25 research outputs found

    Optimal UAS Assignments and Trajectories for Persistent Surveillance and Data Collection from a Wireless Sensor Network

    Get PDF
    This research developed a method for multiple Unmanned Aircraft Systems (UAS) to efficiently collect data from a Wireless Sensor Networks (WSN). WSN are composed of any number of fixed, ground-based sensors that collect and upload local environmental data to over flying UAS. The three-step method first uniquely assigns aircraft to specific sensors on the ground. Second, an efficient flight path is calculated to minimize the aircraft flight time required to verify their assigned sensors. Finally, sensors reporting relatively higher rates of local environmental activity are re-assigned to dedicated aircraft tasked with concentrating on only those sensors. This work was sponsored by the Air Force Research Laboratory, Control Sciences branch, at Wright Patterson AFB. Based on simulated scenarios and preliminary flight tests, optimal flight paths resulted in a 14 to 32 reduction in flight time and distance when compared to traditional flight planning methods

    Multiple query optimization in wireless sensor networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    An Interactive Distributed Simulation Framework With Application To Wireless Networks And Intrusion Detection

    Get PDF
    In this dissertation, we describe the portable, open-source distributed simulation framework (WINDS) targeting simulations of wireless network infrastructures that we have developed. We present the simulation framework which uses modular architecture and apply the framework to studies of mobility pattern effects, routing and intrusion detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and totally mobile networks. The distributed simulations within the framework execute seamlessly and transparently to the user on a symmetric multiprocessor cluster computer or a network of computers with no modifications to the code or user objects. A visual graphical interface precisely depicts simulation object states and interactions throughout the simulation execution, giving the user full control over the simulation in real time. The network configuration is detected by the framework, and communication latency is taken into consideration when dynamically adjusting the simulation clock, allowing the simulation to run on a heterogeneous computing system. The simulation framework is easily extensible to multi-cluster systems and computing grids. An entire simulation system can be constructed in a short time, utilizing user-created and supplied simulation components, including mobile nodes, base stations, routing algorithms, traffic patterns and other objects. These objects are automatically compiled and loaded by the simulation system, and are available for dynamic simulation injection at runtime. Using our distributed simulation framework, we have studied modern intrusion detection systems (IDS) and assessed applicability of existing intrusion detection techniques to wireless networks. We have developed a mobile agent-based IDS targeting mobile wireless networks, and introduced load-balancing optimizations aimed at limited-resource systems to improve intrusion detection performance. Packet-based monitoring agents of our IDS employ a CASE-based reasoner engine that performs fast lookups of network packets in the existing SNORT-based intrusion rule-set. Experiments were performed using the intrusion data from MIT Lincoln Laboratories studies, and executed on a cluster computer utilizing our distributed simulation system

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Novel parallel approaches to efficiently solve spatial problems on heterogeneous CPU-GPU systems

