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Abstract

Modelling of granular materials, soils and rocks has been a challenging topic of

investigation for decades. Classical continuum mechanics has been used to idealize soils

and rocks, and numerical solution techniques such as finite element method (FEM)

has been used to model these materials. Considering the idealization of the material,

continuum mechanics allows the analysis of phenomena with discontinuous nature such

as fracture in rock or soil via damage models. However, in more complex processes like

rock milling or crushing, this kind of models are usually not suitable. Discrete models

are more appropriate for problems with multiple discontinuities and particulate materials.

The discrete element method (DEM) has been gaining popularity in analysis of granular

materials, soils and rocks. Many aspects of this method still require more profound

investigation.

This work presents new developments of the discrete element method improving

efficiency and accuracy of modelling of rock-like materials, especially in excavation

processes. All the numerical algorithms has been implemented in an in-house software,

which was then used to run numerical examples.

The basic formulation of DEM with linear elastic-perfectly brittle contact model

is presented. The main difference with other models found in the literature is the

consideration of global stiffness and strength parameters that are constants in the whole

model.

The result of a simulations is strongly related with the configuration of the particle

assembly used. Particle assemblies should be sufficiently compact and ensure the isotropy

to reproduce the physical properties of the modelled material. This work presents a novel

technique for the generation of highly dense particle assemblies in arbitrary geometries,

satisfying all the requirements for accurate discrete element simulations.

One of the key issues in the use of the DEM is the estimation of the contact

model parameters. A methodology is proposed for the estimation of the contact model

parameters yielding required macroscopic properties of the material. The relationships

between the contact model parameters and the mechanical properties of brittle materials,

as well as the influence of the particles assembly configuration on the macroscopic
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properties, are analysed.

A major difficulty in the application of the DEM to real engineering problems is the

high computational cost in simulation involving a large number of particles. The most

common way to solve this is the use of parallel computing techniques, where multiple

processors are used. As an alternative, a coupling scheme between DEM and the finite

element method (FEM) is proposed in the work. Within the hybrid DEM/FEM model,

DEM is only used in the region of the domain where it provides an advantage over a

continuum-based approach, as the FEM. The coupling is dynamically adapted, starting

with the whole domain discretized with FEM. During the simulation, in the regions where

a high stress level are found, a change of modelling method from continuum FEM to the

discrete DEM is employed.

Finally, all the developments are applied to the simulation of a real excavation process.

An analysis of the rock cutting process with TBM disc cutters is performed, where

DEM and the DEM/FEM coupling technique presents an important advantage over other

simulation techniques.
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Chapter 1

Introduction

1.1 Motivation and objectives

Modelling granular materials, solid and rocks has been a challenging topic of investigation

for decades. The particulate nature of granular materials controls their engineering

behaviour. According to a classical definition [37], granular materials are characterized

by hard inelastic contacts of their elementary constituents, friction, and negligible

thermodynamic effects.

Classical continuum mechanics has been used to idealize soils and rocks, and numerical

solution techniques such as finite element method (FEM) have been successfully used

to model these materials. The continuum mechanics models are phenomenological and

are primarily concerned with the mathematical modelling of the observed phenomenon

without giving detailed attention to the fundamental physical significance. This approach

considers three completely independent assumptions: continuity, homogeneity and

isotropy. This is an idealization of the materials for the representation of its mechanical

behaviour.

Considering the idealization of the material, continuum mechanics allows the analysis

of certain phenomenas such as fracture in rock or soil via damage models [20]. However,

in more complex processes like rock milling or crushing these kind of models are not

always suitable. This is because the discrete nature makes the constitutive relationship

complex and needs an excessive number of parameters to be able to model the behaviour

accurately.

Granular materials consist of grains in contact and surrounding voids. The mechanical

behaviour of granular materials is, therefore, inherently discontinuous and heterogeneous,

and typically anisotropic.

A different approach is the use of discontinuous or discrete models which treats the

particles in a direct way. The particulate nature is automatically simulated as discrete
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particles and forces are transferred through the contacts between particles. The material

behaviour is modelled in a realistic way, considering the random distribution of particles

size and shape. In the case of cohesive materials, like rocks, fracture can be obtained in

a simple way through the breakage of bonds between particles with adhesive contacts.

The most common discrete techniques for the simulation of granular materials are

the discrete element method (DEM) [33] and molecular dynamics (MD) [4, 90]. Both

methods can handle a wide range of materials constitutive behaviours, contact laws, and

arbitrary geometries. The DEM for modelling granular soils within the context of civil

engineering was first introduced by Cundall and Strack [33]. The particles were modelled

as a random assembly of discrete discs. Many research studies have since been conducted

to improve the simulation of angular grain shapes. Nowadays, the DEM is used in a wide

range of engineering problems like fracture, rock crushing, excavation processes, or even

in the pharmaceutical or chemical industry, for the transport of particles.

The DEM allows the use of different contact laws, linear and non-linear, depending on

the process that will be simulated. This permits the simulation of a problem in different

scales, and even the modelling of the particles behaviour at its real size, involving the

interaction of many particles in the system.

This technique is a very efficient tool for the analysis of different problems, but does

come with some drawbacks. The calculation of each particle-particle interaction, in some

cases with complex contact laws, requires a high computational effort. Sometimes, a DEM

simulation can take days or week. This restricts its application to simple problems with

a small number of elements or simple shape particles. Another requirement of the DEM

is the estimation of the contact model parameters, that in some cases cannot be obtained

in a direct way.

This work aims to advance in the use of the DEM technology, seeking to make

contributions to enable a better understanding of it. In particular, its use in the simulation

of brittle materials. Different aspects of the DEM will be developed, like the estimation

of parameters or the particles packing techniques. These aspects are strongly related,

because the behaviour of the particles system depends of the initial configurations.

Other aspects, like the improvement of the computational efficiency associated with

the simulations are developed. A coupling technique with continuum-based methods

is introduced, and the algorithms used for the contact resolution are studied.

All the developments are applied to the simulation of rock cutting processes. In mining

or tunnelling, rock cutting is one of the most important processes used, and the global

performance of the process and its cost are strictly related.
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1.2 Outline

This work is divided into seven chapters; their contents are summarized in the following

section.

In chapter 2, the formulation of the discrete element is presented. In the literature,

different approaches for the implementation of the DEM are found. The contact model

presents the most important part of the DEM, where the contact can be defined as a

linear elastic contact model, like the elastic perfectly brittle model, or non-linear elastic

response like the Hertz contact model, where the elastic range of the contact is defined

with a power function of the contact gap. This work presents the description of the

elastic perfectly brittle model implemented, as well as the time integration scheme and

other important numerical aspects involved. The main difference with other models found

in the literature is the consideration of global stiffness and strength parameters that are

constants, which are not scaled at the contact level.

In chapter 3, a novel technique for the generation of the particulate media is

introduced, where the most important characteristic is the highly dense particles assembly

in arbitrary geometries, satisfying all the requirements for accurate DEM simulations. In

a DEM simulation the results obtained are strongly related with the configuration of the

particle assembly used. This mesh dependence requires a good characterization of the

generated package of particles in order to ensure the level of anisotropy or other physical

properties of the material to be modelled.

In chapter 4, a methodology for the estimation of the contact model parameters

based on the mechanical properties of the material is presented. In the simulation of solid

material like rock, a contact model with cohesion is used. The parameters associated

with the elastic deformation are related with the stiffness of the contact, but the strength

should be reflected in a contact model as a limit force for the cohesion, breaking the bonds

between particles. This micro-macro transition enables the collective behaviour of many

particles to be understood as a function of their contact properties. The relationships

between the contact model parameters and the mechanical properties of the brittle

materials are analysed, as well as the influence of the particles assembly configuration.

In chapter 5, a coupling scheme between DEM and the finite element method (FEM) is

presented. A major difficulty in the application of the DEM to real engineering problems

is the high computational cost in simulations involving a large number of particles. The

most common way to solve this is the use of parallel computing techniques, where multiple

processors are used. As an alternative, a coupling scheme between DEM and FEM

is proposed. In the simulation of processes which involve fragmentation or fracture, a

discrete technique is very useful in order to model the discontinuity, but in the region

far from the damage the behaviour can be perfectly solved with FEM. Within the hybrid
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DEM/FEM model, DEM is only used in the region of the domain where it provides

an advantage over a continuum-based approach. The multi-scale approach minimizes

the extra computational cost of the DEM. An adaptive coupling process is introduced,

allowing a dynamic change of modelling technique. The simulation process starts with

the whole domain discretized with FEM. During the simulation, in the regions where

high stress level are found, a change of model from continuum FEM to discrete DEM is

employed.

In Chapter 6, the techniques developed in the previous chapters are applied to the

analysis of excavation processes. Special emphasis has been put on the simulation of the

rock cutting process, where both DEM and DEM/FEM coupling present an important

advantage over other simulation techniques.

Finally, some remarks and conclusions are provided, and further developments are

suggested.



Chapter 2

The discrete element method

The so-called discrete (or distinct) element method (DEM) was originally developed by

Cundall [34, 35] for the analysis of rock mechanics problems. The basic formulation of the

DEM using spherical or cylindrical particles was later proposed by Cundall and Strack

[33] to investigate the constitutive laws for soil. Cundall and Hart [36] showed that DEM

is better at modelling a discontinuous material than other numerical tools such as the

finite element method.

The DEM assumes that the material can be represented by an assembly of rigid

particles interacting among themselves. The overall behaviour of the system is determined

by the cohesive/frictional contact laws. The contact law can be seen as the formulation of

the material model on the microscopic level. Cohesive bonds can be broken, which allows

to simulate fracture of material and its propagation.

This chapter presents the formulation used in the present work, based the formulation

developed by Rojek et al. in [93].

2.1 Equations of motion

The translational and rotational motion of rigid spherical or cylindrical particles is

described by means of Newton-Euler equations of rigid body dynamics. For the i-th

element we have

miüi = Fi (2.1)

Iiω̇i = Ti (2.2)

where ui is the displacement of the particle center in a fixed (inertial) coordinate frame

X, ωi the angular velocity, mi the element (particle) mass, Ii the moment of inertia, Fi

the resultant force, and Ti the resultant moment about the central axes.
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Vectors Fi and Ti are sums of all forces and moments applied to the i-th element

Fi =
nc∑
c=1

Fc
i + Fext

i + Fdamp
i (2.3)

Ti =
nc∑
c=1

(rci × Fc
i + qci) + Text

i + Tdamp
i (2.4)

where Fext
i and Text

i are external load, Fc
i the contact force for the interaction with

neighbouring spheres and other obstacles, Fdamp
i and Tdamp

i are the force and torque

resulting from damping in the system (discussed in section 2.4), rci is the vector connecting

the center of the particles of the i-th element with the contact point c, nc its number of

particles being in contact and qci are torques due to rolling or torsion (not related with

the tangential forces).

The form of rotational equation (2.2) is valid for spheres and cylinders (in 2D) and is

simplified with respect to a general form for an arbitrary rigid body with the rotational

inertial properties represented by the second order tensor.

2.2 Contact forces

Once contact between a pair of elements has been detected, the forces occurring at the

contact point are calculated. The interaction between the two interacting bodies can be

represented by the contact forces Fi and Fj, which by the Newton’s third law satisfy the

following relation:

Fi = −Fj (2.5)

We take F = Fi and decompose F into the normal and tangential components, Fn

and Ft, respectively (Figure 2.1)

F = Fn + Ft = fnn + Ft (2.6)

where n is the unit vector normal to the particle surface at the contact point (this implies

that it lies along the line connecting the centers of the two particles) and directed outwards

from the particle i

n =
xj − xi
‖xj − xi‖

(2.7)

The contact forces fn and Ft are obtained using a constitutive model formulated

for the contact between two rigid spheres (or discs in 2D) (Figure 2.2). The contact
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vj

ωj

ωi

vi

Fn

Ft

Figure 2.1. Decomposition of the contact force into the normal and tangential
components.

interface in our formulation is characterized by the normal and tangential stiffness kn and

kt, respectively, the Coulomb friction coefficient µ, and the contact damping coefficient

cn.

µ

cn

kn

kt

Figure 2.2. Rheological model of the contact.

2.2.1 Normal contact force

The normal contact force fn is decomposed into the elastic part fne and the damping

contact force fnd

fn = fne + fnd (2.8)

The damping part is used to decrease oscillations of the contact forces and to dissipate

kinetic energy.

The elastic part of the normal contact force fne is proportional to the normal stiffness

kn and to the penetration of the two particle surfaces urn, i.e.

fne = knurn (2.9)
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The penetration is calculated as

urn = (xj − xi) · n− (rj + ri) (2.10)

where xi, xj are the center of the particles, n the normal unit vector between the particles

(Eq. 2.7), and ri, rj their radii. If no cohesion is allowed, no tensile normal contact forces

are allowed and hence

fne ≤ 0 (2.11)

If urn < 0, Eq. (2.9) holds, otherwise fne = 0. The contact with cohesion will be

considered later on.

The contact damping force is assumed to be of viscous type and given by

fnd = cnvrn (2.12)

where vrn is the normal relative velocity of the centres of the two particles in contact

defined by

vrn = (u̇j − u̇i) · n (2.13)

The damping coefficient cn can be taken as a fraction α of the critical damping Ccr

for the system of two rigid bodies with masses mi and mj, connected with a spring of

stiffness kn ([107]) with

cn = αCcr = 2α
√
mijkn (2.14)

with 0 ≤ α ≤ 1, and where mij is the reduced mass of the contact

mij =
mimj

mi +mj

(2.15)

The fraction α it is related with the coefficient of restitution cr, which is a fractional

value representing the ratio of speeds after and before of an impact, through [65]

α =
− ln cr√
π2 + ln2 cr

(2.16)

In the present work, we have used for the fraction of critical damping α=0.9, assuming

a quasi-static state for the simulated processes.
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2.2.2 Tangential frictional contact

In the absence of cohesion (if the particles were not bonded at all or the initial cohesive

bond has been broken) the tangential reaction Ft appears by friction opposing the relative

motion at the contact point. The relative tangential velocity at the contact point vrt is

calculated from the following relationship

vrt = vr − (vr · n)n (2.17)

with

vr = (u̇j + ωj × rcj)− (u̇i + ωi × rci) (2.18)

where u̇i, u̇j, and ωi, ωj are the translational and rotational velocities of the particles,

and rci and rcj are the vectors connecting particle centres with contact points.

µ|fn|

urt

ft

(a) Classical Coulomb law.

µ|fn|

urt

ft

kt

(b) Regularized Coulomb law.

Figure 2.3. Friction force vs. relative tangential displacement.

The relationship between the friction force ft and the relative tangential displacement

urt for the classical Coulomb model (for a constant normal force fn) is shown in

Figure 2.3(a). This relationship would produce non physical oscillations of the friction

force in the numerical solution due to possible changes of the direction of sliding velocity.

To prevent this, the Coulomb friction model must be regularized. The regularization

procedure chosen involves decomposition of the tangential relative velocity into reversible

and irreversible parts, vr
rt and vir

rt, respectively as:

vrt = vr
rt + vir

rt (2.19)

This is equivalent to formulating the frictional contact as a problem analogous to that

of elastoplasticity, which can be seen clearly from the friction force-tangential displacement
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relationship in Figure 2.3(b). This analogy allows us to calculate the friction force

employing the standard radial return algorithm. First a trial state is calculated

Ftrial
t = Fn-1

t − ktvrt∆t (2.20)

and then the slip condition is checked

φtrial = ‖Ftrial
t ‖ − µ|fn| (2.21)

If φtrial ≤ 0, we have stick contact and the friction force is assigned the trial value

Fn
t = Ftrial

t (2.22)

otherwise (slip contact) a return mapping is performed giving

Fn
t = µ|fn|

Ftrial
t

‖Ftrial
t ‖

(2.23)

2.3 Constitutive models

In the literature it is possible found different constitutive models for the contact between

particles.

The elastic response in the contact models can be separated into linear and nonlinear

models. All of them can be represented by the normal and tangential stiffnesses, kn and

kt respectively, defined in (2.9) and (2.20).

The Hertz contact model is the most classical nonlinear model used in particle

collisions [60]. From the Hertz theory for an elastic sphere i the normal stiffness may

be written as

kn =

(
2

3

G
√

2r′

(1− ν)

)
√
urn (2.24)

where r′ is called contact radius, defined as

r′ =
2 ri rj
ri + rj

(2.25)

As a complement to the Hertz model, which considers just the normal collision,

Mindlin and Deresiewicz [81] extended the theory for the stiffness in the tangential
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direction as

kt =

(
2(G23(1− ν)r′)1/3

2− ν

)
|fne|1/3 (2.26)

The called Hertz-Mindlin contact model has been extensively used for granular

dynamic simulations [38, 65]. A more general version of this model considers a modified

contact damping coefficient (2.12) in order to avoid the viscous force when urm = 0

fnd = cnurnvrn (2.27)

The Hertz theory does not work in the case of bonded particles, and it is just reserved

for contacts under compression.

Cundall and Strack [33] defines a linear stiffness proportional to the particle size. This

model has been implemented in the PFC2D and PFC3D codes [64].

This model assume that the elastic connection along the line passing through the

centres of any two particles in contact is formed by two springs in series. Each spring

which its own stiffness Ki
n

Ki
n = 4Ec ri (2.28)

where Ec is called particle elastic modulus and with the serial connection between particles

we have

kn =
Ki
nK

j
n

Ki
n +Kj

n

(2.29)

Considering two particles of with the same mechanical properties, and radius ri and

rj, the contact stiffness in normal and tangential direction are defined as

kn = 2Ec r
′ (2.30)

kt =
kn
κ

(2.31)

where κ is the stiffness ratio kn/kt.

The most particular aspect of this linear model presents an scaled stiffness, directly

related with the effective contact radius. This model allows bonded contacts for the

simulation of cohesive materials.

In this work, the linear model introduced by Rojek [93] will be used. The linear contact
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model considers a constant global stiffness in both, normal and tangential directions.

The simplest cohesive model is the elastic perfectly brittle model. This model

is characterized by linear elastic behaviour when cohesive bonds are active. An

instantaneous breakage of these bonds occurs when the interface strength is exceeded.

When two particles are bonded the contact forces in both normal and tangential directions

are calculated from the linear constitutive relationships:

fn = kn urn (2.32)

ft = kt urt (2.33)

where fn and ft are the normal and tangential contact force, respectively, kn and kt are

the interface stiffness in the normal and tangential directions and urn and urt the normal

and tangential relative displacements, respectively.

