1,071 research outputs found

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model

    Fluid/Structure Interactions

    Get PDF
    This Special Issue contains 12 papers devoted to fluid/structure interaction (FSI) problems. The main feature of the problems is an interface on which consistent boundary conditions for both the liquid and the solid regions are formulated. The presented studies cover a wide range of problems and methods for their solution, including problems of weak, or one-way interaction, in which the effect of interface deformation on the fluid flow can be neglected, as well as problems of the strong interaction, for which the interface change affects both the flow and the structure behaviour. The interest in FSI problems is very great due to their practical importance. Recent developments in engineering have led to advanced formulations of FSI problems. Some of them could not be formulated several years ago. The presented papers demonstrate progress in both numerical algorithms, mathematical apparatus and advanced computational techniques. In this issue, we have tried to collect different FSI problems, new mathematical and numerical approaches, new numerical techniques and, of course, new results, which can provide an insight into FSI processes

    Modeling and rendering for development of a virtual bone surgery system

    Get PDF
    A virtual bone surgery system is developed to provide the potential of a realistic, safe, and controllable environment for surgical education. It can be used for training in orthopedic surgery, as well as for planning and rehearsal of bone surgery procedures...Using the developed system, the user can perform virtual bone surgery by simultaneously seeing bone material removal through a graphic display device, feeling the force via a haptic deice, and hearing the sound of tool-bone interaction --Abstract, page iii

    Nitsche’s method for two and three dimensional NURBS patch coupling

    Get PDF
    We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications

    Advances in the development of the discrete element method for excavation processes

    Get PDF
    This work presents new developments of the discrete element method improving e ciency and accuracy of modelling of rock-like materials, especially in excavation processes.Postprint (published version

    Advances in the development of the discrete element method for excavation processes