    Get PDF
    Addressing this task is difficult as (i) it requires analysing large databases in a short time, and (ii) it is commonly addressed by combining different methods with complex data dependencies, making it challenging to exploit parallelism on heterogeneous CPU-GPU systems. Moreover, most efforts in this context focus on improving the accuracy of the approaches and neglect reducing the processing time—the most accurate algorithm was designed to process the fingerprints using a single thread. We developed a new methodology to address the latent fingerprint identification problem called “Asynchronous processing for Latent Fingerprint Identification” (ALFI) that speeds up processing while maintaining high accuracy. ALFI exploits all the resources of CPU-GPU systems using asynchronous processing and fine-coarse parallelism to analyse massive fingerprint databases. We assessed the performance of ALFI on Linux and Windows operating systems using the well-known NIST/FVC databases. Experimental results revealed that ALFI is on average 22x faster than the state-of-the-art identification algorithm, reaching a speed-up of 44.7x for the best-studied case. In terrain analysis, Digital Elevation Models (DEMs) are relevant datasets used as input to those algorithms that typically sweep the terrain to analyse its main topological features such as visibility, elevation, and slope. The most challenging computation related to this topic is the total viewshed problem. It involves computing the viewshed—the visible area of the terrain—for each of the points in the DEM. The algorithms intended to solve this problem require many memory accesses to 2D arrays, which, despite being regular, lead to poor data locality in memory. We proposed a methodology called “skewed Digital Elevation Model” (sDEM) that substantially improves the locality of memory accesses and exploits the inherent parallelism of rotational sweep-based algorithms. Particularly, sDEM applies a data relocation technique before accessing the memory and computing the viewshed, thus significantly reducing the execution time. Different implementations are provided for single-core, multi-core, single-GPU, and multi-GPU platforms. We carried out two experiments to compare sDEM with (i) the most used geographic information systems (GIS) software and (ii) the state-of-the-art algorithm for solving the total viewshed problem. In the first experiment, sDEM results on average 8.8x faster than current GIS software, despite considering only a few points because of the limitations of the GIS software. In the second experiment, sDEM is 827.3x faster than the state-of-the-art algorithm considering the best case. The use of Unmanned Aerial Vehicles (UAVs) with multiple onboard sensors has grown enormously in tasks involving terrain coverage, such as environmental and civil monitoring, disaster management, and forest fire fighting. Many of these tasks require a quick and early response, which makes maximising the land covered from the flight path an essential goal, especially when the area to be monitored is irregular, large, and includes many blind spots. In this regard, state-of-the-art total viewshed algorithms can help analyse large areas and find new paths providing all-round visibility. We designed a new heuristic called “Visibility-based Path Planning” (VPP) to solve the path planning problem in large areas based on a thorough visibility analysis. VPP generates flyable paths that provide high visual coverage to monitor forest regions using the onboard camera of a single UAV. For this purpose, the hidden areas of the target territory are identified and considered when generating the path. Simulation results showed that VPP covers up to 98.7% of the Montes de Malaga Natural Park and 94.5% of the Sierra de las Nieves National Park, both located in the province of Malaga (Spain). In addition, a real flight test confirmed the high visibility achieved using VPP. Our methodology and analysis can be easily applied to enhance monitoring in other large outdoor areas.In recent years, approaches that seek to extract valuable information from large datasets have become particularly relevant in today's society. In this category, we can highlight those problems that comprise data analysis distributed across two-dimensional scenarios called spatial problems. These usually involve processing (i) a series of features distributed across a given plane or (ii) a matrix of values where each cell corresponds to a point on the plane. Therefore, we can see the open-ended and complex nature of spatial problems, but it also leaves room for imagination to be applied in the search for new solutions. One of the main complications we encounter when dealing with spatial problems is that they are very computationally intensive, typically taking a long time to produce the desired result. This drawback is also an opportunity to use heterogeneous systems to address spatial problems more efficiently. Heterogeneous systems give the developer greater freedom to speed up suitable algorithms by increasing the parallel programming options available, making it possible for different parts of a program to run on the dedicated hardware that suits them best. Several of the spatial problems that have not been optimised for heterogeneous systems cover very diverse areas that seem vastly different at first sight. However, they are closely related due to common data processing requirements, making them suitable for using dedicated hardware. In particular, this thesis provides new parallel approaches to tackle the following three crucial spatial problems: latent fingerprint identification, total viewshed computation, and path planning based on maximising visibility in large regions. Latent fingerprint identification is one of the essential identification procedures in criminal investigations. Addressing this task is difficult as (i) it requires analysing large databases in a short time, and (ii) it is commonly addressed by combining different methods with complex data dependencies, making it challenging to exploit parallelism on heterogeneous CPU-GPU systems. Moreover, most efforts in this context focus on improving the accuracy of the approaches and neglect reducing the processing time—the most accurate algorithm was designed to process the fingerprints using a single thread. We developed a new methodology to address the latent fingerprint identification problem called “Asynchronous processing for Latent Fingerprint Identification” (ALFI) that speeds up processing while maintaining high accuracy. ALFI exploits all the resources of CPU-GPU systems using asynchronous processing and fine-coarse parallelism to analyse massive fingerprint databases. We assessed the performance of ALFI on Linux and Windows operating systems using the well-known NIST/FVC databases. Experimental results revealed that ALFI is on average 22x faster than the state-of-the-art identification algorithm, reaching a speed-up of 44.7x for the best-studied case. In terrain analysis, Digital Elevation Models (DEMs) are relevant datasets used as input to those algorithms that typically sweep the terrain to analyse its main topological features such as visibility, elevation, and slope. The most challenging computation related to this topic is the total viewshed problem. It involves computing the viewshed—the visible area of the terrain—for each of the points in the DEM. The algorithms intended to solve this problem require many memory accesses to 2D arrays, which, despite being regular, lead to poor data locality in memory. We proposed a methodology called “skewed Digital Elevation Model” (sDEM) that substantially improves the locality of memory accesses and exploits the inherent parallelism of rotational sweep-based algorithms. Particularly, sDEM applies a data relocation technique before accessing the memory and computing the viewshed, thus significantly reducing the execution time. Different implementations are provided for single-core, multi-core, single-GPU, and multi-GPU platforms. We carried out two experiments to compare sDEM with (i) the most used geographic information systems (GIS) software and (ii) the state-of-the-art algorithm for solving the total viewshed problem. In the first experiment, sDEM results on average 8.8x faster than current GIS software, despite considering only a few points because of the limitations of the GIS software. In the second experiment, sDEM is 827.3x faster than the state-of-the-art algorithm considering the best case. The use of Unmanned Aerial Vehicles (UAVs) with multiple onboard sensors has grown enormously in tasks involving terrain coverage, such as environmental and civil monitoring, disaster management, and forest fire fighting. Many of these tasks require a quick and early response, which makes maximising the land covered from the flight path an essential goal, especially when the area to be monitored is irregular, large, and includes many blind spots. In this regard, state-of-the-art total viewshed algorithms can help analyse large areas and find new paths providing all-round visibility. We designed a new heuristic called “Visibility-based Path Planning” (VPP) to solve the path planning problem in large areas based on a thorough visibility analysis. VPP generates flyable paths that provide high visual coverage to monitor forest regions using the onboard camera of a single UAV. For this purpose, the hidden areas of the target territory are identified and considered when generating the path. Simulation results showed that VPP covers up to 98.7% of the Montes de Malaga Natural Park and 94.5% of the Sierra de las Nieves National Park, both located in the province of Malaga (Spain). In addition, a real flight test confirmed the high visibility achieved using VPP. Our methodology and analysis can be easily applied to enhance monitoring in other large outdoor areas