Cohesive bonds are broken instantaneously when the interface strength is exceeded in

the tangential direction by the tangential contact force or in the normal direction by the

tensile contact force. The failure (de-cohesion) criterion is written (for 2D) as:

fn ≤ Rn (2.34)

ft ≤ Rt (2.35)

where Rn and Rt are the interface strengths in the normal and tangential directions,

respectively.

In the absence of cohesion the normal contact force can be compressive only, i.e.

fn ≤ 0 (2.36)

and the (positive) tangential contact force is given by

ft = µ|fn| (2.37)

if fn < 0 or zero otherwise. The friction force is given by Eq. (2.37) expressing the

Coulomb friction law, with µ being the Coulomb friction coefficient. Contact laws for

the normal and tangential directions for the elastic perfectly brittle model are shown in

Figure 2.4.
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urn

fn

Rn

(a) Normal force.

urt

ft

Rt

µ|fn|

(b) Tangencial force.

Figure 2.4. Force-displacement behaviour in the linear elastic perfectly brittle
model with bonded contacts.

2.4 Background damping

The contact damping previously described is a function of the relative velocity of the

contacting bodies. It is sometimes necessary to apply damping for non-contacting particles

to dissipate their energy. We have considered two types of such damping of viscous and

non-viscous type, referred here as background damping. In both cases damping terms

Fdamp
i and Tdamp

i are added to equations of motion (2.1) and (2.2).

In the case of the viscous damping, the value of the damping force is proportional to

the magnitude of the velocity

Fdamp
i = −αtmiu̇i (2.38)

Tdamp
i = −αrIiωi (2.39)

For the non-viscous damping, the damping force is proportional to the magnitude to

the resultant force and resultant moment in the direction of the velocity

Fdamp
i = −αt‖F′i‖

u̇i
‖u̇i‖

(2.40)

Tdamp
i = −αr‖T′i‖

ωi
‖ωi‖

(2.41)

where αt, αr are damping constants, and F′i, T′i are defined as
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F′i =
nc∑
c=1

Fic + Fext
i (2.42)

T′i =
nc∑
c=1

(lci × Fc
i + qci) + Text

i (2.43)

It can be seen from Eqs. (2.38)–(2.41) that both the non-viscous and viscous damping

terms are opposite to the velocity and the difference lays in the evaluation of the damping

force.

A quasi-static state of equilibrium for the assembly of particles can be achieved by

application of adequate damping. The damping applied in such problems should be high

enough to obtain a non-oscillatory overall response. This is necessary to dissipate kinetic

energy of the assembly of particles.

In the present work, the non-viscous damping is used, as recommended in the

literature.

2.5 Time integration scheme

In the context of large simulation problems, the implicit schemes are not suitable because

of massive memory requirements. The discontinuous-based simulation methods like DEM

of MD use explicit integration scheme. For this purpose a whole range of explicit schemes

has been developed, where we can found the Central Difference Scheme [12] (also referred

as the Velocity Verlet Algorithm), Leap Frog Scheme [108] (also referred as Position

Verlet Algorithm), Gear’s Predictor-Corrector [56], Forest and Ruth [52, 83], or Runge-

Kutta [12]. Between these schemes, we can found second order, third order, or even fourth

order. Higher order schemes are possible, but involve repeated force evaluations. Since

intensive CPU-time is required, higher-order schemes may not be as efficient in terms of

computational cost, in comparison with lower-order schemes. In the literature, we can

found many comparisons between the different schemes where the stability, accuracy and

computational cost are analysed. Some details of the comparisons can be found in [66, 99].

In this work, the Central Difference Scheme is used for the integration on the equation

of motion (2.1) and (2.2). It is a second-order time integration scheme originally developed

in the context of structural dynamics while in some applications it is also referred to as

the Velocity Verlet algorithm. This scheme presents a good ratio between accuracy and

computational cost.

Time integration operator for the translational motion at the n-th time step is as

follows:
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üni =
Fn
i

mi

(2.44)

u̇
n+1/2
i = u̇

n−1/2
i + üni ∆t (2.45)

un+1
i = uni + u̇

n+1/2
i ∆t (2.46)

The first two steps in the integration scheme for rotational motion are identical to

those givens by Equations (2.44) and (2.45):

ω̇ni =
Tn
i

Ii
(2.47)

ω
n+1/2
i = ω

n−1/2
i + ω̇ni ∆t (2.48)

For the rotational plane (2D) motion the rotation angle θi can be obtained similarly

as the displacement vector ui:

θn+1
i = θni + ω

n+1/2
i ∆t (2.49)

In three-dimensional motion, rotational position cannot be defined by any vector. The

rotational velocity ω cannot be integrated [5, 15]. The vector of incremental rotation is

obtained as

∆θi = ω
n+1/2
i ∆t (2.50)

It must be remarked that knowledge of the rotational configuration is not always

necessary. If tangential forces are calculated incrementally, then knowledge of the vector

of incremental rotation ∆θ is sufficient. This saves considerable computational cost of

the time integration scheme.

2.6 Numerical stability

Explicit integration in time yields high computational efficiency and it enables the solution

of large models. The known disadvantage of the explicit integration scheme is its

conditional numerical stability imposing the limitation on the time step ∆t, i.e.

∆t ≤ ∆tcr (2.51)

where ∆tcr is a critical time step determined by the highest natural frequency of the
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system ωmax

∆tcr =
2

ωmax
(2.52)

If damping exists, the critical time increment is given by

∆tcr =
2

ωmax

(√
1 + ξ2 − ξ

)
(2.53)

where ξ is the fraction of the critical damping corresponding to the highest frequency ωmax.

Exact calculation of the highest frequency ωmax would require solution of the eigenvalue

problem defined for the whole system of connected rigid particles.

In the algorithm implemented an approximate solution procedure is employed. An

eigenvalue problem can be defined separately for every rigid particle [14]. The maximum

frequency is estimated as the maximum of natural frequencies of mass–spring systems

defined for all the particles with one translational and one rotational degree of freedom.

ωmax = max
i

ωi (2.54)

and the natural frequency for each mass-spring system (contact) is defined as

ωi =

√
k

mi

(2.55)

with k the spring stiffness and mi the mass of particle i. Now it is possible to rewrite the

critical time step as

∆tcr = min 2

√
mi

k
(2.56)

The effective time step is considered as a fraction of the critical time step

∆t = β∆tcr (2.57)

with

0 ≤ β ≤ 1 (2.58)

The value of β has been studied by different authors. A good review can be found

in [86], where the author recommend values close to β=0.17 for 3D simulation, and

β=0.3 for the 2D case. Less conservative values are presented by different authors, as

the recommended by Itasca [64].



Chapter 3

Discretization of the media

One of the most important phases in a simulation with DEM is the discretization of

the media, because it has a strong influence in the results obtained in the simulations.

For modelling granular materials without cohesion, a DEM particle represents a material

particle, allowing the use of the mechanical properties. In the case of the simulation of solid

materials (with bonded contacts), the DEM particle does not have a physical meaning,

and its just the discretization of the media. In this last case, the characterization of the

set of particles its strongly related with the results obtained, and should be considered in

the process of calibration or estimation of the model parameters.

The package of particles used in the simulation should allow the representation

of the mechanical properties in the material, as isotropy or the Poisson’s ratio. For

some applications, such as wear analysis of mechanical parts or impact analysis, a good

compaction rate is crucial [62, 72, 84]. In these cases the generation of a sufficiently dense

distribution of particles presents a major challenge.

This chapter introduces a new packing method, considering extremely dense granular

packages for cylindrical (2D) and spherical (3D) particles. The algorithm is analyzed and

compared to other existent methods.

3.1 Overview of available approaches

A number of approaches have been developed for the generation of cylindrical (2D) and

spherical (3D) particles. The algorithms can be classified in three different groups,

considering how it works: constructive algorithms, dynamic algorithms and collective

rearrangement algorithms. All of them generate random packages. A fourth group can be

considered for the regular structure packages, but the behaviour of materials with irregular

micro-structure cannot be reproduced, and are not considered in this work.
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3.1.1 Constructive algorithms

This kind of algorithms face the problem using purely geometrical considerations. An

example is the algorithm used in the PFC2D code [64], where the particle position and

size are obtained by a random number. If overlapping occurs, a new random location

is achieved, with the same fixed radius. Similar schemes are proposed by Lin and Ng

[76] and Evans [45]. In [64] it is proposed an alternative modification of the algorithm,

where the radii of all particles are expanded by the same factor. The generation stops

when contacts are found. These schemes are called lily-pond models [55]. The Stienen

Model [105] uses a random location to calculate the radius of particles by half of the mean

distance to neighbouring particles. The algorithm used by Cui and O’Sullivan [32] is an

example of this technique where the circumcenter (2D), or circumsphere (3D), and the

vertex are used for locating the particles, and their radii are calculated by the distance

between the neighbouring particles. More examples of this and other techniques can be

found in [105]. All these methods use a random location and some of them can prescribe a

radius distribution. Nevertheless, the resultant packages present a low number of contacts

and cannot control the porosity.

Recently, more sophisticated generation algorithms were proposed, based in advancing

front techniques, where the radius distribution can be prescribed and the particle positions

are calculated. The sedimentation techniques, like the open front method proposed by Feng

[49] or the dropping method by Bagi [6], where the domain is filled up starting from the

bottom, always adding one particle at the time to the already existing set of particles.

The geometrical position of the actual new particle, with radii predefined by a prescribed

radius distribution, is defined such a way that would exactly touch to previous particles

beneath, or any of the walls of the domain, selecting a stable position upon application

of a downwards force. One advantage of the sedimentation techniques if the possibility

of prescribing the radius distribution. This can produce more dense arrangements, but

the resultant micro-structure present a slight anisotropy, reflected in a behaviour slightly

stiffer in the vertical direction than in the horizontal direction. Other disadvantage is the

top wall of the domain, which cannot be filled up perfectly. A different approach is the

closed front method, also proposed by Feng et al. [49], where the particle locations are

calculated on the basis of previous particle inclusions, along an outwards spiral, starting

with a triangle of three touching particles in the middle of the domain. The method

present a very high generation velocity, and produce isotropic arrangements, but large

gaps may remain in the walls of the domain. A similar behaviour is found in method

presented by Löhner and Oñate in [77], which is extended to 3D.
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A variation of these methods is the inwards packing method presented by Bagi [8],

where first the wall of the domain are filled up in such a way that a closed chain of particles

is formed. The subsequent particles are placed along the interior of the front. When a

new grain is generated, it is attached to two existing particles in the front. The front is

then updated, and a next particle can be generated. This method solves the problem of

the gaps remaining in the walls of the closed front method, but results very difficult to

implement in 3D.

3.1.2 Dynamic algorithms

Another category of techniques is based on the so called dynamic algorithms, where

external helps are used, like body forces or DEM simulations, in order to find better

values of densities. One possibility is start with the domain expanded, and progressively

the walls are moving to the original positions. The particles are compressed to reduce any

gaps produced by the initial random positions pushing the boundaries toward the particles

in one or several directions. Normally, the same DEM code is used in order to obtain

a good final packing of rigid particles with predefined radius. Other approach involves

using a hopper on the top of the domain to mix different sizes of particles together. The

particles are positioned in the top of the hopper, and the domain is filled using gravity

forces. Some examples of this can be found in [50] and [49]. These techniques can result

in dense distributions, with significantly high computational costs.

Other schemes, that do not require the use of a DEM simulation, like the one proposed

by Han et al. [57], use an iterative compression algorithm for the density modifications.

The use of this set of techniques requires an initial generation, and some of the low

porosity constructive algorithms are typically used.

3.1.3 Collective rearrangement techniques

In these methods the domain is filled by a defined number of particles. The particles

are placed randomly into the domain and overlaps are allowed. These overlaps are

attempted to be reduced during the process by moving the particles in a stepwise manner.

Similarly to the dynamic algorithms, the displacements of the particles are calculated

from the overlaps with the neighbour particles, but using in this case just geometrical

or mathematical tools. Without taken into account any kind of physical consideration,

as friction [78]. These methods allow predefine both, radius distribution and the

desired porosity, and are faster than dynamic algorithms but slower than constructive

algorithm [11].
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In the present chapter an alternative collective rearrangement algorithm is proposed

for the generation of high density packages of particle. As an alternative to obtain a dense

package, the algorithm allow the modification of positions and radius. Initially it uses

a fast constructive algorithm for an initial generation, like some of the ones presented

previously, and densify the package by an optimization algorithm. In particular, a finite

element mesh based scheme is used, similar to the Stenien Model [105].

3.2 The proposed algorithm

The main idea of the method is to improve a given particle assembly in order to obtain

a lower porosity configuration.

Given an initial particle distribution, a high porosity exists when the neighbouring

particles are not in contact (see Figure 3.1). The reduction of porosity can be written as

a non-linear minimum least square problem where the function to be minimized is given

by the distance between neighbouring particles in the original configuration. This allows

the inclusion of boundary constraints to ensure a good reproduction of the boundaries, a

feature which constitutes a major advantage in all the cases where the friction between

surfaces is important. Some examples of these conditions are shown by Huang [62] and

Zárate et al. [94].

Figure 3.1. Local neighbourhood of a particle in the interior of the domain.
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3.2.1 Internal contacts

A low density initial assembly is assumed in order to define the existence of neighbouring

particles without contact. The low density is produced by the void areas where

the contacts are not achieved. A modified distance function is defined between all

neighbouring particles, where the existence of the contact pair is introduced by a

triangulation. In a local neighbourhood for one particle, like the one shown in Figure 3.1,

a distance function dc between the connected particles i and j can be defined as

dc = ‖xi − xj‖2 − (ri + rj)
2 (3.1)

where xi is the coordinate center of the particles i, and ri its radius. The square of the

values is used for the sake of simplicity, because a derivative function is required and the

minimum of this modified distance is equivalent to the standard function.

For the particle i, the sum of the distance to its nic neighbours is defined as

dic =

nic∑
j=1

(
‖xi − xj‖2 − (ri + rj)

2
)

(3.2)

In order to find the minimum of void areas or interstitial spaces, the function dc needs

to be minimized for all the particles in the assembly. For that purpose, a global distance

function is defined using a minimum least square scheme, where the global distance

function is written as

minψ =
Nc∑
c=1

d2
c = DTD (3.3)

The connectivities are achieved by the edges of the triangulation over the initial

assembly. The square of dc is used because the minimum of any contact pair is required,

and the use of a linear system may cause some negative values in the radii of the particles.

This solution does not consider contact constraints; then overlapping between particles is

allowed. The treatment of this defect will be presented in the next section.

The solution of a small example is shown in Figure 3.2, where the modification of the

radii and the center of the particles can be seen.

To solve the minimization problems, a Levemberg-Marquardt scheme is used [74, 80],

where the final size and radius of the particles is achieved by the progressive modification

of their values. The iterative scheme is

Xk+1 = Xk + hk (3.4)
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(a) Initial configuration (b) Final configuration

Figure 3.2. Minimization of the distance in a small assembly of cylindrical
particles.

where Xk is the vector of degrees of freedom in the iteration k, for a particles package of

length n.

Xk = [x1, y1, r1, ..., xn, yn, rn]T cylindrical particles, 2D

Xk = [x1, y1, z1, r1, ..., xn, yn, zn, rn]T spherical particles, 3D
(3.5)

The increment vector hk is calculated by

[
JTJ + µI

]
hk = −B (3.6)

where J is the Jacobian of Ψ ( J = ∇Ψ ), B is defined by B = JTΨ(Xk) and µ is a

damping parameter.

Eq. (3.6) can be now solved for an initial assembly, where the final compaction degree

allows a very low porosity level. The convergence rate of the scheme depends on the initial

configuration. A good result is however obtained in few iterations.

3.2.2 Treatment of boundaries

One of the problems in the generation of the cylindrical or spherical package is the

complexity of the geometry. The definition of the boundary is not good for most

constructive algorithms. A good definition of the boundary is useful for the simulation

of some geomechanics processes where the friction between surfaces is important. An

example of this is shown in [94]. The triangulation based algorithm allows the generation

over complex geometries, but not always a good boundary definition is obtained.
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A boundary constraint is proposed with the same argument as in the previous section.

A function of the distance between the contour of the geometry and the external particles

is used in order to obtain a homogeneous boundary in the assembly. Figure 3.3(a) shows

an external zone of the domain, where the distance function bs for particle i and the

surface k is defined as

bs = ‖lik‖2 − r2
i (3.7)

where lik is the vector joining the center of particle i with the closest boundary point.

(a) Initial configuration (b) Support mesh (c) Boundary treatment

Figure 3.3. Boundary treatment in the exterior zone of the domain.

We will assume in the following that the algorithm is finite element mesh based. Hence

only the inner nodes of the mesh are particles, while the outer nodes define the boundary

mesh. With that consideration, it is possible to find a simple way to calculate ‖lik‖, where

its value is defined as the projection of the vector defined by the center of particle xi and

some of the outer nodes wk along the normal of that boundary element nk. This is shown

in Figures 3.3(b) and 3.3(c).

The boundary condition (3.7) is rewritten as

bs = ([wk − xi] · nk)2 − r2
i (3.8)

This allows for each element of the boundary mesh to have a single particle associated

to it. Note that in complex zones of the geometry, as acute edges, one particle can have

two or more boundary contacts. With the introduction of this new condition, a modified
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version of Eq.(3.3) is written. Now, the minimization function is defined as

minψ =
Nc∑
c=1

d2
c +

Ns∑
s=1

b2
s = D’TD’ (3.9)

where Ns is the number of particles connected to the surface, and D’ is the new equation

system with the boundary functions.

D′ =

{
D

B

}
(3.10)

The resolution of this new minimization problems for a set of particles solved the

density problem and yields a good boundary definition for the final configuration of the

assembly. Figure 3.4 shown a sample of dense packing with and without the boundary

treatment, while in Figure 3.5 a 3D sample is depicted.

(a) (b)

Figure 3.4. Dense assembly of discs with and without the boundary treatment
for a square domain. a) Generation without boundary treatment. b)
Generation with boundary treatment.

One of the advantages of this boundary treatment is that no additional memory is

required, because the new term in Eq. (3.6) is included in the diagonal blocks of the

global matrix, which are always non-zeros. However, some additional iteration steps are

required.
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(a) (b)

Figure 3.5. Dense assembly of spheres with and without boundary treatment
in cubic domain. a) Generation without boundary treatment. b)
Generation with boundary treatment.

