
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

An Interactive Distributed Simulation Framework With Application An Interactive Distributed Simulation Framework With Application

To Wireless Networks And Intrusion Detection To Wireless Networks And Intrusion Detection

Oleg Kachirski
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kachirski, Oleg, "An Interactive Distributed Simulation Framework With Application To Wireless Networks
And Intrusion Detection" (2005). Electronic Theses and Dissertations, 2004-2019. 453.
https://stars.library.ucf.edu/etd/453

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/453?utm_source=stars.library.ucf.edu%2Fetd%2F453&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

AN INTERACTIVE DISTRIBUTED SIMULATION FRAMEWORK
WITH APPLICATION TO WIRELESS NETWORKS AND INTRUSION DETECTION

by

OLEG KACHIRSKI
M.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2005

Major Professor: Dr. Ratan Guha

© 2005 Oleg Kachirski

 ii

ABSTRACT

In this dissertation, we describe the portable, open-source distributed simulation

framework (WINDS) targeting simulations of wireless network infrastructures that we

have developed. We present the simulation framework which uses modular architecture

and apply the framework to studies of mobility pattern effects, routing and intrusion

detection mechanisms in simulations of large-scale wireless ad hoc, infrastructure, and

totally mobile networks. The distributed simulations within the framework execute

seamlessly and transparently to the user on a symmetric multiprocessor cluster computer

or a network of computers with no modifications to the code or user objects. A visual

graphical interface precisely depicts simulation object states and interactions throughout

the simulation execution, giving the user full control over the simulation in real time. The

network configuration is detected by the framework, and communication latency is taken

into consideration when dynamically adjusting the simulation clock, allowing the

simulation to run on a heterogeneous computing system. The simulation framework is

easily extensible to multi-cluster systems and computing grids. An entire simulation

system can be constructed in a short time, utilizing user-created and supplied simulation

components, including mobile nodes, base stations, routing algorithms, traffic patterns

and other objects. These objects are automatically compiled and loaded by the simulation

system, and are available for dynamic simulation injection at runtime.

 iii

Using our distributed simulation framework, we have studied modern intrusion

detection systems (IDS) and assessed applicability of existing intrusion detection

techniques to wireless networks. We have developed a mobile agent-based IDS targeting

mobile wireless networks, and introduced load-balancing optimizations aimed at limited-

resource systems to improve intrusion detection performance. Packet-based monitoring

agents of our IDS employ a CASE-based reasoner engine that performs fast lookups of

network packets in the existing SNORT-based intrusion rule-set. Experiments were

performed using the intrusion data from MIT Lincoln Laboratories studies, and executed

on a cluster computer utilizing our distributed simulation system.

 iv

Dedicated to my dear family.

 v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Ratan Guha, for his invaluable help, support

and guidance throughout my degree pursuit. I would also like to thank members of my

research committee - Dr. Mostafa Bassiouni, Dr. Sheau-Dong Lang, Dr. Joohan Lee, and

Dr. Damla Turgut - for their assistance and guidance in completing this work.

I acknowledge support of the Army Research Office under grants DAAD19-01-1-

0502, W911NF04110100 and the National Science Foundation under Grant EIA 0086251.

The views and conclusions herein are those of the author and do not represent the official

policies of the funding agencies.

 vi

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES AND LISTINGS ... xii

LIST OF ACRONYMS ... xiii

CHAPTER 1: INTRODUCTION... 1

1.1 Overview... 1

1.2 Contributions... 3

1.3 Organization of the Dissertation ... 5

CHAPTER 2: BACKGROUND KNOWLEDGE .. 7

2.1 Distributed Simulation Systems.. 7

2.1.1 History of Development of Parallel and Distributed Systems 7

2.1.2 Principles of Parallel and Distributed Simulation Systems................................ 10

2.1.3 Modern Distributed Simulation Systems and HLA ... 13

2.2 Intrusion Detection Systems ... 15

2.2.1 Overview .. 15

2.2.2 Need for Intrusion Detection Systems ... 16

2.2.3 Classification of Intrusion Detection Systems ... 19

2.2.4 Limitations of Existing Systems .. 24

2.2.5 Summary of Work on Intrusion Detection Systems... 26

2.3 Agent Systems .. 29

2.3.1 Overview .. 29

2.3.2 Uses of Mobile Agent Systems .. 30

2.3.3 Mobile Agent System Security .. 32

CHAPTER 3: PARALLEL INTERACTIVE NETWORK SIMULATION SYSTEM –

ARCHITECTURE AND IMPLEMENTATION.. 34

3.1 Existing Work on Network Simulation... 35

 vii

3.2 Network Simulator Architecture... 40

3.2.1 Design Philosophy.. 40

3.2.2 Simulator Components ... 44

3.2.3 Requirements and Limitations of Simulation Framework 51

3.3 Wireless Network Distributed Simulation System ... 54

3.3.1 WINDS Design for Cluster Computer ... 54

3.3.2 Simulation Clock Synchronization... 62

3.3.3 Parallel Optimizations .. 65

3.3.4 Serialization of Simulation Objects and Load Balancing 69

3.4 Summary ... 73

CHAPTER 4: CASE STUDY – WINDS SIMULATION.. 75

4.1 Simulation of MBS Mobility in a Totally-Mobile Wireless Network...................... 75

4.1.1 Objectives... 77

4.1.2 Simulation Design .. 77

4.1.3 Simulation Execution and Results.. 85

4.2 Summary ... 87

CHAPTER 5: INTRUSION DETECTION FOR WIRELESS AD HOC NETWORKS . 88

5.1 Rule-Based Intrusion Detection.. 89

5.1.1 Case-Based Reasoning Systems... 91

5.2 Network Intrusion Detection System for MANETs ... 93

5.2.1 Modular IDS Architecture.. 94

5.2.2 Mobile Agent Distribution across Wireless Ad Hoc Network........................... 95

5.2.3 IDS Activity Monitoring Process ... 100

5.3 Simulation of a Wireless Ad Hoc Network Clustering Algorithm......................... 103

5.3.1 Objectives... 103

5.3.2 Simulation Design .. 104

5.3.3 Simulation Execution and Results.. 109

5.4 Intrusion Detection Mechanisms .. 110

5.4.1 Collaborative vs. Independent Decision Making ... 110

 viii

5.4.2 Intrusion Detection Process.. 111

5.4.3 CBR Implementation of a Packet-Monitoring Agent 113

5.5 Load-Balancing for Packet-Monitoring Agents.. 115

5.5.1 Load-Balancing Strategies for Network Packet Monitoring............................ 116

5.5.2 Optimal Job Assignment and Algorithm Implementation 118

5.5.3 Simulation vs. Analytical Results .. 121

5.6 Summary ... 125

CHAPTER 6: PERFORMANCE COMPARISON OF PINS, HLA AND TSPACES... 126

6.1 Study Objectives ... 126

6.2 Distributed System Architectures – HLA and TSpaces.. 127

6.3 Knowledge Discovery Problem for Intrusion Detection .. 129

6.4 Simulation Design... 133

6.5 Simulation Execution and Results .. 139

6.6 Summary ... 140

CHAPTER 7: CONCLUSION ... 141

REFERENCES ... 145

 ix

LIST OF FIGURES

Figure 2.1: High Level Architecture Runtime Infrastructure ……………………… 14

Figure 2.2: Advantage in Bandwidth Reduction when Using Mobile Agents versus
Remote Procedure Calls ……………………………………………………………. 32

Figure 3.1: Wireless Simulator Component Architecture ………………………….. 45

Figure 3.2(a). PINS User Use Cases ……………………………………………...... 46

Figure 3.2(b). PINS System Use Cases …………………………………………….. 47

Figure 3.3: Sample Network Packet Capture ………………………………………. 49

Figure 3.4: Decoded Packet Information …………………………………………... 50

Figure 3.5. PINS Simulation Execution Activity Diagram…………………………. 52

Figure 3.6: Winds Architecture for Distributed Wireless Network Simulations in
Multiprocessor Environments ……………………………………………………… 55

Figure 3.7(a): Processor Window Showing Object Allocation Among Processors .. 58

Figure 3.7(b): Main Winds Screen – Infrastructure Wireless Network Simulation .. 59

Figure 3.7(c). WINDS framework core class diagram …………………………….. 60

Figure 3.8: Simulating 700 User Objects on 3 Processors …………………………. 61

Figure 3.9. Determining offset and network delay in NTP ………………………… 63

Figure 3.10. Command synchronization in WINDS – sequence diagram …………. 65

Figure 3.11: Effect of Nagling On Simulation Control ……………………………. 69

Figure 3.12. Using simulation object serialization for distributed DID problem ….. 73

 x

Figure 4.1. Totally-mobile wireless network concept ……………………………… 76

Figure 4.2. Wireless node in a totally-mobile network activity diagram …………... 81

Figure 4.3. MBS in a totally-mobile network activity diagram ……………………. 82

Figure 4.4. Totally-mobile network simulation in progress ………………………... 85

Figure 4.5. Network coverage of wireless nodes in a totally-mobile network
simulation …………………………………………………………………………... 86

Figure 5.1: Case-Based Reasoning Process ………………………………………... 92

Figure 5.2: Layered Mobile Agent Architecture …………………………………… 95

Figure 5.3: Network Monitoring Node Selection with (a) One-Hop Radius, and (b)
Two-Hop Radius …………………………………………………………………… 98

Figure 5.4: Wireless Ad Hoc Network Communications ………………………….. 99

Figure 5.5: Percentage of Nodes Engaged in Packet Monitoring in a One-Hop
(Dashed Line) and Two-Hop (Solid Line) Network ……………………………… 100

Figure 5.6: Increase in Packet Dropping Rate as The Network Density Increases … 102

Figure 5.7. Ad hoc wireless node activity diagram ………………………………… 107

Figure 5.8. Packet-monitoring agent allocation simulation in progress …………… 109

Figure 5.9: Simulated vs. Analytical Packet Drop Rate for One Server per Cluster
IDS Processing ……………………………………………………………………... 122

Figure 5.10: Load-Balancing Approach Packet Drop Rates for Various Network
Configurations ……………………………………………………………………… 123

Figure 5.11: Decrease in Packet Dropping Rate when Using Distributed Load-
Balancing Algorithm ……………………………………………………………….. 124

Figure 6.1. Parallel BPNN program execution times for HLA, TSpaces and PINS
(WINDS) …………………………………………………………………………… 138

 xi

LIST OF TABLES AND LISTINGS

Table 3.1: Simulation Control Parameters for a Cluster-based WINDS …………... 67

Table 4.1. Simulation objects for ad hoc wireless network clustering simulation …. 80

Table 5.1. Simulation objects for ad hoc wireless network clustering simulation …. 106

Listing 3.1. Serializing and De-serializing User Object …………………………… 71

Listing 4.1. Wireless node in a totally-mobile network Class……………………… 83

Listing 4.2. Mobile base station in a totally-mobile network Class ……………… 84

Listing 5.1. Ad hoc wireless node Class …………………………………………… 108

Listing 6.1. BPNN Worker Class Algorithm ………………………………............. 134

Listing 6.2. BPNN Master Class Algorithm ……………………………………….. 134

Listing 6.3. BPNN Worker Class …………………………………………………... 136

Listing 6.4. BPNN Master Class …………………………………………………… 137

 xii

LIST OF ACRONYMS

• BPNN – Back-Propagation Neural Network

• CBR – Case-Based Reasoner

• DIDS – Distributed Intrusion Detection System

• DIS – Distributed Interactive Simulation

• DMSO – Defense Modeling and Simulation Office

• FOM – Federation Object Model

• GUI – Graphical User Interface

• HLA – High Level Architecture

• HPC – High-Performance Computing

• IDES – Intrusion Detection Expert System

• IDS – Intrusion Detection System

• ISOA – Information Security Officer's Assistant

• MANETs – Mobile Ad Hoc Networks

• MBS – Mobile Base Station

• MIDAS – Multics Intrusion Detection and Alerting System

• NADIR – Network Anomaly Detection and Intrusion Reporter

• NID – Network Intrusion Detector

• NIDES – Next-generation Intrusion Detection Expert System

• NSM – Network Security Monitor

 xiii

• OMT – Object Model Template

• PADS – Parallel and Distributed Systems

• PINS – Parallel Interactive Network Simulation architecture

• RPC – Remote Procedure Call

• RTI – Runtime Infrastructure

• SOM – Simulation Object Model

• WINDS – WIreless Network Distributed Simulation framework

• XML – eXtensible Markup Language

 xiv

CHAPTER 1: INTRODUCTION

1.1 Overview

 Developments in the field of computer networking in recent years have resulted in

the availability of advanced technologies and models for researchers developing

hardware, communication algorithms and networking protocols. These advances gave

rise to fundamental questions concerning the security and the viability of many

technologies introduced. Security concerns are particularly important when considering a

wireless networked system. One type of wireless network in particular, the ad hoc

wireless network, is more vulnerable to security violations and misuse than other wireless

network topologies. It is often a difficult task to devise a routing protocol, a security sub-

system, or an application-level system based on an ad hoc wireless network. Careful

design and simulation of such a system is necessary to establish its feasibility under

varied operational conditions. Network simulators have long been used for this purpose,

saving development time and validating theoretical assumptions. However, due to a wide

diversity in wireless network technologies, generic simulators often don’t provide the

required flexibility and range of features that are essential for wireless network

simulation. One of the goals of this research work was to develop a network simulation

framework that is geared towards simulation of wireless systems. We have developed an

architecture that allows researchers to simulate a wide variety of wireless network

topologies and view the network configuration and visualize simulation results in real-

 1

time. Scalability and performance played a major role in the design of our framework.

The framework is demonstrated in distributed simulations of intrusion detection systems

for ad hoc wireless networks, which was the driving application that necessitated the

development of such a simulation system.

 Security in wireless networks is an area of major concern and concentrated research.

Wireless transmissions are subject to eavesdropping and signal jamming. Physical

security of each node is important to maintain integral security of the entire network. Ad

hoc wireless networks are totally dependent on collective participation of all nodes in

routing of information through the network. To solve these problems, security features

have been incorporated into modern wireless networks, such as spread spectrum

transmission technology, strong encryption mechanisms, vulnerability analysis, and

intrusion detection and prevention systems. Intrusion detection is one of the key

techniques behind protecting a network against intruders. While commonly used for

wired networks, intrusion detection systems for ad hoc wireless networks are undergoing

research investigation. We have developed an agent-based intrusion detection system for

wireless networks that takes into account the limited resources and dynamic nature of ad

hoc networks to provide a lightweight, modular, low-overhead intrusion detection

mechanism based on the mobile security agent concept. Each module represents a

lightweight mobile agent with certain functionality, making total resource consumption

smaller by separating the functional tasks into categories and dedicating an agent to a

specific purpose, with the ability to add new agents to expand the functionality. Since

 2

IDS systems targeting ad hoc wireless networks are still a research problem, to test

associated algorithms in our simulations, we have utilized a case-based reasoning engine

with SNORT rules for detecting intrusions in wireline networks as a packet-monitoring

component of our wireless IDS system.

1.2 Contributions

This dissertation presents the study of the application of distributed system concepts

to the simulation of wireless networks and associated algorithms. As a result of this

research, a parallel simulation framework was developed. This framework targets large-

scale wireless network simulations running on cluster computers and cluster grids.

Various studies have been conducted with the help of this simulation framework –

specifically, the research into intrusion detection systems for mobile wireless networks

and security optimization techniques targeting low-power, resource-conscious systems.

Results of the intrusion detection systems research are also incorporated into this

dissertation. Our accomplishments, described in detail in the following chapters of this

dissertation, can be briefly summarized as follows:

• Developed an interactive cross-platform GUI-enabled Parallel Interactive

Network Simulation Architecture (PINS) – with its implementation specializing

in executing various WIreless Network Distributed Simulations (WINDS).

 3

• Developed an agent-based intrusion detection system, targeting ad hoc wireless

networks with low system resources, and incorporating a new clustering strategy

for optimal agent allocation and a load-balancing support for wireless cluster-

based packet intrusion detection.

In the first part of this dissertation, we describe the parallel interactive network

simulation architecture (PINS) for large-scale network simulations that we have

developed. We have implemented our architecture for simulations of wireless

networks (WINDS simulation system), demonstrating its use in simulations of

routing protocols in ad hoc wireless networks and mobility models in totally mobile

wireless networks, as well as its scalability by simulating a large-scale wireless ad

hoc network of 5000 nodes on a cluster computer. The framework performance was

compared to several widely-used distributed simulation technologies (T-Spaces,

High Level Architecture) as applied to parallel intrusion detection simulations on a

cluster computer.

In the second part of this dissertation, we discuss the modern intrusion detection

systems that we have studied and assess the applicability of existing IDS techniques

to ad hoc wireless networks. We then present an intrusion detection system targeting

ad hoc wireless networks that we have developed. In the context of this intrusion

detection system, we have evaluated the efficiency, correctness and performance of

our network packet-monitoring engine using network intrusion data from Lincoln

 4

Labs and introduced a load-balancing mechanism for packet monitoring to further

improve performance of our IDS system, followed by analytical verification of

results using a queuing model. We have also evaluated hardware and software

components for a high-performance parallel intrusion detection system

implementation, as well as several popular network simulation packages from a

wireless network simulation perspective.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces

technological concepts referenced in this dissertation, describing briefly origins,

principles and recent developments in the areas of intrusion detection systems, agent

systems, and distributed simulation systems. Chapter 3 presents the distributed network

simulation architecture (PINS), and an implementation of a scalable, high-performance

wireless network distributed simulation system (WINDS) executing on multiple

processors, either a symmetric multiprocessor computer or a network of heterogeneous

computers. Guidelines on using our simulation system are also given in Chapter 3.

Chapter 4 describes a case study of using WINDS to implement a distributed simulation

of a totally-mobile wireless network, demonstrating the process, efficiency, ease of

design and implementation and constraints of simulating wireless network systems and

applications. Chapter 5 presents our work on intrusion detection systems, describing the

intrusion detection framework for ad hoc wireless networks – an agent-based architecture

 5

aimed to minimize the costs of network monitoring in a dynamic environment with

limited computational resources. Various aspects of intrusion detection are studied in this

chapter and simulated using WINDS. Our network packet-monitoring methodology is

presented that uses SNORT rules and XML representation of network data to detect

network intrusions. Intrusion detection system scalability issues are discussed, together

with practical solution and analytical verification based on queuing theory model.

Recommendations are also given for the choice of software and hardware components for

constructing a high-performance parallel system. Performance comparisons are made

between PINS framework and several widely-used simulation technologies - High Level

Architecture/RTI and TSpaces in Chapter 6, using a back-propagation neural network

training algorithm on intrusion datasets. Chapter 7 concludes this dissertation.

 6

CHAPTER 2: BACKGROUND KNOWLEDGE

 In this chapter we introduce the technological components used in this research. A

brief history of key technologies is presented, including the definitions and terms used

throughout this dissertation. In the first part of this chapter, we review current work in the

area of distributed systems, distributed simulators and supporting mechanisms. We

proceed to review intrusion detection systems, their underlying concepts, classifications,

working principles and current limitations. We also introduce mobile agent systems, their

uses, performance characteristics and security issues.

2.1 Distributed Simulation Systems

Developments in parallel and distributed computing led to the creation of high-

performance distributed simulation systems. We first introduce the history of

development of parallel and distributed systems, then describe the advances in parallel

and distributed simulation research, and review several frameworks for parallel and

distributed network simulations. Future research directions in the field are presented late

in this section.

2.1.1 History of Development of Parallel and Distributed Systems

 All of today’s microprocessors (Pentium, MIPS) process data in parallel. The

Pentium 4 processor can simultaneously process up to 126 instructions at different stages

 7

of execution. The ideas used in modern parallel architectures were developed long before

microprocessors existed. The origins of parallel and distributed computing are traced

back to 1953, when IBM introduced the IBM 701 computer with parallel-access memory

and arithmetic [36]. As processor speeds increased, researchers saw a bigger bottleneck –

the I/O system. In the 1950’s the main peripheral device – a magnetic tape – was 1000

times slower accessing data than a processor. In 1958, IBM developed a new computer,

IBM 709, which incorporated 6 independent I/O processors that were capable of working

in parallel, communicating with main processor [79]. The IBM STRETCH computer,

developed in 1959, incorporated breakthrough research concepts [82], such as pre-

decoding, memory operand pre-fetch, out-of-order execution, speculative execution

based upon branch prediction, branch mis-prediction recovery, and precise interrupts.

The first instruction-pipeline computer, ATLAS, was developed at the University of

Manchester in 1962. It featured timesharing of several concurrent computing and

peripheral operations, multi-programming, virtual storage, paging, and fixed storage

(ROM) [5]. Control Data Corporation developed the CDC 6600 in 1964, which supported

10 independent functional units [64]. This machine is arguably the world’s first super-

computer. This design was followed up in 1969 with the CDC 7600, which included

pipelining in every functional unit [65]. The concept of matrix processors was pioneered

in ILLIAC IV in 1974, which incorporated 64 processing elements (PEs) [37]. Each PE

had some local memory, as well as some memory shared with a neighbor PE. The main

control unit could access the entire memory and control the 64 PEs, which were

synchronized and would execute the same operation, but on a different set of data. The

 8

CRAY-1 supercomputer [17] was introduced in 1976 and featured the first vector

pipelined processor with vector operations, capable of performing over a hundred million

arithmetic operations per second.

 These computers laid the foundations of the principles of parallel computing and

gave rise to four major directions of high-performance parallel and distributed computing

technologies. One is vector-pipeline computers that feature pipeline functional units and

vector processing of operations that work with arrays of data. An example is CRAY T90

[68]. Massively-parallel computers with distributed memory are another category. These

have a large number of microprocessors with local memory, interconnected by a high-

speed network, and are a highly configurable and flexible class of parallel computers.

Examples are Intel Paragon [38], IBM SP1 [66] and CRAY T3D [16]. Shared-memory

parallel computers form a third class. Due to physical constraints of shared memory

access, these computers have a limited number of processors. The last class is a hybrid of

the first three – cluster computer architecture. This approach has received the most

attention in the past years, as a cost-effective and very scalable parallel solution.

Beowulf cluster implementation has raised parallel and distributed computing to a

new level. Beowulf cluster computers were first introduced in 1994 as a result of the

Beowulf Project at CESDIS [8]. A Beowulf system is a collection of personal computers

constructed from commodity-off-the-shelf hardware components interconnected with a

local-area network and configured to operate as a single unit, a parallel computing

 9

platform, using an open-source network operating system (e.g., Linux). The driving

design philosophy of a Beowulf system is to achieve the best possible price/performance

ratio for a given computing problem. For many problems it's possible to achieve an order

of magnitude improvement in price/performance compared with "conventional" parallel

supercomputer designs. Common uses of cluster computers are traditional technical

applications such as simulations, biotechnology, petro-clusters; financial market

modeling, data mining and stream processing; and Internet servers for audio and games.