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Information-theoretic Reasoning in Distributed and Autonomous Systems

    Get PDF
    The increasing prevalence of distributed and autonomous systems is transforming decision making in industries as diverse as agriculture, environmental monitoring, and healthcare. Despite significant efforts, challenges remain in robustly planning under uncertainty. In this thesis, we present a number of information-theoretic decision rules for improving the analysis and control of complex adaptive systems. We begin with the problem of quantifying the data storage (memory) and transfer (communication) within information processing systems. We develop an information-theoretic framework to study nonlinear interactions within cooperative and adversarial scenarios, solely from observations of each agent's dynamics. This framework is applied to simulations of robotic soccer games, where the measures reveal insights into team performance, including correlations of the information dynamics to the scoreline. We then study the communication between processes with latent nonlinear dynamics that are observed only through a filter. By using methods from differential topology, we show that the information-theoretic measures commonly used to infer communication in observed systems can also be used in certain partially observed systems. For robotic environmental monitoring, the quality of data depends on the placement of sensors. These locations can be improved by either better estimating the quality of future viewpoints or by a team of robots operating concurrently. By robustly handling the uncertainty of sensor model measurements, we are able to present the first end-to-end robotic system for autonomously tracking small dynamic animals, with a performance comparable to human trackers. We then solve the issue of coordinating multi-robot systems through distributed optimisation techniques. These allow us to develop non-myopic robot trajectories for these tasks and, importantly, show that these algorithms provide guarantees for convergence rates to the optimal payoff sequence