3.2.3 Treatment of particle overlapping

Particle overlapping can arise due to the definition of the distance function adopted. This

function is defined so that the total distance between particle pairs is minimum. When the

distance between certain pair is large, the minimization process would decrease the value

of the global distance function by assigning negative distances to neighbouring particles,

in order to compensate for positive values, as shown in Figure 3.6(a).

The standard method to avoid this behaviour is to add contact constraints in the

minimization problem. However, this method has two drawbacks, the first being its

computational cost, and the second that it does not avoid the appearance of overlapping

between particles for which contact was not defined in the initial configuration. This

phenomenon is depicted in Figure 3.6(b).

The solution for this problem, is to update the contact list and to solve a new distance

minimization problem.

The algorithm that updates the contact list can be used to delete those contacts for

which the distance is larger than a certain tolerance, which avoids the first type of contact

overlapping. Also the same algorithm finds the new contact pairs, corresponding to the

second type of overlapping described above (Figure 3.6(b)), which appear in the final

configuration after the update process.



26 3. Discretization of the media

(a) (b)

Figure 3.6. Overlapping over spheres without contact pair definition.

Different techniques for updating the contact list can be used. In this work two

different approaches have been adopted. The first one is to use of an spatial search

algorithm, which requires setting a tolerance for the detecting the contact. The second

one consists in the regeneration of the FEM mesh using weighted Delaunay triangulation

[50, 51], which considers the dynamic movement of the mesh.

Considering the triangular mesh of the Figure 3.7, the swapping of the edge ĀC is

evaluated considering the weighted Delaunay criteria, which consider the radius of the

particles.

A

D

C

B

Figure 3.7. Scheme of element to verify the swapping.
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The swapping criteria for the edge ĀC can be written as

SwapElement(A,B,C,D) = sign

∣∣∣∣∣∣∣∣∣
Ax Ay (A2

x +A2
y)−A2

r 1
Bx By (B2

x +B2
y)−B2

r 1
Cx Cy (C2

x + C2
y)− C2

r 1
Dx Dy (D2

x +D2
y)−D2

r 1

∣∣∣∣∣∣∣∣∣ (3.11)

These modifications require the solution of the distance minimization problem after

each update of the connectivities. However, in most cases an acceptable solution is reached

after very few steps.

3.2.4 Initial generation of the media

For the generation of the initial configuration, it is possible to use any algorithm proposed

in the literature. However finite element mesh based techniques offer better conditions for

the algorithm proposed in this work. This is because many well established algorithms

already exist and the generation of complex geometries is achieved easily. A modification

of the Stienen model is used in our work, where the particles are located in the inner

vertex of the mesh and the radii are calculated with a random number over the mean

distance between the neighbouring nodes. In addition, the average radius is related to

the element size used in the generation of the mesh.

One of the necessary considerations for the initial mesh is the structuration of the

elements. A regular elements distribution produces a regular number of contacts for the

different particles and a homogeneous package of particles is found. In the simulation of

geomechanical processes that deal with particle cohesion, a structured lattice of particles

can be problematic because small forces can lead to material fracture. In order to solve

this problem, an initial preprocessing is performed over the mesh, where random local

displacements over the node position are used to generate a random configuration. After

this perturbation, a new triangulation is used for defining the contact pairs. An example

of the initial mesh and its modification are shown in Figures 3.8 and 3.9.

In order to define the size of the particles, the average distance between nodes is

calculated and a random number generator modifies these values with a user defined

range. Overlapping is allowed, because the optimization of the distance between particles

eliminates these defects.
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(a) Structured mesh (b) Initial configuration (c) Final configuration

Figure 3.8. Generation with structured mesh for the initial configuration.

(a) Non-structured mesh (b) Initial configuration (c) Final configuration

Figure 3.9. Generation with non-structured mesh for the initial configuration.

3.3 Characterization of the generated package

In order to compare different packing algorithms, it is necessary to use some parameters

which indicate the quality of the generated media. In the literature, several parameters

can be found in order to analyse the quality of the results.

In dense particle assemblies, parameters like average radius, void ratio or coordination

number are used. Other useful parameters exist, but none of them were used for the

following comparisons. An introduction to some of these parameters can be found in

[17, 79].

3.3.1 Average radius

Different possibilities can be used to the estimation of the average radius. In order to

obtain a more representative value for the average radius, a volume-based average radius
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is considered.

r̄ =
d
√
r̄d =

d

√∑Np
i=1 r

d
i

Np

(3.12)

where d is the dimension (d=2 in 2D, and d=3 in 3D). The volume-based value is

considered because have a most direct relationship with the analysis of the porosity in

the generated package.

3.3.2 Porosity

The porosity indicates the relationship between the volume achieved by the generation

process Vp and the real volume of the geometry Vreal. This value can be represented in

different forms. The most used form is the porosity (e) written as

e = 1− Vp
Vreal

(3.13)

An alternative form founded in the literature is the called void ratio (ν), which is written

as

ν =
Vreal
Vp
− 1 =

e

1− e
(3.14)

Both cases are equivalents, and allows to determine the relative density of the packaging.

Using the previous definition of the volume-based average radius, the porosity can be

estimated in a average form.

e = 1− NpV̄p
Vreal

(3.15)

In the same way, it is defined the particles density as

ρp = 1− e =

Np∑
i=1

V i
p

Vreal
(3.16)

This value will be use in the next chapter in the parameter estimation procesure.

3.3.3 Coordination number

The coordination number is an alternative parameter to the contact density, and is directly

related to the structural stability of the assembly concerned. The apparent coordination

number nc is defined as the average number of contacts per particle and expressed as
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nc =
2Nc

Np

(3.17)

with Nc being the total number of contacts between the Np particles of the generated

packaging.

3.3.4 Fabric tensor

The Fabric tensor describes the local configuration of the grains as a second order tensor,

reflecting the level of the isotropy of the assembly. This tensor it is written for a particle

i as

φi =

nic∑
c=1

nc ⊗ nc (3.18)

where nc is the unit normal vector at contact c of the particle i. For the full particle

assembly, the structural anisotropy can be characterized by the fabric tensor, defined by

all the distribution of contact normals in the domain [102]

φ =
Nc∑
c=1

nc ⊗ nc (3.19)

The fabric tensor is a symmetrical second order tensor, which has three principal

values (3D) as a stress tensor or strain tensor does. These values have an interesting

properties related with its trace:

tr(φ) = Nc (3.20)

This means that the principal values of fabric are not independent of each others. So,

re-writting the fabric tensor as

φ′ =
1

Nc

Nc∑
c=1

nc ⊗ nc (3.21)

For isotropic structures of particles, all the principal values are equals

φ′1 = φ′2 =
1

2
2D (3.22)

φ′1 = φ′2 = φ′3 =
1

3
3D (3.23)

Using these properties, it is possible to obtain a measurement of the degree of
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anisotropy in the system. A fourth-order fabric tensor can also be defined, and more

information can be obtained, as shown Ghang and Gao in [26].
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3.4 Analysis of the packing algorithm

A set of results is obtained by considering different sizes of particles in a square domain

in 2D and in a cubic domain in 3D (similar to the examples shown in Figures 3.4 and

3.5).

The typical distribution of radii in 2D is shown in Figure 3.10, where a square sample

with 30000 discs is used. A multimodal Gaussian distribution can be observed in most of

the cases.
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Figure 3.10. Radius distribution of assembly with 30.000 discs.

In order con analyse the anisotropy of the system, the polar distribution of contact

directions is presented in Figure 3.11, using two samples with different particle sizes.

(a) 10000 discs (b) 30000 discs

Figure 3.11. Polar distribution of contacts with 10.000 and 30.000 discs.

The distribution shows the isotropy of the system, where in the most cases the
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principal values of the fabric tensor are 0.5, with errors around 2%− 4%.

The values of the coordination number and porosity for different number of 2D

particles is shown in Figure 3.12. Note the fast decrease of the porosity as the number of

particles increases.

A high dense assembly is obtained, where the porosity is around 10%, and slower

when the number of particles increases, as shown in Figure 3.12. In the same figure, the

evolution of the coordination number with the number of particles shows a value around

6, which is high in comparison with other packing algorithms.
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Figure 3.12. Coordination number and porosity for different number of cylindrical
particles.

For a structured mesh, the mean number of neighbours is 6. The initial random

displacement in the mesh modifies that number, but a similar number of neighbours

is achieved. This produces a high coordination number while the minimization of the

distance between neighbour particles decreases the porosity values.

Figure 3.13 shows the evolution of the average distance function for two different two-

dimensional samples. The distance function is averaged over all the contact pairs, and

normalized with the average radius.

The distance function decrease initially with a hight rate. In the successive iteration

the distance function decrease slowly. As the same way, the coordination number increase

faster in the initial steps. After that, its value is stabilized close to the final one, as shown

Figure 3.14.

The above dimensionless parameters are used in order to determine the quality of

the generation. Comparisons with the results obtained by Bagi [8] are also made. The

values reported for the PFC2D code can be found in the same paper. Table 3.1 shows
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Figure 3.13. Evolution of average distance function in two square samples with
different particle size (2D).

0.76

0.80

0.84

0.88

0.92

0.96

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n
c

Iterations (x103)

Np = 10000
Np = 50000

Figure 3.14. Evolution of coordination number in two square samples with
different particle size (2D).

that the proposed algorithm achieves an interesting result. The porosity is significantly

lower than for the other algorithms, while the coordination number is higher than both

algorithms. The comparison of time should be treated carefully. Bagi mentions that the

implementation of the algorithm can be optimized, and should be noted that in the case

of in present algorithm just 1000 steps are used, allowing small overlapping.

In [49], Feng et al, reports 1 000 000 disks in 3.77 seconds with the open form advancing

front algorithm, but the porosity should be higher than the presented by Bagi, because

the gap founded in the top of the geometry. Another significant issue is the extension of

the advancing front algorithm to 3D, which is not reported.
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Algorithm Np r̄ e (%) nc time

PFC2D – 0.259 13.1 4.34 64 hours
Bagi[8] 56213 0.221 14.2 3.98 388 seconds
Present algorithm 56084 0.223 9.03 5.97 118 seconds

Table 3.1. Comparison of cylindrical particles generation.

For 3D generation, the coordination number and porosity for different numbers of

particles are shown in Figure 3.15 for the present algorithm. The decrease of the porosity

for a high number of particles can be observed. A good number of neighbours is achieved

in a similar way as for the 2D case.
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Figure 3.15. Coordination number and porosity for different number of spherical
particles.

The radii distribution for an example with 50000 spheres is shown in Figure 3.16,

where a mono-modal Gauss distribution is observed.

The good level of isotropy is observed, where the distribution of contacts in smooth

in comparison with the two-dimensional case. In Figure 3.17, the polar distribution of

the contact directions is shown in different planes.

Finally, the discretization of a cylinder of unitary length and diameter is presented

in Table 3.2. The results are compared with the one obtained by the advancing front

algorithm reported by Löhner and Oñate in [77]. Considering an equivalent number of

particles, the present algorithm results in higher average radius and a lower porosity. Both

discretizations shown a good level of isotropy.

An interesting characteristic of the present algorithm is the possibility of refinement
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Figure 3.16. Radius distribution in 3D sample with 27.500 spheres.
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Figure 3.17. Polar distribution of contacts in 3D sample with 27.500 spheres.

Algorithm Np r̄ rmax/rmin e (%) nc Fabric

Lohner et al.[77] 30198 0.01520 3.5631 43.395 4.003 {0.33275,0.33285,0.33440}
Present algorithm 30130 0.01623 9.0526 31.297 8.236 {0.33317,0.33327,0.33356}

Table 3.2. Comparison of spherical particles generation.

in the generation. With an initial generation based in a FEM mesh, the refinement of

this mesh can be exploited in the DEM assembly.

This characteristic results useful when a DEM contact model with local scaled

parameters is used, as the model developed by Cundall and Strack [33, 64] or the Hertz-

Mindlin model [38, 65].

This refinement is particularly useful to decrease the computational cost, using small
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particles just in a certain the region of interest, where can be interaction fracture or

interaction with other objects, as plates or cutter tools [106]. Other interesting application

is the discretization of mechanical devices which interact with granular material, as

presented in [94], where a special DEM model is used in excavation tool for the analysis

of wear. Wear produces a change of shape in the tool via the elimination of particles with

a defined accumulated wear.

Figure 3.18. Tooth of excavation machine discretized with disks and refinement
in the external surface.

A sample of the refinement with a dense particle assembly is presented in Figure 3.18,

where a triangular domain representing the pick of a rock cutter tool. The domain,

discretized with 10000 particles, presents the refinement in the right corner. The same

domain discretized with a standard distribution of particles, considering the minimum

radius in the assembly, take over 6 times more particles.
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Chapter 4

Estimation of the discrete element

parameters

The most challenging step in the use of the DEM for the simulation of solid materials is the

estimation of model parameters. Since the DEM represents the behaviour of a collection

of particles, the constitutive relations thats describe their behaviour can be obtained from

the granular materials theory. Usually these constitutive relations are developed from the

continuum-mechanical viewpoint and do not recognize the discrete nature of granular

materials. The resulting relations are frequently phenomenological in nature.

In the literature, two possible lines in the analysis of these parameters are found. The

first approach is related to micromechanical analysis, in which the granular material is

modelled as an assembly of particles that interact at contacts, analyzing the constitutive

relations in a micromechanics-based approach, and considering an averaging procedure

over the particles assembly. An objective of this approach is to derive macroscopic

relationships from the microscopic characteristics, such as contact constitutive relations

and the characterization of the particle assembly. The second approach is based in

statistical studies of virtual specimen, considering dimensionless numbers relating the

contact model parameters (micro-parameters) with the mechanical properties (macro-

properties) of the simulated material.

In the present chapter an analysis of the different approaches is performed and

developed a methodology for the estimation of the DEM parameters based in the elastic

perfectly brittle contact model is developed.
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4.1 Micro-macro relationship

The relationship between local parameters and mechanical properties can be defined using

different quantities that describes the local configuration of the granular assembly. In

order to obtain the macroscopic behaviour, it is necessary the use of this quantities

that permit the mechanical analysis of the system considering the behaviour at the

micromechanical level and the characterization of the particle assembly, as shown in

Figure 4.1.

kn, kt, µ

Rn, Rt

urn, urt

Fn, Ft

r̄, e, nc, φ E, ν

σc, σt

ε

σ

Figure 4.1. Scheme of the micro-macro relationship.

Many authors investigated the effective Young modulus and Poisson ratio for specific

contact models. In [16], Brandt considered the Hertz-Mindlin contact law with a random

packing of spherical particles of different radii. He demonstrated that the effective bulk

modulus of an elastically isotropic, homogeneous porous rock is related to the confining

pressure, porosity and liquid saturation. Digby [39] calculated the effective bulk and shear

moduli of a porous granular rock modeled by a random packing of identical spherical

particles with the Hertz-Mindlin contact law. The results showed that the elastic moduli

depend on the contact stiffness between particles, the coordination number, particle

radius, and contact radius.

Different authors, as Walton [109], Bathurst and Rothenburg [13], Chang and

Misra [23, 24]) showed that the stress-strain relationship can be derived based on a

microstructural continuum approach for random packing. In [24], Chang and Misra

demonstrated that the elasticity tensor relating the stress and strain could take various

forms depending on the symmetry of the mechanical properties of the granular material,

which is closely related with the packing structure. The study analyzes the relationship

between the symmetry of mechanical properties and the packing structure for random

granular packing using a micromechanics-based approach. The packing structure was

characterized by the distribution density functions that were represented by spherical

harmonics expansion. For random packing of equal spheres with a linear contact law, the

Young modulus and Poisson ratio were derived.
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Most of the theoretical analysis found in the literature shows that the parameters

related to the effective Young modulus and Poisson’s ratio are the contact stiffness (kn, kt),

the ratio of normal and tangential contact stiffness (kt/kn), particle size (r̄), porosity (e),

coordination number (c) and particle size distribution.

The strength properties do not appear to have been studied intensively. Most works do

not consider cohesion, internal friction angle, or rotation of the particles. The behavior

of bonded particles under biaxial compression was studied by Donzé et al. [40] for a

hexagonal packing, Potyondy et al. [89] for an irregular packing using PFC2D [64] or

Hentz et al.[58, 59] for irregular packing, considering nonlinear deformation and damage.

The objective here is to establish scaling laws that relate the phenomenological

parameters of a material at the macro-scale (e.g., the elastic modulus, the compressive

strength) to the micro-scale parameters (e.g., the parameters that characterize the contact

between particles), and to establish the dependence of the macro-scale response (e.g., how

the material fails in tension) upon the micro-scale factors.

4.2 Micromechanical analysis

The micromechanics of granular materials deals with the study of relations between

microscopic quantities and macroscopic quantities. A mayor objective of micromechanics

is to formulate micromechanical constitutive relations. For assembly of rigid or semi-

rigid particles, the microscopic level is that of contacts. The relevant microscopic static

quantities are contact force and contact couple, and the associated kinematic quantities

are relative displacement and relative rotation at contacts (see Figure 4.2).

Averaging
Asumption
Kinematic Localization

Force Relative
DisplacementContact Constitutive Model

Stress Strain
Macroscopic

Level

Level

Microscopic

Figure 4.2. Relationships between micro and macro levels.

In the micromechanical analysis expressions for macroscopic tensor, like stress and

strain tensor, are required in terms of contact quantities.
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In this section the micromechanical analysis is considered to derivate relationships

between the contact model parameters and the mechanical properties of the material,

considering averaging procedures and kinematic localization assumptions.

4.2.1 Inter-particle contact law

Considering the contact c between particles p and q, a general expression for

the constitutive relations (2.9) between the inter-particle force f ci and the relative

displacement δj can be given by

f ci = Kc
ijδ

c
j (4.1)

where Kc
ij is the inter-particle contact stiffness tensor, and δcj defined for a general case as

δcj = (upj + ejkl θ
p
k r

pc
l )− (uqj + ejkl θ

q
k r

qc
l ) (4.2)

where θk is the rotation of the particle, rl the vector which join the center with the contact

point, and ejkl the permutation tensor.

The rotation of the particles (θpk and θqk) in cohesive materials are considered

negligible and are not included on the present formulation. This means that the relative

displacement between particles is based in the particle displacements only, and (4.2) can

be re-written as

δcj = upj − u
q
j (4.3)

The stiffness tensor Kc
ij can be expressed in terms of the inter-particle contact stiffness

in the normal and tangential directions as

Kc
ij = knninj + kt(sisj + titj) (4.4)

where the unit vector ni is the contact normal direction. Vectors si and ti are unit vectors

defining the plane normal to the vector ni, as shown in Figure 4.3.

