tests are presented

    Splines for damage and fracture in solids

    Get PDF
    This thesis addresses different aspects of numerical fracture mechanics and spline technology for analysis. An energy-based arc-length control for physically non-linear problems is proposed. It switches between an internal energy-based and a dissipation-based arc-length method. The arc-length control allows to trace an equilibrium path with multiple snap-through and/or snap-back phenomena and only requires two parameters. Phase field models for brittle and cohesive fracture are numerically assessed. The impact of different parameters and boundary conditions on the phase field model for brittle fracture is investigated. It is demonstrated that Γ-convergence is not attained numerically for the phase field model for brittle fracture and that the phase field model for cohesive fracture does not pass a two-dimensional patch test when using an unstructured mesh. The properties of the Bézier extraction operator for T-splines are exploited for the determination of linear dependencies, partition of unity properties, nesting behaviour and local refinement. Unstructured T-spline meshes with extraordinary points are modified such that the blending functions fulfil the partition of unity property and possess a higher continuity. Bézier extraction for Powell-Sabin B-splines is introduced. Different spline technologies are compared when solving Kirchhoff-Love plate theory on a disc with simply supported and clamped boundary conditions. Powell-Sabin B-splines are utilised for smeared and discrete approaches to fracture. Due to the higher continuity of Powell-Sabin B-splines, the implicit fourth order gradient damage model for quasi-brittle materials can be solved and stresses can be computed directly at the crack tip when considering the cohesive zone method

    BPX-Preconditioning for isogeometric analysis

    Get PDF
    We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or Nurbs mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting preconditioned stiffness matrix is independent of hh. Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis
    corecore