2.1.2 Principles of Parallel and Distributed Simulation Systems

 A computer simulation or a computer model is a computer program which attempts

to simulate an abstract model of a particular system. Computer simulations have become

useful tools in modeling natural systems in physics, chemistry, and biology, human

systems in economics and social science, and in the process of engineering new

technology. Eventually, the processing power of a single computer system became

inadequate for certain problems of global scale; and the use of super-computer wasn’t

always an option for many researchers. With the advent of computer networks, and later

on computing clusters, the field of parallel and distributed simulation has received

widespread recognition.

 Parallel and distributed simulation [23] is concerned with issues introduced by

distributing the execution of a discrete event simulation program over multiple computers.

Parallel simulation is concerned with execution on a multiprocessor computing platform

 10

containing multiple CPUs communicating frequently over a high-speed interconnection

network. Examples include parallel computers and cluster computers. Distributed

simulation executes on a loosely-coupled system, with individual computers distributed

geographically and connected via a wide-area network. An example of a large-scale

distributed system is a collaboration system running over Internet 2 between several

major universities. In both cases, the execution of a single simulation model is distributed

over multiple computers. Subdividing a simulation model to be executed among multiple

computers offers several benefits:

• Reduced execution times for certain simulations that can be subdivided

efficiently to run on multiple computers, with final results combined.

• Geographic distribution of simulation components allows inclusion of data from

multiple scattered sensors/participants, and utilizing diverse communication

media among processors taking part in the simulation.

• Diverse computer architectures can be integrated into a single simulation, based

on availability and applicability.

• Simulations can be made fault-tolerant by replicating one processor’s tasks

among several processors.

 Subdividing a simulation among several computers poses certain problems. The

synchronization problem raises the issues of synchronizing the events occurring on

different computers during the joint simulation execution. Early works on conservative

 11

synchronization algorithms that solve this problem include work by Bryant [11] and

Chandy and Misra [12]. Optimistic synchronization algorithms originated from the Time

Warp algorithm [40] introduced by Jefferson in 1985. Another problem lies in efficient

subdivision of a sequential simulation program among several computers for parallel

execution. According to Amdahl’s law [1], the algorithm, and not the number of

processors limits the speedup:

p
ff

S
)1(

1
−

+
≤

where S is the speedup of parallelized program execution, f is the fraction of non-

parallelizable operations (f=1, means a completely sequential program), and p is the

number of processors. The law doesn’t explicitly take into account the speed of the

interconnection network between processors. In the early days of computer networks,

network communications were a limiting factor for distributed systems. Modern high-

speed networks achieve gigabit communication speeds, thus drastically reducing the

inter-processor communication delay, and improving the performance of distributed

systems. Two strategies exist in dividing simulation systems among several computers.

One is the space-parallel approach, where a number of concurrent simulation tasks is

spread among multiple processors, executing these tasks in parallel, and combining the

results of execution. Another one is the time-parallel approach, where the simulation time

axis is divided into intervals assigned to different processors for concurrent execution. In

this approach, processors handling every-but-first time interval assume some knowledge

on the state of the simulation at the entry point of time, and proceed with the simulation

 12

execution based on this assumption. If the boundary states don’t match, certain

adjustments may be performed. This approach, however, is less widely used, because of

the constraints of the state-mismatch problem.

2.1.3 Modern Distributed Simulation Systems and HLA

 Academic institutions and the defense community are the driving forces behind

parallel and distributed simulation systems, placing emphasis on reduced simulation

execution time and interoperability of heterogeneous simulation systems. The SIMNET

project (1983 – 1990) was the first major leap of the defense community into the realm of

distributed simulation systems [55]. This work led to the development of Distributed

Interactive Simulation standards that encompassed integration of multiple simulation

systems, sensors, and live participants. The most recent development in distributed

simulation community is called High Level Architecture (HLA) [59], driven by DARPA,

which has become a standardized framework (IEEE 1516) for modeling and simulation

[87]. HLA is a component-based software architecture that incorporates subsystems for

communication and data sharing, synchronization, and time management. This

framework facilitates distributed and multi-platform computing in simulation systems by

providing standard integration architecture for separate and remote applications, thus

facilitating reuse of simulation components. Each component simulation application is

called a federate, and a simulation system composed of two or more federates is a

federation. The Run-Time Infrastructure (RTI) is the interconnection bridge between the

simulators. Simulation objects have to be compliant with the data definition for the

 13

simulation, which is described in the Object Model Template (OMT). The data shared

between the federates within the federation is defined by the Federation Object Model

(FOM). The Simulation Object Model (SOM) defines the data that federates share with

the federation. The common RTI provides the following services to the federation:

federation management, declaration management, ownership management, object

management, time management and data distribution management. The architecture of

HLA is presented in the diagram below.

 Figure 2.1. High Level Architecture Runtime Infrastructure.

The High Level Architecture is merely a standard and an abstracted framework for

distributed simulation. It is neither a modeling tool, nor a simulator. It doesn’t have

capabilities for data display and analysis, or any sort of user interface. HLA does not

eliminate the programming effort that is required to build a functioning simulation system.

 14

The flow of simulation and its architecture, as well as providing data processing and

meaningful presentation and interpretation of results, is still a task of the simulation

developer. Even though HLA provides specifications for seamless integration of various

simulation components, the efficiency of the entire simulation heavily depends on the

implementation and operational performance of each individual simulator comprising the

simulation.

2.2 Intrusion Detection Systems

2.2.1 Overview

Recent advances in networking technologies, algorithms and protocols made it

possible to think of a network of computers as an information processing unit. The

progress made in the area of computer networking gave rise to many new technologies –

grid computing, distributed databases, 100% fault-tolerant systems, etc. With these

advances came fundamental questions concerning the security of such systems. It’s quite

easy to construct a secure centralized system – providing physical security of the

equipment, assigning simple admission procedures and authentication mechanisms, and

providing operating system support for process level security. Making a computer

network secure is much more difficult. Much of the equipment isn’t in secure locations,

and most of the communication goes over insecure data links. Common techniques of

protecting computer network involve the use of cryptography and secure protocols.

Physical network security is addressed by isolating access to security databases and

 15

network equipment, and in some cases, protecting the network media itself. (An example

of that is to enclose network cabling in gas-pressurized pipes and to monitor the pressure

changes within the pipe system to prevent physical access to the network medium.) Still,

we can only guarantee complete security of a system if its security mechanisms prevent

unauthorized access to system resources and data. However, at present, the best we can

do is to detect such intrusions into the system, so that action can be taken to stop the

intrusion, repair the damage, and secure the system against similar future intrusions.

 The concept of intrusion detection was introduced first in 1980 [2]. An intrusion

attempt or a threat was defined as a deliberate unauthorized attempt to access information,

manipulate information, or render a system unreliable or unusable. Since then, several

methodologies of intrusion detection have been devised. The next sections discuss why

intrusion detection systems are needed, intrusion detection approaches, evaluation, and

limitations of intrusion detection systems.

2.2.2 Need for Intrusion Detection Systems

Users of computer systems assume properties of the system such as confidentiality,

integrity and assurance of functionality to protect sensitive information. This information

is the target of computer system intruders, who will attempt to exploit flaws in an

operating system as well as application programs to gain access to such information. The

consequences of such subversions can be quite dramatic. An example is the famous

 16

internet worm of 1988 [74]. There are several ways to deal with such subversions,

however, a few observations have to be made here:

• It is impossible in practice to build a completely secure system. One reason is that

despite extensive software testing, bugs do occur in the code, and quite frequently

so. An illustration of this fact is that software products carry disclaimers instead

of warranties.

• Cryptographic methods have problems. The user component of security is perhaps

a more vulnerable one (lost or stolen passwords).

• Even if protected from outside attacks, computer systems are targeted by insiders,

and more often than expected. FBI records show that 80% of intrusions were due

to insider attempts. One reasonable explanation is that firewalls are pretty

effective at keeping outside intruders at bay.

• Efficiency of system operation is inversely proportional to the level of access

control. Many choose a more efficient system thus sacrificing security.

Therefore, we should accept the fact that there will be no absolutely secure system for a

while, and prepare for system attacks, detecting them as soon as possible and taking

appropriate action. And this, in essence, is the task of an Intrusion Detection System

(IDS).

 17

 One of the more utilized ways of detecting intrusions is by analyzing the audit data

generated by system and application processes. An audit trail is a log of activities on a

system that are recorded in a file as they occur. The logging process generates very large

data files (depending on the system, log files can be hundreds of megabytes in size, e.g.

[31]), which are difficult to analyze manually. IDS automates the task of analyzing the

audit trail and pinpointing any suspicious activity which can be classified as a probable

intrusion. A thorough analysis of the audit trail is important, since it allows tracing all

activities of intruders, detecting the damage to the system, and helping reconstruct the

damaged components. This enables us to use IDS to detect intrusions almost real-time

from audit data, as well as analyzing the system vulnerabilities later on to prevent similar

intrusions.

The following definitions from [2] are used throughout this dissertation:

• Risk: Accidental or unpredictable exposure of information, or violation of

operations integrity due to the malfunction of hardware or incomplete or incorrect

software design.

• Vulnerability: A known or suspected flaw in the hardware or software or

operation of a system that exposes the system to penetration or its information to

accidental disclosure.

• Attack: A specific formulation or execution of a plan to carry out a threat.

 18

• Penetration: A successful attack - the ability to obtain unauthorized (undetected)

access to files and programs or the control state of a computer system.

2.2.3 Classification of Intrusion Detection Systems

Intrusion detection techniques are generally classified into two categories – anomaly

detection and misuse detection.

Anomaly Detection model makes use of operational profiles, which represent

normal system activity for each user, application or a process. During the training period,

regular system activities are recorded and a normal system behavior profile is established.

During system operation, any deviations from a normal profile are considered anomalous,

and an alert is raised. According to SANS Institute’s taxonomy of anti-intrusion

techniques [63], anomaly detection engine employs one or more of the following

techniques:

• Threshold Monitoring sets values for metrics defining acceptable behavior (e.g.,

fewer than some number of failed logins per time period). Thresholds provide a

clear, understandable definition of unacceptable behavior and can utilize other

facilities besides system audit logs.

• User Work Profiling maintains individual work profiles to which the user is

expected to adhere in the future. As the user changes his activities, his expected

 19

work profile is updated. Some systems attempt the interaction of short-term

versus long-term profiles; the former to capture recent changing work patterns,

the latter to provide perspective over longer periods of usage.

• Group Work Profiling assigns users to specific work groups that demonstrate a

common work pattern and hence a common profile. A group profile is calculated

based upon the historic activities of the entire group. Individual users in the

group are expected to adhere to the group profile. This method can greatly

reduce the number of profiles needing to be maintained. Also a single user is less

able to "broaden" the profile to which they are to conform.

• Resource Profiling monitors system-wide use of such resources as accounts,

applications, storage media, protocols, communications ports, etc., and develops

a historic usage profile. Continued system-wide resource usage - illustrating the

user community's use of system resources as a whole - is expected to adhere to

the system resources profile. Resource profiling is user-independent, potentially

allowing detection of collaborating intruders.

• Executable Profiling seeks to monitor executables’ use of system resources,

especially those whose activity cannot always be traced to a particular

originating user. Viruses, Trojan horses, worms, trapdoors, logic bombs and

other such software attacks are addressed by profiling how system objects such

as files and printers are normally used, not only by users, but also by other

system subjects on the part of users. In most conventional systems, for example,

a virus inherits all of the privileges of the user executing the infected software.

 20

The software is not limited by the principle of least privilege to only those

privileges needed to properly execute. This openness in the architecture permits

viruses to surreptitiously change and infect totally unrelated parts of the system.

User-independent executable profiling may also be able to detect collaborating

intruders.

• Static Work Profiling updates usage profiles only periodically. This prevents

users from slowly broadening their profile by phasing in abnormal or deviant

activities which are then considered normal and included in the user's adaptive

profile calculation. System administrator-controlled updates allow the

comparison of discrete user profiles to note differences between user behavior or

changes in user behavior.

• Adaptive Work Profiling automatically manages work profiles to reflect current

(acceptable) activity. The work profile is continuously updated to reflect recent

system usage. Profiling may be on users, groups, or applications. Adaptive work

profiling may allow the system administrator to specify whether flagged activity

is: 1) intrusive, to be acted upon; 2) not intrusive, and appropriate as a profile

update to reflect this new work pattern, or 3) not intrusive, but to be ignored as

an aberration whose next occurrence will again be of interest. Activity which is

not flagged as intrusive is normally automatically fed into a profile updating

mechanism.

• Adaptive Rule Based Profiling differs from other profiling techniques by

capturing the historical usage patterns of a user, group, or application in the form

 21

of rules. Transactions describing current behavior are checked against the set of

developed rules, and changes from rule-predicted behavior flagged. As opposed

to misuse rule-based systems, no prior expert knowledge of security

vulnerabilities of the monitored system is required. "Normal usage" rules are

generated by the tool in its training period.

Misuse detection essentially checks for activities that match the descriptions of

undesired activity. This approach attempts to draft rules describing known undesired

usage (based on past penetrations or activity which is theorized to exploit known

weaknesses) rather than describing historical "normal" usage. Rules may be written to

recognize a single auditable event that represents a threat to system security, or a

sequence of events that represent a prolonged penetration scenario. The effectiveness of

provided misuse detection rules is dependent upon how up-to-date the vulnerabilities

database is. Misuse detection may be implemented by expert system rules, model based

reasoning, state transition analysis systems, or neural nets, as described below:

• Expert Systems may be used to code misuse signatures as if-then implication

rules. Signature analysis focuses on defining specific descriptions and instances

of attack-type behavior to flag. Signatures describe an attribute of an attack or

class of attacks, and may require the recognition of sequences of events. A

misuse information database provides a quick-and-dirty capability to address

newly identified attacks prior to overcoming the vulnerability on the target

system.

 22

• Model Based Reasoning attempts to combine models of misuse with evidential

reasoning to support conclusions about the occurrence of a misuse. This

technique seeks to model intrusions at a higher level of abstraction than the audit

records. In this technique, intrusion descriptions are first developed at a high,

intuitive level of abstraction in terms of sequences of events that define the

intrusion. This technique may be useful for identifying intrusions which are

closely related, but whose audit trail patterns are different. It permits

examination of only portions of relevant data.

• State Transition Analysis creates a state transition model of known penetrations.

In the Initial State the intruder has some prerequisite access to the system. The

intruder executes a series of actions which take the target system through

intermediate states and may eventually result in a Compromised State. The

model specifies state variables, intruder actions, and defines the meaning of a

compromised state. Evidence is pre-selected from the audit trail to assess the

possibility that current system activity matches a modeled sequence of intruder

penetration activity (i.e., described state transitions lead to a compromised state).

The higher level representation of intrusions allows this technique to recognize

variations of scenarios missed by lower level approaches.

• Neural Networks offer an alternative means of maintaining a model of expected

normal user behavior. They offer a more efficient, less complex, and better

performing model than statistical models of system and user behavior. Neural

network techniques may be found to be more efficient and less computationally

 23

intensive than conventional rule-based systems. A lengthy, careful training phase

is required with skilled monitoring. After the training period, the network tries to

match actual commands with the actual user profile already present in the net.

Any incorrectly predicted events actually measure the deviation of the user from

the established profile.

In reality, each approach individually doesn’t yield an optimal level of intrusion

detection. Therefore, two or more methods of intrusion detection are usually combined,

resulting in a hybrid intrusion detection system.

2.2.4 Limitations of Existing Systems

 Despite advances in research on intrusion detection technologies, the field of

intrusion detection has still many problems to overcome. This section will demonstrate

some of the limitations that certain ID technologies possess.

 Starting with Anomaly Detection models, we can recall that all intrusive activities

are assumed to be anomalous; however, in practice only a small intersection of sets of

intrusive and anomalous activities would classify as intrusion attempts. This leads us to

the conclusion that anomaly detection models potentially (a) flag non-intrusive

anomalous activities as intrusive – known as a problem of false-positives, and (b) flag

intrusive non-anomalous activities as non-intrusive, which gives rise to a problem of

false-negatives (a potentially more dangerous problem). Another problem with statistical

 24

methods is that they can be “trained” by intruders to eventually classify intrusive events

as normal. Recalling section 2.1.2, anomaly detection models make use of thresholds –

setting the threshold level too high or too low will result in one of the problems outlined

above. Approximation of threshold levels can result in a high rate of false positives or a

high rate of false negatives across a non-uniform user population. Profiling of users and

groups is difficult due to irregularities in the user base and the set of underlying activities

for seemingly similar users (i.e., users with similar job titles may have different work

habits). Similarly, resource profiling requires a somewhat difficult task of correctly

interpreting the changes in overall system usage. Rule-based profiling also introduces

constraints in terms of the large number of rules required to be stored, which negatively

impacts the performance and training time.

 Misuse detection resembles the virus detection systems in the way known attack

patterns are detected; however, misuse detection methodology is of little use when it

comes to detecting unknown attacks. The expert system approach has a significant

drawback – the expert system has to be formulated by security professionals, and

therefore it is as strong as the person who programs it. In addition, certain rule

interdependencies are introduced, which makes addition or deletion of new rules more

complicated. State transition systems possess an array of problems. First, attack patterns

can specify only a simple sequence of events. These patterns cannot describe and

therefore detect such violations as denial of service attacks, failed logins or passive

network listening.

 25

 Other problems with intrusion detection systems involve denial of service attacks on

the IDS itself (an intruder can disable the IDS by issuing a large number of events

resulting in alarms up to the point where an IDS can no longer cope with its tasks), and

inability of the IDS to process encrypted or fragmented traffic. For instance, a well-

known IDS Snort detects intrusions by matching the hexadecimal substring from the

network packet payload with the existing intrusion database. If the intruder’s traffic was

encrypted or somehow modified, the attack would sneak past the intrusion detection

system. Another point to consider is that when an alert is raised by the IDS, some

intrusion activity has been going well before that, thus preventing us from discovering the

exact starting point of an attack. In summary, intrusion detection systems cannot be relied

upon as the only source of defense – rather, they should be used in unison with firewalls,

strong encryption techniques, intrusion prevention systems and manual supervision.

2.2.5 Summary of Work on Intrusion Detection Systems

In 1980, James Anderson first proposed that audit trails should be used to monitor

threats [2]. The importance of such data had not been comprehended at that time and all

the available system security procedures were focused on denying access to sensitive data

from an unauthorized source. Anderson also classified intrusions into several types, and

separated internal intruders from external ones.

 26

In 1987, Dorothy Denning presented an abstract model of an Intrusion Detection

System [21]. This paper was the first to propose the concept of intrusion detection as a

solution to the problem of providing a sense of security in computer systems. The basic

idea of the model is to maintain a set of profiles for subjects (any entity taking part in

system operation – e.g., users). When an audit record is generated, the model matches it

with the appropriate profile, checking for abnormal behavior and reporting detected

anomalies.

In 1988, the Internet worm (also known as the Morris worm) caused the Internet to

be unavailable for about five days [74]. This incident brought the need for computer

security into the spotlight. The same year, Teresa Lunt et al. refined the intrusion

detection model proposed by Denning and created IDES (Intrusion Detection Expert

System) [52]. This system was designed to detect intrusion attempts against a single host.

An improved version was developed in 1995, called NIDES (Next-generation Intrusion

Detection Expert System). Also in 1988, the Haystack system [72] was developed in

order to assist Air Force Security Officers detect misuse of the mainframes used at Air

Force Bases, and MIDAS (Multics Intrusion Detection and Alerting System) was created

for the same reasons for the National Computer Security Center's Multics mainframe [70].

In 1989, Wisdom and Sense came out from the Los Alamos National Laboratory,

and Information Security Officer's Assistant (ISOA) from Planning Research Corporation.

A new concept was introduced in 1990, with NSM [33] (Network Security Monitor, now

 27

called Network Intrusion Detector or NID): instead of examining the audit trails of a host

computer system, suspicious behavior was detected by passively monitoring the network

traffic in a LAN. NSM has several perceived advantages over audit trail-monitoring ID

systems. First, the IDS gets instantaneous access to network data. Second, the IDS is

hidden from the intruder because it is passively listening to network traffic. Therefore, it

cannot be shut off or its data compromised. Finally, the IDS can be used with any system,

because it is monitoring network traffic, protocols for which are standardized.

In 1991, a different idea was introduced with NADIR (Network Anomaly Detection

and Intrusion Reporter) and DIDS (Distributed Intrusion Detection System) [73]: the

audit data from multiple hosts were collected and aggregated in order to detect

coordinated attacks against a set of hosts.

In 1994, Mark Crosbie and Gene Spafford suggested the use of autonomous agents

in order to improve the scalability, maintainability, efficiency and fault tolerance of IDS

[18]. Instead of a single large IDS defending the system, they proposed an approach

where several independent, small processes operate while cooperating in maintaining the

system. The advantages claimed for this approach are efficiency, fault tolerance,

resilience to degradation, extensibility and scalability. The foreseen drawbacks include

the overhead of so many processes, long training times, and the fact that if the system is

subverted, it becomes a security liability. Their idea fit well with the ongoing research on

software agents in other areas of computer science.

 28

Another approach to address the scalability deficiencies in most contemporary

intrusion detection systems was proposed in 1996, with the design and implementation of

GrIDS [75]. This system facilitates the detection of large-scale automated or coordinated

attacks, which may even span multiple administrative domains. In 1998, Ross Anderson

and Abida Khattak offered an innovative approach to intrusion detection, by

incorporating informational retrieval techniques into intrusion detection tools [3]. And as

the research in the field continues, we see that this paradigm is proposed as an answer to

the security requirements of other technological areas, such as mobile networks.

2.3 Agent Systems

2.3.1 Overview

Mobile Agents are processes that migrate under their own control in a heterogeneous

network. When an agent is transported to a new host, its state is saved and sent embedded

with the agent, then restored at a new host, allowing the agent to continue its execution.

Mobile agents are divided into two kinds – strong mobility and weak mobility agents, the

former being different from the latter in that the control state is transferred along with the

data and code of the mobile agent to each host. The two types are used for different

applications. Strong mobility enables agents to be independent decision-making units and

is used, for instance, for load-balancing applications, whereas weak mobility is more

suited towards event-driven agents and the technology behind this functionality is

 29

consistently supported by Java virtual machines – a platform that most of mobile agent

systems utilize.

2.3.2 Uses of Mobile Agent Systems

 In our intrusion detection framework discussed in Chapter 5, we have chosen to rely

on mobile agents for a number of reasons. There are certain properties that mobile agents

possess and certain guidelines that they follow, which are useful to our system, as

discussed below:

• A mobile agent doesn’t have to actually move – instead it should follow certain

guidelines to access specific resources and make intelligent decisions whether to

access a remote resource or a local one.