4.2.2 Average stress and average strain tensors

The average stress tensor is introduced in order to analyze the field of inter-particle

contacts in the macroscopic level. The definition of the average stress tensor is widely

discussed in literature (see [33, 68]). Normally its defined in terms of the force acting in

the contact between particles and the geometry of the assembly. The derivation of the

micromechanical stress tensor and the averaging procedure are presented in Appendix A.



4.2. Micromechanical analysis 43

γ

x

y

z

t
s

n

β

Figure 4.3. Local coordinates at inter-particle contact.

The average stress tensor in a domain defined by the volume V is written as

σ̄ij =
1

V

∑
c∈V

f ci l
c
j (4.5)

where lcj is the called branch vector, which joins the center of the particles in contact

(xq − xp).

In the case of the strain tensor, different formulations can be found in the literature.

As a general formulation, we can be define the average strain tensor as

ε̄ij =
1

V

∑
e

δei d
e
j (4.6)

where dei is a characteristic vector related to the relative displacement, and complementary

to the brach vector. Kruyt and Rodenburg [68, 69] propose a formulation in which dei is

the called polygon vector. The polygon vector is obtained by counter-clockwise rotation

over 90◦ from the rotated polygon vector gpqj . The rotated polygon vector is defined as

the vector that connects the centres of adjacent polygons. These polygons arise as a way

of partitioning the plane network of particle centres and contacts (see Figure 4.4).

Bagi [7] proposes a version based in the Delaunay tessellation of the assembly,

considering the center of the particles, where dei is called complementary area vector. Both

formulations are equivalent, and are similar to alternative versions proposed by Kuhn [70]
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Figure 4.4. Polygon vector and rotated polygon vector defined by Kruyt and
Rothenburg [69].

and Cambou et al. [18]. Bagi [9] has been shown that these different approaches based on

partitioning domain into polygons are consistent with the macroscopic strain, and most of

them are equivalents. Nevertheless, the average strain tensor version of Bagi is considered

in this work as it can be extended to the 3D case with a small effort, as shown Durán et

al. [41]. The derivation of the average strain tensor of Bagi can be found in Appendix B.

It is interesting to note that both characteristic vectors lcj and dcj are related. The

vectors satisfy the geometrical relation

Iij =
1

V

∑
c∈V

lcid
c
j (4.7)

where Iij is the Kronecker delta symbol.

4.2.3 Kinematic localization assumption

The kinematic localization assumption is required in order to analyze the relation between

the local relative displacement between particles as a function of the strain (Figure 4.2).

Different hypothesis can be found in the literature, based in the continuum elasticity

theory. The most relevant are the based in the uniform strain and uniform stress

assumptions.

The uniform strain hypothesis considering the relative displacement becomes

δpqi = εijl
pq
j (4.8)
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while the uniform stress hypothesis can be written as

fpqi = σijd
pq
j (4.9)

In [69], Kruyt and Rothenburg showed that both hypothesis works as upper and lower

bounds for the elastic behaviour of the assembly, depending on the coordination number,

as depicted in Figure 4.5. Similar conclusion can be found in [75].

In Figure 4.5, the micro stiffness ratio (kt/kn) is represented by λ, Γ is the coordination

number, K the bulk modulus, G the shear moduli. Kε,σ and Gε,σ the Bulk modulus and

shear moduli by the uniform strain and uniform stress assumptions, respectively.

Figure 4.5. Upper and lower bounds for the elastic behaviour presented by Kruyt
and Rothenburg in [67].

More complex assumptions are developed based on the Cosserat continuum, where the

particle rotations are considered, and different fluctuations in the relative displacement

and rotations are evaluated [2, 3, 25].

Considering the properties of the packing algorithm presented in the previous chapter,

can be assumed that the elastic behaviour of the assembly is very close to the upper bound,

and that the uniform strain assumption is appropriated for the estimation of the micro
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parameters.

Taking into account the definition of the average stress tensor in (4.5) and the contact

forces in (4.1), the stress tensor can be re-written as

σij =
1

V

Nc∑
c=1

Kc
ikδ

c
kl
c
j (4.10)

and with the assumption of uniform strain

σij =
1

V

Nc∑
c=1

Kc
ikεkll

c
l l
c
j =

1

V
εkl

Nc∑
c=1

Kc
ikl

c
l l
c
j (4.11)

With the matrix form of the constitutive stiffness tensor, based in Hooke’s law

σij = Cijkl εkl (4.12)

it is possible to define the constitutive stiffness tensor as

Cijkl =
1

V

Nc∑
c=1

lciK
c
jkl

c
l (4.13)

Replacing the local stiffness tensor Kik defined in (4.4), the constitutive stiffness tensor

is re-written as

Cijkl =
1

V

Nc∑
c=1

lci (knnjnk + kt(sjsk + tjtk))l
c
l (4.14)

Note that the contact model used on this formulation considers the stiffness as global

constants, so the constitutive stiffness tensor can be split into two terms. The first term

considers the normal stiffness (Cn
ijkl), while the second one considers the tangential stiffness

(Ct
ijkl)

Cijkl = knC
n
ijkl + ktC

t
ijkl (4.15)

where

Cn
ijkl =

1

V

N∑
c=1

lcinjnkl
c
l (4.16)

Ct
ijkl =

1

V

N∑
c=1

lci (sjsk + tjtk)l
c
l (4.17)
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Finally, considering the isotropy of the material, the association of the independent

components of the constitutive stiffness tensor based in the contact model and the material

properties, the relationship between local contact stiffness and the elastic constants of the

material can be written as

C1111 = knC
n
1111 + ktC

t
1111 =

E(1− ν)

(1 + ν)(1− 2ν)
(4.18)

C1122 = knC
n
1122 + ktC

t
1122 =

Eν

(1 + ν)(1− 2ν)
(4.19)

For a defined assembly the high order fabric tensor can be obtained, and the contact

stiffness evaluated.

4.2.4 Numerical analysis

Here, the foregoing equations are validated with two different specimens for a unconfined

compression strength test, in both two-dimensional (2D) and three-dimensional (3D)

cases. Both specimens with a size of 50x50 mm are simulated assuming the standard

of compression test for natural stone [44]. The characterization of the specimens are

presented in the Table 4.1.

Parameter Description specimen 2D specimen 3D

Np Number of particles 11180 10395
e Estimated porosity (%) 9.440 23.34
nc Coordination number 5.940 9.4871
r̄ Average radius (mm) 0.2538 1.1653

rmax/rmin Radius ratio 5.920 5.3674

Table 4.1. Mesh characterization parameters for uniaxial compressive strength
test.

For the specimen 2D presented in the previous section, The Young modulus and

Poisson’s ratio for the specimen 2D obtained through micromechanics and the simulations

are presented in Figure 4.6.

The curves shown a perfect agreement between the estimated values and the

simulation. This can be explained because the high density of the assembly, as shown

Kruyt and Rothenburg [69].

The same is presented in Figure 4.7 for the specimen 3D. Unlike the 2D case, in 3D

the agreement between simulations and micromechanics is not completely satisfactory.
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Figure 4.6. Comparison of Young modulus and Poisson’s ratio estimated with
micromechanics and simulations in specimen 2D.

This can be explained by different reasons. An important difference in the 3D case is

the higher porosity compared with the case 2D. As shown in the previous chapter, the

porosity and the coordination number are strongly related. According to the analysis

of Kruyt and Rothenburg, it may be also possible that the assembly density, and the

corresponding coordination number, are not sufficiently higher than required.

Even though the micromechanics results are a good way to estimate the elastic

properties of the granular material, in case of cohesive material, it is also required to

estimate the contact strength in the contact bonds.

The strength of cohesive granular materials using micromechanics has not been

studied extensively. At this moment, it is not possible to extend in a simple way the

micromechanics theory to the study the relationships between the material strength and

the contact (micro) strengths.
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Figure 4.7. Comparison of Young modulus and Poisson’s ratio estimated with
micromechanics and simulations in specimen 3D.

4.3 Dimensional analysis

Huang [62] used dimensionless laws in order to estimate the mechanical behaviour of an

assembly of particles governed by the following set of characteristics parameters: kn, kt,

r̄, e, ρ, L, V ; where r̄ is the average radius, ρ the density, L is the sample length, V is

the load velocity and e the porosity of the assembly, as a indirect measure of the particle

size distribution and contact density.

Dimensional analysis is based on the Buckingham π theorem, which states that

any physically meaningful functional relationship of N variables Ψ(Q1, Q2, ..., QN)

can be expressed equivalently by a function of N -M dimensionless parameters

Ψ′(π1, π2, ..., πN−M), where M is the number of primary dimensions, and N -M is the

maximum number of independent parameters [73].
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Elastic constants

Since there are seven parameters and three independent dimensions, according to the

Buckingham theorem four independent dimensionless parameters govern the elastic

response of the assembly {
kt
kn
, e ,

r

L
,

V√
kn/ρ

}
(4.20)

It is assumed that an enough number of particles is considered, the ratio (r/L << 1)

can be ignored. The same can be assumed for the velocity, considering the condition of

quasi-static loading ( V/
√
kn/ρ << 1 ).

The dependence of the elastic constants on the micro-scale parameters can thus be

reduced to the following scaling laws

E l

kn
= ΨE

(
kt
kn
, e

)
(4.21)

ν = Ψν

(
kt
kn
, e

)
(4.22)

where ΨE and Ψν are dimensionless functions. Obviously E can be scaled by either kn or

kt, plus a length parameter in order to obtain a dimensionless number. The characteristic

length l will be defined in a different way for 2D and 3D problems. For 2D problems,

where the plain strain condition is assumed, and cylindrical particles are used, l can be

defined as the length (height) of the particles, with unitary value [47, 62, 112]. For 3D

problems, the characteristic length can be defined by the average radius r̄ of the particles,

in equivalence with the 2D problem, but considering spherical particles.

Yang et al. [112], showed that the porosity e may not be a good index to represent the

particle size distribution, or in a most general sense the influence of the particle assembly,

and can be replaced by a different parameter representing the geometrical characterization

of the assembly. The porosity is replaced with the particle size ratio (rmax/rmin) in order

to considers the influence of the particle size distribution influence.

The geometrical characterization of the assembly, considering the different values

involved like porosity, particle size distribution, coordination number, etc. can be

represented by a function of these parameters Φ. Equations (4.21) and (4.22) can be

rewritten as

E l

kn
= ΨE

(
kt
kn
,Φ

)
(4.23)

ν = Ψν

(
kt
kn
,Φ

)
(4.24)
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These relationships can be used to determine the shear and normal contact stiffnesses

corresponding to E and ν.

Note that according to the scaling laws, the elastic constants are completely

determined if the shear and normal stiffnesses kt and kn are known for a given size

distribution of the particles. This means that the curves hold for a specific assembly of

particles, with a given configurations, and can not be scaled to a different one. This is very

important, because the geometric characterization of an assembly is strongly related with

the mechanical behaviour of the specimen. This will be discussed further in Section 4.2.

Compressive and tensile strengths

Most of the work done in the study of the micro-parameters is related to both the effective

Young modulus and Poisson’s ratio. The effect of the micro-scale parameters on the

strength properties has not been systematically studied.

Using the same analysis for the elastic constants, the compressive and tensile strengths

can be defined considering the combination of the involved parameters

σcA

Rt

= Ψc

(
knr̄

Rn

,
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.25)

σtA

Rn

= Ψt

(
knr̄

Rn

,
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.26)

where A is a characteristic area related with the particles. For 2D problems, the

characteristic area is considered over the cylindrical particle of unitary length, while for

3D problems the area can be directly considered as the square of the radius r̄2.

Different authors on [62, 63, 88] propose to neglect the influence of the Coulomb

friction coefficient because is associated with the post-critical behaviour. Nevertheless,

experience shows a non-negligible influence of the friction in particle packings with high

density. In [62], Huang shows that the number knr̄/Rn has a weak influence on the micro

strength ratio, so it can be avoided. Finally, the equations (4.25) and (4.26) can be

rewritten as

σcA

Rt

= Ψc

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.27)

σtA

Rn

= Ψt

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.28)
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4.3.1 Elastic constants for two-dimensional case

Based in equations (4.23) and (4.24), the dimensionless number defined for the two-

dimensional case is defined as

E

kn
= Ψ2D

E

(
kt
kn
,Φ

)
(4.29)

ν = Ψ2D
ν

(
kt
kn
,Φ

)
(4.30)

The elastic constants of a particle assembly are obtained from the simulation of the

uniaxial compressive strength test (UCS). Different specimens of size 50 × 50 mm are

simulated considering standard compression tests for natural stones [44]. The particle

assembly characterization parameters are presented in Table 4.2. The model is shown in

Figure 4.8(a) and the contact model parameters are shown in Table 4.3.

Parameter Description specimen 1 specimen 2 specimen 3

Np Number of particles 11180 15436 20836
e Estimated porosity (%) 9.440 9.2663 9.0848
nc Coordination number 5.940 5.9322 5.9559
r̄ Average radius (mm) 0.2538 0.2095 0.1863

rmax/rmin Radius ratio 5.920 6.3815 8.0400

Table 4.2. Mesh characterization parameters for UCS tests in 2D.

Parameter Description Value

µ Coulomb friction coefficient 0.5
kn Stiffness in the normal direction (GN/m) 10.0
kt Stiffness in the tangential direction (GN/m) 4.0
Rn Strength of cohesive bonds in the normal direction (kN) 1.0
Rt Strength of cohesive bonds in the tangential direction (kN) 1.0

Table 4.3. Model parameters for UCS tests in 2D.

The failure model of the UCS test is shown in Figure 4.8(b). A realistic fracture is

obtained.

The stress is evaluated considering the average stress tensor over all the specimen

volume (see Appendix A for details). The axial strain can be estimated from the

imposed axial strain rate. Nevertheless, the average strain tensor presents a more accurate

estimation, showing a small difference with the axial strain rate [7, 41]. The definition
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(a) Model of the UCS test. (b) Failure mode in the UCS test.

Figure 4.8. Model and failure mode for the UCS test in 2D, with kt/kn = 0.4.

can be found in appendix B.

A typical stress-strain curve is presented in Figure 4.9, where the linear elastic

behaviour and the brittle failure can be appreciated.
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Figure 4.9. Curve stress vs strain for 2D UCS test in specimen 1, with kt/kn=0.4
and Rt/Rn=1.

The apparent Young modulus can be obtained directly from the stress-strain curve,

considering an average value between 1%–50% of the maximum stress, as

E ′ =
∆σyy
∆εyy

(4.31)
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Equation (4.31) take into account that a small degree of anisotropy is produced

during the deformation process [79]. The isotropy of the particle assembly is evaluated

considering the initial state. During the compression process, the strain introduces

changes in the contact directions resulting in a loss of isotropy.

It should be noted that in the 2D case plane strain condition are assumed in the

simulations, so the true Young modulus and Poisson’s ratio are obtained from the following

equation

ν =
ν ′

1 + ν ′
(4.32)

E =
E ′

1− ν2
(4.33)

Considering different values of the stiffness ratio kt/kn, the dimensionless scale

function is generated. This is shown in Figure 4.10.
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Figure 4.10. Dimensionless scale function of Young modulus Ψ2D
E for different

values of kt/kn in 2D UCS test.

The apparent Poisson’s ratio is estimated considering the axial and lateral direction

in the average strain tensor

ν ′ =
−∆εxx
∆εyy

(4.34)

where the axial strain εyy and the horizontal strain εxx are calculated from the average

strain tensor over all the specimen.

Figure 4.11 shows the horizontal displacement of the specimen. It can be noted that

the displacement field is uniform, which is a requirement for a good estimation of the

Poisson’s ratio. This uniform displacement field depends on the isotropy of the assembly,

which is strongly related to the particle packing methodology.
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Figure 4.11. Horizontal displacement in the UCS test 2D, with kt/kn = 0.4 at
t = 0.025s.

The variation of the Poisson’s ratio versus the micro stiffness ratio is shown in

Figure 4.12. The curve is in agreement with the results obtained by different authors

[24, 62, 75].
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Figure 4.12. Poisson’s ratio versus different values of kt/kn in 2D UCS test.

A linear behaviour is observed. The maximum value of the Poisson’s ratio obtained

is 0.25, and it is achieved with zero shear stiffness. With an equal value of the contact

stiffnesses the Poisson’s ratio is zero.
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4.3.2 Elastic constants for three-dimensional case

Similarly to the 2D case, a cylindrical specimen of diameter 50 mm and length 50 mm is

considered for the 3D problem. The specimen is discretized with a randomly assembly of

10395 spheres of radii between 0.4039− 2.1679 mm, and an average radius (r̄) of 1.1653

mm. The assembly is characterized by a porosity of 23.34% and a coordination number

of 9.48. In Figure 4.13, the discretized assembly is shown.

Parameter Description specimen 1 specimen 2 specimen 3 specimen 4

Np Number of particles 10395 17870 19563 24970
e Estimated porosity (%) 23.34 21.27 21.612 24.143
nc Coordination number 9.4800 9.40325 9.51756 9.76580
r̄ Average radius (mm) 1.1653 0.97525 0.93034 0.84619

rmax/rmin Radius ratio 5.3674 4.95739 6.32802 8.85376

Table 4.4. Assembly characterization parameters for 3D UCS test.

Figure 4.13. Assembly for UCS test in 3D specimen 1.

The contact model parameters used are presented in Table 4.5. An equal value of the

normal and tangential strengths is used.

A stress-strain curve for the 3D UCS test is shown in Figure 4.14. Note that in

this case, the behaviour of the specimen changes during the process, showing some non-
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Parameter Description Value

µ Coulomb friction coefficient 0.5
kn Stiffness in the normal direction (MN) 35
kt Stiffness in the tangential direction (MN) 10.5
Rn Strength of cohesive bonds in the normal direction (N) 100
Rt Strength of cohesive bonds in the tangential direction (N) 100

Table 4.5. Model parameters for UCS test of 3D specimens.

linearity at the end of the elastic range. This is because the broken bonds (micro-cracks)

appear gradually before achieving the elastic limit, as shown in Figure 4.15. The figure

shown the evolution of the broken bonds due to shear and tension. This will be discussed

further, when the limit strengths are analyzed. At this moment, just the elastic range is

considered, and the equivalent Young modulus and Poisson’s ratio are evaluated at the

arise of the curve. This avoids the influence of non-linear phenomena derived from the

loss of isotropy or damage. For the estimation of the elastic constants a range of the curve

between 1% and 50% of the maximum stress is considered, as recommended in laboratory

tests.
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Figure 4.14. Curve stress vs strain for 3D UCS test of specimen 1, with kt/kn=0.3
and Rt/Rn=1.

