320 research outputs found

    Physical Layer Authentication Using Intelligent Reflective Surfaces

    Get PDF
    The Intelligent Reflective Surface (IRS) is one of the key technologies that will increase the coverage of cellular networks and enhance their performance at a low cost. Moreover, the IRS will improve the performance of the Channel-based Physical layer Authentication security mechanism. In this thesis, we propose an authentication scheme that takes advantage of the presence of the IRS in the IRS-assisted multiple input multiple output (MIMO) system to improve the security performance of the system. The proposed cascaded channel estimation authentication scheme has been developed and compared with a systematic channel estimation authentication scheme. We consider a non-line of sight communication between the transmitter and the receiver through the IRS. We will also demonstrate the efficiency of the proposed scheme by comparing it with one of the commonly used schemes. Moreover, we will formulate the optimal attack strategies to test the security of the proposed scheme. The performance of the proposed scheme is evaluated, and the numerical results show the merit of the proposed approach that can be adopted as a Physical layer authentication mechanism.The Intelligent Reflective Surface (IRS) is one of the key technologies that will increase the coverage of cellular networks and enhance their performance at a low cost. Moreover, the IRS will improve the performance of the Channel-based Physical layer Authentication security mechanism. In this thesis, we propose an authentication scheme that takes advantage of the presence of the IRS in the IRS-assisted multiple input multiple output (MIMO) system to improve the security performance of the system. The proposed cascaded channel estimation authentication scheme has been developed and compared with a systematic channel estimation authentication scheme. We consider a non-line of sight communication between the transmitter and the receiver through the IRS. We will also demonstrate the efficiency of the proposed scheme by comparing it with one of the commonly used schemes. Moreover, we will formulate the optimal attack strategies to test the security of the proposed scheme. The performance of the proposed scheme is evaluated, and the numerical results show the merit of the proposed approach that can be adopted as a Physical layer authentication mechanism

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Exploração de Covert Channels de Rede sobre comunicações IEEE 802.15.4

    Get PDF
    The advancements in information and communication technology in the past decades have been converging into a new communication paradigm in which everything is expected to be interconnected with the heightened pervasiveness and ubiquity of the Internet of Things (IoT) paradigm. As these technologies mature, they are increasingly finding its way into more sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are paramount. While the number of deployed IoT devices continues to increase annually, up to tens of billions of connected devices, IoT devices continue to present severe cyber-security vulnerabilities, which are worsened by challenges such as scalability, heterogeneity, and their often scarce computing capacity. Network covert channels are increasingly being used to support malware with stealthy behaviours, aiming at exfiltrating data or to orchestrate nodes of a botnet in a cloaked fashion. Nevertheless, the attention to this problem regarding underlying and pervasive IoT protocols such as the IEEE 802.15.4 has been scarce. Therefore, in this Thesis, we aim at analysing the performance and feasibility of such covertchannel implementations upon the IEEE 802.15.4 protocol to support the development of new mechanisms and add-ons that can effectively contribute to improve the current state of-art of IoT systems which rely on such, or similar underlying communication technologies.Os avanços nas tecnologias de informação e comunicação nas últimas décadas têm convergido num novo paradigma de comunicação, onde se espera que todos os intervenientes estejam interconectados pela ubiquidade do paradigma da Internet of Things (Internet das Coisas). Com a maturação destas tecnologias, elas têm-se vindo a infiltrar em domínios cada vez mais sensíveis, como nas aplicações médicas e industriais, onde a confiabilidade da informação e cyber-segurança são um fator crítico. Num contexto onde o número de dispositivos IoT continua a aumentar anualmente, já na ordem das dezenas de biliões de dispositivos interconectados, estes continuam, contudo, a apresentar severas vulnerabilidades no campo da cyber-segurança, sendo que os desafios como a escalabilidade, heterogeneidade e, na maioria das vezes, a sua baixa capacidade de processamento, tornam ainda mais complexa a sua resolução de forma permanente. Os covert channels de rede são cada vez mais um meio de suporte a malwares que apresentam comportamentos furtivos, almejando a extração de informação sensível ou a orquestração de nós de uma botnet de uma forma camuflada. Contudo, a atenção dada a este problema em protocolos de rede IoT abrangentes como o IEEE 802.15.4, tem sido escassa. Portanto, nesta tese, pretende-se elaborar uma análise da performance e da viabilidade da implementação de covert channels em modelos de rede onde figura o protocolo IEEE 802.15.4 de forma a suportar o desenvolvimento de novos mecanismos e complementos que podem efetivamente contribuir para melhorar a ciber-segurança de sistemas IoT que dependem do suporte destas tecnologias de comunicação
    • …
    corecore