• Mobile agents add to the complexity of systems. While having a number of

advantages, they are not actually adding to a set of high-level operations to a

service, but rather remotely invoke low-level operations.

• Mobile agents reduce bandwidth usage by filtering out only the best-matching

results and transport them across the network, rather than the entire dataset. They

can act as a server-side filter for the data.

• Multiple agents can be dispatched to a number of locations and concurrently

obtain required information. This reduces total task completion time.

 30

• Agents can replicate themselves and move to multiple locations from an

optimally-selected position within the network, thus reducing latency. For

example, instead of sending 10 mobile agents from the source workstation, one

agent can be sent to the gateway of the home network, and then replicated on the

gateway system to be sent to multiple networks.

• The user can dispatch an agent and close the connection link with the network,

while agents independently gather the required results and return to the

originating system whenever it becomes possible.

• Agent systems generally provide system usage statistics, which enables them to

perform load balancing – by sending some agents off to systems with lower

resource usage.

Many arguments have been made against mobile agent systems. The primary reason

for these arguments is that existing systems provide similar functionality without any

need for modification. However, in many cases the use of mobile agent systems will

dramatically improve system performance and reduce operational costs. The diagram

below, for example, demonstrates the advantage of using agent systems as opposed to

using the Remote Procedure Call mechanism:

 31

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 b

yt
es

Number of queries

Number-of-queries scenario: Bandwidth usage

RPC
Agents

 Figure 2.2. Advantage in Bandwidth Reduction when using Mobile Agents versus Remote
Procedure Calls.

Agent systems possess a number of other advantages over traditional client-server

and distributed systems, as discussed and illustrated in [48]. After overcoming certain

technical challenges (e.g., performance, scalability, standardization issues), there still

remains an issue of security – a major area of vulnerability of the early mobile agent

systems. The issue of agent system security is addressed in the following section.

2.3.3 Mobile Agent System Security

Mobile agent systems have numerous points of potential security breaches [15].

Hostile mobile agents can attack hosts, threatening server resources. Agents can have

 32

their data integrity and privacy jeopardized by a malicious host posing as an agent server.

Insecure networks make attacks on mobile agents easier. Therefore, certain security

measures must be maintained to ensure:

• Secure communication

• Secure agent transfer

• Protection of host resources from malicious data

• Protection of agent’s code and data against tampering

• Secure control of remote agents

• Authentication of mobile agents

Since 1998, much work has been done in this direction. Current mobile agent systems use

techniques discussed in [27, 81] to protect hosts against malicious agents. Agents can be

protected by means of encryption and other techniques, discussed in [39]. Although an

open environment such as the Internet can pose a threat to the use of mobile agents, their

uses for private and corporate applications are increasing. Although certain advances (and

user education efforts) must be made before the security problems are addressed

adequately for all Internet applications, current work promises that shortly mobile-agent

systems will be secure enough for general use.

 33

CHAPTER 3: PARALLEL INTERACTIVE NETWORK SIMULATION

SYSTEM – ARCHITECTURE AND IMPLEMENTATION

 Research in computer networks is one of the major areas of Computer Science and

the IT industry. A lot of time and money is spent on implementing network

infrastructures in the industry, residential and educational sectors. Often, a computer

network under consideration is very complex, and requires careful planning, modeling

and analysis before deployment. Networking algorithms should be rigorously tested

under a range of operating conditions prior to implementation and standardization.

Various network simulators have been used for these purposes. However, due to a wide

diversity in network technologies, generic simulators often don’t provide required

flexibility and range of features that are essential for network simulation. One of the

goals of our research work was to develop a parallel network simulation architecture that

is geared towards simulation of wireless systems. We have developed an architecture that

allows researchers to simulate a wide variety of network topologies and view the actual

network and simulation results in real-time. Unlike many other network simulation

systems, in our simulation framework heavy emphasis is placed on intuitive user

interface and clear presentation of simulation objects and their interactions. In this

chapter we describe our parallel network simulator architecture, and then introduce an

implementation of the architecture targeting wireless network simulations – WINDS

(WIreless Network Distributed Simulation framework).

 34

3.1 Existing Work on Network Simulation

 Researchers continually work on developing new communication protocols,

algorithms and methods for computer networks. Research papers in the network

community propose new algorithms offering better performance, quality of service and

other benefits. A technology of choice should be carefully evaluated before being

adopted in practice. Primary method of such evaluation is to create a computer simulation

of a particular topology, communication mechanism or an algorithm. Several generic

network simulators offer convenient, robust simulation platforms for modeling large-

scale networks. Our primary objective was to model an intrusion detection system for

wireless ad hoc networks, which served as a driving force behind developing a parallel

network simulation architecture, which was extended in its implementation to wireless

network simulations. The key requirements were flexibility, extendibility and scalability,

as our intention was to devise a simulation system capable of being extended to very

large scale simulations, running on several processors. Several well-known general-

purpose network simulators were considered to create our simulation model of a large-

scale wireless network.

 Primary choice of simulator packages was discrete-event simulators. Many existing

event-driven simulators support inter-object communications by message passing and

process events from the queue of events as they become available. Examples include MIT

 35

Advanced Network Architecture group’s NETSIM [35], UC Berkeley’s INSANE [53],

LBLN’s NS, based on REAL [56]. Another popular simulator is NS-2 [56] - a discrete

event simulator that provides substantial support for simulation of TCP, routing, and

multicast protocols over wired and wireless networks; however, the implementation

incurs substantial memory overhead and increases the complexity of simulation code.

Based on numerous published results, it is not easy to scale NS-2 beyond a few hundred

simulated nodes; only recently, simulation researchers have shown it to scale, with

substantial hardware resources and effort, to simulations of a few thousand nodes [60].

User-defined objects can be created in almost all of the above simulator packages;

however, in majority of cases, only one specific language of choice (such as C) was

available for implementing those objects, resulting in reduced portability of the

simulation system and dependencies on a specific platform. While this may not be a

problem for a single-computer simulation, or for a cluster computer with identical

configuration of all nodes, a definite problem arises while deploying the simulation

framework on a heterogeneous distributed system. Another problem with compiler-

dependent approach is the reduced target clientele. Some simulators allow user-defined

objects to be created and manipulated via scripts [53, 56]. A brief comparison of several

of the above mentioned simulators is given in [13].

 One of our requirements was an intuitive user interface support, which would allow

us to visually demonstrate the concepts behind our intrusion detection algorithms in real

time by getting snapshots of the simulation execution. NETSIM [35], NEST [46],

 36

OPNET [13] and some others provided such a GUI, while many other simulator packages

only provide numerical results. Some of the commercially-available simulation systems,

such as MIL3 Software’s OPNET, were also considered. OPNET has proven to be a

well-composed, extensible and scalable simulator package. However, lack of source code,

minimal support for experimental wireless network configurations and licensing issues

prevented us from using it.

Intrusion detection system induces a high processing load on the simulator

(especially for large-scale simulations). With this in mind, several parallel and distributed

simulator packages were considered, such as CPSIM [26] and Columbia University’s

NEST and its extension REAL [46]. NEST has many protocols built-in, implements

client-server model for distributed simulation and provides a design-time GUI for

creating network topologies. NS-2 also can be extended to multi-processor systems using

Akaroa-2 - a tool for running quantitative stochastic discrete-event simulations on UNIX

multiprocessor systems or networks of heterogeneous UNIX workstations by creating

multiple instances of an ordinary simulation program and running them simultaneously

on different processors [57]. However, for our purposes, a specialized simulation

framework for large-scale wireless network simulations is desired, as it provides basic

out-of-the-box support for mobile wireless networks, including wireless routing, mobility

support, and other specific features. For high-performance simulation, a tightly-coupled

parallel system is required to minimize impact of slow network inter-processor

communications. This necessitates two important requirements – the simulation

 37

framework should target wireless networks, and should be efficiently implemented to

execute on parallel architectures.

 We have considered several simulators targeting wireless networks. SWiMNet [10]

is a scalable framework developed for parallel simulation of wireless and mobile PCS

networks; it eliminates most of the event dependencies by having a pre-computation stage

before feeding events into the simulator, which can reduce the number of rollbacks in its

parallel execution, but poses additional constraints on the simulation. WiPPET

framework deals with issues of evaluating wireless propagation and various wireless

communication protocols [44], and doesn’t provide the level of abstraction in its object

model that we require. An extended version of WiPPET, TeD, is a C++ implementation

of a parallel wireless simulation framework that supports built-in wireless protocols such

as GSM, TDMA and AMPS [43]. In [51], a conversion from sequential to a parallel

wireless network simulator is presented, with considerable reduction in simulation

execution time for time-consuming complex scheme simulations. Another popular

wireless network simulator GloMoSim [25] targets simulations at multiple layers,

concentrating on physical layer modeling. In terms of scalability these wireless

simulators are limited, as the following figure demonstrates, comparing NS-2 and

GloMoSim’99 for parallel simulations [77]:

 38

The review of the network simulators mentioned above concludes that:

• Modeling of wireless nodes is not flexible enough to include desired functionality

(i.e., mobility models for ad hoc networks) in the case of generic network

simulators

• Extensive software development effort is required to implement commonly

occurring features of the simulation

• Few simulators allow working with external data files (e.g., TCP trace files in

binary format)

• Source code is sometimes not available to extend the design and functionality of

the simulator

• Most simulators are relying on C/C++ libraries compiled for a particular

architecture, thus making it non-portable between different computer systems

• Learning curve is usually steep even for simple simulations

 Our simulation architecture was developed as a research tool to provide time-saving

flexible simulation test-bed targeting a wide range of network architectures. The

 39

implementation of this architecture – a parallel interactive simulation framework – is a

cross-platform, interactive, portable, GUI-driven and can be used as a scalable parallel

wireless network simulator for a variety of purposes, such as routing in ad hoc networks,

mobility models of totally mobile wireless networks [7, 19], sensor networks, Bluetooth

Pico-nets, etc.

 In this chapter, we first present the simulator architecture design. Framework

modules are described in detail in the next section, as well as a generic simulation process.

We also list requirements and limitations of our simulation framework. Then, its design is

extended to the parallel and distributed simulation environment, and simulation

performance is established. Key design issues are also described in detail in this chapter.

3.2 Network Simulator Architecture

3.2.1 Design Philosophy

 The objectives of this research and development project were to reduce redundant

software design efforts in the area of network simulation, establish a framework general

enough to be used for simulations of many network technologies, and provide for

common base for the exchange of models relating to any network infrastructure. The

object-oriented nature of the software and the use of a popular programming language

(Java) for implementation allow researchers to easily modify, reuse and share whole

systems or system components. Our framework also includes customizable user interface

 40

that can be easily adapted to a specific problem. Very intuitive design and layout of the

graphical environment allow the system to be used for demonstrational or educational

purposes. GUI can be executed separately from the simulation engine and function as a

visual demonstration of an algorithm or a system. Our goals were:

• Clean, easy-to-understand and modify design

• Object-oriented approach

• General portability

• Use of a popular programming language

• Easy-to-use, GUI-driven framework

• Performance comparable to other distributed technologies

• Scalability

Following these guidelines, we have developed PINS architecture – a flexible, portable,

network simulation framework that can be used to simulate a variety of applications for

optical, wireless and wireline networks. We have implemented PINS architecture on a

symmetric multiprocessor cluster computer to address the issues of scalability with large-

scale simulations; results are discussed in the next section.

 The design of our simulation framework is based on a building-block approach.

Researcher implements an algorithm or a prototype from modules that receive inputs in

the form of events, process them, and then generate outputs (events, log entries, GUI

updates). The entire network is built from objects – network nodes, event generator, and

 41

communication channels. Connections between network nodes are maintained by the

connections module incorporated into the routing protocol object. Any network

infrastructure is supported and can be configured - Ethernet, burst-switched optical, ad

hoc wireless and hybrid (e.g., totally-mobile) wireless networks. Object-oriented

approach is central to the generality and flexibility of the system and allows users of our

framework to reuse, share and catalog simulation components by modifying or replacing

appropriate classes.

 Computer networks are particularly convenient to be modeled via object-oriented

approach because they typically consist of discrete components, easily thought-of as

interactive objects (for instance, network nodes, protocol stacks, packets) that interact

with each other by message passing. By changing a particular module, simulations can be

modified in a short time. As source code is provided, functionality of simulation event

generator can be modified to accommodate new networking paradigms. Users can create

shared libraries of swappable modules that describe their system for an easy experiment

replication.

 Popular network simulators aim at supporting every aspect of network

communications, such as, for example, every layer of many communication protocols or

every communication subsystem [25, 77]. This adds tremendous overhead to the

simulation system, often resulting in scalability problems and slow execution times. Our

simulation framework avoids these problems, by implementing only the core

 42

functionality of a network – supporting simulation clock, network communication,

routing and network object mobility (for wireless applications). These functions are

highly-abstracted, allowing the user to include specific communication protocols, routing

algorithms and other required simulation parameters, as necessary. Another goal of our

framework development was to integrate user interaction with simulation execution as

closely as possible. Therefore, our simulation system choice was a time-stepped

simulation system, as opposed to majority of discrete-event wireless simulation systems.

The rationale behind this choice is the fact that in a network simulation with large

network traffic, there is no particular advantage of running as-fast-as-possible simulation,

jumping to the next event right away; however the issue of communication

synchronization is complicated, when developing a parallel simulation system. The

intuitive graphical user interface of our framework therefore reflects any changes in the

simulation execution as they happen, in scaled real-time, allowing the user to adjust the

simulation parameters at run-time. Another advantage or our framework is ability to use

almost any data file as a source of network communications. Data file pre-processor

converts binary packet data into the format used by our simulation framework, translating

simulated network address space into plain addressing scheme used with our simulation

framework. As an example, intrusion data from the Lincoln Laboratories IDS tests was

used to test our wireless IDS system simulation.

 43

3.2.2 Simulator Components

 Our simulator architecture consists of four key modules, each comprised of a

number of components, as described below:

• GUI (graphical user interface)

• Simulator Core Module

• Network Traffic Module

• Data Logging Module

 The diagram below (Figure 3.1) shows the architecture of our framework. Some of

the modules carry optional functionality and can be included into the simulation as

necessary. The functionality of each module is described further on in this section.

Architecture Use Case UML diagrams for the User and the System actors are presented in

figure 3.2 (a) and 3.2 (b). Basic simulation flow is shown in figure 3.5.

Graphical User Interface Module

The graphical user interface (GUI) module shows the simulation execution in real-time

(figure 3.1). The GUI class is tied up to the simulation engine clock, and displays the

required information every clock cycle. GUI class shows the simulation area with

wireless node objects moving and communicating. Certain simulation settings can be

adjusted via GUI module, such as network communication parameters and simulation

clock interval. GUI module also provides controls for simulation execution – user can

pause simulation, step through the simulation one clock cycle at a time, add and remove

 44

simulation objects. The GUI interface is generic enough to accommodate various network

entities, but can be modified to reflect specifics of a wireless architecture being studied.

 Our simulation framework provides a flexible user interface component – for

instance, you can use it to supply specific parameters used in simulations of ad hoc or

infrastructure wireless networks, using the same interface. GUI module also records

simulation statistics in a log window. Data logging module processes this data at the end

Simulation Engine

Simulation Objects

Data File

Data Parser

CSV File for

Analysis

message
passing

Simulator Core Module

Data Logging
Module

Network Traffic
Module

Packet Processor

BIN/XML Parser

Packet Data

File

Figure 3.1. PINS Component Architecture.

G U I

User

simulation
control

object
representation

 45

of simulation and saves the results in CSV format, which can be later processed by a

mathematical analysis software package.

Add Simulation Object

Delete Simulation Object

Adjust Object Parameters

Manage Simulation Objects

<<include>>

Create Simulation Class

Control Simulation Execution

Start Simulation Pause Simulation Resume Simulation Stop Simulation Execution

<<include>>

View Simulation State

Adjust Simulation Parameters

User

Export Statistics

Figure 3.2(a). PINS User Use Cases.

Simulator Core Module

 Simulation Engine: The heart of the PINS framework is a Simulation Engine. One of

the design requirements is that PINS is a scaled-real-time time-stepped system. The

 46

simulation is tied up to a graphical user interface, allowing users to monitor simulation

progress in real-time and modify simulation parameters on the fly. This would not be

otherwise possible with a discrete-event simulation system. The simulation engine runs

an internal clock, the speed cycle of which can be controlled by the researcher at run-time.

Programmatically implemented as a high-priority thread, the simulation engine runs in a

loop continuously, driving execution of all other components of the simulation. Any

events happening at a certain time must be processed by simulation objects at once,

within a single simulation cycle. The simulation engine is common to all simulation

models, and cannot be modified by the user. Simulation engine class keeps track of object

definitions of all user-defined objects taking part in a simulation (such as wireless nodes,

routing algorithm used, mobile base stations and stationary routers), and instantiates them

at runtime.

PINS System

Initialize Simulation Load User Objects Update Object Properties Process Inter-Object
Communication

Update GUI Load Simulation Data Synchronize Object Activities Output Statistics

Figure 3.2(b). PINS System Use Cases.

 47

 Simulation Objects: The simulation objects execute independently and are time-

synchronized via the simulation engine clock. Our framework has a few pre-defined

simulation objects. One such object type is a wireless node object. Wireless nodes are

members of any wireless network simulation, and can be either stationary or mobile. A

smooth random-destination no-wait mobility pattern is embedded by default in a wireless

node object. User can modify the motion pattern by implementing a different mobility

algorithm (or read waypoints from a data file). This allows simulations to be flexible and

account for many possible node mobility patterns. Each network node object also

includes two methods used for inter-object communication – Send and Receive methods.

Send method is invoked when a node is transmitting packets, and has a source,

destination, protocol, port and payload as its arguments. When applied to wireless

networks, Send method determines all the neighbors of the current wireless node, and

broadcasts the packet to its neighbors by invoking Receive method on each neighbor

node. Receive method first checks the packet destination, then depending on the routing

algorithm used, forwards the packet to the destination or simply drops the packet. This

allows the user to simulate ad hoc and infrastructure wireless networks.

 Routing protocol is another simulation object. The routing protocol included with

our framework is a simple table-driven protocol, which is implemented programmatically

as a separate routing class. To modify the routing protocol, user must include all

necessary parameters in a network node object, and implement their own routing protocol

class. Since the simulation framework serves communications in exact same way as a

 48

real-life communication network, all existing routing protocols are supported. Depending

on the system configuration in question, framework user can also instantiate a Base

Station object, as used in the simulations of wireless infrastructure and totally-mobile

wireless networks. The base station object supports Send and Receive methods (as

described above), and is supplied with center-of-gravity motion pattern, which is used in

the totally-mobile wireless network simulation. When base station object is used, the

routing algorithm class must also be updated to route all network packets via appropriate

base station.

Network Traffic Module

 Network traffic for our framework is generated by the Network Packet Processor.

The implementation of this object is common to all the simulations and includes reading

a pre-processed data file in XML format, and forwarding each packet to the appropriate

Figure 3.3. Sample Network Packet Capture.

network node (source). Pre-processing is performed on a binary data file obtained from

 49

network packet capturing software (such as TCPDUMP). A sample capture of network

packets is shown in figure 3.3 and a decoded packet example is shown in figure 3.4. Here,

a network trace file is obtained and converted for the use in our simulation framework by

substituting IP address space by a simulation network object address space. Each packet

is decoded, and a new packet is created after processing addressing information. Further

pre-processing may be done by stripping payload off the packets, adding data to the

packets (and updating packet header), filtering packets for specific features (e.g., a

timestamp, or a particular protocol).

Figure 3.4. Decoded Packet Information.

Our simulator uses a flat addressing scheme to reduce communication overhead, and

therefore all network addresses are converted to compatible notation by the BIN/XML

Parser module offline. Packet processor object generates packets at times specified by

 50

timestamps of each packet processed, and makes use of simulation engine’s internal

clock to time distribution of the packets. This allows us to speed up simulation execution,

limiting the simulation speed only by the hardware specifications and the maximum

packet broadcast rate. Simulation can automatically be stopped when the end of the data

file is reached.

Data Logging Module

saves the simulation results for future analysis. During simulation

.2.3 Requirements and Limitations of Simulation Framework

ework, and a few

 Data logger class

execution, results are stored in memory and displayed in a human-readable form via GUI

data display window for performance reasons (frequent disk I/O operations reflects

negatively on simulation performance). The representation of results can be tailored to

particulate simulation requirements and is defined in the GUI class. Data parser: At the

end of the simulation run, these results are first pre-processed by a data parser to format

data suitable for import into the mathematical analysis software. CSV file generator: The

pre-processed output is saved as a CSV file (a commonly used comma-separated data file

format) by the CSV file generator.

3

 Certain limitations exist in our single-processor simulation fram

guidelines have to be strictly adhered to. Knowledge of Java programming language is

required for developing user simulation objects, as well as clear understanding of

principles of wireless communications. Object-oriented nature of our framework requires

 51

all designs to comply with ideology of object-oriented programming and class definitions

used in the simulation framework. The framework design imposes minimal hardware

requirements. This, however, entails a restriction on the size of simulation supported. The

number of wireless nodes is limited in framework specification, but can be changed to a

higher value, if hardware of the computer used to run the framework is powerful enough

– as the next section shows, where we have implemented the PINS architecture as a

parallel simulation framework executing on multiple processors to address the issues of

scalability and the speed of simulation execution.

 52

Update
Object State

Execute Simulation
Thread()

Simulation Framework
Started

Load User
Objects

Process Simulation
Events

Simulation Stop
Condition Reached?No

Yes

Control Simulation
Execution

Update User
Interface

UserSimulation EngineUser Obj ects

Figure 3.5. PINS Simulation Execution Activity Diagram.

 The design making use of

configuration files, where a user can specify required parameters, such as wireless

simulations; however it is out of scope of the framework design for now. Graphical user

client machine running the simulation. A Java compiler compliant with Sun’s version 1.3

of the framework may be further improved by

communication range, initial number of nodes, etc. Optimally, a scripting support is

beneficial to any simulation system, thus simplifying design and control of user

interface communicates directly with the simulation engine and displays progress of the

simulation derived from data supplied by the simulation execution via the main simulator

class. This requires all simulations to be structured around the simulator class, and not

directly with user modules. Finally, a Java run-time environment has to be installed on a

or greater is also required if a simulation incorporates user-defined simulation objects that

need to be compiled.

 53

3.3 Wireless Network Distributed Simulation System

 In this section we extend the framework architecture to simulations of wireless

networks in multiprocessor environments and describe the optimizations to further

improve the performance of the simulation system for large-scale simulations of wireless

networks. We call our distributed simulation framework WINDS – WIreless Network

Distributed Simulation framework.