The dimensionless scale function for the Young modulus is presented in Figure 4.16.
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Figure 4.15. Evolution of the broken bonds during the 3D UCS test of specimen 1,
with kt/kn = 0.30 and Rt/Rn=1.

As mentioned earlier, the dimensionless number used in the 3D case considers the

characteristic length l as the average radius r̄. The main difference with the 2D case

is the spherical shape of the particles [62, 75].
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Figure 4.16. Dimensionless scale function for Young modulus Ψ3D
E for different

values of kt/kn in 3D UCS test specimens.

The dimensionless scale function for the Poisson’s ratio is presented in Figure 4.17.

Similarly as for the Young modulus case, this function is not linear, and its shape is

different in comparison with the one obtained in the 2D case. The value obtained when

the tangential stiffness equals the normal stiffness is close to zero. This can be considered

far from the ideal behaviour shown in the 2D case.
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Figure 4.17. Poisson’s Ratio for different values of kt/kn in 3D UCS test.

In 3D problems, the interaction mechanism is more complex than in the 2D case,

making more difficult to obtain a good estimation of the equivalent strain.

4.3.3 Compressive and tensile strengths for two-dimensional

case

Assuming that Equations (4.25) and (4.26) hold for the 2D problem, and the characteristic

area defined for cylindrical particles with unit thickness, the equations can be re-written

as

σc r̄

Rt

= Ψ2D
c

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.35)

σt r̄

Rn

= Ψ2D
t

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.36)

Several UCS and BTS tests has been performed varying the different parameters of

the dimensionless scale functions, and considering all the specimens listed in Table 4.2.

4.3.3.1 Unconfined compressive strength test

The influence of the stiffness ratio in the behaviour of the specimen is depicted in

Figure 4.18, where the failure mode in the UCS test for values of kt/kn between 0 and 1,

and Rt/Rn = 1.0, are presented.
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(a) kt/kn = 0.001 (b) kt/kn = 0.200

(c) kt/kn = 0.400 (d) kt/kn = 0.600

(e) kt/kn = 0.800 (f) kt/kn = 1.000

Figure 4.18. Failure mode of the 2D UCS test in specimen 1 for different values
of kt/kn and Rt/Rn = 1.0.

Note that the fracture pattern in the specimen is equivalent for the different values
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of kt/kn, and the differences are based in the resolution and the damage (micro-cracks)

in the intact areas. This can be explained in the breakage mechanism involved in the

process. With low values of shear stiffness, most of the bonds are broken by tension, while

with equivalent values of contact stiffnesses (kt/kn = 1.0), the predominant mechanism

is shear. In Figures 4.18(d)–4.18(f) the bonds broken by shear occurs during the elastic

range, generating uniform damage in the specimens.

A typical curve obtained for the dimensionless scale function of the compressive

strength is depicted in Figure 4.19, with Rt/Rn = 1.0. In Figure 4.19, the grey colour

represents the range of values obtained in the different specimens, and the red line is the

average curve. An important influence of the stiffness ratio over the compressive strength

is appreciated.
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Figure 4.19. Dimensionless scale function of compressive strength Ψ2D
c for

different values of kt/kn and Rt/Rn = 1.0 in 2D UCS test.

The influence of the micro strength ratio in the dimensionless compressive strength

function is investigated by varying the tangential contact strength Rt between 1 kN and

10 kN, while the normal contact strength is fixed in Rn=1 kN. The dimensionless scale

function for the compressive strength for kt/kn= 0.5 is shown in Figure 4.20.

The compressive strength function shows a big influence for lower values of the micro

strength ratio, while it influence decrease for higher values of Rt/Rn.

As the dimensionless scale function of compressive strength depends on the micro

stiffness ratio kt/kn and the micro strength ratio Rt/Rn, a contour of the averaged values

has been generated to represent the influence of both parameters. This is shown in

Figure 4.21.

It can be seen that the scaling function increases when both kt/kn and Rt/Rn increase.
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Figure 4.20. Dimensionless scale function of compressive strength for different
values of Rt/Rn and kt/kn = 0.5 in 2D specimens.

0 2 4 6 8 10
Rt/Rn

0.0

0.2

0.4

0.6

0.8

1.0

k
t/
k
n

0.80 1.40
2.00

2.60

3.20

3.80

4.40

5.00

5.60

6
.2

0

Figure 4.21. Dimensionless scale function of compressive strength Ψ2D
c for

different values of kt/kn and Rt/Rn, in 2D specimens.

For lower values of kt/kn, the function is constant for higher values of Rt/Rn. This

behaviour can be explained by the bond-breakage mechanism. In Figure 4.22(a), it can

be seen the fraction of broken bonds for each breakage mechanism (shear and tension)
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for different values of the micro strength and micro stiffness ratios. The total number of

broken bonds Nbb is defined as

Nbb = N s
bb +N t

bb (4.37)

where N s
bb and N t

bb are the number of broken bonds due to shear and tension, respectively.
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Figure 4.22. Bonds broken for different values of kt/kn and Rt/Rn in 2D UCS test.

For a low value of kt/kn, the dominant breakage mechanism is tension and the value

of Rt does not affect the scaling function Ψ2D
c . For higher values of kt/kn, the dominant

breakage mechanism is shear for lower values of Rt/Rn. While Rt/Rn increase, the

influence of the shear in the breakage mechanism decrease (increasing Ψc). Finally the

breakage is fully controlled by tension and again Rt does not affect Ψ2D
c . Figure 4.20 shown

this behaviour for kt/kn=0.5. For low values of the Rt/Rn, the dominant mechanism in the

bond breakage is the shear. While the value of Rt increase (therefore increasing Rt/Rn),

transitional region starts where σc increases faster, and most of the bonds are broken due

to tension. When the dominant mechanism is tension, the scale function increases slowly.

After a threshold value of Rt/Rn, the scaling function is independent of Rt and depends

only of Rn.

In Figure 4.22(b), the fraction of all the bonds broken is depicted. It is interesting
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that while Rt/Rn=1 the fraction of bonds broken due to shear increases (Figure 4.22(a)),

the total number of broken bonds Nbb does not increase significantly. For a higher value of

Rt/Rn, and seen that the breakage mechanism is completely based in tension, the number

of bonds broken increases with Rt/Rn. This shows that even if the dominant breakage

mechanism is shear, the total number of bonds broken due to shear is small in comparison

with the number of bonds broken due to tension.

The influence of the Coulomb friction coefficient is shown in Figure 4.23. As mentioned

earlier, some authors neglect the influence of friction in the limit strengths. Nevertheless

the curve shows a change in the values that should be taken into account.
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Figure 4.23. Dimensionless scale function of compressive strength Ψ2D
c for

different values of the friction coefficient in 2D UCS test, with
kt/kn=0.5 and Rt/Rn=1.0.

Friction effects are activated when the bonds are broken, and hence are strongly

related with the breakage mechanism. Taking into account the influence of the breakage

due to shear in Figure 4.22, which is more than 40%, it is possible to understand why the

scaling function increases.

In Figure 4.24, the influence of the Coulomb friction coefficient in the normalized

compressive strength is depicted, where σoc is the compressive strength for the frictionless

case (µ=0). For Rt/Rn=1 friction has no influence on the compressive strength. The

effect is more visible for Rt/Rn=4. This is because for Rt/Rn=4 the breakage mechanism

is dominated by tension.



4.3. Dimensional analysis 65

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0

σ
c
/σ

o c

kt/kn

Rt/Rn=1.0
Rt/Rn=4.0

Figure 4.24. Average of normalized compressive strength for different values of
the friction coefficient in 2D UCS test, with kt/kn=0.5.

4.3.3.2 Brazilian tensile strength test

The Brazilian tensile strength (BTS) test is used for the study of the tensile strength.

For the BTS test, three new specimens are used reproducing the mesh characterization

parameters of the specimens used in the UCS test. The characterization parameters for

the BTS test specimens are presented in Table 4.6.

Parameter Description specimen 1 specimen 2 specimen 3

Np Number of particles 8396 12359 15231
e Estimated porosity (%) 9.368 9.2720 9.1994
nc Coordination number 5.891 5.9317 5.9477
r̄ Average radius (mm) 0.2556 0.2084 0.1871

rmax/rmin Radius ratio 8.384 9.9024 8.0974

Table 4.6. Assembly characterization parameters for BTS test in 2D specimens.

Figure 4.25(a) shows a sample of the BTS test, for the specimen 1. The typical failure

mode obtained it is depicted in Figure 4.25(b).

The Brazilian tensile strength σt is computed via [113]

σt =
2Ft
πD t

(4.38)

where Ft is the peak force acting in the platens, D is the diameter of the disk, and t its

longitudinal dimension. For the 2D case t=1.
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(a) BTS test model (b) Failure mode

Figure 4.25. Model and failure mode for 2D BTS test in specimen 1, with
kt/kn=0.6 and Rt/Rn=1.

Following the same procedure than in the UCS test case, the influence of the micro

stiffness ratio and micro strength ratio are analyzed. In Figure 4.26, a sample curve of

the influence of kt/kn is presented for Rt/Rn=1. The curve shows a strong influence of

dimensionless scale function of the tensile strength Ψ2D
t .
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Figure 4.26. Dimensionless scale function of tensile strength Ψ2D
t for different

values of kt/kn in 2D BTS test, with Rt/Rn=1.

In Figure 4.27, the curve for the dimensionless tensile strength with kt/kn=0.4 is

depicted. For lower values of Rt/Rn the curve increases fast. After a certain value of

Rt/Rn the curve starts to be constant, being completely independent of Rt.
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Figure 4.27. Dimensionless scale function of tensile strength Ψ2D
t for different

values of Rt/Rn in 2D BTS test, with kt/kn=0.4.

The same curves are obtained for different values of kt/kn and Rt/Rn, and a graph with

the contour lines is created with the average values obtained for the different specimens.

The contour lines are presented in Figure 4.28. A similar behaviour that in the UCS test

can be appreciated, where the higher values of the tensile strength are obtained when

both, kt/kn and Rt/Rn are higher.

This behaviour follows the same pattern than for the compressive strength case,

which is dominated by the tensile breakage mechanism, as shown in Figure 4.29(a),

where the shear breakage mechanism has an influence just for lower values of Rt/Rn.

In Figure 4.29(b), the ratio of broken bonds over initial bonds (Nbb/Nc) is depicted.

It is interesting to note that in the BTS test the total number of broken bonds is

lower than in the UCS test. This means that in the BTS test damage is more localized

and the fracture should be clean, while in the UCS test damage is more distributed over

the specimen.

Based in the UCS and BTS tests, the influence of the micro stiffness ratio kt/kn and

the micro strength ratio Rt/Rn over the macro strength ratio σc/σt is analyzed. The

contour lines are presented in Figure 4.30.

Different regions can be observed, based in the bond breakage mechanism. The

graph shows a well defined diagonal band where the macro strength ratio increases fast

with Rt/Rn. In the bottom region of the graph, the macro strength ratio decreases for

small values of kt/kn. The maximum value of the macro strength ratio is around 10, for

kt/kn=0.6 and Rt/Rn=10, which is close to the typical values obtained in natural stone,
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Figure 4.28. Dimensionless scale function of tensile strength Ψ2D
t for different

values of kt/kn and Rt/Rn in 2D BTS test.

but it is not possible to cover higher values of the macro strength ratio. Huang et. al.

[62, 63] present a similar curve for different values of Rt/Rn and kt/kn=1, obtaining lower

values of the macro strength ratio. Nevertheless, this can be related to the high density

level of the assembly.

4.3.4 Compressive and tensile strengths for three-dimensional

case

Considering the equations (4.27) and (4.28), and following the same idea that in the 2D

case, the area A now is considered to be proportional to the square of the average radius

r̄2. The dimensionless relationships can be re-written as

σc r̄
2

Rn

= Ψ3D
c

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.39)

σt r̄
2

Rn

= Ψ3D
t

(
Rt

Rn

,
kt
kn
, µ,Φ

)
(4.40)
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Figure 4.29. Bonds broken for different values of kt/kn and Rt/Rn in 2D BTS
test.

4.3.4.1 Unconfined compressive strength test

The failure mode in the specimen 1, for kt/kn=0.3 and Rt/Rn=1, is shown in Figure 4.31.

The fracture presents a pattern similar at the observed in laboratory tests, with a well

defined fracture surface.

Using the same procedure as for 2D case, the influence of the micro stiffness ratio kt/kn

and micro strength ratio Rt/Rn has been analyzed. In Figure 4.32, the dimensionless

scale function of the compressive strength considering different values of stiffness ratio

between 0 and 1, and Rt/Rn = 1.0, in all the specimens of Table 4.4, is presented. An

important influence of the stiffness ratio over the compressive strength is appreciated. The

grey line, presenting the variation of the curve between the different specimens, shows

that all the specimens follow the same behaviour. The variation between the different

specimens is attributed to the differences in the particle assemblies and the estimation of

the characteristic area A.

A similar situation occurs when the influence of the micro strength ratio Rt/Rn is

analyzed for a defined value of kt/kn. In Figure 4.33, the curve obtained for kt/kn=0.5 is

depicted. The behaviour is similar to the obtained for the 2D case, but the curve now is

more smoothed.

Performing the same analysis for different values of Rt/Rn and kt/kn a contour lines
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Figure 4.30. Strength ratio σc/σt for different values of kt/kn and Rt/Rn in 2D
specimens.

Figure 4.31. Failure mode of the 3D UCS test in specimen 1, with kt/kn = 0.3
and Rt/Rn=1.
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Figure 4.32. Dimensionless scale function of compressive strength Ψ3D
c for

different values of kt/kn in 3D UCS test, with Rt/Rn=1.
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Figure 4.33. Dimensionless scale function of compressive strength Ψ3D
c for

different values of Rt/Rn in 3D UCS test, with kt/kn=0.5.

graph is generated, showing the influence of both parameters in the dimensionless scale

function for the compressive strength. The generated graph is presented in Figure 4.34.

The Figure 4.34 shows an interesting relationship between kt/kn and Rt/Rn, with a

diagonal band that mark a change of tendency. When the evolution of the compressive

strength is considered for a fixed value of kt/kn, the band shows the threshold when

the strength starts to be independent of Rt/Rn. Furthermore, it is possible see that

when kt/kn is very small (a higher equivalent Poisson’s ratio) the compressive strength

is almost constant. The maximum values of the compressive strength are found exactly

in the corner of the graph, where the maximum values of kt/kn and Rt/Rn are found.

Nevertheless, this value can not be achieved in reality because it is equivalent to consider

a null Poisson’s ratio, as shown in Section 4.3.2.
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Figure 4.34. Dimensionless scale function of compressive strength Ψ3D
c for

different values of kt/kn and Rt/Rn in 3D UCS test.

The behaviour can be explained considering the breakage mechanism shown in

Figure 4.35, where the band coincides with the change of tendency in the breakage

mechanism.

The ratio of bonds broken due to shear over the broken bonds, shown in Figure 4.35(a),

indicate that the shear mechanism does work just for lower values of Rt/Rn and increases

with kt/kn. The diagonal presents the threshold when the breakage is completely

controlled due to tension. In Figure 4.35(b) the ratio of broken bonds over the initial

number of bonds is shown. This evidences that even in the area where the dominant

breakage mechanism is tension, the number of broken bonds is still increasing with Rt/Rn,

achieving values around 65% for kt/kn=0.6 and Rt/Rn=1. Similarly to the 2D case, the

number of bonds broken decreases abruptly for low values of kt/kn.

Taking into account the graph obtained for the dimensionless scale function of

compressive strength (Figure 4.34), the region where the value of compressive strength in

completely independent of Rt is strongly related to the breakage mechanism dominated

due to tension.

The influence of the Coulomb friction coefficient in the compressive strength is
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Figure 4.35. Broken bonds for different values of kt/kn and Rt/Rn in 3D UCS test.

analyzed by relating the friction coefficient and the dimensionless scale function Ψ3D
c ,

as shown in Figure 4.36. The curves shows a higher influence than on the 2D case. Note

that the compressive strength increases around 60% with the friction coefficient. It is

interesting to note that the curve shows a similar behaviour than in the 2D case, in which

the compressive strength changes linearly for values lower than µ = 0.90, after which the

compressive strength is constant.

As in the 2D case, the influence of the friction in the compressive strength is related

to the breakage mechanism, considering that friction will affect just after the bond breaks

due to shear, and with compressive force between the contacting particles. In order to

analyze the effect of friction, the UCS test is performed with different values of the friction

coefficient and the micro strength ratio. The normalized compressive strength σc/σ
o
c ,

over the compressive strength for the frictionless case (σoc), is depicted in Figure 4.37.

The curves shows that for Rt/Rn=10 the compressive strength is almost constant. A

higher variation is obtained for Rt/Rn=5, but considerably lower than for Rt/Rn=1.

This behaviour can be directly related to the shear breakage mechanism.

4.3.4.2 Brazilian tensile strength test

The tensile strength is obtained through the BTS test, similarly as on the 2D case. On this

case, the same specimens used in the compressive test are used. The specimen present a
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Figure 4.36. Dimensionless scale function of compressive strength Ψ3D
c for

different values of the friction coefficient in 3D UCS test, with
kt/kn=0.5 and Rt/Rn=1.
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length 2 times longer than the laboratory specimens. Nevertheless, a similar behaviour is

assumed considering Equation (4.38). This allows to use the same specimens of Table 4.4.

A sample of the failure mode is shown in Figure 4.38, where it can be seen that the

fracture presents a correct behaviour.

The BTS test is performed with all the specimens for different values of the micro

stiffness and micro strength ratios. The influence of the micro stiffness ratio in the

dimensionless scale function of tensile strength (for Rt/Rn=1) is presented in Figure 4.39.

The curve presents a similar behaviour as the curve obtained for the UCS test and the
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Figure 4.38. Failure mode for 3D BTS test in specimen 1, with kt/kn=0.5 and
Rt/Rn=1.

BTS test in the 2D case, with a higher value for a stiffness ratio of kt/kn = 0.3.
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Figure 4.39. Dimensionless scale function of tensile strength Ψ3D
t for different

values of kt/kn in 3D BTS test, with Rt/Rn=1.

