80 research outputs found

    Neural Network-Based Multi-Target Detection within Correlated Heavy-Tailed Clutter

    Full text link
    This work addresses the problem of range-Doppler multiple target detection in a radar system in the presence of slow-time correlated and heavy-tailed distributed clutter. Conventional target detection algorithms assume Gaussian-distributed clutter, but their performance is significantly degraded in the presence of correlated heavy-tailed distributed clutter. Derivation of optimal detection algorithms with heavy-tailed distributed clutter is analytically intractable. Furthermore, the clutter distribution is frequently unknown. This work proposes a deep learning-based approach for multiple target detection in the range-Doppler domain. The proposed approach is based on a unified NN model to process the time-domain radar signal for a variety of signal-to-clutter-plus-noise ratios (SCNRs) and clutter distributions, simplifying the detector architecture and the neural network training procedure. The performance of the proposed approach is evaluated in various experiments using recorded radar echoes, and via simulations, it is shown that the proposed method outperforms the conventional cell-averaging constant false-alarm rate (CA-CFAR), the ordered-statistic CFAR (OS-CFAR), and the adaptive normalized matched-filter (ANMF) detectors in terms of probability of detection in the majority of tested SCNRs and clutter scenarios.Comment: Accepted to IEEE Transactions on Aerospace and Electronic System

    Knowledge-aided Bayesian covariance matrix estimation in compound-Gaussian clutter

    Get PDF
    We address the problem of estimating a covariance matrix R using K samples zk whose covariance matrices are kR, where k are random variables. This problem naturally arises in radar applications in the case of compound-Gaussian clutter. In contrast to the conventional approach which consists in considering R as a deterministic quantity, a knowledge-aided (KA) approach is advocated here, where R is assumed to be a random matrix with some prior distribution. The posterior distribution of R is derived. Since it does not lead to a closed-form expression for the minimum mean-square error (MMSE) estimate of R, both R and k are estimated using a Gibbs-sampling strategy. The maximum a posteriori (MAP) estimator ofR is also derived. It is shown that it obeys an implicit equation which can be solved through an iterative procedure, similarly to the case of deterministic ks, except that KA is now introduced in the iterative scheme. The new estimators are shown to improve over conventional estimators, especially in small sample support

    Multi-headed deep learning-based estimator for correlated-SIRV Pareto type II distributed clutter

    Get PDF
    This paper deals with the problem of estimating the parameters of heavy-tailed sea clutter in high-resolution radar, when the clutter is modeled by the correlated Pareto type II distribution. Existing estimators based on the maximum likelihood (ML) approach, integer-order moments (IOM) approach, fractional-order moments (FOM), and log-moments (log-MoM) have shown to be sensitive to changes in data correlation. In this work, we resort to a deep learning (DL) approach based on a multi-headed architecture to overcome this problem. Offline training of the artificial neural networks (ANN) is carried out by using several combinations of the clutter parameters, with different correlation degrees. To assess the performance of the proposed estimator, we resort to Monte Carlo simulation, and we observed that it has superior performance over existing approaches in terms of estimation mean square error (MSE) and robustness to changes of the clutter correlation coefficient

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    Knowledge-aided covariance matrix estimation and adaptive detection in compound-Gaussian noise

    Get PDF
    We address the problem of adaptive detection of a signal of interest embedded in colored noise modeled in terms of a compound-Gaussian process. The covariance matrices of the primary and the secondary data share a common structure while having different power levels. A Bayesian approach is proposed here, where both the power levels and the structure are assumed to be random, with some appropriate distributions. Within this framework we propose MMSE and MAP estimators of the covariance structure and their application to adaptive detection using the NMF test statistic and an optimized GLRT herein derived. Some results, also conducted in comparison with existing algorithms, are presented to illustrate the performances of the proposed algorithms. The relevant result is that the solutions presented herein allows to improve the performance over conventional ones, especially in presence of a small number of training data

    Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context

    Get PDF
    International audienceThis paper addresses the problem of the Clutter Subspace Projector (CSP) estimation in the context of a disturbance composed of a Low Rank (LR) heterogeneous clutter , modeled here by a Spherically Invariant Random Vector (SIRV), plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters and detectors require less training vectors than classical methods to reach equivalent performance. Unlike classical adaptive processes, which are based on an estimate of the noise Covariance Matrix (CM), the LR processes are based on a CSP estimate. This CSP estimate is usually derived from a Singular Value Decomposition (SVD) of the CM estimate. However, no Maximum Likelihood Estimator (MLE) of the CM has been derived for the considered disturbance model. In this paper, we introduce the fixed point equation that MLE of the CSP satisfies for a disturbance composed of a LR-SIRV clutter plus a zero mean WGN. A recursive algorithm is proposed to compute this solution. Numerical simulations validate the introduced estimator and illustrate its interest compared to the current state of art
    corecore