3.3.1 WINDS Design for Cluster Computer

 The single-processor version of the simulation system suffices for small-scale

simulations of wireless networks. However, we have had significant reduction in

performance when performing simulations in excess of 200 wireless nodes. Scalability is

an important factor of every simulation system, as computer networks grow in size and

become more complex in functionality. A distributed simulation is the answer to

scalability problems. The concepts of a distributed simulation have been presented in

Chapter 2. As for the practical implementation, first, the entire set of objects in the

simulation is partitioned into several parts. For instance, we can divide 100 simulation

objects evenly between 5 processors, assigning objects to processors in a round-robin

fashion. As user interface provides capability to instantiate multiple user objects of the

same type with one command, multiple types of objects are instantiated sequentially,

resulting in a balanced allocation of simulation objects of all types between the

processors. During simulation execution, each of the processors performs computations

 54

relevant to objects assigned to it. As most of our single-processor simulations have

exhibited computationally-intensive properties user objects versus smaller amount of

inter-object communications, distributing simulation objects among multiple processors

promised good scalability results. Communication between objects is handled by the

communication broker – if two objects are handled by the same processor,

communication happens in exact same way as in the uni-processor system; if two (or

Data-logging
Module

Network Traffic
Module

User

simulation
control

Master Processor (PM)

G U I

Simulation Engine
/ Clock Cycle

Simulation Broker

Processor 1 (P1)

Clock Pulse

Processor N (PN)

. . .

Inter-processor
communications
(clock-sync)

Object Instances

 Comm.
Broker

Object Instances - Simulator Events

- Object Info

Event
Handler

- Object Data Exchange
- Object Migration

Comm.
Broker

Event
Handler

Figure 3.6. WINDS Architecture for Distributed Wireless Network Simulations
in Multiprocessor Environments.

 55

more) objects are assigned to different processors, inter-processor communication takes

place. Our WINDS architecture [28] is presented in figure 3.6.

The simulation procedure is as follows. After object definitions have been devised

and placed in a shared object directory, user starts the simulation framework on a master

processor node. This in turn remotely starts simulation clients on each of the processors.

Initially, user adds new objects to the simulation via graphical user interface. The objects

are associated with processors in a round-robin manner. Instructions are sent to a

respective processor from the master processor node to create an instance of an object

and load it in memory. Object template is then read from disk by that processor, and a

new object instance is created in its memory space. From now on, this object is handled

by a local simulation control module on that processor. Once all objects have been

created, simulation execution commences. Simulation engine sends a clock pulse out to

every processor, and all communication between objects is clock-synchronized.

Simulation broker located on the master processor keeps track of locating a specific

object and serves as a routing module for the cluster communications. Other modules

(like data logging module) behave in the same way as described for the single-processor

version of WINDS. When a packet needs to be sent from one object to another in the

course of the simulation, communication broker on the node containing source object

first determines if both objects reside on that node. If this is the case, then communication

is performed locally by invoking the Receive method on destination object (same as for

the uni-processor case). If the destination object resides on a different processor, first a

 56

proper destination network address of that processor is determined by consulting

simulation broker on a master processor node. Then, a network communication is

initiated between the local processor, and the destination processor, handled by

communication brokers of both processors. When a message is received on the

destination processor, it is parsed for parameters, and Receive method of the destination

object is called. Apart from exchanging messages between objects, all the processors also

communicate with the master processor once every few clock cycles to ensure consistent

state of the simulation and to report on the state of each object taking part in a simulation

(i.e., to update the GUI information for each object). Commands are also sent

synchronously from the master processor to each client processor to control simulation

execution. The screenshots of the simulation system are shown in figures 3.7(a), (b). The

base class diagram for the WINDS framework shown in the figure 3.7(c) illustrates the

main Java classes of the framework and their associations.

 57

Figure 3.7(a). Processor window showing object allocation among processors.

Figure 3.7(a) shows (on a local host example with multiple aliases) the list of all

processors taking part in the simulation, and the associated user objects. Each processor

executes a processor agent that relays all console messages to the master node’s simulator

GUI screen. These messages may then be viewed by the user in regular or verbose mode,

allowing him/her to obtain detailed account of simulation activities on each processor.

This screen allows the user to simultaneously instantiate simulation agents on an entire

 58

range of processors (e.g., all the nodes of a cluster computer) by specifying a range of IP

addresses and a command for each processor. For example, setting IP range of

10.0.0.101-121 will result in instantiating simulation agents on all specified nodes. User

can also look up IP address by machine’s name, and specify an agent invocation

command and optionally, user’s password. An example of such a command on a Linux

cluster computer would be: rsh –n # | tcsh | cd ~/WINDS | java parsimc &.

Figure 3.7(b). Main WINDS screen – Infrastructure Wireless Network Simulation.

 59

ProcConsoleOutput
strBuf : Logical View::java::lang::StringBuffer
stillRun : boolean = true

ProcConsoleOutput()
...

PacketQueue
queue : Logical View::java::util::LinkedList

PacketQueue()
addPacket()
getPacket()
...

netPacket
timeStamp : long = 0
destObject : Logical View::java::lang::String
dataType : Logical View::java::lang::String
strContents : Logical View::java::lang::String

...

simObjHandler
Tick_arguments[] : Logical View::java::lang::Object = new Object [] {}

simObjHandler()
viewObjects()
ObjectRx()
Tick()
addObject()
...

simEv tHandler
timeUnit : int = 1000
lastCnt : long = 0
timeStamp : long = 0
isPaused : boolean = false
myID : int
totalProcs : int
myTurn : int

simEvtHandler()
run()
setTimeUnit()
...

+pQueue

nP

Ev tClass

+objHandler

guiProcessorSetup

guiProcessorSetup()
jbInit()
cmdTestNetDelay_actionPerformed()
scrollProcLog()
cmdAddProcs_actionPerformed()
printLog()
cmdRemoveSelectedProc_actionPerformed()
cmdClose_actionPerformed()
txtProcIPRange_mouseClicked()
replaceStr()
cmdCheckIP_actionPerformed()
txtProcHostname_mouseClicked()
txtProcHostname_mouseEntered()
txtProcHostname_mouseExited()
txtProcHostname_mousePressed()
txtProcHostname_mouseReleased()
jTab_stateChanged()
lstProcessors_valueChanged()
updateLogs()
...

Processor
IPAddr : Logical View::java::lang::String
ID : int
isConnected : boolean = false
commDelay : long
ClientTime : long
ClientDelay : long

Processor()
run()
processCmd()
hasConnected()
...

-agentOutput

cmdObjectWnd

cmdObjectWnd()
...

windsG
properties : Logical View::java::util::Properties
cmdTimeout : int = 0
inx : int = 0
GUIRefreshFrequency : int

windsG()
jbInit()
cmdShowStatWnd_actionPerformed()
cmdSimulationStart_actionPerformed()
cmdSimulationPause_actionPerformed()
cmdShowProcWnd_actionPerformed()
cmdCustomStats_actionPerformed()
cmdSetSimulationClockDelay_actionPerformed()
cmdSaveLogAs_actionPerformed()
addUserClasses()
objTree_valueChanged()
cmdShowProcessorSetupWindow_actionPerformed()
processorsExist()
cmdAddObject_actionPerformed()
expandAllObjTree()
expandAll()
removeObjectFromTree()
printLog()
scrollProcLog()
cmdDeleteObject_actionPerformed()
...

objMenu

gui
drawTerrain : boolean = false
maxX : int
maxY : int

gui()
eraseScreen()
...

winds

masterWinds

-masterWinds

parsimc
ServerPort : int = 2000
maxClock : long = Long.MAX_VALUE
startClock : long
simStarted : boolean = false
synDelay : boolean = false
synDelayClock : long = 0
ID : int = 1
numProcs : int = 1

parsimc()
...

pClass

simEv tHandlerClass

Network

Network

Figure 3.7(c). WINDS framework core class diagram.

 60

Figure 3.7(b) demonstrates totally-mobile wireless network simulation in progress. Panel

on the upper right shows all available user classes and instantiated objects for each class.

Lower right panel provides means to instantiate user objects from class templates. Main

window shows graphical presentation of simulation execution, with user object

interactions in real time. Figure 3.8 shows a simulation of a wireless ad hoc network’s

mobility models for a large number of wireless nodes.

Figure 3.8. Simulating 700 user objects on 3 processors.

 61

Here, 700 user objects are distributed among 3 processors – two on a local LAN, and a

third one on the cluster computer, separated from the local LAN by a residential high-

speed cable line. Simulation clock delay is set at 125 ms, which is possible despite

substantial inter-processor communication latency of this geographically-distributed

simulation, due to internal clock cycle advance on each processor and clock-

synchronization mechanism discussed in the following section.

3.3.2 Simulation Clock Synchronization

The WINDS architecture was initially deployed on a Scerola cluster computer [67]

with 128 900 MHz AMD Athlon processors. Each cluster node has dedicated memory

space of 256 MB, and can access data concurrently from a replicated disk subsystem (15

GB each). Inter-processor communication is conducted via Fast Ethernet switch at 100

Mbps. More recently, our Distributed Systems Lab has acquired a new Ariel cluster

computer [4] with 32 dual-processor 2.6GHz P4 nodes, each having a 2GB memory and

40GB hard drive space, and interconnected via Gigabit Ethernet. We have seen

significant simulation execution time improvements over the previous cluster computer,

as shown, for instance, in chapter 5. Initially, the simulation framework was relying on

time synchronization mechanism of a distributed operating system running a cluster

computer. However, for long-running simulations, the local clock discrepancy between

multiple nodes of a cluster was too large. In an extended time period, physical clocks on

these nodes would differ by 400ms or more between clock synchronizations.

 62

Our simulation framework utilizes a distributed time synchronization algorithm

supplemented by a centralized push time service from the master node. As with all time

synchronization algorithms, there is an issue of measuring and predicting network delays

affecting transmitted time-sync messages. Initially simulation clocks are synchronized via

a centralized algorithm based on Network Time Protocol (NTP) [23]. A message is sent

from the master processor to each simulation node, and returned. Four time stamps are

assigned to this time-sync message, as shown in figure 3.9.

Wallclock Time

Master Processor

Agent Processor

T1

T3 T1+δ T2=T1+δ+L

T4=T3-δ+L’ T3-δ

Figure 3.9. Determining offset and network delay in NTP.

Master processor (PM) sends a time-sync message at local time T1 to the simulation

agent’s processor (Pi) that at that moment has a local time of T1 + δ, where δ is the offset

between two clocks (and is unique for each agent processor taking part in the simulation).

The message is received by the agent processor at a time T2 = T1 + δ + L, where L is the

network latency to send a message from PM to Pi. After processing the message, Pi returns

it back to PM at time T3, with the assumed PM’s clock equal T3 - δ. The final timestamp is

the PM’s clock value of T4, which equals T3-δ+L’, where L’ is the message latency from

 63

Pi to PM. The estimated clock offset for Pi is then computed to be 2
'LL

e
−

+= δδ ,

which is the midpoint offset between the wall clocks of PM and Pi.

During simulation execution, each processor independently increments simulation

time based on the wall clock time advance, and sends its current simulation clock to the

master processor at a certain frequency. If a master processor doesn’t receive a clock

value from a particular processor within pre-defined time interval (equal to max (L, L’)),

the network delay increase is assumed, and that processor’s clock value is discarded from

synchronization step. The maximum clock value is then selected from all processors’

simulation clock values, and is broadcast to all processors using a synchronous delay

update command. To ensure simultaneous execution of simulation commands on all

nodes of the cluster, the built-in simulation command synchronization mechanism has the

following steps:

• Master processor (PM) gets simulation time TS

• PM sends TS + ∆T to P1…N, where ∆T is the derived maximum inter-processor

communication delay: ∆T = max (δe,1, δe,2, …, δe,N).

• Each processor sleeps until local simulation clock hits TS + ∆T

• Simulation command is executed on each processor simultaneously

• Each processor periodically sends internal current clock cycle to PM

• PM sends out current clock cycle to those processors that lag behind for clock

cycle update via dedicated TCP connections used for simulation control.

 64

The following sequence diagram (3.10) demonstrates the time synchronization

procedure used by the WINDS framework.

Master Processor P1 P2 PN CommBroker

Send timesyn1

Send timesyn2

Send timesynN

Receive timesyn1

Receive timesyn2

Receive timesynN

Compute
Delta1

Compute
Delta2

Compute
DeltaN

Send SynDelay Message to all processors

SynD(cmd, simTime + Delta1)

SynD(cmd, simTime + Delta2)

SynD(cmd, simTime + DeltaN)

Execute(cmd) Execute(cmd) Execute(cmd)

Synchronous
cmd execute on
all processors

Figure 3.10. Command synchronization in WINDS – sequence diagram.

3.3.3 Parallel Optimizations

 One of the main drawbacks of distributed implementation of many network

simulators is inefficient inter-processor communication. In the case of a network of

computers taking part in a simulation, network delay can be a significant obstacle to the

 65

goal of improving performance and scalability through the distributed simulation. Other

traffic exists on the network, affecting simulator communications. Unless network nodes

are dedicated to the simulation purpose, node stability is an issue that can disrupt

simulation entirely in the event of a single node crashing during the simulation run. Only

certain computation-intensive algorithms can benefit from distributing the simulation

among multiple processors. We have considered these and other issues when developing

distributed WINDS framework. The optimal choice of computer hardware was

computing cluster, where all processors communicate via high-speed switched network

connections but own independent memory space and an instance of an operating system.

This allows us to simulate very large wireless networks of diverse configurations.

 Still, concerns exist for certain scenarios where inter-processor communication

delay is of an issue. This can happen when one object repetitively communicated with

objects located on a different processor, or in the event of a large number of broadcast

communications taking place. Therefore, we have considered a number of optimizations

that target the problems associated with the distributed simulation system. In one such

optimization, during a certain period of time, all communication patterns are recorded,

and allocation of objects is then optimized. For example, if object A communicated with

object B much more frequently than other objects, and these two objects are located on

different processors, then one object is serialized and migrates via the network to the

processor managing another object, where it is then restored in memory. In many cases,

especially when object functionality is sparse, the size of the object is small, justifying

 66

such a migration. In another optimization, all communications between objects are

concatenated together and sent as a single network packet between a pair of processors

once every few clock cycles, and then locally time-synchronized.

Table 3.1. Simulation control parameters for a cluster-based WINDS.

Process / Setting Value

Master-to-Processor simulation command propagation time < 10 ms

Synchronous command broadcast to all processors (any number) < 500 ms

Time to instantiate simulation object on remote processor (from template) < 20 ms

Time to send object across network (via serialization) < 40 ms

Typical simulation synchronization delay 1000 ms

Typical simulation clock cycle 50 ms

Time-scaled simulation multiplier (variable, dependent on architecture) 20x

Time to update GUI < 100 ms

Table 3.1 lists the procedural performance numbers and typical simulation settings for the

WINDS framework running on a cluster computer.

 To minimize the overhead of exchanging large number of packets with small

payload, we utilize the advantage of Nagle algorithm. Nagle algorithm is used to

automatically concatenate a number of small buffer messages; this process (called

nagling) increases the efficiency of a network application system by decreasing the

number of packets that must be sent. For instance, a single byte of data originating from

 67

one simulator component could result in the transmission of a 41 byte packet consisting

of one byte of useful information and 40 bytes of header data. This translates into a large

communication overhead. Nagle's algorithm instructs the sender to buffer data if any

unacknowledged data is outstanding. Any data sent subsequently is held until the

outstanding data is acknowledged (ACKed) or until there is a full packet's worth of data

to send. Our simulation framework accumulates packets generated by each processor into

a queue, which is then sent at once, before the simulation clock cycle advances (e.g.,

every 100 ms). Since the estimated time to send a certain-sized packed is known in

advance, when the queue reaches an established threshold size, the packet is generated

and sent out. As amount of inter-processor communications increases, two or more

packets could be sent out before the expiration of the current clock cycle. Once the packet

arrives to the destination processor, the events from the queue are individually analyzed

and inserted in the Event Handler’s queue in an appropriate location based on a time

stamp supplied. This mechanism facilitates elimination of out-of-order delivery of

simulation packets and events embedded in these packets. For simulation control

connections (e.g., simulation clock dissemination), nagling is disabled for all control

sockets by specifying TCP_NODELAY option. Figure 3.11 shows an example of how

nagling affects simulation control, when creating new user objects on multiple processors.

 68

Time to instantiate 100 objects

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of Processors

Ti
m

e
to

 in
st

an
tia

te
 (m

s)

Figure 3.11. Effect of nagling on simulation control.

3.3.4 Serialization of Simulation Objects and Load Balancing

Originally, the Round-robin mechanism of simulation object distribution is used to

allocate user simulation objects to the processors within the cluster. It does not provide

the optimal assignment of nodes to processors, resulting in substantial inter-object

communication overhead. We have studied the effects of various ways to distribute and

organize simulation object hierarchies. The final layout of the simulation framework is

still a client-server model, with a server residing on one cluster node, providing

centralized time management and network routing for the simulation framework. Most

heavy processing of data is still performed on individual processors, and the bottleneck

 69

effect of the central node is negligible, when taking into considerations the high load of

each individual processor. To reduce network traffic, we have implemented a

serialization scheme to allow user objects to migrate from one node to the other

throughout the simulation execution. The central node monitors the network traffic to

detect user objects that produce frequent inter-node network communication. The

simulation operator then has an option to move a particular user object across the network

from one processor to the other, to minimize amount of inter-object communications.

 In the case of a network with low node mobility, initial object assignment to

processors may be optimized by deciding on the number of processors supporting the

simulation and specifying each nodes’ coordinates in accordance with the current node’s

expected processor assignment. For instance, if we utilize 4 processors (P1, P2, P3 and P4)

in our simulation, we can geographically split the simulation area into 4 parts (A, B, C

and D). Then, given the low mobility of user objects, we can minimize the inter-

processor communication during simulation execution by instantiating, for example,

every object 1, 5, 9, … with initial coordinates placing it in region A, objects 2, 6, 10, …

placed in region B, etc. The Round-robin object allocation mechanism will then

instantiate all objects in region A at processor P1, all objects in region B at P2, etc.

 The object serialization is implemented via BOB (Better Object Binder) XML

serialization library. An object is serialized at one processor, then is sent by the

simulation communication broker to another processor, where it is de-serialized, using

the following code:

 70

// Serializing an object into XML representation:
new org.lucci.bob.DataBinder.XML().serialize(obj, outStream);

// Deserializing an object on another processor:
Object obj = new org.lucci.bob.DataBinder.XML().deserialize(inStream);

Listing 3.1. Serializing and De-serializing User Object.

Using BOB library allows the user to save object state in XML format and visually

examine it if necessary. The library doesn’t require implementing serializable interface in

user objects, this making it less complicated for the user to create simulation objects.

To study the benefits of object serialization and its effects on load-balancing

network traffic in distributed simulations, we will consider an algorithm from section 5.4

– load balancing packet distribution for the purpose of monitoring by an intrusion

detection system. While the algorithm is described in detail in chapter 5, the main idea is

to partition the wireless ad hoc network into clusters, then allocate the main control node

(cluster head) to collect network packets. The packets are then split into batches and

forwarded to other members of the same cluster for processing. If the wireless nodes are

located on the same processor and have a property of low mobility, simulation network

bandwidth can be saved by relocating simulation objects within a cluster onto the same

processor. From table 3.1 and experimental results, the average time to send a batch of

packets for processing to another user object located on a different processor is 5 ms. The

operation of serializing an object and sending it across the network is 40 ms. The

distributed intrusion detection algorithm achieves best performance (in terms of quality

 71

of intrusion detection) when many helper nodes are used (see figure 5.8). As the number

of nodes within a cluster is 5 on average, we can directly benefit by moving cluster

members to the same processor. For the experiment, a simulation was created with a

fixed number of nodes, and executed on a variable number of processors. Each graph in

figure 3.12 shows results for low (uniformly distributed, with a maximum of < 0.1% of

diagonal size of simulation area per second), and high (uniformly distributed, with a

maximum of < 1% of diagonal size of simulation area per second) mobility of nodes. If

two simulation nodes are located on the same processor, the time to forward a batch of

packets (average size 10 packets per batch) between the nodes is assumed to be 0. All

nodes are instantiated with a geographic distribution that initially allocates neighboring

nodes to the same processor (as described at the beginning of this section), minimizing

serialization efforts at the beginning of the simulation. Number of nodes is fixed to be

200 throughout the simulation. Network traffic is Poisson-distributed, with min and max

rates of 8 and 92 packets per second, respectively. From the graph, we see that in case of

low node mobility, serialization process significantly reduces the amount of traffic

between the processors, compared to regular simulation execution. However, in the

scenario where the simulation objects are highly mobile, the object serialization

mechanism yields an increase in the inter-processor network traffic. We can infer from

these results that a careful analysis of simulation execution is required, prior to utilizing

object serialization mechanism.

 72

Network Communication vs Object Serialization

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16

Processors

N
et

w
or

k
Ti

m
e,

 m
s

32

Low Mobility, Time, ms
(non-ser)
High Mobility, Time, ms
(non-ser)
Low Mobility, Time +
ObjSer, ms
High Mobility, Time +
ObjSer, ms

Figure 3.12. Using simulation object serialization for distributed DID problem.

3.4 Summary

In this chapter we have described the PINS architecture for parallel interactive network

simulations. General framework design is presented, and can be used as a platform of

extending the architecture to specific network simulation applications. The framework is

cross-platform, scalable, and easily adjustable to particular simulation requirements. A

 73

specific implementation of PINS for simulating large-scale wireless networks, called

WINDS – is also presented. WINDS framework has been used in our research on the

agent-based ad hoc network intrusion detection system, and later – as a research and

development tool that incorporates a flexible test-bed targeting simulations for a wide

variety of wireless network applications. WINDS is a generic wireless network simulator

for a variety of wireless communication infrastructures, such as wireless networks,

cellular networks, ad hoc networks, sensor networks, etc. We demonstrate the use of

WINDS for several specific applications, such as an intrusion detection system

simulation in wireless ad hoc networks. We have extended WINDS implementation to

the multiprocessor environments for a transparent execution on a symmetric

multiprocessor cluster computer, and a network of LAN-interconnected computers, and

utilized inter-processor clock synchronization algorithms and object serialization

mechanism, resulting in a substantially-increased scalability and performance of large

wireless network simulations.

 74

CHAPTER 4: CASE STUDY – WINDS SIMULATION

This chapter describes the process of designing and executing a simulation on our

distributed simulation system, giving studies of efficiency and constraints of simulating

wireless network systems and applications. A particular wireless infrastructure, called a

totally-mobile wireless network, is presented in this study. Step-by-step simulation

development process is presented, together with study objectives, simulation procedure,

and interpretation of results.

4.1 Simulation of MBS Mobility in a Totally-Mobile Wireless Network

 The concept of a totally-mobile wireless network was developed at the University of

Central Florida [7]. It represents a crossover between infrastructure wireless and ad hoc

networks – an infrastructure, where the transmitting base stations are mobile – mounted

on mobile platforms and can be moved to a specific location to optimize wireless

coverage offered. This scenario is of interest to the groups utilizing in-the-field

communications, and similar entities requiring high level of fault-tolerance and

redundancy, with an added benefit of improving wireless coverage (as shown in Fig. 4.1).