A sample of the curve obtained varying the micro strength ratio Rt/Rn with a fixed

value of the micro stiffness ratio (kt/kn=0.5) is presented in Figure 4.40. The results

for the different specimens present a similar result, and show the expected behaviour,

considering the previous 2D and 3D tests.
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Figure 4.40. Dimensionless scale function of tensile strength Ψ3D
t for different

values of Rt/Rn in 3D BTS test, with kt/kn=0.5.

The results for the different values are used to generate a contour lines graph, showing

the influence of both micro ratios. The graph is presented in Figure 4.41.

The figure shows that the diagonal band is shifted to the left. This means that for

values of of micro stiffness ratio kt/kn lower than 0.1, the tensile strength does not depend

of Rt even for lower values of Rt/Rn. For kt/kn=1, the value of the tensile strength is

constant for values of Rt/Rn higher that 9.

Again, this behaviour is related to the bonds breakage mechanism. The influence

of the micro strength ratio over the failure mechanism is shown in Figure 4.42. In

Figure 4.42(a) the influence of shear in the breakage mechanism is shown. A similar

behaviour to the previous cases is obtained. It is interesting to note that shear has a

higher influence, achieving around 70% of the breakage with higher values of kt/kn. The

ratio of all broken bonds over the initial number of bonds is presented in Figure 4.42(b).

The graph shows a higher value of bonds broken and the same shift of the diagonal band.

Finally, the variation of the strength ratio as a function of the micro stiffness ratio and

the micro strength ratio is shown in Figure 4.43. The curve presents a similar behaviour

as for the 2D case with smoother isolines. The maximum value achieved for the strength

ratio is close to 10.5, for kt/kn=0.2 and Rt/Rn=10.

As a conclusion, it is clear that the dimensional analysis can be a useful tool for the

estimation of the local parameters. Nevertheless, it requires the use of similar assembly

characteristic parameters. In equations (4.25) and (4.26), a parameter related to the
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Figure 4.41. Dimensionless scale function of tensile strength Ψ3D
t for different

values of kt/kn and Rt/Rn in 3D BTS test.

assembly characterization has been included, but has not been completely analyzed. The

consideration of the influence of the assembly will be considered in the next section, where

micromechanics theory is used for the estimation of the local parameters.
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Figure 4.42. Broken bonds for different values of kt/kn and Rt/Rn in 3D BTS test.
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4.3.5 Improving dimensionless number with micromechanics

Even if is not possible to recover completely the mechanical behaviour, it is clear that

this formulation allows to redefine the dimensional analysis to improve the estimation, by

accounting for the assembly influence.

For a suitably large representative volume with a large number of contacts, the

summation of a quantity over all contacts can be expressed in an integral form. Let

Q be a quantity dependent upon the orientation of the contact, the summation of such a

function over all contacts can be written as

Nc∑
i=c

Qc = Nc

∫ 2π

0

∫ π

0

Q(γ, β)ξ(γ, β) sin γdγdβ (4.41)

where ξ(γ, β) is the directional distribution density function, which satisfies∫ 2π

0

∫ π

0

ξ(γ, β) sin γdγdβ = 1 (4.42)

Therefore, recovering the stiffness tensor definition of the equation (4.13), can be re-

written as follows

Cijkl =
Nc

V

∫ 2π

0

∫ π

0

lciK
c
jkl

c
l ξ(γ, β) sin γdγdβ (4.43)

If isotropic assemblies are considered, possible correlations between lci and f cj are not

accounted and the equation above can be simplified as

Cijkl =
Ncl2

V

∫ 2π

0

∫ π

0

nciK
c
jkn

c
l ξ(γ, β) sin γdγdβ (4.44)

where l2 is the average of the square branch length over all the contacts. Now, considering

the definition of the local stiffness tensor Kjk in (4.4), we can rewrite equation (4.44) as

Cijkl =
Nc kn l2

V

∫ 2π

0

∫ π

0

(ni(njnk +
kt
kn

(sjsk + tjtk))nl)ξ(γ, β) sin γdγdβ (4.45)

At this point, we can introduce the contact density (ms). Different authors [67, 104] use
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this value as a compaction measure of the assembly. The contact density is defined as

ms =
Nc

V
(4.46)

Nevertheless, at this moment the main interest is recovering the dimensionless

relationships. For this purpose, we express the volume in terms of the average radius

of the particles and number of particles.

The volume of the domain can be recovered in the 3D case as

V =
4πNpr3

3(1− e)
(4.47)

where r̄3 is the average of the cube of the radius. Substituting (4.47) into (4.45) we have

Cijkl =
3nc(1− e)knl2

8πr3

∫ 2π

0

∫ π

0

(ni(njnk +
kt
kn

(sjsk + tjtk))nl)ξ(γ, β) sin γdγdβ (4.48)

Now in the definition of the stiffness tensor we can be see a clear contribution of the

characteristic parameters of the assembly.

Many authors have developed different formulations for the definition of the Young’s

moduli and Poisson’s ratio. Nevertheless, for the sake of simplicity, we will use the

equation (4.48) in the definition of the dimensionless scale functions (4.23) and (4.24).

Considering the influence of the assembly we can redefine, after some algebra, the

dimensionless scale functions for the elastic constants as

E r̃

kn nc (1− e)
= Ψ̂3D

E

(
kt
kn

)
(4.49)

ν = Ψ̂3D
ν

(
kt
kn

)
(4.50)

where r̃ is a characteristic radius reflecting the size of the particles and its distribution,

defined as

r̃ =
4 r3

l2
(4.51)

Note that the Poisson’s ratio scale function does have not any correction factor. The same
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is shown by Liao et al. [75] using the Voight hypothesis.

In the 2D case, the volume can be written in terms of the area in a cylindrical particles

and its thickness as

V = A t =
2πNpr2t

(1− e)
(4.52)

Now, considering a unit thickness for the cylindrical particles, the characteristic length of

the equation (4.21) can be re-written in a similar way as

r̃ =
4 r2

l2
(4.53)

and the new dimensionless scale function for the Young modulus can be written as

E r̃

kn nc (1− e)
= Ψ̂2D

E

(
kt
kn

)
(4.54)

ν = Ψ̂2D
ν

(
kt
kn

)
(4.55)

The dimensionless numbers defined for 2D in (4.54) and (4.55), and for 3D in (4.49)

and (4.50), allow us to normalize the obtained values, taking into account the influence

of the assembly. This yield a more accurate dimensionless scale curves.

The new dimensionless scale functions for the Young modulus in 2D and 3D specimens

are shown in Figure 4.44 and 4.45, respectively. It can be seen that the dimensionless

scale function presents a better agreement between both specimens.

The same idea can be applied for the strength parameters. Considering Hooke’s law

(4.12) and the uniform strain hypothesis (4.8), a similar derivation is performed. The

new dimensionless scale function for strength parameters are re-defined as follows

σc Ã

Rn nc (1− e)
= Ψ̂c

(
Rt

Rn

,
kt
kn
, µ

)
(4.56)

σt Ã

Rn nc (1− e)
= Ψ̂t

(
Rt

Rn

,
kt
kn
, µ

)
(4.57)

where Ã is written for 2D and 3D cases as the square of the characteristic radius, i.e.
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Figure 4.44. Modified dimensionless scale function of Young modulus Ψ̂2D
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Figure 4.45. Modified dimensionless scale function of Young modulus Ψ̂3D
E for

different values of kt/kn in 3D specimens.

Ã2D = r̃2
2D =

2 r2 t

l̄
(4.58)

Ã3D = r̃2
3D =

2 r3

l̄
(4.59)

With this change in the dimensionless scale function for the strength parameters, the

new contour line graphs are presented in Figure 4.46 for the 2D case. The graphs do not

presents a visible improvement in comparison with the standard curves (Figure 4.21 and

4.28). The range of values for the different specimens decreases 2% versus the standard

curves.
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Figure 4.46. Modified dimensionless scale function of compressive and tensile
strength for different values of kt/kn and Rt/Rn in 2D specimens.

The improved dimensionless scale functions for the compressive and tensile strength

parameters in the 3D case are shown in Figure 4.47. Similar to the 2D case, the range

of values does not presents a visible improvement versus the results of Figures 4.34 and

4.41. Nevertheless, are 4.6% lower than for the standard curves.

4.4 Parameter estimation

Based in the dimensional analysis and micromechanics, it is possible to predict the contact

model parameters in order to reproduce a specific mechanical properties. In this section,

the methodology for the estimation of the model parameters is presented for both, 2D

and 3D cases.

In order to verify the parameter estimation procedure, the simulation of a predefined

material for the UCS test is performed. The material properties considered are presented

in Table 4.7.
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Figure 4.47. Modified dimensionless scale function of compressive and tensile
strength for different values of kt/kn and Rt/Rn in 3D specimens.

Mechanical properties Value

E Young modulus (GPa) 18.691
ν Poisson ratio 0.20
σc Uniaxial compressive strength (MPa) 127.83
σt Brazilian tensile strength (MPa) 12.30
ρ Density (kg/m2) 2580

Table 4.7. Mechanical properties for parameter estimation procedure verification.

The main idea of the parameter estimation procedure is to estimate the elastic

constants based in micromechanics or the dimensionless scaling functions, depending if

a 2D or a 3D case is considered. The micro strength parameters are estimated with

the curves based in the micro strength and micro stiffness relationships presented in

the dimensional analysis. The study of the micro strength relationships shows that

friction affect the strengths just for certain values of micro strength ratio due to the

breakage mechanisms. This friction effect can be considered as a correction factor for

the dimensional scale function of strengths. Considering this, the dimensionless scaling
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function for the micro strength is redefined as

σc Ã

Rn nc (1− e)
= Ψ̂c

(
Rt

Rn

,
kt
kn

)
ψ (µ) (4.60)

where Ψ̂c is now restricted to the influence of the micro strength and micro stiffness

ratios, and the influence of Coulomb friction coefficient is considered as a correction

factor, defined by ψ. The correction factor is defined by the curves relating its influence

to the dimensionless number, as shown in Figure 4.24 for the 2D case and in Figure 4.37

for the 3D case.

4.4.1 Parameter estimation for two-dimensional case

In this case, elastic constants can be estimated directly from the micromechanics equation.

For the strength parameters, the dimensionless scale function defined in the previous

sections can be used. The methodology used for the estimation of the parameters it as

follows.



86 4. Estimation of the discrete element parameters

Methodology:

1. Considering a defined particle assembly, with known characterization parameters,

the micro stiffnesses (kn and kt) can be calculated using the micromechanics

equations (4.18) and (4.19).

2. Assuming that the strength ratio is satisfied by the curve of Figure 4.30, the micro

strength ratio Rt/Rn can be recovered directly from that curve.

3. If the strength ratio of the original material is higher than the maximum strength

ratio, the maximum strength ratio of the curve is considered, and one of the

dimensionless scaling function of compressive or tensile strength is used, depending

of the dominant breakage mechanism we want to reproduce.

4. With the value of the micro strength ratio, the normal and tangential micro

strengths can be estimated using the average value of the curves in Figure 4.46(a)

and 4.46(b).

5. Taking into account Figure 4.24, if the micro strength ratio Rt/Rn is small,

a correction of the dimensionless scale function for strengths is required taking

into account the Coulomb friction coefficient. This correction can be estimated

depending of the fraction of bonds broken due to shear, as shown in Figure 4.29(a).

Based on this methodology, a verification sample is defined considering a new

specimen. A UCS test with the new specimen is performed, considering the material

properties of Table 4.7.

For the verification sample, an assembly of 30480 cylindrical particles with a

characteristic radius r̃= 0.15365 mm is used. The assembly has a porosity of 9.2121%

and a coordination number of 5.9841.

The micro stiffnesses can be calculated directly from the assembly and the elastic

constants, as kn=14.392 GN/m and kt=2.868 GN/m. Following the methodology

presented before, the micro strength parameters are estimated with the respective curves.

Taking the micro stiffness ratio kt/kn=0.1992774, from Figure 4.30 we can extract the

curve of the macro strength ratio versus micro strength ratio, as shown in Figure 4.48.

As the strength ratio σc/σt=10.3927 (Table 4.7), is higher than the maximum value of

the curve (σc/σt=9.3647), the compressive strength is taken as reference, with the micro

strength ratio taken as Rt/Rn=10. Once the values of micro stiffness ratio and micro

strength ratio are defined, the dimensionless scale function for the compressive strength is
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Figure 4.48. Macro strength ratio vs micro strength ratio for verification specimen
in 2D, with kt/kn=0.079595.

calculated using Figure 4.46(a), as Ψ2D
c =0.710. The micro strength in the normal direction

is then calculated as Rn=4.9623 kN, and the micro strength in the tangential direction

is Rt=49.623 kN. For values of Rt/Rn higher than 4.0, we know from Figure 4.24 that

friction do not affect the strengths. The micro parameters obtained are summarized in

Table 4.8.

Parameter Description Value

µ Coulomb friction coefficient 0.8000
kn Normal stiffness (GN/m) 14.392
kt Tangential stiffness (GN/m) 2.8680
Rn Normal bond strength (kN) 4.9623
Rt Tangential bond strength (kN) 49.623
ρ′ Scaled density (kg/m3) 2841.8

Table 4.8. Contact model parameters obtained for 2D UCS verification test
specimen.

In Figure 4.49, the damage and failure mode in the 2D specimen is shown.

After the simulation of the UCS test, the mechanical properties of the virtual specimen

are estimated and compared with the original properties of the material. In Figure 4.50,

the strain vs stress curve is depicted. The curve presents a change in the elastic modulus

due to homogeneous damage that starts with a stress close to σ=65 MPa. The resulting

mechanical properties obtained are presented in Table 4.9.
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Figure 4.49. Failure mode in 2D UCS verification test.
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Figure 4.50. Curve stress vs strain for 2D UCS verification test.

Mechanical properties Original Simulation

Young modulus (GPa) 18.691 18.630
Poisson ratio 0.20 0.2009
Uniaxial compressive strength (MPa) 127.83 126.38

Table 4.9. Comparison of results in 2D UCS verification test.

A good agreement is obtained for the elastic constants is observed. For the compressive

strength, an error around 2% for the values of Table 4.9 is found. The values can be
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considered as a good approximation, and the parameter estimation methodology can be

considered successful.

4.4.2 Parameters estimation for three-dimensional case

For the three-dimensional problem a similar strategy is used to identify the macro

parameters. A similar strategy is used to identify the micro parameters for the 3D UCS

test. The main difference with the methodology used in the 2D case is the estimation of the

stiffnesses. Here, the stiffnesses are estimated using the dimensionless scaling function,

not the micromechanics equations. The different steps considered for the estimation

parameters are presented below.

Methodology:

1. Considering a defined particles assembly and the Poisson’s ratio, the micro-stiffness

ratio is estimated from the curve of Figure 4.17.

2. With the micro-strength ratio and the characterization parameters of the assembly,

the normal contact stiffness (kn) is estimated from the curve of Figure 4.45.

3. If the strength ratio satisfied the curve in Figure 4.43, the micro strength ratio

Rt/Rn can be obtained considering the average value of the curve.

4. In case that the strength ratio of the original material is higher than the maximum

strength ratio, the maximum strength ratio of the curve is considered, and one of

the dimensionless scaling function for strength (compression or tension) should be

used, depending of the dominant breakage mechanism to be reproduced.

5. Taking the values of micro strength and micro stiffness ratios, the normal and

tangential micro strengths are estimated using the average value of the curves in

Figure 4.47.

6. For a low value of the micro strength ratio, and depending of the influence of

tangential breakage mechanism, the micro strength parameters should be corrected

using the curves in Figure 4.37.

The verification of the parameters estimation procedure is performed in the same way

that the 2D case. A 3D UCS test is performed considering the mechanical properties

presented in Table 4.7. The characterization of the particle assembly considered for

the simulation is presented in Table 4.10, with 28371 particles and an average radius
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Parameter Description Value

Np Number of particles 28371
e Estimated porosity (%) 27.450
nc Coordination number 9.3921
r̄ Average radius (mm) 0.8431
r̃ Characteristic radius (mm) 0.8431

Table 4.10. Characterization of the particle assembly in 3D UCS verification test.

of 0.8431 mm.

The estimation of the micro stiffness ratio is made in terms of the Poisson’s ratio

in Figure 4.17, obtaining kt/kn=0.19248. With the stiffness ratio, the normal stiffness

is estimated considering the improved dimensionless scale function in Figure 4.45 as

kn=28.954 MN/m. Then, the tangential stiffness is recovered using the micro stiffness

ratio, obtaining kt=2.9397 MN/m.

For the estimation of the micro strength parameters, the curve of macro strength

ratio vs micro strength ratio is obtained from Figure 4.43, for the micro stiffness ratio

estimated before, as shown in Figure 4.51.
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Figure 4.51. Macro strength ratio vs micro strength ratio for 3D UCS verification
test, with kt/kn=0.19248.

The curve in Figure 4.51 presents a maximum value of σc/σt=8.938. This is lower than

the value to be reproduced which is 10.392. As the exact value of the strength ratio can

not be reproduced, the micro strength ratio for the simulation is selected as Rt/Rn=10,

and the estimation of the strength parameters is made considering the dimensionless scale
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function of compressive strength. Based in the improved dimensionless scale function of

compressive strength in Figure 4.47, the curve obtained for the estimated value of the

micro strength ratio is depicted in Figure 4.52.
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Figure 4.52. Dimensionless scale function of compressive strength vs micro
strength ratio for 3D UCS verification test, with kt/kn=0.19248.

The micro strength in the normal direction is calculated considering Rt/Rn=10.0 in

the dimensionless scale function, as Rn=91.971 N. The micro strength in the tangential

direction is recovered using the micro strength ratio, as Rt=919.71 N.

In order to verify the influence of the proposed correction factors and the

micromechanics considerations for the particle assembly characterization, the same

simulation is performed using a standard estimation of the parameters, i.e. considering the

dimensionless scaling function for normal stiffness of Figure 4.16, and the dimensionless

scale function of micro strength in the normal direction of Figure 4.34, without any

corrections. The model parameters estimated in both cases are summarized in Table

4.11.

The stress vs strain curve for the specimen with the contact model parameters

with the improved dimensionless scale functions is presented in Figure 4.53, where it is

compared with the curve obtained for the micro parameters obtained with the standard

dimensionless scale functions.