    Get PDF
    Modelling of granular materials, soils and rocks has been a challenging topic of investigation for decades. Classical continuum mechanics has been used to idealize soils and rocks, and numerical solution techniques such as finite element method (FEM) has been used to model these materials. Considering the idealization of the material, continuum mechanics allows the analysis of phenomena with discontinuous nature such as fracture in rock or soil via damage models. However, in more complex processes like rock milling or crushing, this kind of models are usually not suitable. Discrete models are more appropriate for problems with multiple discontinuities and particulate materials. The discrete element method (DEM) has been gaining popularity in analysis of granular materials, soils and rocks. Many aspects of this method still require more profound investigation. This thesis presents new developments of the discrete element method improving effi ciency and accuracy of modelling of rock-like materials, especially in excavation processes. All the numerical algorithms has been implemented in an in-house software, which was then used to run numerical examples. The basic formulation of DEM with linear elastic-perfectly brittle contact model is presented. The main di erence with other models found in the literature is the consideration of global sti ness and strength parameters that are constants in the whole model. The result of a simulations is strongly related with the con guration of the particle assembly used. Particle assemblies should be su ciently compact and ensure the isotropy to reproduce the physical properties of the modelled material. This thesis presents a novel technique for the generation of highly dense particle assemblies in arbitrary geometries, satisfying all the requirements for accurate discrete element simulations. One of the key issues in the use of the DEM is the estimation of the contact model parameters. A methodology is proposed for the estimation of the contact model parameters yielding required macroscopic properties of the material. The relationships between the contact model parameters and the mechanical properties of brittle materials, as well as the influence of the particles assembly con guration on the macroscopic properties, are analysed. A major di culty in the application of the DEM to real engineering problems is the high computational cost in simulation involving a large number of particles. The most common way to solve this is the use of parallel computing techniques, where multiple processors are used. As an alternative, a coupling scheme between DEM and the finite element method (FEM) is proposed in the thesis. Within the hybrid DEM/FEM model, DEM is only used in the region of the domain where it provides an advantage over a continuum-based approach, as the FEM. The coupling is dynamically adapted, starting with the whole domain discretized with FEM. During the simulation, in the regions where a high stress level are found, a change of modelling method from continuum FEM to the discrete DEM is employed. Finally, all the developments are applied to the simulation of a real excavation process. An analysis of the rock cutting process with TBM disc cutters is performed, where DEM and the DEM/FEM coupling technique presents an important advantage over other simulation techniques.La modelación de materiales granulares, terrenos y rocas ha sido un desafío para la investigación por décadas. La mecánica del continuo clásica ha sido utilizada para idealizar terrenos y rocas, y técnicas numéricas de solución, como el método de los elementos finitos (FEM), han sido usadas para modelar estos materiales. Considerando la idealización del material, la mecánica del continuo permite el análisis de fenómenos de naturaleza discontinua como la fractura en rocas y terreno mediante modelos de daño. Sin embargo, en procesos mas complejos como la molienda o trituración de roca, este tipo de modelos no suelen ser adecuados. Los modelos discretos son mas apropiados para problemas con múltiples discontinuidades y material particulado. El método de los elementos discretos (DEM) ha ido ganando popularidad en el análisis de materiales granulares, terrenos y rocas. Sin embargo, muchos aspectos de este método todavía requieren una investigación mas profunda. Esta tesis presenta nuevos desarrollos del método de los elementos discretos para mejorar su eficiencia y precisión en el modelado de materiales como roca, especialmente para procesos de excavación. Todos los algoritmos numéricos se han implementado en el programa propio, que ha sido utilizado para probar distintos ejemplos. La formulación básica del DEM, con un modelo lineal de contacto elástico perfectamente frágil ha sido utilizado en el presente trabajo. La principal diferencia con otros modelos de la literatura es la consideración de que los parámetros de rigidez y fuerzas máximas son valores globales y constantes en todo el modelo. El resultado de la simulación está fuertemente relacionado con la configuración del ensamblaje de partículas utilizado. El ensamblaje de partículas debe ser suficientemente compacto y asegurar la isotropía de las propiedades físicas del material modelado. La tesis presenta una nueva técnica para la generación de ensamblajes de partículas de alta densidad para geometrías arbitrarias, satisfaciendo todos los requisitos para una simulación con elementos discretos correcta. Uno de los temas clave en el uso del DEM es la estimación de los parámetros del modelo de contacto. Se propone una metodología para la estimación de los parámetros del modelo de contacto siguiendo las propiedades macroscópicas requeridas en el material Las relaciones entre los parámetros del modelo y las propiedades mecánicas de materiales frágiles, así como su la influencia de la configuración del ensamblaje de partículas son analizadas. Una gran dificultad en la aplicación del DEM en problemas reales de ingeniería es el alto costo computacional de simulaciones que consideran un gran número de partículas. La solución mas común para resolver esto es el uso de técnicas de computación paralela, donde se utiliza un gran número de procesadores. Como vía alternativa, un esquema acoplado entre el DEM y el FEM expuesto en la tesis. Con el modelo híbrido DEM/FEM, el DEM es usado solo en las partes del dominio donde presenta ventajas sobre el enfoque continuo del FEM. El acoplamiento puede ser adaptado dinámicamente, comenzando con todo el dominio discretizado con FEM, y durante la simulación, en las regiones donde se encuentran altos niveles de tensión, se emplea un cambio del método de simulación de continuo (FEM) a discreto (DEM). Finalmente, todos los desarrollos son aplicados a la simulación de un proceso excavación real. Se realiza un estudio del proceso de corte de roca con discos costadores, utilizados en tuneladoras, donde el DEM y la técnica de acoplamiento presentan una importante ventaja sobre otras técnicas de simulación

    Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming.

    Get PDF
    In this paper, we report on the developed and used of finite element methods, have been developed and used for sheet forming simulations since the 1970s, and have immensely contributed to ensure the success of concurrent design in the manufacturing process of sheets metal. During the forming operation, the Gurson–Tvergaard–Needleman (GTN) model was often employed to evaluate the ductile damage and fracture phenomena. GTN represents one of the most widely used ductile damage model. In this investigation, many experimental tests and finite element model computation are performed to predict the damage evolution in notched tensile specimen of sheet metal using the GTN model. The parameters in the GTN model are calibrated using an Artificial Neural Networks system and the results of the tensile test. In the experimental part, we used an optical measurement instruments in two phases: firstly during the tensile test, a digital image correlation method is applied to determinate the full-field displacements in the specimen surface. Secondly a profile projector is employed to evaluate the localization of deformation (formation of shear band) just before the specimen’s fracture. In the validation parts of this investigation, the experimental results of hydroforming part and Erichsen test are compared with their numerical finite element model taking into account the GTN model. A good correlation was observed between the two approaches
    corecore