 75

Figure 4.1. Totally-mobile wireless network concept.

Several fault-tolerant designs have been considered, and various experiments were

conducted to decide on the framework that provides high level of redundancy, yet is

economically efficient [7]. The architecture was devised, where active mobile base

stations would be supplemented by auxiliary base stations positioned in the vicinity of the

respective base station. If an active base station ceases to function, all wireless

connections are switched to the auxiliary base station that will re-position itself to

optimize wireless coverage and preserve communication links of existing clients.

Furthermore, umbrella coverage is provided by a mobile base station with a larger area of

wireless coverage. The base station providing this coverage will frequently re-position

itself to accommodate wireless clients outside the scope of coverage by the smaller base

 76

stations. Multiple positioning algorithms have been devised to optimize the coverage area

of the entire wireless network under study. Some are based on signal strength; others

assume the knowledge of mobile node positions, where a global positioning system

(GPS) provides precise user coordinates to the base station, allowing it to make

calculated decisions on its own positioning. For the purpose of this simulation, we will

consider Center-of-Gravity algorithm for positioning mobile base stations in this section

and compare it with the average-case scenario of a uniformly-distributed group of

communicating nodes.

4.1.1 Objectives

• To simulate the mobile base station center-of-gravity positioning algorithm for

optimal wireless coverage for the totally-mobile wireless network model.

• To compare the mobile MBS coverage with the stationary base station scenario,

in the case of uniform density of mobile node distribution.

4.1.2 Simulation Design

The simulation pre-conditions are as follows:

1. Wireless node mobility is governed by Random Waypoint mobility pattern with

zero waypoint wait time.

2. Mobile base station mobility is governed by Center-of-Gravity motion vector

mobility pattern.

 77

3. The ratio of each MBS signal area coverage to the total simulation area is 1:12.

4. The ratio of umbrella MBS signal area coverage to the total simulation area is 1:6.

5. Number of mobile base stations is varied from 1 to 8 for the same simulation area.

6. Channel capacity of each MBS is assumed unlimited.

7. Network density (number of nodes per unit area) is varied from 10 to 100, and the

average coverage data is computed at the end of simulation.

The simulation proceeds according to the following scenario:

1. Wireless nodes are created and communication parameters initialized.

2. Mobile base stations (MBS) and an Umbrella base station (UBS) are created.

3. Each wireless node is assigned to a MBS, and the rest of mobile nodes within the

coverage area of UBS are assigned to the UBS.

4. Each wireless node is mobile throughout the simulation.

5. Each node broadcasts its position to all MBS in vicinity.

6. Each node has an ownership index, indicating which MBS it is covered by.

7. Each MBS and a UBS is mobile throughout the simulation.

8. Each MBS is assigned to a group of nodes – but services all other wireless nodes

within its vicinity up to capacity.

9. Each MBS moves towards the center-of-gravity of the assigned group of nodes,

computing its position based on the coordinates of each wireless node within a

group.

10. A UBS moves towards the center-of-gravity of the unassigned group of nodes.

 78

11. Network density (number of nodes per unit area) is varied from 10 to 100.

12. Number of MBS is varied 1 to 8, and results are recorded for each setting.

13. Simulation executes for 10 minutes (wall time) at each setting of MBS number.

14. Simulation clock is set to 100ms (10x faster-than-real time execution).

15. Simulation stops after the final run has been completed, at the number of MBS of

8.

The only communications in the simulation are the messages from mobile nodes with

their positioning information sent to MBSs, and the ownership update messages sent

from MBSs to wireless nodes. The results are compared with the average-case scenario

(not described in this section, but is a separate simulation), where wireless nodes are

moving randomly, and the base stations have fixed positions and are uniformly

distributed throughout simulation area.

 79

Table 4.1. Simulation objects for ad hoc wireless network clustering simulation.

Object Properties

1. Wireless node
(wNode)

1. Mobility: Random Waypoint algorithm

2. Send(): send packet method

3. Receive(): receive packet method

4. myMBS: integer – associated MBS index; 0 if not associated

5. myPos: XY – current node coordinates

6. cntAssociated: long integer – total number of sampled times,
when a node was covered by MBS (samples taken every 10
simulation clock cycles)

7. cntDisAssociated: total number of sampled times, when a node
was not covered by MBS (samples taken every 10 simulation
clock cycles)

2. Mobile Base
Station
(mStation)

1. Mobility: Center-of-Gravity motion vector algorithm

2. CommRange: integer – MBS’s communication range in
simulation distance units (e.g., meters)

3. Send(): send packet method

4. Receive(): receive packet method

5. ComputeToVector(): compute motion vector method

6. coveredNodes[]: XY-array – set of all covered wireless nodes
and their positions

7. myPos: XY – current MBS coordinates

8. toPos: XY – calculated motion vector

The following figure 4.2 shows an activity diagram of a Wireless Node object activities

throughout the simulation, and figure 4.3 shows the activities of a Mobile Base Station.

 80

Wireless Node
Initialized

Simulation
Started

Run Thread()Move Node Receive()

Simulation
Termination Packet?

Send(cntAssociated,
cntDisAssociated) to $sim

Yes

Update myMBS No

Send(myPos)
to myMBS

Sim Clock mod
10 = 0?

No

myMBS = 0?

Yes

cntDisAssociated++

cntAssociated++

No
Yes

Figure 4.2. Wireless node in a totally-mobile network activity diagram.

In figure 4.2, when a node receives a packet, the source of the packet is always a MBS.

Due to the absence of network communication other than for the purpose of MBS

assignment, the node parses the incoming packet and gets assigned to a new MBS,

sending back the node’s current position.

 81

Mobile Base Station
Initialized

Wireless Nodes
Assigned to MBS

Sim ulation
Started

Run Thread() Receive()

Simulation
Termination Packet?

Yes

Parse Node's
Position

Update
coveredNodes[]

ComputeToVector()

Move MBS

Send(myID) to Group
Nodes

Message from
Owned Node?

No

Yes

No

Figure 4.3. MBS in a totally-mobile network activity diagram.

Simulation framework traffic routing module determines what wireless nodes are within

communication range, based on user-supplied CommRange property of the MBS.

 82

The wireless node and mobile base station objects are implemented as Java classes

following the WINDS object design template, and have the structure (in pseudo code)

depicted in the following listings.

// Wireless Node class
// Object parameters and default parameter values:

//#P str DefaultObjectNamePrefix, int initXPos, int initYPos, bool
isMobile

//#D wNode, 0, 0, true

public class wnode {

 int ID;

 String objName;

 simEvtHandler ParentClass;

// Mobility study parameters

 int cntAssociated = 0;

 int cntDisAssociated = 0;

 int myMBS = 0;

 XY myPos = param(initXPos, initYPos);

// Methods

 wnode() // Wireless node object constructor - initialization

 void Tick() // Simulation clock pulse – every 10th clock tick here,
 // update the cntAssociated and cndDisAssociated

 void Receive(Long simClock, String dataType, String strPayload)

 void Send(Long simClock, String dataType, String strPayload)

 void wMove() // Wireless node random waypoint mobility

}

Listing 4.1. Wireless node in a totally-mobile network Class.

 83

// Mobile Base Station class
// Object parameters and default parameter values:

//#P str DefaultObjectNamePrefix, int initXPos, int initYPos, bool
isMobile, bool isUBS, int myID

//#D mStation, 0, 0, true, false, 1

public class mStation {

 int ID;

 String objName;

 simEvtHandler ParentClass;

// Mobility study parameters

 int myID = param(myID);

 XY myPos = param(initXPos, initYPos);

 XY toPos;

 XY coveredNodes[];

// Methods

 mStation() // Mobile base station object constructor - initialization

 void Tick() // Simulation clock pulse – calls mbsMove

 void Receive(Long simClock, String dataType, String strPayload)

 void Send(Long simClock, String dataType, String strPayload)

 void mbsMove() // Mobile base station center-of-gravity mobility

 XY ComputeToVector() // Computes new MBS motion vector based on

 // the center-of-gravity mobility model

}

Listing 4.2. Mobile base station in a totally-mobile network Class.

 84

4.1.3 Simulation Execution and Results

The wNode and mStation classes were placed in the simulation root/objects directory,

then dynamically loaded by the simulation framework. The simulation results are sent to

the central Simulation Statistics window of the user interface, and are saved into a CSV

file for analysis. Figure 4.4 shows totally-mobile wireless network simulation in progress.

Figure 4.4. Totally-mobile network simulation in progress.

Wireless nodes are numbered and connections between the nodes and the base stations

denote communication links within range. Blue nodes indicate that a node has been

assigned to the mobile base station, cyan – a node is assigned to an umbrella base station

and gray – node is not connected to the wireless network. Mobile base stations are

 85

labeled as MBn, and a motion vector computed according to center-of-gravity algorithm

is shown in red for each base station. Upon simulation execution, the following results

were obtained.

0

10

20

30

40

50

60

70

80

90

100

1 2 4
Number of MBS

No
de

 C
ov

er
ag

e,
 %

8

Uniform-case vs Center-of Gravity Algorithm for MBS Positioning

Uniform Case

Center-of-Gravity Algorithm

Figure 4.5. Network coverage of wireless nodes in a totally-mobile network simulation.

Figure 4.5 demonstrates that applying center-of-gravity positioning policy to mobile base

stations yields worse-than-expected network coverage results, in addition to the base

station repositioning requirement (an average of results at various network density levels

is presented here). However, as we increase the density of the wireless network, as well

as the number of mobile routers supporting the network, the overall network coverage is

improved. The results demonstrate that a simple center-of-gravity algorithm for

positioning mobile routers is far not the best possible solution. It can, however, be used in

cases where wireless clients move in closely-congregated groups. Such a use would be of

 86

primary interest to the military communications, tours where mobile clients are used for

guidance and informational purposes, and sensor networks.

4.2 Summary

In this chapter we have demonstrated the use of WINDS distributed simulation

framework for a specific scenario of parallel-simulating a totally-mobile wireless network,

and specifically a mobility pattern study for such an infrastructure. This chapter may

serve as a template for designing parallel wireless simulations, including simulation

objectives, pre-conditions, design of the simulation execution, a choice of statistics, and

interpretation of results. The entire process from simulation design to execution and

result analysis is very concise, due to hierarchical object-oriented nature of the simulation

framework and the high interactivity and flexibility of the user interface. Another study is

presented in chapter 5, in the context of a wireless network intrusion detection system. In

the following chapter we describe our work on an IDS framework for wireless ad hoc

networks, and use WINDS simulation framework to develop the IDS-associated

algorithms.

 87

CHAPTER 5: INTRUSION DETECTION FOR WIRELESS AD HOC

NETWORKS

 Ad hoc wireless networks are a widely utilized type of wireless networks today.

More than any other network topology, they are vulnerable to intrusions, as they operate

in an open medium and use cooperative strategies for network management and

communications. In this chapter we summarize our current research on a distributed

intrusion detection framework for ad hoc wireless networks based on mobile agent

technology. Intrusion detection processing is minimized using a real-time clustering

algorithm and various load balancing strategies, while maintaining high degree of

intrusion detection accuracy. A case-based reasoning approach to our network-level

intrusion detection engine incorporates sophisticated artificial intelligence techniques that

help overcome some of the limitations of other rule-based intrusion detection systems. In

contrast to many intrusion detection systems designed for wired networks, we develop an

efficient and bandwidth-conscious framework that targets intrusions at multiple levels

and takes into account distributed nature of ad hoc wireless network management and

decision policies.

 88

5.1 Rule-Based Intrusion Detection

 With rapid development of wireless network applications, security became one of

the major problems that wireless networks face today [62]. While firewalls may prove to

be an efficient first line of defense in wired networks, this is certainly not the case in the

wireless world. Wireless transmissions are subject to eavesdropping and signal jamming.

Physical security of each node is important to maintain integral security of the entire

network. Ad hoc wireless networks are totally dependent on collective participation of all

nodes in routing of information through the network. These are some of the major

problems that wireless networks face today. As the uses of such networks grow, users

will demand secure yet efficient, low-latency communications.

 Intrusion detection is one of key techniques behind protecting a network against

intruders. Existing intrusion detection systems and techniques have been reviewed in

chapter 2. In this chapter, we will concentrate our presentation on ad hoc wireless

networks. Ad hoc wireless network is a collection of mobile nodes that establish a

communication protocol dynamically. The nodes may join the network at any time and

communicate with entire network via the neighboring nodes. There are no base stations,

and each member of such a network is responsible for accurate routing of information,

and takes part in routing decisions. Due to arbitrary physical configuration of an ad hoc

network, there is no central decision making mechanism of any kind – rather, the network

employs distributed mechanisms of coordination and management. What really makes a

difference between fixed wired and mobile wireless networks is the fact that mobile

 89

nodes have a very limited bandwidth and battery power. Network packet monitoring is

performed at gateways in a fixed network, but a concept of a gateway in a wireless

network is very vague, depending on the type of network and routing algorithms used.

Efficient host-based monitoring requires large amounts of CPU processing power, and

hence is energy consuming.

 Our work on intrusion detection system for ad hoc wireless networks takes into

account the above considerations to provide a lightweight, low-overhead mechanism

based on mobile security agent concept, described in chapter 2. Agents are dynamically

updateable, lightweight, have task-specific functionality and can be viewed as

components of a flexible and dynamically configurable IDS. These qualities make them a

choice for security framework in bandwidth and computation-sensitive wireless ad hoc

networks. We utilize mobile agents at several intrusion-monitoring levels and process

their response in cluster heads – special nodes that are dynamically elected within a

cluster using a real-time distributed algorithm. One advantage of our approach is the

efficient distribution of mobile agents with specific IDS tasks according to their

functionality across a wireless ad hoc network. The other advantage is restriction of

computation-intensive analysis of overall network security state to a few key nodes.

These nodes are dynamically elected, and overall network security is not entirely

dependent on any particular node. We also propose a load-balancing solution that

efficiently distributes traffic monitoring and intrusion detection tasks among the wireless

nodes, improving the accuracy of intrusion detection system without sacrificing the

 90

overall performance of a wireless network and functionality of each node participating in

the network. At the network-monitoring level, we have developed a case-based approach

to network intrusion detection (discussed in the next section), and incorporated case-

based reasoning engine for detecting intrusions at the packet level in our modular IDS

system.

5.1.1 Case-Based Reasoning Systems

 Case-based reasoning systems are designed for a given application domain. It is

possible to abstract out the common aspects of CBR from the domain specific aspects

[69]. This leads to a generic case-based reasoner from which any arbitrary domain-

specific case-based reasoner can be created as a specific instance. In order to build the

desired generic case-based reasoner, it is required to generalize both the notion of a case

and the notion of a similarity metric used for determining the degree of similarity

between cases. Since cases are described by their features, the first task is to describe the

generic notion of a case feature. The framework proposed in [69] makes it possible to

define virtually any type of feature and any type of case. The similarity metric for cases

can be defined as a collection of feature comparison results with a rule specifying how

these intermediate results are combined. Moreover, feature comparisons can be

generalized into the generic notion of feature comparator of which each specific

comparator is an instance. Although each case feature may require a different type of

comparison, the result of the comparison should be a similarity assessment between the

same case feature of the problem specification and of a case from the case archive.

 91

Therefore for each new type of case feature, it is required to define a comparator that

determines the degree of similarity between the problem situation feature and the

corresponding feature in the case archive. Since different case features may use the same

comparator, the number of comparators in the system will be much smaller than the

number of different features. The modular distinction between comparators and case

features simplifies the adaptation of the system into different problem domains.

Report Formulate Search Results Problem/ Archives 5 Attack 2

 The basic features of a general case-based reasoning (CBR) system are depicted in

figure 5.1. The most important component of the system is the case archive where the

previously experienced problems are stored with their solutions. Each entry in the case

archive is called a “case” which contains (i) the features describing the problem, and (ii)

the action or actions that were taken to solve the problem. When a problem is detected in

the surrounding environment, it is formulated as a set of case features (step 1). Then, this

Case Archive

1 problem
description

similar cases

Select
Existing

Case
3

similar
cases

Solution n/response

Generate
Response to

Problem/
Attack

4

Environment

Problem / attack

generated response

results

Figure 5.1. Case-based Reasoning Process.

 92

problem description is transferred to a search engine that extracts the similar cases from

the case archive, where similarity is measured by the similarity between the matching

features of the problem description and the case features of actual cases in the case

archive (step 2). The returned cases are ranked according to their degrees of similarity to

the given problem. At this moment two different scenarios are possible: either some of

the selected cases are decided as a solution to the problem or a new case is formulated to

solve the problem based on the returned cases. In either case, the actions recommended

by the returned case or cases are taken (step 4). Furthermore, the measure of success or

failure of the result of the action is reported along with the case into the case archive (step

5). This information is taken into account in the similar-case extraction process so that

the performance of the system improves over time.

5.2 Network Intrusion Detection System for MANETs

 This section introduces our multi-sensor intrusion detection system employing

cooperative detection algorithm. A mobile agent implementation is chosen, to support

such features of the IDS system as mobility of sensors, intelligent routing of intrusion

data throughout the network and lightweight implementation.

 93

5.2.1 Modular IDS Architecture

 The proposed Intrusion Detection System (IDS) [41] is built on a mobile agent

framework. It is a non-monolithic system and employs several agent types that perform

specific functions, such as:

• Network monitoring: Only certain nodes will have sensor agents for network

packet monitoring, since we are interested in preserving total computational power

and battery power of mobile hosts. Network monitoring agents feature misuse

detection engine (described in the following section).

• Host monitoring: Every node on the mobile ad hoc network will be monitored

internally by a host-monitoring agent. This includes monitoring system-level and

application-level activities for anomalies.

• Decision-making: Every node will decide on the intrusion threat level on a host-

level basis. Certain nodes will collect intrusion information and make collective

decisions about network-level intrusions.

• Action: Every node will have an action module that is responsible for resolving

intrusion situation on a host (such as locking-out a node, killing a process, etc).

 Each module represents a lightweight mobile agent with certain functionality,

making a total network load smaller by separating the functional tasks into categories and

dedicating an agent to a specific purpose. This way, the workload of a proposed IDS

system is distributed among the nodes to minimize the power consumption and IDS-

 94

related processing time by all nodes. A hierarchy of agents has been devised in order to

achieve the above goals. Hierarchical IDS systems have been proposed in [20, 9, 34].

However, we will adapt our own hierarchy for our purposes. There are three major agent

classes – monitoring, decision-making and action agents. Some are present on all mobile

hosts, while others are distributed to only a select group of nodes, as discussed further.

Monitoring agent class consists of packet, user, and system monitoring agents. The

following diagram shows the hierarchy of agent classes.

Action Agents

Decision

Monitoring Agents

Packet-Level User-Level System-Level

Figure 5.2. Layered Mobile Agent Architecture.

5.2.2 Mobile Agent Distribution across Wireless Ad Hoc Network

 As mentioned above, not all the nodes on a wireless ad-hoc network will host all

types of IDS agents. To save the resources, some of the functionality must be distributed

efficiently to a (small) number of nodes while providing an adequate degree of intrusion

detection. While all the nodes accommodate host-based monitoring sensors of an IDS, we

 95

use a distributed algorithm to assign only a few nodes to host sensors that monitor

network packets, and agents that make decisions.

The idea is to logically divide a mobile network into clusters (similar to Clustered

Gateway Switch Routing protocol described in [61, 14, 58] and used in [80] for

authentication purposes) with a single cluster head for each cluster, and to monitor the

packets within the cluster by only one node. The algorithm is presented below, along with

an example.

Clustered Network-Monitoring Node Selection Algorithm:

1. Hop Selection Step: based on security requirements, a certain number is selected as

a number of hops. This step is important in choosing decision agent-hosting nodes,

as well as network monitoring nodes, as selected number is the maximum number of

hops from any node in the ad-hoc network to the Decision Node. Selection of this

number greatly affects the network monitoring range, as only those nodes taking

part in a decision process host network monitoring agents, resulting in lesser area of

the network being monitored.

2. Let Ci denote the number of established connections (reachable nodes) for node i at

the time of cluster setup, with a total of N nodes in the entire network. Each node

sends its Ci value to all its reachable neighbors.

 96

3. Upon receiving Cj values from its neighbors j, where j ≠ i for all i = 1…N, a node i

sums up the total as Si (connectivity index), which upon completion is broadcast to

all nodes with a time to live (TTL) equal the number of hops selected in step (1):

∑+=
j

jii CCS

4. Each node then has to vote to select cluster head node, that will accommodate

network monitoring and decision agents. Every node sends a vote packet to the node

it selects based on highest connectivity index received as a result of a broadcast in

step (3). If a node receives a vote from a node with equal Si value, it doesn’t send a

vote to the source node. In case two nodes have equal Si values and send votes to

each other simultaneously, the node with the largest total of Si values sends a

“discard vote” message to the other node. This will ensure that the minimal number

of nodes is selected for hosting packet-monitoring agents. Note that in step 3, a node

will decrease TTL count and broadcast the packet containing Si to all its reachable

neighbors, resulting in every node receiving the information about the maximum Si

within the hop distance.

5. Each node that received at least one vote loads and runs Network Monitoring and

Decision Agents. Steps (4) and (5) are shown on a diagram 5.3, giving scenarios for

(a) one-hop and (b) two-hop ad-hoc wireless networks.

 97

4 4

11

9

7

6

6

11

5

5

8 (b)

D

C

BA

4 4

11

9

7

6

6

11

5

5

8 (a)

B

A

Figure 5.3. Network monitoring node selection with (a) one-hop radius, and (b) two-hop radius. Dashed lines
indicate a vote packet route. Nodes selected to host network monitoring and decision agents are highlighted.

The selected nodes host network-monitoring sensors that collect all packets within

communication range, and analyze them for known patterns of attacks. Parameters such

as per-protocol statistics, number and frequency of certain packet types and consistency

with the model are verified. The main advantage of the allocation algorithm above is that

overall packet-monitoring task is limited to a small subset of nodes, thus conserving

power and processing capabilities for many nodes in the ad hoc network. In contrast, in a

monolithic IDS system where each node hosts packet-monitoring module, a message sent

from node B to node A will be received and checked by node C as well as node A, thus

 98

 introducing redundant processing action. This is visually demonstrated in the figure 5.4.

As the physical network arrangement changes, cluster membership is dynamically

updated. Figure 5.5 shows a percentage of nodes engaged in network-monitoring

activities vs. the total number of the nodes.

Cluster Head node

Cluster member node B-to-A

C-to-B A
B

B-to-A

Wireless Cluster 1
C E C-to-B

C-to-B

Cluster Head 1 C is not cluster 1
member, hence
discard packet

Cluster Head 2 D

Wireless Cluster 2

Wireless link

Wireless communication (packet sent)

Figure 5.4. Wireless Ad Hoc Network Communications.