    Privacy-preserving spatiotemporal multicast for mobile information services

    Get PDF
    Mobile devices have become essential for accessing information services anywhere at any time. While the so-called geographic multicast (geocast) has been considered in detail in existing research, it only focuses on delivering messages to all mobile devices that are currently residing within a certain geographic area. This thesis extends this notion by introducing a Spatiotemporal Multicast (STM), which can informally be described as a "geocast into the past". Instead of addressing users based on their current locations, this concept relates to the challenge of sending a message to all devices that have resided within a geographic area at a certain time in the past. While a wide variety of applications can be envisioned for this concept, it presents several challenges to be solved. In order to deliver messages to all past visitors of a certain location, an STM service would have to fully track all user movements at all times. However, collecting this kind of information is not desirable considering the underlying privacy implications, i.e., users may not wish to be identified by the sender of a message as this can disclose sensitive personal information. Consequently, this thesis aims to provide a privacy-preserving notion of STM. In order to realize such a service, this work first presents a detailed overview of possible applications. Based on those, functional, non-functional, as well as security and privacy objectives are proposed. These objectives provide the foundation for an in-depth literature review of potential mechanisms for realizing an STM service. Among the suggested options, the most promising relies on Rendezvous Points (RPs) for datagram delivery. In simple terms, RPs represent "anonymous mailboxes" that are responsible for certain spatiotemporal regions. Messages are deposited at RPs so that users can retrieve them later on. Protecting the privacy of users then translates to obfuscating the responsibilities of RPs for specific spatiotemporal regions. This work proposes two realizations: CSTM, which relies on cryptographic hashing, and OSTM, which considers the use of order-preserving encryption in a CAN overlay. Both approaches are evaluated and compared in detail with respect to the given objectives. While OSTM yields superior performance-related properties, CSTM provides an increased ability of protecting the privacy of users.Mobilgeräte bilden heute die Grundlage allgegenwärtiger Informationsdienste. Während der sogenannte geografische Multicast (Geocast) hier bereits ausführlich erforscht worden ist, so bezieht sich dieser nur auf Geräte, welche sich aktuell innerhalb einer geografischen Zielregion befinden. Diese Arbeit erweitert dieses Konzept durch einen räumlich-zeitlichen Multicast, welcher sich informell als "Geocast in die Vergangenheit" beschreiben lässt. Dabei wird die Zustellung einer Nachricht an alle Nutzer betrachtet, die sich in der Vergangenheit an einem bestimmten Ort aufgehalten haben. Während eine Vielzahl von Anwendungen für dieses Konzept denkbar ist, so ergeben sich hier mehrere Herausforderungen. Um Nachrichten an ehemalige Besucher eines Ortes senden zu können, müsste ein räumlich-zeitlicher Multicast-Dienst die Bewegungen aller Nutzer vollständig erfassen. Aus Gründen des Datenschutzes ist das zentralisierte Sammeln solch sensibler personenbezogener Daten jedoch nicht wünschenswert. Diese Arbeit befasst sich daher insbesondere mit dem Schutz der Privatsphäre von Nutzern eines solchen Dienstes. Zur Entwicklung eines räumlich-zeitlichen Multicast-Dienstes erörtert diese Arbeit zunächst mögliche Anwendungen. Darauf aufbauend werden funktionale, nicht-funktionale, sowie Sicherheits- und Privatsphäre-relevante Anforderungen definiert. Diese bilden die Grundlage einer umfangreichen Literaturrecherche relevanter Realisierungstechniken. Der vielversprechendste Ansatz basiert hierbei auf der Hinterlegung von Nachrichten in sogenannten Rendezvous Points. Vereinfacht betrachtet stellen diese "anonyme Briefkästen" für bestimmte räumlich-zeitliche Regionen dar. Nachrichten werden in diesen so hinterlegt, dass legitime Empfänger sie dort später abholen können. Der Schutz der Nutzer-Privatsphäre entspricht dann der Verschleierung der Zuständigkeiten von Rendezvous Points für verschiedene räumlich-zeitliche Regionen. Diese Arbeit schlägt zwei Ansätze vor: CSTM, welches kryptografische Hashfunktionen nutzt, sowie OSTM, welches ordnungserhaltende Verschlüsselung in einem CAN Overlay einsetzt. Beide Optionen werden detailliert analytisch sowie empirisch bezüglich ihrer Diensteigenschaften untersucht und verglichen. Dabei zeigt sich, dass OSTM vorteilhaftere Leistungseigenschaften besitzt, während CSTM einen besseren Schutz der Nutzer-Privatsphäre bietet
    corecore