The results of the simulation are shown in Table 4.12 for both cases, with and without

correction factors. It is interesting to verify the improvement in the results for the elastic

constants and compressive strength. The elastic constants in the simulation without the

corrected parameters show lower values for the Young modulus and the Poisson’s ratio.
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Parameter Description Standard Improved

µ Coulomb friction coefficient 0.800 0.800
kn Normal stiffness (MN/m) 26.6181 27.889
kt Tangential stiffness (MN/m) 2.70248 5.3681
Rn Normal bond strength (N) 84.550 91.971
Rt Tangential bond strength (N) 591.85 643.80
ρ′ Scaled density (kg/m3) 3556.2 3556.2

Table 4.11. Standard and improved model parameters for 3D UCS verification
test.

0

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

σ
y
y

[M
P

a]

εyy [%]

Improved
Standard

Figure 4.53. Comparison of strain vs stress curve in 3D UCS verification test,
considering standard and improved dimensionless scale functions.

This can be explained with the lower value of the coordination number found in the

assembly, which clearly decreases the global stiffness.

The compressive strength for the corrected parameters present a good agreement

with the original value. The estimated micro strength parameters are increased for the

consideration of the assembly characterization parameters, showing again an improved

result.
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Mechanical property Original Standard Improved

E Young modulus (MPa) 18691 17355 18652
ν Poisson ratio 0.20 0.1913 0.2012
σc Uniaxial compressive strength (MPa) 127.83 111.50 126.12

Table 4.12. Comparison of results in 3D UCS verification test, considering
standard and improved dimensionless scale functions.

The parameter estimation procedure it is considered successful in both 2D and 3D

cases, showing that the improvements made in the estimation procedure are correct.

Ψ̂ Even if it is possible to reproduce the mechanical behaviour of rock materials, the

contact model present a problem in the reproduction of materials with high strength ratio

ratio. Different authors have been considered modified versions of the contact model in

order to solve this problem. Nevertheless for the simulations made in the framework of

this work, the model here proposed is considered to be sufficient.



94 4. Estimation of the discrete element parameters



Chapter 5

Coupling scheme with the finite

element method

As shown in the previous chapters, the DEM is a good alternative to continuum based

methods for the simulation of problems characterized by all kinds of discontinuities and

material failure dominated by fracture. In most cases, the material failure is localized

in a portion of the domain while the rest of the domain has a behaviour that can be

represented as a continuum. This fact, and the consideration of the computational cost

involved by the DEM, make interesting the possibility to simulate adjacent sub-domains

employing the most suited simulation technique for each of them. This chapter presents

the theoretical formulation and the numerical implementation of a procedure for coupling

the DEM with the FEM. The idea considers the use of the DEM in the region, or sub-

domain, where failure will be produced and the FEM in the rest of the domain. This

allows taking advantage of the best functions of each method in each sub-domain and

makes more efficient the numerical simulation.

In the next section, the formulation of the finite element method is summarized.

Then, the basis of the coupling scheme of finite and discrete element methods is presented.

Finally, the adaptivity algorithm for the coupling scheme is developed.

5.1 The finite element method

The finite element method implemented is developed within the so-called explicit dynamic

formulation. The explicit finite element method is based in the solution of the discretized

equations of motion written in the current configuration. The present formulation uses a

mixed displacement-pressure formulation, stabilized by an orthogonal sub-scale approach

in order to avoid the volumetric locking with linear triangles and tetrahedra.
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5.1.1 Non-linear transient dynamic formulation

In the non-linear transient dynamic formulation the equation of motion for a solid material

can be written in as

−ρ∂
2ui
∂t2

+
∂2σij
∂xj2

+ bi = 0 (5.1)

where ρ is density, t is time, σij are the stress and bi are the body forces. Equation (5.1)

is completed with the boundary conditions in displacements ui and the equilibrium in

surface tractions

ui − ūi = 0 on Γu (5.2)

σijnj − t̄i = 0 on Γt (5.3)

In the above ūi and t̄i are prescribed displacements and tractions over the boundaries

Γu and Γt, respectively.

Employing a standard split of stresses into deviatoric and volumetric (pressure) parts,

sij and p, respectively

σij = sij + pδij (5.4)

where δij is the Kronecker delta function.

The linear elastic constitutive equations for the deviatoric stress sij are written as

sij = 2G(εij −
1

3
εvδij) (5.5)

where G is the shear modulus,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and εv = εii (5.6)

Note that the Einstein’s summation convention is used.

The pressure equation is written as

p

K
− ∂ui
∂xi

= 0 (5.7)

where K is the bulk modulus.

The governing equations of the mixed displacement-pressure formulation can be
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obtained then in the form

−ρ∆vi
∆t

+
∂sij
∂xj

+
∂p

∂xi
+ bi = 0 (5.8a)

∆ui
∆t
− vn+1/2

i = 0 (5.8b)

∆p

K
− ∂(∆ui)

∂xi
= 0 (5.8c)

where ∆vi = v
t+1/2
i − vt−1/2

i , ∆ui = ut+1
i − uti and ∆p = pt+1 − pt are the increments of

velocity, displacement and pressure, respectively.

Introducing the concept of orthogonal sub-scale approach developed by Codina in

[30, 31] and later employed for elasticity and elasto-plasticity problems [21, 27, 28, 85],

Equation (5.1) is split now as

πi +
∂p

∂xi
= 0 (5.9)

where

πi = −ρ∂vi
∂t

+
∂sij
∂xi

+ bi (5.10)

The term πi is the part of equation (5.1) not containing the pressure gradient and

may be considered as the negative of a projection of the pressure gradient. In a discrete

setting, the term πi can be considered belonging to a sub-scale space orthogonal to that

of the pressure gradient terms.

The weighted residual form of the governing equations can be written in the form∫
Ω

δuiρ
∆vi
∆t

dΩ +

∫
Ω

δεijσijdΩ−
∫

Ω

δuibidΩ−
∫

Γt

δuit̄idΓt = 0 (5.11)

∫
Ω

δvi

[
∆ui
∆t
− vi

]
dΩ = 0 (5.12)

∫
Ω

q

(
∆p

K
− ∂(∆ui)

∂xi

)
dΩ +

∫
Ω

∂q

∂xi

(
∂p

∂xi
+ πi

)
= 0 (5.13)

∫
Ω

w

(
πi +

∂p

∂xi

)
dΩ = 0 (5.14)
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5.1.2 Finite element discretization

We choose C0 continuous linear interpolations of the displacements, pressure and pressure

gradient projection πi over three-node triangles (2D) and four-node tetrahedra (3D). The

linear interpolations are written as

ui =
n∑
j=1

Njū
j
i (5.15)

p =
n∑
j=1

Nj p̄j (5.16)

πi =
n∑
j=1

Njπ̄
j
i (5.17)

where n = 3(4) for 2D (3D) problems and (̄·) denotes nodal variables. Nj are the linear

shape functions [114].

Substituting the approximations into Equations (5.11)–(5.14) gives the following

system of discretized equations:

M
∆v̄

∆t
−Rv + fd = 0 (5.18)

∆ū

∆t
− v̄ = 0 (5.19)

CT∆ū−Mp∆p̄− Lp̄−Qπ̄ = 0 (5.20)

QT p̄ + Ḡπ̄ = 0 (5.21)

where the element contributions are given by

L =

∫
Ω

(∇N)Tτ∇NdΩ, Ḡ =

∫
Ω

NTτNdΩ

fd =

∫
Ω

BTσdΩ, Q =

∫
Ω

(∇N)TτNdΩ

(5.22)

where B is the linear stress-strain operator matrix, and

τ =

 τ1 0 0

0 τ2 0

0 0 τ3

 (5.23)

The matrices M, Mp, C, Rv are defined as
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M =

∫
Ω

ρNT
v NvdΩ, Mp =

∫
Ω

1

K
NT
p NpdΩ

Rv =

∫
Γ

NT
p t̂dΓ +

∫
Ω

NT
p bdΩ, C =

∫
Ω

NT
v∇NpdΩ

(5.24)

In the case of explicit solution, the two matrices M and Mp are usually diagonalized.

In the discretization procedure the same interpolation has been assumed for all the

discretized fields: Nv = Np = Nπ = N.

We can then define a four steps semi-implicit time integration algorithm as follows:

Step 1 Compute the nodal velocities v̄n+1/2

v̄n+1/2 = v̄n−1/2 + ∆tM−1 (Rn
v − fnd) (5.25)

Step 2 Compute the nodal displacements ūn+1

ūn+1 = ūn−1 + ∆t ¯vn+1/2 (5.26)

Step 3 Compute the nodal pressures p̄n+1

p̄n+1 = [Mp − L]−1 [∆tCT v̄n+1/2 + Mp p̄n −Q π̄n
]

(5.27)

Step 4 Compute the nodal projected pressure gradients π̄n+1

π̄n+1 = −Ḡ
−1

QT p̄n+1 (5.28)

In above matrices, M, Mp, L, C, Q, and G are evaluated at tn+1.

Note that the steps (1), (2) and (4) are fully explicit. A fully explicit algorithm can

be obtained by computing p̄n+1 from step (3) in Equation (5.27) as follow:

p̄n+1 = M−1
p

[
∆tCT v̄n+1/2 + (Mp − L) p̄n −Q π̄n

]
(5.29)

Obviously, the explicit solution is efficient if diagonal form of the matrices Mp, M and Ḡ

are used. The explicit solution is possible if certain compressibility is assumed, i.e. K 6= 0.

If K →∞ pressure must be obtained using the implicit scheme given by Equation (5.27).
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5.1.3 General discrete/finite element dynamic formulation

The general algorithm for the transient dynamic problem involving discrete elements and

finite elements includes the following steps [84]:

Step 1 Compute nodal velocities

Discrete elements

u̇
n+1/2
i = u̇

n−1/2
i + üni ∆t with üni = Fn

i /mi (5.30)

ω
n+1/2
i = ω

n−1/2
i + ω̇ni ∆t with ω̇ni = Tn

i /Ii (5.31)

Finite elements

u̇
n+1/2
i = u̇

n−1/2
i + ∆tM−1

d (fn − gn) (5.32)

Step 2 Compute nodal displacements

Discrete elements

un+1
i = uni + u̇

n+1/2
i ∆t (5.33)

∆θn+1
i = ω

n+1/2
i ∆t (5.34)

Finite elements

un+1
i = uni + u̇

n+1/2
i ∆t (5.35)

Step 3 Compute the nodal pressure

Finite elements

p̄n+1 = [C + L− S]−1 [∆tGT ˙̄un+1/2 + Cp̄n
]

(5.36)

Step 4 Update the nodal coordinates

Discrete and finite elements

xn+1
i = xni + ∆ū = xni + (ūn+1 − ūn) (5.37)

Step 5 Update residual force vector

Go to the Step 1
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5.2 Coupling scheme

A special coupling algorithm is used to impose constraints between the subdomains with

different scale modelling. The idea of the coupling follows the concept presented by Xiao

and Belytschko [110] for molecular dynamics coupling with a continuous model, and has

been applied to DEM by Rojek and Oñate in [92]. The DEM and FEM subdomains can

overlap each other. In this way a transitory zone between the DEM model and FEM

model subdomains is introduced. In this zone contributions of each of the two methods to

the overall stiffness vary gradually. This allows us to avoid or minimize unrealistic wave

reflections at the interface between the DEM and FEM subdomains.

Ω

Γ

(a)

ΩD

ΩFΩDF

(b)

Figure 5.1. Overlap region between DEM and FEM subdomains.

We consider motion of a deformable body occupying the domain Ω with the boundary

Γ (Figure 5.1) in the Euclidean space End , where nd = 2 or 3. Two different subdomains

will be distinguished in the domain Ω. ΩF - discretized with finite elements and ΩD -
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modelled with discrete elements

Ω = ΩF ∪ ΩD (5.38)

The subdomains ΩF and ΩD are not necessarily disjoint - they can overlap each other.

The common part of the subdomains ΩF and ΩD is the part where both discretization

types are used.

ΩDF = ΩF ∩ ΩD 6= ∅ (5.39)

Following the idea used for molecular dynamics coupling with a continuum model

in Xiao and Belytschko [110], the virtual work in the domain W is written as linear

combination of the virtual work δWF due to the finite element contribution and δWD

yielded by the discrete element part of the model, i.e.

δW = αδWF + (1− α)δWD (5.40)

where α is the contribution function, defined as

α(x) =


0 when x ∈ ΩD

d(x)

L(x)
when x ∈ ΩDF

1 when x ∈ ΩF

(5.41)

with d(x) and L(x) being defined in the overlap region ΩDF .

Γ
(α=0)
DF

Γ
(α=1)
DF

ΩDF

Figure 5.2. Overlap region ΩDF . Definition of function α(x).

In the transition zone ΩDF the value of function α(x) varies linearly from zero on the

surface, to one on the surface (Figure 5.2). The surface Γ
(α=0)
DF separates the domain of
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mixed discrete-continuous modelling from the domain where the DEM is used

Γ
(α=0)
DF = ΓF ∩ ΩD (5.42)

The surface Γ
(α=1)
DF separates the domain of mixed discrete-continuous modelling from

the domain where the FEM is used

Γ
(α=1)
DF = ΓD ∩ ΩF (5.43)

Definition of the functions d(x) and L(x) is shown graphically in Figure 5.3. Function

d(x) is defined as the shortest distance from the point x ∈ ΩDF to the boundary of the

overlap region Γ
(α=0)
DF

d(x) = ‖x̄0 − x‖ (5.44)

where

x ∈ ΩDF , x̄0 ∈ Γ
(α=0)
DF : ‖x̄0 − x‖ = min

x0 ∈Γ
(α=0)
DF

‖x0 − x‖ (5.45)

Function L(x) is the width of the overlap zone measured along the vector x̄0 − x.

L(x)

d(x)

Γ
(α=0)
DF Γ

(α=1)
DF

Figure 5.3. Detail of overlap region between DEM and FEM subdomains.

In the subdomain ΩF , the finite element discretization allows to express the

displacement u, velocity u̇ and acceleration ü fields in terms of the shape functions N
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and the nodal displacements uF , velocities u̇F and accelerations üF in the form

u(x, t) = N(x) uF (x, t) (5.46a)

u̇(x, t) = N(x) u̇F (x, t) (5.46b)

ü(x, t) = N(x) üF (x, t) (5.46c)

The configuration and motion of the discrete elements are described by the vectors of

translational displacements, uD, translational and rotational velocities, u̇D and ωD, and

translational and rotational accelerations, üD and ω̇D, respectively.

5.2.1 Kinematic constraints

The coupling between subdomains ΩD and ΩF , in the transition zone ΩDF , is provided by

additional kinematic constraints resulting from the assumption that the discrete elements

contained in the transition zone can be constrained kinematically by the finite element

discretization as

xdi = xF , ∀ di ∈ ΩDF , xF ∈ ΩDF (5.47)

The following relationships linking virtual displacements, velocities and accelerations

of the i-th discrete element with respective nodal velocities of the overlapping finite

element can be used to write the kinematic constrains, as

δudi −N(xF ) δuF = 0 (5.48a)

u̇di −N(xF ) u̇F = 0 (5.48b)

üdi −N(xF ) üF = 0 (5.48c)

where xdi is the center of the i-th discrete element and xF is the equivalent point in the

finite element discretization.

Defining the global vector of discrete elements in the transition zone ΩDF as

displacements uDF , velocities u̇DF and accelerations üDF , the kinematic constraints (5.48)

can be written for all constrained discrete elements as

δuDF −N δuF = 0 (5.49a)

u̇DF −N u̇F = 0 (5.49b)

üDF −N üF = 0 (5.49c)
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The additional kinematic constrains can be imposed using different schemes. In this

work, the penalty function method and the Lagrange multipliers method are used.

In order to write the equations for the coupled system in a compact form, the kinematic

constraints (5.48) are written in the general form

χ (δuF , δuDF ) = 0 (5.50)

5.2.1.1 Penalty function method

The principle of virtual work for the coupled DEM/FEM system with coupling constraints

(5.49) imposed by the penalty function method, and considering the contribution of both

methods as shown in (5.40), can be expressed by the following equation

δuTF (M̄F üF + F̄
int
F − F̄

ext
F ) + δuTD(M̄DüD − F̄D) + δΦT

D(J̄DΩ̇D − T̄D)+

δuTDF (M̄DF üDF − F̄DF ) + δuTF

[
∂χ

∂(δuF )

]T
χkDF + δuTDF

[
∂χ

∂(δuDF )

]T
χkDF = 0

(5.51)

where kDF is the vector of discrete penalty functions.

Taking into account the explicit form of the constraint (Equation (5.49)), Equation

(5.51) can be written in the following form


δuF

δuD

δuDF

δΦD


T


M̄F 0 0 0

0 M̄D 0 0
0 0 M̄DF 0
0 0 0 J̄D




üF

üD

üDF

Ω̇D

−


F̄ext
F − F̄int

F + NTχkDF

F̄D

F̄DF − χkDF

T̄D


 = 0 (5.52)

Since Eq. (5.52) must be satisfied for arbitrary admissible variations (excluding

additional coupling constraints), the terms in parentheses should vanish. This yield the

following equation
M̄F 0 0 0

0 M̄D 0 0

0 0 M̄DF 0

0 0 0 J̄D




üF

üD

üDF

Ω̇D

 =


F̄
ext
F − F̄

int
F + NTχkDF

F̄D

F̄DF − χkDF

T̄D

 (5.53)

Equation (5.53) can be integrated in time using the standard explicit scheme used in finite

and discrete element algorithms.
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5.2.1.2 Lagrange multipliers method

Using the Lagrange multipliers technique, the principle of the virtual work of the coupled

DEM/FEM system can be written as

δuT
F (M̄F üF + F̄

int
F − F̄

ext
F ) + δuT

D(M̄DüD − F̄D) + δΦT
D(J̄DΩ̇D − T̄D)

+δuT
DF (M̄DF üDF − F̄DF ) + δuT

F

[
∂χ

∂(δuF )

]T

λ+ δuT
DF

[
∂χ

∂(δuDF )

]T

λ = 0
(5.54)

where λ is the vector of unknown Lagrange multipliers.

Taking into account the explicit form of the constraint equation (5.49), Equation

(5.54) can be written in the following form


δuF

δuD

δuDF

δΦD


T




M̄F 0 0 0 −NT

0 M̄D 0 0 0
0 0 M̄DF 0 I
0 0 0 J̄F 0




üF

üD

üDF

Ω̇D

λ


−


F̄ext

F − F̄int
F

F̄D

F̄DF

T̄D



 = 0 (5.55)

Since Equation (5.55) must be satisfied for arbitrary admissible variations, the terms

in parenthesis should vanish. Adding the relationship for accelerations (5.49) the following

equation set is obtained for the coupled system
M̄F 0 0 0 −NT

0 M̄D 0 0 0

0 0 M̄DF 0 I

0 0 0 J̄D 0

−N 0 I 0 0





üF

üD

üDF

Ω̇D

λ


=



F̄
ext
F − F̄

int
F

F̄D

F̄DF

T̄D

0


(5.56)

with kinematic-type and force-type unknowns. The above system can be solved directly

for to the unknowns.