 99

% of nodes acting as network monitors

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

10 20 30 40 50 60 70 80 90 100

Nodes / Unit Area

%
 o

f p
ac

ke
t m

on
ito

rs

% of nodes acting as network monitors

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

10 20 30 40 50 60 70 80 90 100

Nodes / Unit Area

%
 o

f p
ac

ke
t m

on
ito

rs

% of nodes acting as network monitors

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

10 20 30 40 50 60 70 80 90 100

Nodes / Unit Area

%
 o

f p
ac

ke
t m

on
ito

rs

Figure 5.5. Percentage of nodes engaged in packet monitoring in a one-hop
(dashed line) and two-hop (solid line) network.

5.2.3 IDS Activity Monitoring Process

 As shown in Figure 5.2, monitoring agents are categorized into packet monitoring

sensors, user activity sensors and system-level sensors. While packet monitoring is

activated only when a node participates in the network (is a member of a cluster), local

activity sensors are present on each node and are active all the time. Each sensor

performs certain level of monitoring activity and reports anomalies to the decision agents.

Packet-monitoring agents reside on each selected node. In the Figure 5.3 above, we can

see that for a case of one-hop cluster, 5 nodes out of a total of 11 nodes host network

monitoring sensors, resulting in the entire network being monitored. For instance, a

 100

packet sent from node A to node B will be received and analyzed by the monitoring node

to the left of node A. In fact, for a case of one-hop cluster, every node has at least one

neighboring node hosting a packet monitoring agent, and thus the entire network is

always being monitored. If the system resources are scarce and security requirements can

be relaxed, a two-hop system will be more appropriate, as indicated in Figure 5.3(b).

Here, we have only 3 hosts dedicated to packet monitoring and decision-making process,

saving overall system resources. However, in this scenario, 3 links are not being

monitored, which may be acceptable for a highly-dynamic environment, where network

configuration changes often. The rationale is that a node is located in close proximity

(within two hops) to the packet-monitoring node, and rapid movement may position the

node within a communication range of that packet-monitoring node.

 Each cluster head monitors packets sent by every member of its cluster, and

therefore, the agent subsystem has a low-level access to the underlying operating

system’s network layer to capture packets that are not intended for the cluster head node.

We limit the collection of packets only to those that have as originator any node that

belongs to the cluster. This is done to prevent processing of the same packet more than

once by any packet-monitoring agent. When packets are captured, they are inserted in a

queue (logically), and physically added to a buffer of fixed size (the size depends on the

node’s available memory and processing capabilities). The packets are then dequeued and

processed by the agent’s case-based reasoning engine (CBR) for intrusion detection. The

mechanism of a CBR engine is described in section 5.1.1. If a packet queue of a cluster

 101

head node becomes full, further packets are dropped until space is available in the queue

(see Figure 5.6). By varying queue size, we limit processing done by a cluster head node,

as its resources are also used for performing regular user tasks with minimal latency for

the user. Agent subsystem is also configured to limit CPU usage by an agent to a certain

level, acceptable by the user. To improve the quality of intrusion detection process, a

distributed algorithm is applied to prevent large number of packets from being dropped

even in traffic-intensive environments. The algorithm is discussed in section 5.4, and is

shown to provide a scalable solution to packet-monitoring process with graceful

degradation (increased number of dropped packets) in extreme conditions.

Packet Dropping Rate

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Network Density

%
 D

ro
pp

ed
 P

ac
ke

ts

Figure 5.6. Increase in packet dropping rate as the network density increases.

 Local detection agents are located on each node of an ad-hoc network, and act as

user-level and system-level anomaly-based monitoring sensors. These agents look for

 102

suspicious activities on the host node, such as unusual process memory allocations, CPU

activity, I/O activity, user operations (invalid login attempts with a certain pattern, super-

user actions, etc). If an anomaly is detected with strong evidence, a local detection agent

will terminate suspicious process or lock out a user and initiate re-issue of security keys

for the entire network. If some inconclusive anomalous activity is detected on a host node

by a monitoring agent, the node is reported to the decision agent of the same cluster that

the suspicious node is a member of. If more-conclusive evidence is gathered about this

node from any source (including packet monitoring results from a network-monitoring

agent), the action is undertaken by the agent on that node, as described above. This

functionality of our IDS system is currently undergoing active research. A few known

approaches have been evaluated for suitability of application to wireless ad hoc networks,

and a profile-based anomaly-detection system is being considered for deployment within

the host monitoring agents.

5.3 Simulation of a Wireless Ad Hoc Network Clustering Algorithm

 This section describes implementation of the distributed simulation of a large-scale

wireless ad hoc network in support of the wireless clustering algorithm and packet

monitoring for intrusion detection study, described above.

5.3.1 Objectives

• To compare the efficiency of our hierarchical ad hoc wireless network clustering

algorithm [29] with a non-hierarchical scheme, where every wireless node

 103

receives and processes a packet sent by any of its neighbors through an intrusion

detection system’s packet-monitoring module.

• To utilize a Case-based reasoner [30, 69] agent in the IDS packet-monitoring

module at each node taking part in the simulation, and process each packet being

transmitted, resulting in a realistic IDS scenario.

• To utilize MIT Lincoln Lab intrusion datasets [32] as a source of packets.

5.3.2 Simulation Design

The simulation pre-conditions are as follows:

1. Node mobility is governed by Random Waypoint mobility pattern with zero

waypoint wait time.

2. For each node taking part in packet-monitoring task, the buffer storing incoming

packets has a fixed length.

3. Network traffic is generated from the pre-processed database of packets,

originally obtained from MIT Lincoln Laboratory IDS studies [32] and containing

known intrusions.

4. Simulation area is fixed, and the network density (number of nodes per unit area)

is varied from 10 to 100, resulting in elevations of network traffic rates.

The simulation proceeds according to the following scenario:

1. Ad hoc wireless nodes are created and communication parameters initialized.

2. Each wireless node participates in a clustering scheme via broadcast of control

packets.

 104

3. Each wireless node sends and receives packets and is mobile throughout the

simulation.

4. Network density (number of nodes per unit area) is varied from 10 to 100.

5. Simulation executes for 10 minutes (wall clock) at each setting of network density.

6. Simulation clock is set to 250ms (4x faster-than-real time execution).

7. Each node taking part in packet-monitoring task records the number of total

packets and the number of IDS-processed packets for every change in network

density.

8. Total number of received and IDS-processed packets is recorded for each setting

of network density.

9. Simulation stops after the final run has been completed, network density=100.

The network traffic used for this simulation comes from a processed Lincoln Labs

intrusion dataset. As our WINDS simulation framework uses internal flat address scheme,

all internal subnet addresses are mapped to existing nodes (e.g., N1, N2, etc.), while all

external traffic from the dataset is mapped as arriving from Ext address. Timestamp

information is also pre-processed and modified to start at 0 to match simulation clock.

The processed packet data file has the following structure:

 Source_addr;Source_port;Dest_addr;Dest_port;Protocol;Payload

 N1;1036;N5;25;ICMP;A765BC7F54D3AC59…

Internally-generated packets are forwarded to each source wireless node via GetPacket()

method by the simulation event handler. The node then routes the packet to the

 105

destination using a certain ad hoc wireless routing protocol (e.g., ADSR). For the purpose

of this simulation, routing protocol is not used; the packet is forwarded by the simulation

event handler module on each processor to an appropriate receiver node, and the method

GetPacket() is deprecated. An external packet generator class may also be devised.

Simulation objects and their properties for this simulation are given in the table 5.1.

Table 5.1. Simulation objects for ad hoc wireless network clustering simulation.

Object Properties

1. Ad hoc
wireless node
(wnode)

1. Mobility: Random Waypoint algorithm

2. IsClusterHead: Boolean

3. CommRange: integer – node’s communication range in
simulation distance units (e.g., meters)

4. GetPacket(): get next packet method – invoked by the simulation
framework to pass next source network packet to the wireless
node from the packet distribution process.

5. Send(): send packet method

6. Receive(): receive packet method

7. ProcessPacket(): IDS packet-monitoring method

8. PacketQueue: fixed-size incoming-packet buffer (40 packets)

9. cntReceivedPackets: long integer – total number of received
packets by that node

10. cntProcessedPackets: long integer – total number of packets
processed by IDS packet-monitoring service

The following figure 5.7 shows a simplified activity diagram of Ad Hoc Wireless Node

object activities throughout the simulation.

 106

Wireless Node
Initialized

Simulation
Started

Receive()

Simulation
Termination Packet?

Run Thread()

Send(cntReceivedPackets,
cntProcessedPackets) to $sim

Yes
ProcessPacket()

Is Packet Buffer
Full?

Is Packet Buffer
Empty?

Yes

No

cntProcessedPackets++
Add Packet to
PacketQueue

No

cntReceivedPackets++ No

Discard Packet Yes

Move Wireless
Node

 Figure 5.7. Ad hoc wireless node activity diagram.

The wireless node object is implemented as a Java class following the WINDS object

design template, and has the structure (in pseudo code) depicted in the following listing.

 107

// Wireless Node class
// Object parameters and default parameter values:

//#P str DefaultObjectNamePrefix, int initXPos, int initYPos, bool
isMobile, int commRange

//#D wNode, 0, 0, true, 800

public class wnode {

 int ID;

 String objName;

 simEvtHandler ParentClass;

// IDS & Clustering parameters

 int cntReceivedPackets = 0;

 int cntProcessedPackets = 0;

 queue PacketQueue[40];

// Other parameters

 boolean IsClusterHead = false;

 int CommRange;

// Methods

 wnode() // Wireless node object constructor - initialization

 void Tick() // Simulation clock pulse

 void Receive(Long simClock, String dataType, String strPayload)

 void Send(Long simClock, String dataType, String strPayload)

 void wMove() // Wireless node mobility

 boolean ProcessPacket() // IDS packet processing method

}

Listing 5.1. Ad hoc wireless node Class.

 108

5.3.3 Simulation Execution and Results

The wnode class was placed in the simulation root/objects directory, then

dynamically loaded by the simulation framework. The packet generation is performed by

the simulation event handler on each processor (in case of a WINDS distributed

simulation), or a separate packet processor class (as implemented in the single-processor

simulation version). Each node then locally receives a packet through the Receive()

method and processes the IDS lookup via ProcessPacket() method. The results are sent to

the central Simulation Statistics window of the user interface, and are saved into a CSV

file for analysis. Upon simulation execution, the following results were obtained.

Figure 5.8. Packet-monitoring agent allocation simulation in progress.

 109

The simulation results show that as the network density increases, the percentage of

wireless nodes running packet-monitoring IDS functionality decreases, showing a very

good scalability of the clustering algorithm (figure 5.5). At the same time, with the

increase of wireless network density, these packet-monitoring nodes get overloaded with

the amount of network traffic that needs to be processed, resulting in a large amount of

packets being excluded from the IDS monitoring process (figure 5.6). The detailed

explanation of these results has been given in the previous section, and the solution to the

non-scalability of the packet-monitoring mechanism is presented further in this chapter.

5.4 Intrusion Detection Mechanisms

5.4.1

les to determine the threat level more accurately and initiate intrusion response. Such

 Collaborative vs. Independent Decision Making

 Experience with intrusion detection systems designed for wired networks helps us to

classify decision-making mechanisms for such IDS systems into two categories –

collaborative and independent. The first type of decision-making mechanism is employed

in systems where each node can take active part in intrusion detection process. An

example of such a system is given in [86], where a simple majority voting scheme is used,

in which any node that detects an intrusion with high enough confidence can initiate a

response. More sophisticated cooperative decision-making schemes use fuzzy logic and

ru

 110

mechanisms are discussed in [71] and [20]. However, such systems are prone to denial of

service and spoofed intrusion attacks, where any (malicious) node can trigger full-forced

intrusion response, affecting entire network.

 In an independent decision-making system, certain nodes are designated to perform

decision-making functionality. Their task is to obtain intrusion alert information from

other nodes and to decide with a good accuracy whether or not a node in question

presents a threat to network security. Other nodes don’t have any influence on the

decision-making process that concerns a certain node. This category of decision-making

mechanisms is far less prone to spoofing attacks; however, the amount of information

obtained by a decision-making node about each node participating in the network is

limited. If a node in question had failed in local intrusion detection and all reporting

mechanisms were somehow disabled, it will be difficult to detect such kinds of passive

intrusion, where, for instance, a node could be intruded into and used as a passive listener

on the network.

5.4.2 Intrusion Detection Process

 Our intrusion detection system utilizes a customized independent decision-making

mechanism. Decision agents are located on the same nodes as packet-monitoring agents.

Detection and classification of security violations works as follows. Decision agent

contains a state machine for all the nodes within the cluster it resides in. As intrusion or

anomalous activity evidence is gathered for each node, the agent can decide with a

 111

certain confidence that a node has been compromised by looking at reports from the

node’s own local monitoring agents, and the packet-monitoring information pertaining to

that node. There is no need for other neighboring nodes to detect an intrusion or

anomalies from the node in question, as this will be subject to denial of service (DOS)

attacks on such a decision scheme. When a certain level of threat is reached for a node in

uestion, decision agent dispatches a command that an action must be undertaken by the

local agents on that node, as described in section 5.2. In time, the threat level decreases

for each node in the decision agent’s database. Decision-making agent maintains a

q

“sliding-window” view on the intrusion data for each node within its cluster. Repetitive

alerts of the same type within that window will cause an action to be undertaken by a

decision agent to secure the breach in a network caused by a certain node or a group of

nodes. The sliding window technique is necessary to account for certain uses of the

network node that do not conform to accepted range of normal behavior, yet do not

represent a threat to the wireless network as such.

 Local anomaly detection models have been developed [86, 71, 20] that can detect an

intrusion with a great degree of accuracy. According to the surveyed research, two types

of profiling are made. Some IDS systems maintain a database of possible intrusion

activity patterns and trigger alarm when such activity is detected. These systems result in

fewer false alarms due to a variation in node usage patterns; however, intrusion activities

with new patterns are likely to be underreported. The other category of IDS systems

maintain a normal operational profile formed by a learning process. Anything that falls

 112

outside such a profile of activities is classified as a possible intrusion. These systems

have a higher false alarm rate, but are more likely to discover unknown intrusion, making

such a model a choice for our IDS.

5.4.3 CBR Implementation of a Packet-Monitoring Agent

n specific case, together with a metadata dictionary

t different case features, such as the required comparator and its value

type, are stored. This use of a metadata dictionary and the separation of domain specific

daptive” or “reflective”

 Packet-monitoring agents were described in the previous sections. Their

functionality is to screen incoming network packets for known intrusions. This section

describes the architecture of a case-based reasoner that is built into our packet-monitoring

agents.

 The generic Case-Based Reasoner (CBR) component assumes no knowledge about

the application domain regarding case features and their comparison. The system can be

tailored into a domain-specific case-based reasoner by defining the data type definition of

the XML representation of a domai

where the data abou

knowledge from generic components is an example of “a

architecture. Hence the title for our packet-monitoring engine architecture. The advantage

of this software engineering approach is that the same generic CBR source code can used

for any application domain – no, or very minimal, additional programming is required.

 113

 The case-based reasoning process of an IDS is as follows. A packet is received from

the network and fed into the CBR module. The packet is converted into an XML

representation as specified in a corresponding DTD file. The search engine in the CBR

module searches for similar cases in case archive. In the search process, cases are

compared to the received packet’s XML representation. For each feature in the packet

XML data, the CBR module looks in the metadata dictionary for the type of the required

comparator, and the comparator is created by reflection (i.e., during run time). Each

comparator determines whether the packet feature matches the corresponding case feature.

Once all the features are compared, the CBR module assigns a similarity value for the

compared case. Lastly, the CBR module retrieves the matching case or cases and

erforms the prescribed action.

xp_peekqueue possible buffer overflow"; content:

erence: bugtraq,2040; reference: cve,CAN-2000-

1085; classtype: attempted-user; sid: 697; rev: 3;)

p

 In order to implement a packet-monitoring agent using CBR, we converted the rules

of the well-known Snort intrusion-detection system into a case archive. All the elements

in a rule header, as well as the rule options, that are used in the rule matching process by

Snort are treated as case features, and the rule action and its corresponding rule options

(such as message element) are treated as the case action. An example of a Snort rule is

shown below:

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 139 (msg: "MS-SQL

"x|00|p|00|_|00|p|00|e|00|e| 00|k|00|q|00|u|00|e|00|u|00|e|00|"; nocase;

flags: A+; offset: 32; ref

 114

The attributes in this case are protocol, source and destination IP addresses and ports, and

packet’s payload that contains a given hex string.

 In the Snort IDS, the corresponding rule action is taken only if all of the elements

that make up a rule match with the network packet. This means that in the corresponding

domain-specific CBR system, the similarity metric must be bivalent; in other words, the

atches must be exact. Hence there is no need for similarity ranking. Thus, from a CBR

ble number

 quite small in size. Moreover, due to its modular design and implementation, both the

as the core of the packet-monitoring

gents in the intrusion detection process.

5.5 Load-Balancing for Packet-Monitoring Agents

m

standpoint, the corresponding system is quite simple, and accounts for a sizea

of false-positive and false-negative alarms. The entire packet monitoring CBR system,

including the case archive created from Snort rules, together with required comparators,

is

reasoner and case archive components are portable. This is very important for network

agent implementation. This CBR system serves

a

 This section describes distributed load-balancing approach to packet monitoring

process that reduces the number of unscreened packets and improves the quality of

intrusion detection process.

 115

5.5.1 Load-Balancing Strategies for Network Packet Monitoring

 This section presents a linear-time solution to the problem of packet-monitoring

agent overload in the form of distributed online load-balancing algorithm. Our idea of

load balancing the ad hoc wireless IDS resembles to some extent the techniques applied

 computing clusters [45, 6]. Generally, a computing cluster consists of nodes connected

 processes that can be

assigned to execute efficiently on several members of the cluster in parallel. An optimal

everal connected

machines. These clusters provide multitasking time-sharing environment for executing

sequential jobs on multiple nodes at a time. The situation can become more unpredictable

than in the case of a cluster computer, as wireless cluster membership changes rapidly

and traffic patterns cannot be modeled precisely. Formally, load-balancing problem is

defined as follows: Given n machines and a sequence of independent jobs arriving at

defined by its demand vector:

i(j) is the resource demand of job j in a machine i, for a problem of one-resource

in

by a communication network. Tasks can be split into multiple

assignment of jobs to machines was shown to be NP-hard [24] even when jobs require

single resource and the demands of this resource are known in advance.

 In an ad hoc network, we divide wireless nodes into clusters of s

random, minimize the maximal resource utilization among all the machines. A job j is

p(j) = (p1(j), p2(j), …, pn(j))

where p

allocation in a cluster of heterogeneous machines. For our intrusion detection system we

 116

consider several resources on each node – CPU utilization, available memory and

bandwidth. The above-mentioned load-balancing problem is then modified to minimize

the maximal utilization of all the resources on all members of the cluster. As the intrusion

detection tasks are CPU and memory-intensive processes, each resource carries different

level of importance. We have adopted the weight ratio of CPU : Memory : Bandwidth as

5 : 3 : 1. Each node in a cluster then computes its weighted resource index that is then

compared to the demand vecto la:

i aaaR (5.1)

 where for each node i, CPU, Mem and Bandwidth are CPU utilization, memory

utilization and bandwidth utilization, respectively, and a is a constant so that 1 < a < 2

[45].

 The sequence of intrusion-processing job assignment to other members of the cluster

by a CH node is as follows:

• When cluster head (CH) node’s resource index reaches a predefined threshold, it

prepares for job delegation

• All nodes within the cluster compute their current snapshot R using equation 5.1

• CH node partitions the buffer of incoming packets scheduled for intrusion detection

processing into batches

r of a given job, using the formu

)()()(iBandwidthiMemiCPU ++= 35

 117

•

to respective node for intrusion detection

processing

• Results are returned back to the CH node’s decision-making agent

 The optimal node selection for the computing cluster job allocation has also been

studied. One possible strategy is to use a Greedy algorithm. It is an online load-balancing

algori jobs to a machine in order to minimize resource

uti ed

ma

Greed es [6] is called ASSIGN-U. This algorithm defines a

no

margi e complexity of this algorithm has been shown to be O(log n) for

he

section below, resulting in decreased processing due to a load-balancing procedure.

Each batch job is selected to best fit the resource usage index of an optimally-

selected node

• Each batch of packets is then forwarded

thm for assignment of new

lization. This algorithm has been shown to have a complexity of O(n) [6] for unrelat

chines. Another online algorithm that was shown to improve the competitive ratio of

y for unrelated machin

nlinear cost function to assign jobs to machines in such a way as to minimize its

nal added cost. Th

terogeneous machines. We introduce several optimizations in the implementation

5.5.2 Optimal Job Assignment and Algorithm Implementation

 As discussed, we consider three resources for the purpose of packet-monitoring task.

When packet queue reaches certain threshold in a cluster head node, a message is sent to

all current members of the cluster, asking for each node’s resource index. Every node

then forwards its resource index to the CH node. CH node then makes a decision on how

 118

to optimally partition the buffer into batches of packets to be dispatched to selected nodes.

The assignment is done in such a way as to minimize the overall resource usage RU, i.e.:

))35(min()()()()()()(∑ +++ ++= jBwiBwjMemiMemjCPUiCPU aaaRU (5.2) , ji

r each node i and task j. Overall resource usage is comprised from a sum of marginal

al case, when there

are multiple heterogeneous nodes to choose from, each having multiple resources of

different importance, the formula to compute the marginal cost is:

fo

costs of assigning each job to a machine within the cluster. In gener

∑
∈

jpjl)()(

 is resource utilization of resource k on node i, and bk is the weight of resource k.

 When implementing the load-balancing algorithm in our simulation test-bed, we

helps us decide on the

ode’s current resource availability. This resource usage average is then periodically sent

to the cluster head node (e.g., once every second). When a cluster head node receives

+ −=
Mk

jl
kki

kkk ababjH)()()(
 (5.3)

where M is a set of available resources, pk is a demand vector of task j on resource k, and

lk

have adapted it to a low-power wireless network scenario and optimized several

computation-intensive operations, as follows. Each node periodically computes its

resource index and keeps a running average of recent resource usage, maintaining a

sliding history window to the node’s overall resource usage. This

n

 119

considerably more packets than it can handle (as in the case of a traffic burst), it will

partition the queue of packets into batches and forward these to the most suitable node, as

selected by the load-balancing policy.

 One assumption we have maintained is that all the nodes within the cluster are

homogeneous, and that each node has a 10-packet buffer allocated for IDS packet

processing. In the simulation framework model, packets that were extracted from a

network trace file averaged 1kb in size (this was due to MTU settings on the host system

where packets were collected). Due to nodes being homogeneous, IDS packet-processing

time is considered the same for all nodes, being an exponential distribution with the mean

of 100ms. Network link speeds were taken to be 2Mbps (typical numbers for an 802.11b

network), yielding a transmission time of 10ms, including overhead. This allows us to

pre-compute each task’s demand vector to be (CPU, Memory, Bandwidth) = (1000ms,

10240b, 10ms). Therefore, these computations won’t have to be performed every time.

As shown in [29], the average number of nodes per cluster is 5, for a network of up to

100 mobile nodes. For the optimal task allocation, cluster head (CH) node maintains a

square matrix of resources for each cluster member, with each row being a vector of

resource indices of all cluster members. When need arises, CH computes the Hi values,

replacing the diagonal of the matrix, then adds each row of the matrix and picks the

smallest number, with the index of that row indicating the node to which the next batch

of packets is to be sent to. This operation is not computationally expensive, as average

number of nodes per cluster is small. We have reduced the processing cost due to load-

 120

balancing policy decisions, which is negligible compared to the processing requirements

of the intrusion detection system. Therefore, there is a real benefit of using the load-

balancing algorithm compared to a one-server approach.

 To model the packet-monitoring situation, we view our model as a queuing system.

First, we consider original one-server (cluster head) IDS packet-monitoring approach.

The model in this case is an M/M/1 queuing system with fixed queue length of 10 packets,

a Poisson packet arrival process, and exponentially-distributed packet-monitoring service

times with a mean of 100ms per packet. The mean arrival packet rate is varied to

accommodate several network scenarios, where number of cluster members and

respective transmission rates are varied. Simulated versus analytical packet drop rates are

shown in figure 5.9. Next, we consider the load-balancing algorithm applied to our

intrusion detection system. The model is an M/M/n queuing system with n nodes per

5.5.3 Simulation vs. Analytical Results

 packet monitors for the IDS. To further reduce the load due to

intrusion detection processing on each wireless node, the incoming packet queue size is

 with simulation test-bed executing ad hoc

cluster that can act as

also reduced. From our earlier experiments

network clustering algorithm [29], the number of cluster members varies mostly in the

range from 2 to 8, with an average being 5 nodes per wireless cluster, for an ad hoc

wireless network with up to 100 mobile nodes scattered over a 4 square-mile area. This is

depicted in figure 5.10, where results for load balancing approach with varied number of

cluster members are compared to a one-server per wireless cluster model.

 121

Upon implementing the load-balancing strategy, simulation results from our

simulation framework show that there is a considerable reduction in the number of

packets dropped from the cluster head node’s intrusion processing buffer, as shown in

figure 5.11. The graph shows considerably-reduced packet dropping rate as the network

density increases, indicating good scalability of the DID (distributed intrusion detection)

strategy, therefore improving the quality of intrusion detection. Using the distributed

load-balancing algorithm, tasks of intrusion detection are optimally allocated to nodes

within the cluster so that overall resource usage is minimized.

Simulated vs Analytical Packet Drop Rate

0

10

20

30

40

60

70

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Mean packet arrival rate, per sec

Pa
c

et
 D

r
pi

ng
at

e

50

80

k
op

 R
, %

P(drop), %
Packet Drop Rate, %

Figure 5.9. Simulated vs. analytical packet drop rate for one server per cluster IDS processing.

 122

Figure 5.10. Load-balancing approach packet drop rates for various network configurations.

Packet Drop Rate - One server vs LB scheme

0

10

20

30

40

50

60

70

80

90

100

8 16 24 32 40 48 56 64 72 80 88 96

Mean packet arrival rate, per second

P
ac

ke
t d

ro
p

ra
te

, % P(drop),% - One server
P(drop),% - LB, 2 node
P(drop),% - LB, 4 node
P(drop),% - LB, 8 node
P(drop),% - Avg case

e packet-monitoring node,

s opposed to a monolithic system, where each wireless broadcast may result in multiple

odes checking the same packet, and thus wasting computing resources. Secondly, we

The worst-case scenario happens when there is a large amount of traffic on the

network (see Figure 5.10). When this happens, cluster head node would follow the

algorithm and pick nodes with least resource usage in sequence. However, as more traffic

arrives, we may find ourselves in a situation that every node in a cluster performs packet-

monitoring tasks. What would be the advantage of using our load-balancing algorithm

compared to a monolithic intrusion detection system? There are several feasible

advantages. First, each packet is reviewed only once by a singl

a

n

 123

can regulate the load due to intrusion processing task by varying the quality of intrusion

detection. That is, the amount of computing required for intrusion detection task on each

node can be fixed, resulting in availability of processing power of each node for regular

tasks. Therefore, excessive packets would be dropped from the system, when the network

traffic increases considerably, thus aiding in a greater intrusion detection system

scalability.

Packet Dropping Rate Comparison

10

20

30

40

60

70

%
op

pe
d

P
ke

ts

50

ac
 D

r

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Network Density (nodes per unit area)

% of Dropped Packets % of Dropped Packets using DID

Figure 5.11. Decrease in packet dropping rate when using distributed load-balancing algorithm.

 124

5.6 Summary

With emergence of a wide range of wireless devices, protecting ad-hoc wireless

networks became an increasingly important but also a more difficult task. Scarce

computational and power resources of mobile nodes impose heavy limitations on

functionality of an effective intrusion detection system. Given these limitations, we have

proposed a distributed modular IDS system designed for ad hoc wireless networks. This

er.

ry.

 of

architecture is aimed to minimize the costs of network monitoring and maintaining a

monolithic IDS system, also providing a high degree of protection against the intrud

New agents with added functionality can be plugged in when an expansion is necessa

Moreover, based on individual security requirements, the level of monitoring can be

decreased resulting in greater availability of computational resources for the entire

network.

 Case-Based Reasoner [30, 69] has been implemented based on Snort rules that is

incorporated into packet-monitoring agents and efficiently monitors incoming packets for

known intrusion, checking them against the known database of attacks. The problem

packet-monitoring agent overload has been solved using an online distributed load-

balancing algorithm, resulting in a much more accurate intrusion detection system.

 125

CHAPTER 6: PERFORMANCE COMPARISON OF PINS, HLA AND

TSPACES

 multiprocessor cluster computers.

• To utilize computationally-intensive back-propagation neural network algorithm

for implementation using the above distributed technologies.

This chapter describes a comparison study between two commonly-used distributed

technologies – High Level Architecture, TSpaces, and our PINS simulation framework. A

computationally-intensive algorithm for back-propagation neural network classifier

training is implemented and simulated using HLA, TSpaces and PINS. First, we discuss

these distributed technologies that are commonly used to create parallel and distributed

systems. We then briefly describe parallel back-propagation neural network training

algorithm for packet-based intrusion detection systems, which is being simulated in this

study. Finally, we discuss implementation and performance differences in each of the

technologies used and in the underlying hardware architectures – uni-processor and

symmetric

6.1 Study Objectives

• To compare simulation performance of PINS simulation framework with High

Level Architecture and IBM’s TSpaces Java implementations.

 126

6.2 Distr

 With increased complexities of blems we deal with today, the

processing power of a single computer system became inadequate for certain problems of

lob

ance ratio for a given

omputing problem. For many problems it's possible to achieve an order of magnitude

improvement in price/performance compared with "conventional" parallel supercomputer

 used in this section as a hardware platform for comparing

dist u

High L , and our PINS

sim

networ

ibuted System Architectures – HLA and TSpaces

computing pro

g al scale; and use of super-computer wasn’t always an option for many researchers.

With the advent of computer networks and later on - computing clusters, the field of

parallel and distributed computing has received a widespread recognition. Beowulf

cluster implementation has raised parallel and distributed computing to a new level.

Cluster computers were first introduced in 1994 as a result of the Beowulf Project at

CESDIS. A Beowulf system is a collection of personal computers constructed from

commodity-off-the-shelf hardware components interconnected with a local-area network

and configured to operate as a single unit, a parallel computing platform, using an open-

source network operating system (e.g., Linux) [8]. The driving design philosophy of a

Beowulf system is to achieve the best possible price/perform

c

designs. Cluster computing is

rib ted computing technologies – Defense Modeling and Simulation Office (DMSO)

evel Architecture/Run-Time Infrastructure, IBM’s TSpaces

ulation framework – as implementation platforms for the back-propagation neural

k training algorithm.

 127

One of the most recent developments in distributed simulation technologies is the

High Level Architecture (HLA/RTI), driven by DARPA, which has become a

standardized framework (IEEE 1516) for modeling and simulation. It has been introduced

in this dissertation in section 2.1.3. HLA is a component-based software architecture that

incorporates subsystems for communication and data sharing, synchronization, and time

management [59]. This framework facilitates distributed and multi-platform computing

by providing standard integration architecture for separate and remote applications, thus

facilitating reuse of components. HLA provides specifications for seamless integration of

various simulation components; however, the efficiency of the entire simulation heavily

depends on implementation and operational performance of each individual simulator

comprising the simulation. At the network level, RTI utilizes reliable multicast protocols

to implement inter-federate data exchange.

IBM’s TupleSpaces (TSpaces) is a set of network communication buffers called

tuple spaces and a set of APIs for accessing those buffers [85]. TSpaces allows

heterogeneous, Java-enabled devices to exchange data with little programming effort.

The package includes server software that implements the buffers and client software for

accessing the buffers. The TSpaces server is composed of two main layers. The bottom

layer comprises the basic tuple management. This is where tuple sets are stored, updated,

indexed, and scanned. The interface to this layer is the Tuple Management API. The top

layer comprises the operator component, which is responsible for operator registration

and handling, implementation, and management. TSpaces provides group communication

 128

servi

6.3 Knowledge Discovery Problem for Intrusion Detection

havior [49]. Neural network techniques may

e found to be more efficient and less computationally intensive than conventional rule-

base

ces, database services, URL-based file transfer services, and event notification

services. With its small footprint, it is ideal for bringing network services to small and

embedded systems. TSpaces emulates a shared-memory multiprocessor architecture and

reduces the complexity of writing parallel programs accessing shared data. This comes at

the expense of message-passing performance, especially in the cluster computer

environment, where the data is not physically shared among the processors.

Neural networks offer alternative means of maintaining a model of expected normal

user behavior. They offer a more efficient, less complex, and better performing model

than statistical models of system and user be

b

d systems. A lengthy, careful training phase is required with skilled monitoring.

After the training period, the network tries to match actual commands with the actual user

profile already present in the net. Any incorrectly predicted events actually measure the

deviation of the user from the established profile.

The problem of data mining within large datasets places high demand on

computational resources. This makes it a viable problem to measure the performance of a

distributed system. Specific application of it is considered in our comparison study – a

back-propagation neural network training algorithm for an intrusion detection system

 129

(BPNN). Given a large initial training data file, the intrusion detector learning task is to

build a predictive model (i.e. a classifier) capable of distinguishing between ”bad”

connections, called intrusions or attacks, and “good” normal connections. A standard set

of data to be audited, which includes a wide variety of intrusions simulated in a military

network environment, was provided by Lincoln Labs [32] in the form of a network trace

file incorporating known labeled attacks. A connection is a sequence of TCP packets

starting and ending at some well defined times, between which data flows to and from a

source IP address to a target IP address under some well defined protocol. Each

connection is labeled as either normal, or as an attack, with exactly one specific attack

type

eural network training algorithms and

has shown robust performance in many applications [22]. Several parallelization

techn

[42].

The training process proceeds as follows. A finite dataset [50] of 2,000,000 records

is partitioned equally among N processors. Each processor is an independent self-

contained computer that is part of a computing cluster (further referred to as a Node).

One node is designated as a Master and is responsible for task allocation and result

unification; while other nodes are designated Workers for the back-propagation neural

network. BPNN [83] is one of the widely used n

iques have been introduced for BPNN [49, 47, 76]. Our choice for a cluster

computer is a training method based upon set partitioning and epoch-based weights

update schemes. This allows us to reduce the amount of inter-processor communication

needed to distribute data, which is beneficial for a cluster computer environment with a

 130

relatively slow inter-communication links. BPNN is trained iteratively, until an

acceptable mean square error rate is achieved. At the beginning of each iteration (called

epoch), master process creates a series of task requests and forwards them to the workers

via a communication technology of choice. Each request contains information on a

fraction of the entire dataset to be processed. Worker processes work on the

corresponding fractions of the dataset and communicate results back to the master.

Master process then aggregates all partial results. Once data mining step is complete, the

quality of training result is evaluated. Algorithm follows certain steps to determine its

error and propagate it back to modify the connection patterns of its hidden layers. The

error value of the output unit j is:

))(1(jjjjj ataae −−= (6.1)

The adjustment of the connection weights between unit i and unit j occurs using the

equation:

ijji aerweight ∗∗=∆ − (6.2)

The activation function is:

gainjIij e
a

+
=

1
1

where r is the learning rate of the network, ej is the calculated error value, tj

represents the target output, and ai represents the activation level of sigmoid function at

the unit. The new value of a connection is an addition of the old weight value, and the

change in weight.

∗−− (6.3)

 131

Quality is measured by the classification rate with regard to the training dataset and

the new testing dataset, instances of which were not part of the training dataset. Usually,

good classification rate on the training dataset is regarded important; but good results on

a testing dataset are also significant, as they imply that the data mining process was able

to extract knowledge that represents not only the patterns in the training dataset, but also

those of unseen patterns. For the purpose of this study, the testing dataset was not used.

The BPNN parallel neural network classifier problem for intrusion detection was

implemented using several distributed communication technologies – High Level

Architecture/RTI, PINS framework and TS ster

fect of using a symmetric-multiprocessor cluster configuration for processor-

intensive tasks with operating system-directed task allocation. These clusters had the

following configurations. Cluster 1 (Scerola) has 128 nodes with single 900 MHz AMD

interconnected via Fast Ethernet network.

Cluster 2 (Ariel) has dual Pentium-4 2.6GHz processor configuration on each of its 32

nodes, managed by SUN Solaris OS (only 16 were used for performance comparison),

and i

paces. Hardware platform used was a clu

computer with 16 individual nodes. Two clusters were involved in this experiment to

detect the ef

Athlon processors, running Linux Red Hat, and

nterconnected via Gigabit Ethernet network links.

 132

6.4 Simulation Design

HLA/RTI implementation involved defining user interaction classes and devising

communication strategy among federates. First, the Worker federates were started, that

would join RTI federation execution, publish and subscribe to interaction classes and

partition the training file. Then each Worker waits for a work order from a Master

process, and upon receipt, computes BPNN weights. After sending results back to the

Master, the Worker awaits further work orders in an infinite loop. The Master process

retrieves initial weights, allocates portions of work order to each Worker process, then

sends out work orders and awaits results. When all the individual results have been

received and combined, an error is computed. If within the threshold (0.01 percentile),

the result is accepted and Master displays total run-time. Otherwise, a new set of work

orders is distributed among the Workers. The total work order is divided in a way that

each worker receives equal part of the training file for processing, since the program is

executed in a homogeneous parallel environment with all nodes having approximately

equivalent system resources.

The TSpaces implementation differs from the RTI implementation in that the Master

doesn’t communicate with a specific Worker process, but rather places a work order in a

virtual shared memory. Since task processing time of Worker process is much larger than

network communication time, and having the number of Workers equal to the number of

work orders, the problem is evenly distributed among available processors. The

algorithms for Master and Worker classes are given below:

 133

Class Worker {

 Connect to RTI;
 Create / Join Federation Execution;
 Publish / Subscribe to Interaction Classes;
 Retrieve Training Data;

 Loop {
 Receive Work Order;
 De-serialize Parameters;
 Build / Verify Work Order Set;
 Compute BPNN Weights;
 Serialize Parameters;
 Send Result to Master;
 }
}

Listing 6.1. BPNN Worker Class Algorithm.

Class Master {

Connect to RTI;
Create / Join Federation Execution;
 Publish / Subscribe to Interaction Classes;
 Read Initial Weights;
 Get Start Time;

 Loop {
 Compute New BPNN Weights {
 Send Out Work Orders to Workers;
 Receive All Results;
 }
 Test Result {
 If Result Successful, Display Running Time and Quit;
 Else Continue;
 }

 }
}

Listing 6.2. BPNN Master Class Algorithm.

 134

The difference in implementation using RTI and TSpaces libraries is in Send and

Receive methods. While RTI publishes interaction and transmits message via multicast to

all f plementation puts a data tuple into virtual shared memory and

noti aling or polling). Each client

then picks up a tuple from tuple space, effectively removing it from shared memory.

Sinc ay to specify a particular processor to send

data ly scan for data that matches specific template.

e PINS implementation differs from HLA/RTI implementation only in

ete een the worker and the

aster processes. RTI provides template for data communications by declaring parameter

pe t design time, and adding those parameter values in the parameter list prior to each

communication. Then, the communication interaction is performed by broadcasting

para n and parses it to find out if

this at particular process. PINS implementation uses master

and ilt-in communication broker mechanism.

Eve lass, only the intended recipient

actually receives the communication, and no additional processing is performed.

ederates, TSpaces im

fies all clients that data is available for pickup (via sign

e there is no addressing scheme and no w

 to e tuple space clients continu, th ous

Th

communication param rs of Send() and Receive() methods betw

m

ty s a

meter list. Each worker process receives the interactio

interaction is addressed to th

worker classes that communicate via bu

ry time a message is sent to a particular worker c

 135

// BPNN Worker class
// Object parameters and default parameter values:

//#P int numNodes, int myID
//#D 4, 1

public class Worker {

 int ID;

 String objName;

 simEvtHandler ParentClass;

// BPNN algorithm parameters

 int p_orderID;

 Vector p_currentSet;

 String p_hxILines[];

 String p_oxHLines[];

// Methods

 Worker() // BPNN Worker object constructor – initialize, load
 // data file portion

 void Tick() // Simulation clock pulse – not used

 void Receive(Long simClock, String dataType, String strPayload)

 void Send(Long simClock, String dataType, String strPayload)

 void getNextJob() // Receive work order from Master

 void buildSet() // Build BPNN weights set based on work order

 void verifySet() // Verify BPNN weights set based on work order

 void writeDoneTuple () // Send results back to the Master

}

Listing 6.3. BPNN Worker Class.

 136

// BPNN Master class
// Object parameters and default parameter values:

//#P int numNodes, int myID
//#D 4, 0

public class Worker {

 int ID;

 String objName;

 simEvtHandler ParentClass;

// BPNN algorithm parameters

 int p_orderID;

 Double p_orderSum;

 String p_hxILines[];

 String p_oxHLines[];

// Methods

 Worker() // BPNN Worker object constructor – initialize, load
 // data file portion

 void Tick() // Simulation clock pulse – not used

 void Receive(Long simClock, String dataType, String strPayload)

 void Send(Long simClock, String dataType, String strPayload)

 void train() // Start training session for current epoch

 void distributeOrder() // Send out work orders to workers

 void buildDistributionSet() // Partition training file among workers

 void testBPNN() // Verify current training error

}

Listing 6.4. BPNN Master Class.

 137

While it was possible to create PINS implementation that multiplexes BPNN parameters

separate consecutive messages were used to send different

d 6.4 outline the class structure of worker and master

y PINS implementation of the BPNN training algorithm. Listing 6.1 above

uence of events for the worker object.

into one communication,

parameters. The code listings 6.3 an

classes used b

shows the seq

HLA vs TSpaces vs WINDS Execution Time

8 16

Workers

2500

2000

1500

 s
ec

Ti
m

e,

1000

500

0
1 2 4

HLA/RTI
Tspaces
HLA Ariel
WINDS
WINDS Ariel

Figure 6.1. Parallel BPNN pro paces and PINS (WINDS).

gram execution times for HLA, TS

 138

6.5 Simulation Execution and Results

Simulation was executed for each implementation on an identical training data set.

The results of running these implementations on a varied number of cluster nodes are

plotted in figure 6.1.

Even though the HLA implementation required considerably more effort from

software engineering perspective, the results show a considerable overall decrease in the

total execution time compared to TSpaces, attributed to faster inter-node communications.

The performance of PINS implementation is slightly better than that of a High Level

Architecture – this is the case for both uni-processor and symmetric multiprocessor

underlying hardware architectures. Implementation of PINS using WINDS framework

involved less effort than HLA, and comparable to TSpaces, making it a viable choice for

solving parallel and distributed systems problems. The performance of TSpaces is better

than any other distributed technology in the case of only one worker. This may be

attributed to the internal optimizations of TSpaces API implementation, detecting local

communication and using direct method access. As far as the overall expense of the

distributed system solution goes, the total processor time (on all nodes) plus inter-node

communication demonstrates an added overhead of a distributed system. For instance,

using RTI with one worker yields 2129 processor-seconds execution time (total time for

problem solution by all processors, including idle time during wait, since we used a

de e

to 3267 processor-seconds per problem. In situations where the processor time is an

dicated cluster with no foreign processes). Using 16 processors increases the total tim

 139

expensive resource, a careful cost analysis and planning has to be performed prior to

implementing the distributed system.

Examining performances of both HLA/RTI and PINS Java implementations on a

single-processor and symmetric multi-processor cluster computers, we infer that Java

Virtual Machine efficiently utilizes dual-processor configuration and dramatically speeds

up computationally-intensive tasks without further modeling by the researcher. This

demonstrates cost-effectiveness of using a multi-processor cluster configuration, since

processing time is considerably reduced for the same-size task, compared to single-

processor cluster configuration. In our tests of BPNN algorithm on all 32 nodes of Ariel

cluster, the execution would occasionally deadlock when running HLA implementation.

This is due to very small processing times on the client processors, resulting in increased

utilization of communication channel. As the number of processors increases in a parallel

system, problem implementation has to be planned and evaluated carefully to avoid

deadlock problems, as network communication becomes the bottleneck.

In this chapter we have presented comparison of implementations of an intrusion

detection-class data mining problem using various distributed technologies and

concluded that WINDS offers better performance for certain distributed problems than

comparable HLA and TSpaces implementations.

6.6 Summary

 140

CHAPTER 7: CONCLUSION

rs to reduce the

mount of network traffic required for the simulation execution. This is achieved by

serializing simulation objects and transporting them to the optimal destination processor.

While this introduces an overhead in simulation control, for certain simulated problems it

has p

The result of our research and development effort in the area of distributed

simulation systems for wireless networks is PINS – an interactive, scalable, cross-

platform parallel/distributed simulation system for computer networks. The PINS

architecture is a scalable multi-processor simulation framework that can be used in

tightly-coupled symmetric multiprocessor cluster computer environments, as well as in

distributed networked systems (e.g., LANs). The object-oriented nature of the PINS

architecture makes it possible to design distributed simulations and obtain results in a

short time. A simulation clock synchronization mechanism is incorporated, that enables

the framework to execute simulation events and commands simultaneously on all

processors. Several parallel-system-oriented optimizations have been incorporated into

the design of the PINS architecture. For instance, nodes with large inter-node

communication requirements can be grouped on corresponding processo

a

roven to be a worthwhile strategy. A large network traffic dataset from the Lincoln

Labs studies has been used to test the scalability of the distributed simulation framework

running the simulation of intrusion detection system for wireless networks. The WINDS

 141

simulation framework, based on PINS architecture, was developed to assist us in research

on wireless network technol

each node participating in a distributed simulation, and automatically adjust the

ogies and applications.

One such application is the intrusion detection system targeting ad hoc wireless

networks. This IDS system was designed with the low-resource, high-mobility nature of

mobile ad hoc networks (MANETs) in mind, featuring lightweight IDS components in

the form of intelligent mobile agents. One aspect of our IDS system was thoroughly

researched and implemented: the network packet-monitoring module, which captures

network packets and analyzes them for known attempted intrusions. This component is

based on a Case-Based Reasoner engine, and relies on a SNORT library of known

intrusions. Due to low resource availability and low power of nodes comprising wireless

ad hoc networks, our intrusion detection system was optimized to reduce the processing

load due to intrusion monitoring on each node in a wireless network. A load balancing

strategy is applied to distribute the amount of processing required by the IDS among

several neighboring nodes, thus improving the quality of intrusion detection and reducing

the load on individual nodes. These techniques were simulated using the WINDS

framework. Since WINDS targets distributed computers of various configurations and

network communication latencies, an intelligent algorithm is necessary to automatically

adjust the distributed simulation clock to eliminate out-of-order delivery and processing

of simulation events. We have incorporated a resource-monitoring module into our

distributed simulation network to monitor network conditions and the performance of

 142

simulation flow to reflect dynamic changes in the simulation hardware environment.

Simulation results from a variety of parallel-simulated algorithms show that PINS is a

onsiderable improvement over a single-processor simulation execution in terms of

scala

c

bility and speed of simulation execution for large network simulations. We have

used a resource-demanding computational BPNN algorithm to compare the performance

of our distributed simulation framework with current standards in distributed simulation

systems, such as High Level Architecture and Tuple-Spaces.

Currently, the PINS architecture is used to study routing protocols for sensor

wireless networks. Simulation objects relating to sensor networks will be added to the

framework library. In the future, many simulation objects may be added, such as a MAC

access control object, radio propagation and signal path loss models for wireless

networks, etc. The PINS framework will also be used in studies of security protocols for

wireless networks. Future work in intrusion detection for wireless networks may involve

research into more robust and intelligent cooperative detection algorithms, as well as a

choice of an anomaly detection model most appropriate for our IDS system. Although we

have achieved a high level of detection of known intrusions, SNORT rules still give rise

to a fairly high number of false-positive alerts. Data-mining techniques may be employed

to reduce the amount of false-positive alerts and to further improve the accuracy of our

intrusion detection system. Whereas an IDS system may detect attacks on mobile hosts,

another possibility is to attack the IDS system itself. As our system employs mobile

agents for intrusion detection, these mobile agents may be the primary target of an attack.

 143

Possible attacks on our IDS system infrastructure and on individual mobile agents in

particular may be investigated, and research conducted into effective means of defense

against these attacks.

 144

REFERENCES

[1] Amdahl, G.M, “Validity of the single-processor approach to achieving large

scale computing capabilities”, AFIPS Conference Proceedings, AFIPS Press,

Reston, Va., vol. 30, pp. 483-485, April 1967.

[2] Anderson, J.P., “Computer Security Threat Monitoring and Surveillance”,

Technical Report, James P Anderson Co., Fort Washington, Pennsylvania,

April 1980.

[3] Anderson, R., Khattak, A., “The Use of Information Retrieval Techniques for

Intrusion Detection”. Proceedings of RAID '98, Louvain-la-Neuve, Belgium,

September 1998.

[4] Ariel Cluster Computer, University of Central Florida, 2005,

http://www.cs.ucf.edu/~jlee/Lab/facility.html

[5] Aspinall, D., “The ATLAS Compuer – The Technology”, University of

Manchester Institute of Science & Technology, May 2001,

http://www.ukuug.org/events/linux2001/papers/html/DAspinall.html

[6] Aspnes, J., Azar, Y., et al, “On-Line Routing of Virtual Circuits with

Applications to Load Balancing and Machine Scheduling”, Journal of the

ACM, Volume: 44, No 3, pp. 486-504, 1997.

 145

[7] Bassiouni, M., Cui, W., Zhou, B., “Fast Routing and Recovery Protocols in

Hybrid Ad-hoc Cellular Networks”, Book Chapter in Wireless

Communications Systems and Networks, edited by M. Guizani, Kluwer

Publishing, 2004.

[8] l

r Parallel and Distributed Systems,

2000, pp. 158-164.

[10]

ss and mobile networks”, ACM Wireless

Networks, v. 7, Issue 5, pp. 467-486, 2001.

[11] ications Architecture Computer

Systems”, MIT-LCS-TR-188, 1977.

[12]

Engineering, SE-5(5), pp. 440-452, 1978.

[13]

Beowulf Project, http://www.beowulf.org/index.htm

[9] Bernardes, M.C. and Santos Moreira, E., “Implementation of an Intrusion

Detection System based on Mobile Agents”, Proceedings of International

Symposium on Software Engineering fo

Boukerche, A., Das, S. K., Fabbri, A., “SWiMNet: a scalable parallel

simulation test-bed for wirele

Bryant, R. E., “Simulation of Packet Commun

Chandy, K. M. and J. Misra, “Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs”, IEEE Transactions on Software

Chang, X., “Network simulations with OPNET”, Proceedings of Winter

Simulation Conference, pp. 307-314, 1999.

 146

[14] Chiang, C.-C., et. al., “Routing in Clustered Multihop, Mobile Wireless

Networks with Fading Channel”, Proceedings of IEEE SICON, pp. 197-211,

April 1997.

Chun Man, M., We

[15] i, V. K., “A Taxonomy for Attacks on Mobile Agent”,

 Communications,

[16]

[17]

[18] Crosbie, M. and Spafford, E., “Defending a Computer System Using

of

[19] Cui, W., Bassiouni, M., “Analysis of Hierarchical Cellular Networks with

shing, Volume 2, pp. 131-149, March

[20]

tion Survivability Conference &

[21] del”, IEEE Transactions on

Software Engineering, Vol. SE-13, pp 222-232, February 1987.

Proceedings of International Conference on Trends in

Volume: 2, pp. 385-388, 2001.

CRAY T3D, http://www.cray-cyber.org/systems/t3d.php

CRAY-1 Supercomputer, http://www.thocp.net/hardware/cray_1.htm

Autonomous Agents“, Technical Report CSD-TR-95-022, Department

Computer Sciences, Purdue University, 1995.

Mobile Base Stations”, Journal of Wireless Communications and Mobile

Computing, John Wiley & Sons Publi

2002.

Dasgupta, D. and Brian, H., “Mobile Security Agents for Network Traffic

Analysis”, Proceedings of DARPA Informa

Exposition II, 2001. DISCEX '01, Volume: 2, 2001, pp. 332–340.

Denning, D. E., “An Intrusion Detection Mo

 147

[22] Frasconi, P. et al, “Successes and Failures of Back-propagation: A Theor

Investigation”, Progress in Neural Networks, Vol. 5, pp. 205-242, 1993.

Fujimoto, R.

etical

[23] , “Parallel and Distributed Simulation Systems“, Proceedings of

[24] he

.H. Freeman and Co., 1979.

ions”,

[27] st

ational Conference on High

[28]

tion (WINDS)”, Fall 2003 SMART Publication, Modeling and

[29] in Wireless

edia

the 2001 Winter Simulation Conference, pp. 147-157, December 2001.

Garey, M. R., Johnson, D. S., “Computers and Intractability: A Guide to t

Theory of NP-Completeness”, W

[25] GloMoSim, http://pcl.cs.ucla.edu/projects/glomosim/

[26] Groselj, B., “CPSim: a tool for creating scalable discrete event simulat

Proceedings of Winter Simulation Conference, 1995, pp. 579-583.

Guan, X., Yang, Y., You, J., “POM-A Mobile Agent Security Model again

Malicious Hosts”, Proceedings of the 4th Intern

Performance Computing in the Asia-Pacific Region, Volume: 2, pp. 1165-

1166, 2000.

Guha, R., Kachirski, O., “An Architecture for Wireless Network Distributed

Simula

Simulation Environment for Critical Infrastructure Protection project,

https://quickplace.berbee.com/cip, 2003.

Guha, R., Kachirski, O., “Intrusion Detection Using Mobile Agents

Ad Hoc Networks”, Proceedings of the IEEE Workshop on Knowledge M

Networking, KMN’02, pp. 153-160, July 2002.

 148

[30] Guha, R., Kachirski, O., Schwartz, D. G., Stoecklin, S., Yilmaz, E., “Case-

Based Agents for Packet-Level Intrusion Detection in Ad Hoc Networks”,

,

:

t 1062,

Massachusetts Institute of Technology, 2001.

[32] Haines, J., Rossey, L., Lippmann, R., Cunningham, R., “Extending the

DARPA Off-Line Intrusion Detection Evaluations”, Proceedings of DARPA

Information Survivability Conference & Exposition II, Volume: 1, 2001, pp.

[33] Heberlein, L. T. et al, “A Network Security Monitor”, Proceedings of the IEEE

Symposium on Research in Security and Privacy, Oakland, CA., May 1990.

[34] Helmer, G., Wong, J., Honavar, V., Miller, L., “Lightweight Agents for

Intrusion Detection”, Technical Report, Dept. of Computer Science, Iowa State

University, 2000.

[35] IT Laboratory for Computer

Science, 1988.

[36]

[37] -hist/vs-illiac-iv.html

[38] Intel Paragon, http://ed-thelen.org/comp-hist/intel-paragon.html

Seventeenth International Symposium On Computer and Information Sciences

Orlando, FL, October 28-30, 2002

[31] Haines, J., Lippmann, R. et al, “1999 DARPA Intrusion Detection Evaluation

Design and Procedures”, Lincoln Laboratory Technical Repor

35-45.

Heybey, A., “MIT Network Simulator”, M

IBM Archives, www-03.ibm.com/ibm/history/exhibits/701/701_intro.html

ILLIAC IV Computer, http://ed-thelen.org/comp

 149

[39] Jansen, W., Karygiannis, T., “Mobile Agent Security”, Special Publication

800-19, National Institute of Standards and Technology, August 1999.

Jefferson, D., “Virtual Time”, ACM Transactions on Programming Languages

and Systems, 7(3), pp. 404-425, 198

[40]

5.

e, pp.

ml

[43] Kelly, O. et. al., “Parallel simulations of wireless networks with TED: radio

propagation, mobility and protocols”, ACM SIGMETRICS Performance

Evaluation Review, v. 25, Issue 4, pp. 30-39, 1998.

[44] Kelly, O. et. al., “Scalable parallel simulations of wireless networks with

WiPPET: modeling of radio propagation, mobility and protocols”, Mobile

[45] Keren, A., Barak, A., “Opportunity Cost Algorithms for Reduction of I/O and

Interprocess Communication Overhead in a Computing Cluster”, IEEE

. 39-

3.

[41] Kachirski, O., Guha, R., “Effective Intrusion Detection Using Multiple Sensors

in Wireless Ad Hoc Networks“, Proceedings of 36th HICSS Conferenc

57-64, January 2003.

[42] KDD Cup Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.ht

Networks and Applications, v. 5, Issue 3, pp. 199-208, 2000.

Transactions on Parallel and Distributed Systems, Volume: 14, No 1, pp

50, January 200

[46] Keshav, S., “REAL 5.0”, Cornell University, 1997,

http://www.cs.cornell.edu/skeshav/real/overview.html

 150

[47] Klauer, B. et al, “Pipelining and Parallel Training of Neural Networks on

Distributed-Memory Multiprocessors”, Proceedings of IEEE World Congress

[48] e Future of the Internet”, Proceedings

[49] ., “High Performance Data Mining for Network

Distributed Computing and Systems (PDCS 2004), MIT Cambridge,

November 2004.

[50] n Systems: The 1998

DARPA Off-Line Intrusion Detection Evaluation”, Proceedings of DARPA

Information Survivability Conference & Exposition II, Volume: 2, 1999, pp.

12-26.

[51] Liu, W. W. et. al., “Parallel simulation environment for mobile wireless

networks”, Proceedings of the 28th conference on Winter simulation, pp. 605-

612, 1996.

[52] S: The Enhanced Prototype”, Technical Report, SRI

International, Computer Science Lab, October 1988.

[53] ,

http://www.employees.org/~bmah/Software/Insane

on Computational Intelligence, 4(27), pp. 2052-2057, 1994.

Kotz, D., Gray, R. S., “Mobile Code: Th

of the Workshop “Mobile Agents in the Context of Competition and

Cooperation (MAC3)” at Autonomous Agents '99, pp. 6-12, May 1999.

Lee, J. and Siddiqui, M

Intrusion Detection”, IASTED International Conference on Parallel and

Lippmann, R. et. al. , “Evaluating Intrusion Detectio

Lunt, T. et al, “IDE

Mah, B., “INSANE Users Manual”, UC Berkeley, 1998

 151

[54] Meadows, C., “A Formal Framework and Evaluation Method for Network

Denial of Service”, IEEE Computer Security Foundations Workshop,

Mordano, Italy, 1999, pp. 4-13.

[56]

is In

[58] Ramanujan, R., Ahamad, A., Bonney, J., Hagelstrom, R., Thurber, K.,

”,

 2,

[59] Reid, M., “An Evaluation of the High Level Architecture (HLA) as a

th

ovember 2000.

enges for Modeling and

[55] Miller, D., Thorpe, J., “SIMNET: The Advent of Simulator Networkng”,

Proceedings of the IEEE, vol. 83, pp. 1114 - 1123, August 1995.

NS-2 Simulator”, VINT Project, 1997, http://www.isi.edu/nsnam/ns/

[57] Pawlikowski, K., Kreutzer, W., “Integrating Modeling And Data Analys

Teaching Discrete Event Simulation”, Proceedings of the 2000 Winter

Simulation Conference, pp. 1645-1650, 2000.

“Techniques for Intrusion-Resistant Ad Hoc Routing Algorithms (TIARA)

Proceedings of 21st Century Military Communications Conference, Volume:

pp. 660-664, 2000.

Framework for NASA Modeling and Simulation“, Proceedings of the 25

NASA Software Engineering Workshop, Goddard Space Flight Center,

Maryland, N

[60] Riley, G. and Ammar, M., “Simulating large networks: how big is big

enough?”, Proceedings of Conference on Grand Chall

Simulation, January 2002.

 152

[61] Royer, E., Toh, C.-K., “A Review of Current Routing Protocols for Ad Hoc

Mobile Wireless Networks”, IEEE Personal Communications, Volume

Issue: 2, April 1999, pp. 46-55.

: 6

e on

Vegas, NV,

[64] ,

[65]

[66] Library, “The IBM SP1”,

[67]

[68] Schönauer, Willi, “Scientific Supercomputing: Architecture and Use of Shared

tät

[62] Russe, S., “Wireless Network Security for Users”, International Conferenc

Information Technology: Coding and Computing (ITCC '01), Las

2001, pp. 172-177.

[63] SANS Institute, “AINT Misbehaving: A Taxonomy of Anti-Intrusion

Techniques”, http://www.sans.org/resources/idfaq/aint.php?printer=Y

SCD Supercomputer Library, “The CDC 6600”

http://www.scd.ucar.edu/computers/gallery/cdc/6600.html

SCD Supercomputer Library, “The CDC 7600”,

http://www.scd.ucar.edu/computers/gallery/cdc/7600.html

SCD Supercomputer

http://www.scd.ucar.edu/computers/gallery/ibm/sp1/wildhorse.html

Scerola Cluster Computer, University of Central Florida, 2001,

http://dart.ist.ucf.edu/dart/beowulf/scerola.html

and Distributed Memory Parallel Computers”, Rechenzentrum Universi

Karlsruhe, Germany, August 1999.

 153

[69] Schwartz, D.G., Stoecklin, S., and Yilmaz, E., “A Case-Based Approach to

Network Intrusion Detection”, Fifth International Conference on Informati

Fusion, IF'02, Annapolis, MD, J

on

uly 7-11, 2002, pp. 1084 - 1089.

th IFSA

4, pp.

[72] urth Aerospace

7-44, Tracor Applied Science

trusion Detection”,

ry 1991.

M Computer

y 1989.

ence, Baltimore, MD., October 1996.

[70] Sebring, M. et al, “Expert Systems in Intrusion Detection: A Case Study”,

Proceedings of the 11th National Computer Security Conference, Baltimore,

MD., October 1988.

[71] Siraj, A., Bridges, S., Vaughn, R., “Fuzzy Intrusion Detection”, Joint 9

World Congress and 20th NAFIPS International Conference, Volume:

2165-2170, 2001.

Smaha, S. E., “Haystack: An Intrusion Detection System”, Fo

Computer Security Applications Conference, pp 3

Inc., Austin, Texas, December 1988.

[73] Snapp, S. R. et al, “A System For Distributed In

Proceedings of the IEEE COMPCON 91, San Francisco, CA., Februa

[74] Spafford, E. H., “The Internet Worm Program: An Analysis”, AC

Communication Review, 19(1), pp 17-57, Januar

[75] Staniford-Chen, S., Cheunget, S. et al , “GrIDS - A Graph-Based Intrusion

Detection System for Large Networks”, Proceedings of the 19th National

Information Systems Security Confer

 154

[76] Svensson, B. et al, “Using and Designing Massively Parallel Computers for

Artificial Neural Networks”, Journal of Parallel and Distributed Computing,

14(3), pp. 260-285, 1992.

[77] Takai, M., “Wireless Network Simulation in GloMoSim/PARSEC”, PARSE

Workshop, UCLA, 1999.

Tao, J., Ji-ren, L., Ya

C

[78] ng, Q., “The Research on Dynamic Self-Adaptive

9, 2000.

[80]

ommunications and Networking

[81]

[82] iki/IBM_7030

”,

[84] Wilson, G., “The History of the Development of Parallel Computing”,

University of Toronto, http://ei.cs.vt.edu/~history/Parallel.html

Network Security Model Based on Mobile Agent”, Proceedings of 36th

International Conference on Technology of Object-Oriented Languages and

Systems, pp. 134-13

[79] The Computer Museum, www.computermuseum.li/Testpage/IBM-709.htm

Venkatraman, L., Agrawal, D., “A Novel Authentication Scheme for Ad Hoc

Networks”, Proceedings of Wireless C

Conference, Volume: 3, pp. 1268-1273, 2000.

Vigna, G., ed., “Mobile Agents and Security”, Vol. 1419 of Lecture Notes in

Computer Science. Springer-Verlag, 1998.

Wikipedia, IBM STRETCH Computer, en.wikipedia.org/w

[83] Williams, R.J. et al, “Learning Representations by Back-Propagating Errors

Nature, Vol. 323, pp. 533-536, 1986.

 155

[85] Wyckoff, P., “T Spaces”. IBM System Journal, 37:3, August 1998.

Zhang, Y. and Lee, W., “Intrusion Detection in Wireless Ad-Hoc Networks“,

Proceedings of the 6th Annu

[86]

al International Conference on Mobile Computing

[87] IEEE 1516”, Simulation Interoperability Standards

and Networking, MobiCom’2000, pp. 275-283.

Zimmerman, P., “Status of

Organization Newsletter,

http://www.sisostds.org/webletter/siso/iss_75/art_362.htm

 156

	An Interactive Distributed Simulation Framework With Application To Wireless Networks And Intrusion Detection
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES AND LISTINGS
	LIST OF ACRONYMS
	CHAPTER 1: INTRODUCTION
	1.2 Contributions
	1.3 Organization of the Dissertation

	CHAPTER 2: BACKGROUND KNOWLEDGE
	2.1 Distributed Simulation Systems
	2.1.1 History of Development of Parallel and Distributed S
	2.1.2 Principles of Parallel and Distributed Simulation Sy
	2.1.3 Modern Distributed Simulation Systems and HLA

	2.2 Intrusion Detection Systems
	2.2.1 Overview
	2.2.2 Need for Intrusion Detection Systems
	2.2.3 Classification of Intrusion Detection Systems
	2.2.4 Limitations of Existing Systems
	2.2.5 Summary of Work on Intrusion Detection Systems

	2.3 Agent Systems
	2.3.1 Overview
	2.3.2 Uses of Mobile Agent Systems
	2.3.3 Mobile Agent System Security

	CHAPTER 3: PARALLEL INTERACTIVE NETWORK SIMULATION SYSTEM –
	3.1 Existing Work on Network Simulation
	3.2 Network Simulator Architecture
	3.2.1 Design Philosophy
	3.2.2 Simulator Components
	3.2.3 Requirements and Limitations of Simulation Framework

	3.3 Wireless Network Distributed Simulation System
	3.3.1 WINDS Design for Cluster Computer
	3.3.2 Simulation Clock Synchronization
	3.3.3 Parallel Optimizations
	3.3.4 Serialization of Simulation Objects and Load Balanci

	3.4 Summary

	CHAPTER 4: CASE STUDY – WINDS SIMULATION
	4.1 Simulation of MBS Mobility in a Totally-Mobile Wireles
	4.1.1 Objectives
	4.1.2 Simulation Design
	4.1.3 Simulation Execution and Results

	4.2 Summary

	CHAPTER 5: INTRUSION DETECTION FOR WIRELESS AD HOC NETWORKS
	5.1 Rule-Based Intrusion Detection
	5.1.1 Case-Based Reasoning Systems

	5.2 Network Intrusion Detection System for MANETs
	5.2.1 Modular IDS Architecture
	5.2.2 Mobile Agent Distribution across Wireless Ad Hoc Net
	5.2.3 IDS Activity Monitoring Process

	5.3 Simulation of a Wireless Ad Hoc Network Clustering Alg
	5.3.1 Objectives
	5.3.2 Simulation Design
	5.3.3 Simulation Execution and Results

	5.4 Intrusion Detection Mechanisms
	5.4.1 Collaborative vs. Independent Decision Making
	5.4.2 Intrusion Detection Process
	5.4.3 CBR Implementation of a Packet-Monitoring Agent

	5.5 Load-Balancing for Packet-Monitoring Agents
	5.5.1 Load-Balancing Strategies for Network Packet Monitor
	5.5.2 Optimal Job Assignment and Algorithm Implementation
	5.5.3 Simulation vs. Analytical Results

	5.6 Summary

	CHAPTER 6: PERFORMANCE COMPARISON OF PINS, HLA AND TSPACES
	6.1 Study Objectives
	6.2 Distributed System Architectures – HLA and TSpaces
	6.3 Knowledge Discovery Problem for Intrusion Detection
	6.4 Simulation Design
	6.5 Simulation Execution and Results
	6.6 Summary

	CHAPTER 7: CONCLUSION
	REFERENCES