Another solution scheme has been implemented in this work. It is based on the

elimination of Lagrange multipliers λ and the dependent variables rDC before time

integration. Performing some algebraic transformations, the reduced equation set is

obtained as follows

(
M̄F + NTM̄DFN

)
üF = Fext

F − Fint
F + NTF̄DF (5.57a)

M̄DüD = F̄D (5.57b)

J̄DΩ̇D = T̄D (5.57c)

These equations can be integrated in time using standard explicit integration schemes
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used in the finite element and discrete element algorithms without constraints.

5.2.2 Example: Wave propagation

The propagation of a wave through the coupling interface has been studied in order to

analyze the reflexion caused by the coupling scheme. A rectangular domain of 10 mm

wide and 600 mm long with different overlapping region length are considered, as shown

in Figure 5.4. The longer sides of the rectangle have restrained motion in the transverse

direction.

(a) Overlap length = 40 mm.

(b) Overlap length = 80 mm.

Figure 5.4. Wave propagation sample in 2D.

The material properties are a Young modulus E = 20 GPa, Poisson’s coefficient µ =

0.25 and mass density ρ = 7800 kg/m3. In Figure 5.5 the detail of the contribution of

each sub-domain in the overlap region is shown for a overlap length of 40 mm.

(a) Coupling weight factor on DEM region (1− α).

(b) Coupling weight factor on FEM region (α).

Figure 5.5. Weight factor in coupling region. Overlap length of 40 mm.

The evolution of the wave through the domain is shown in Figure 5.6. The Lagrange

multiplier method is used to model the coupling for a overlap length of 80 mm. The

evolution shows a small reflection in the overlap region.
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time = 0.0e-6 time = 0.5e-6 time = 1.0e-6

time = 1.5e-6 time = 2.0e-6 time = 2.5e-6

time = 3.0e-6 time = 3.5e-6 time = 4.0e-6

Figure 5.6. Wave evolution with the Lagrange multiplier method and an overlap
length 80 mm.

In Figure 5.7, the energy in each region is depicted for different overlap lengths

using the Lagrange multiplier method. The reflection of the wave can be appreciated,

representing 0.57 % of the total energy.

In a similar way, Figure 5.8 shows the energy evolution in both regions using the

penalty function method. In this case, the reflected energy is 0.61 % of the total energy.

5.2.3 Example: Mixed-mode bending beam with a notch

The case analyzed considers a mixed-mode bending beam with a notch. It is based in the

geometry used by Galvez et al [53], where experimental results has been reported. The

geometry and conditions are depicted in Figure 5.9.

The problem considers two cases; in the first case, called type 1, the stiffness K at the

upper left is equal to zero (K = 0), representing a 3-point bending beam. The second

case, called type 2, considers an infinite stiffness (K =∞), representing a 4-point bending

beam. The load is applied by a constant displacement rate.
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(a) DEM domain.
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(b) FEM domain.

Figure 5.7. Wave propagation sample in 2D. Energy in the coupling region with
the Lagrange multipliers method.
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(a) DEM domain.
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(b) FEM domain.

Figure 5.8. Wave propagation sample in 2D. Energy in the coupling region with
the penalty method.

The domain it is discretized by 392 triangular elements and 21955 cylindrical particles,

as shown in Figure 5.10. The average mesh-size in the FEM region it is 20 mm, and the

average particle size is 0.7 mm. The DEM/FEM overlap region has a length of 14 mm
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σc = 60 MPa

σt = 3 MPa

Figure 5.9. Mixed-mode bending beam with a notch. Geometry (mm) and
conditions.

and the penalty method is considered.

Figure 5.10. Mixed-mode bending beam with a notch. DEM/FEM coupled mesh.
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The deformed mesh is shown in Figure 5.11. In Figure 5.12, the load vs. CMOD1

is compared with the experimental envelope presented by Galvez et al. in [53], and the

simulation results presented by Cervera et al. in [22], using the smeared damage approach,

and the FEM.

Figure 5.11. Mixed-mode bending beam with a notch. Deformed mesh (x100)
with the fixed DEM/FEM coupling scheme in type 1 case.

The curve presents a good agreement with the reported results. The main difference

in the post-critical behaviour is related to the perfectly brittle contact model used in the

DEM, resulting in a higher decreasing rate of the maximum load.

The deformed mesh for the case type 2 it is shown in Figure 5.13. The crack presents

a small curvature, similar to the type 1 case.

In Figure 5.14, the load vs. CMOD for the case type 2 is compared with the

experimental envelope, and the simulation results using the smeared damage approach,

and the FEM.

1CMOD: crack mouth opening displacement.
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Figure 5.12. Mixed-mode bending beam with a notch. Load vs CMOD in type 1
case.

Figure 5.13. Mixed-mode bending beam with a notch. Deformed mesh (x100)
with the fixed DEM/FEM coupling scheme in type 2 case.

5.3 Adaptivity of the coupling definition

In a real case, the zone which requires the use of DEM can change during the simulation.

With the standard DEM/FEM coupling, both subdomains are predefined during the

discretization process. This requires to know where fracture will appear, and the use of

DEM even if the solid has a linear elastic behaviour. In order to make more efficient the

use of the DEM during the simulation, an algorithm for the change of the subdomains

is used. The idea is start the simulation using finite elements. When some area with a

stress value higher than a predefined limit state is achieved, the FEM is replaced with
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Figure 5.14. Mixed-mode bending beam with a notch. Load vs CMOD in type 2
case.

DEM and a new DEM/FEM interface is defined. The progressive change of the simulation

method makes more efficient the use of both methods. The criteria for the change of the

simulation method is defined by a predefined limit stress value (σ∗) in the center of the

finite elements as

σ ≥ σ∗ (5.58)

σ

ε

σ∗

Figure 5.15. Scheme of stress criteria for change of simulation technique.

When a change of domain occur, the kinematic variables of the finite element are

projected into the newly created discrete elements, so that the behaviour of both methods

should be equivalent.
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DEM FEM

DEM/FEM

Figure 5.16. Geometry discretized with both methods.

In order to ensure the geometrical compatibility in the discrete elements

used progressively during the simulation, a discretization of the full domain with

cylindrical/spherical particles is generated and stored for its posterior use. The discrete

elements are activated within the FEM mesh as required by the coupling scheme. The

particles in the new overlap region are selected using a distance function [42] based in the

new boundary elements generated in the FEM subdomain.

5.3.1 Transition from finite elements to discrete elements

The transition from the finite elements to the discrete elements it is shown in Figure 5.17.

Initially, the finite elements that meet the criteria are selected. The particles associated to

the selected elements are activated in all their degrees of freedom, and in counterpart the

finite elements are deactivated. The distance function based in the modified finite element

mesh is regenerated, in order to define the new interface subdomain. The particles in the

new interface subdomain are identified and activated with the kinematic constraints.
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Unconstrained (α = 0)

Constrained (0 < α < 1)

Deactivated (α = 1)

Figure 5.17. Scheme of update procedure of the coupling interface.

5.3.2 Projection of kinematic variables

Once a finite element is deactivated, and the new discrete elements are activated, the

kinematic variables of the particles are recovered by the projection of the nodal values.

The displacement and velocities are calculated by means of the projection using the finite

element shape functions, considering the initial position, as

uDF = N(x0
DF ) uF (5.59)

u̇DF = N(x0
DF ) u̇F (5.60)

It should be noted that the rotational variables are not projected, nevertheless its
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value is considered to be almost negligible and can be recovered after few iterations.

The contact force can be calculated using directly the contact model, or via a

localization procedure considering the element stress. In Figure 5.18 a simple sample

is shown considering a square domain of 1x1 with an horizontal displacement of 0.10 in

the top wall, with a unit velocity.

Figure 5.18. FEM mesh with imposed deformation.

The projected horizontal displacement and horizontal velocity are depicted in Figures

5.19 and 5.20, respectively.

(a) FEM (b) DEM

Figure 5.19. Horizontal displacement projection from FEM to DEM.

After the projection procedure, the kinematic variables are estimated in the equivalent

DEM mesh. The contact forces are calculated directly of the projected displacement, as

shown in Figure 5.21.
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(a) FEM (b) DEM

Figure 5.20. Horizontal velocity projection from FEM to DEM.

(a) FEM (b) DEM

Figure 5.21. Maximum principal stress calculated after projection.

The discrete system is not in equilibrium. Nevertheless the system can be relaxed

after some iterations.

In Figure 5.22 the maximum principal stress is shown considering a different number

of iterations for the relaxation of the system. It can be observed that after few iterations,

the system presents a behaviour equivalent to the original FEM domain.

In Figure 5.23, the evolution of potential energy in the system is presented. The

original model considers triangular elements (FEM-3). For the comparison, different

number of iterations are considered in the projection. The same model is simulated using

quadrilateral elements (FEM-4) in order to verify the potential energy obtained.

The projection is performed in a total time of 0.1 s. It is observed that with a small

number of iterations the curve presents fluctuations and the resultant energy does not
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 10

Figure 5.22. Maximum principal stress after different numbers of iterations over
the contact forces.
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Figure 5.23. Evolution of potential energy.

converge. With a number of iterations larger than 50, the energy converges to a constant

value without fluctuations. The difference between the potential energy of the FEM mesh

and that obtained in the DEM mesh after the projection can be related with the differences

in the mesh areas. While in the FEM mesh, all the domain is considered for the stress

calculation. In the DEM the energy is calculated in term of the bonded particles, which

represents a smaller equivalent domain.
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5.3.3 Example: Mixed-mode bending beam with a notch solved

with the adaptive DEM/FEM coupling scheme

The example is the same as previously presented in Section 5.2.3. Now, the mixed-mode

bending beam is modelled using the adaptive DEM/FEM (ADF) coupling scheme. The

finite element mesh considers 857 triangular elements, while the same discrete elements

mesh of 26077 particles has been used. The threshold value for the change from finite

to discrete elements is σ=2.8 MPa, in tension, with an overlap length of 7 mm. In

Figure 5.24, the deformed mesh (x100) it is shown.

At the end of the simulation, the final mesh use 750 triangular elements and 5031

cylindrical elements. The computational cost decreases 82% compared to the fixed

coupling scheme. The force vs. CMOD curve it is depicted in Figure 5.25. Results

are compared with the curves obtained by Galvez et al. [53] and Cervera et al. [22].

The same results are presented for the case 1 in Figure 5.26. This time, two different

threshold values are considered in order to analyze its influence in the results, that are

compared those reported by the same authors.

Both curves presents small differences in the last part. This is due to the fact that

the curve with the lower threshold value allows the change of more elements, avoiding

possible concentration of the stresses close to the interface.

The evolution of the deformation process is shown in Figure 5.27. It is interesting

note the change of elements in an area without fracture.
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(a) CMOD=0.0140 mm

(b) CMOD=0.0546 mm

(c) CMOD=0.1245 mm

(d) CMOD=0.1518 mm

Figure 5.24. Mixed-mode bending 2D beam with notch, type 1 with ADF.
Deformed mesh (x100) at different instants.
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Figure 5.25. Mixed-mode bending 2D beam with notch, type 1 with ADF. Curve
load vs CMOD.
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Figure 5.26. Mixed-mode bending 2D beam with notch, type 2 with ADF. Curve
load vs CMOD.
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(a) CMOD=0.0140 mm

(b) CMOD=0.0546 mm

(c) CMOD=0.1245 mm

(d) CMOD=0.1518 mm

Figure 5.27. Mixed-mode bending beam with notch, type 2 with ADF. Failure
mode.
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5.3.4 Example: 3D three point bending beam

The next sample is the three point bending test on a notched beam [22] solved in 3D.

The geometry and conditions are shown in Figure 5.28. The mechanical properties are:

Young’s modulus E = 20 GPa, Poisson’s ratio ν = 0.2, and tensile strength σt = 2.4 MPa.

P

5

450

50

50

100

Figure 5.28. Three point bending 3D beam geometry.

The discrete element assembly is considered just in the area where fracture occurs,

as depicted in Figure 5.29. The discretized model considers 49811 spherical elements and

23377 tetrahedra. A vertical velocity of 2 mm/s has been imposed in the middle top line.

Figure 5.29. Three point bending 3D beam. Partial discretization of domain with
discrete elements.
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The evolution of the process is presented in Figure 5.30. The discrete elements

activated at different times during the process can be appreciated.

The damage in the domain is depicted in Figure 5.31. A well localized fracture can

be observed, as expected. Similar results are obtained in the literature [19, 22].

The curve load versus displacement is presented in Figure 5.32. Results agree well

with other numerical and experimental values.

In the elastic part its behaviour is as expected. Nevertheless, after fracture starts the

behaviour is perfectly brittle while the numerical and experimental behaviour present a

more ductile damage. The DEM model implemented does not allow this kind of behaviour.

Nevertheless, it can be observed a good agreement with the elastic properties and the limit

strength estimated.
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(a) 0.016 mm (b) 0.032 mm

(c) 0.048 mm (d) 0.064 mm

(e) 0.080 mm (f) 0.096 mm

Figure 5.30. Three point bending 3D beam. Evolution of DEM mesh.
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Figure 5.31. Three point bending 3D beam. Damage at the final point.
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Figure 5.32. Three point bending 3D beam. Curve load vs displacement.

In Figure 5.33 a detail of the load vs displacement curve is shown. In the same figure,

the evolution of the number of discrete elements is depicted.

As a conclusion of the chapter, the examples shows that both fixed and adaptive

DEM/FEM coupling schemes decreases the computational time with a negligible influence

in the accuracy of the results, and permits the consideration of higher domains.

The adaptive coupling scheme require to introduce equilibrium in the new particles
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Figure 5.33. Three point bending 3D beam. Evolution of the number of discrete
elements.

after the projection of the kinematic variables, as the rotation of the particles can not

be projected. Even if this can be solved with few iterations, a more detailed study of

different projection schemes for the kinematic variables could be performed, considering

different stress localization techniques.
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Chapter 6

Modelling of rock cutting process

This chapter presents the application of the DEM to a practical problem. All the aspect

of the DEM and DEM/FEM coupling developed in the previous chapters are applied to

the simulation of rock cutting processes.

The simulation of excavation processes in general, and the rock cutting process in

particular, are an interesting case in which the continuum-based simulation techniques,

like the FEM, present well known difficulties in its application. The fracture and

fragmentation of the rock material with brittle failure, resulting typically in the excavation

process, are difficult to reproduce with these techniques, while the discrete nature of the

DEM offers a more realistic ways to simulate this kind of phenomena.

The design of rock cutting tools for the excavation machinery has been historically

based in a combination of the experience of the workers and real size laboratory tests,

resulting many times in an inefficient process, and involving high costs for the excavation

companies. In the last decade, different empirical models have been developed for the

estimation of the principal parameters involved. This models can be useful in certain

cases; nevertheless its use is restricted to the availability of historical data and range of

rock material properties [91].

The application of ad-hoc simulation techniques for this kind of processes can result

in a faster design stage and lower costs, limiting the laboratory tests.

The simulation and analysis of a laboratory test used extensively in the design of rock

cutting tool is performed. The cutting tools selected for this purpose are the disc cutters

used in the tunneling with tunnel boring machines (TBM). The simulation results are

compared with one of the empirical models more extended for this purpose [95], which

presents accurate results under certain conditions, as homogeneity of the material, but

has some problems dealing with fracturing or joints in the rock sample.
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6.1 Linear cutting test with disc cutters

The Tunnel Boring Machines (TBM) is currently utilized in massive scale in underground

construction and tunneling in civil construction and the mining industry (see Figure 6.1).

In the design and performance prediction of TBMs, the volume of rock cutted by

TBM disc cutter are one of the most important parameters [111]. One of the most

representative testing procedures for designing the cutterhead of TBMs and to predict its

performance is the full-scale linear cutting machine (LCM) test [82, 97]. The LCM test

provides a direct measure of rock cuttability under pre-defined field conditions. A simple

approximation is to use the penetration depth considered in the LCM test to calculate

the cutting volume after the test is run. However, the difference between the real cutting

volume and the simply calculated volume varies depending upon the cutting performance

of the disc cutter.

With the simulations of the LCM test for a single disc cutter is possible to perform

an analysis of the effect of different parameters such as velocity, penetration rate, or

geometry (width, radius, etc.), on the resultant forces, as well as their influence on the

rock fracture.

(a) Herrenknecht AG, Gripper TBM. (b) Single disc cutter.

Figure 6.1. TBM and disc cutters.

The performance of the TBM depends basically on the disc cutters performance.

Cutting tools serve for the transmission of energy generated by the machine to the rock in

order to cause fragmentation. The cutting surface rolls across the rock surface during the

cutting operation. Hence, different parts of the tool contact the rock thereby distributing

the heat load and allowing time for each part of the cutting surface to cool during the

machining operation, as shown in Figure 6.2.
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Figure 6.2. A rolling cutter machining a rock surface.

The prediction of the reaction forces over the disc cutter is necessary in order to

estimate the real forces (thrust force and torque) over the TBM. One of the principal

obstacles that arises during the excavation of rock tunnels without using explosives is the

optimal design of the cutting tools that perform the fragmentation of the ground at an

acceptable economical level.

The major overcost of this type of work is the wear and failure of the cutters

which require continuous change of cutters. This is costly in itself and also shows the

performance of the TBM. The cutter analysis allows to detect the reasons of cutter wear

and failure, thus contributing to find solutions. Besides finding the causes and the reasons

of the cutters reinstatement, looking for improvements in the performance of the change,

maintenance and repair of the discs will reduce these overcosts.

In order to estimate the disc cutter behavior it is necessary to consider some factors,

like the disc geometry (diameter and tip width), spacing between disc cutters, and

penetration. The forces over a single disc cutter are the normal force, rolling force and

side force, as depicted in Figure 6.3.

Efficient excavation by disc cutter correlates with the formation of large chips between

disc cutter paths. A crushed zone develops beneath the cutter as it is forced into the

rock. As stresses continue to build up in the crushed zone, radial cracks begin to form

and propagate into the rock (see Figure 6.4). When one or more of these cracks meet

those developed from adjacent cut, chips are released [10].

The LCM test was originally developed by the Colorado School of Mines (CSM),

and has been actively used to design the TBM cutterheads. The biggest advantage of

the linear cutting machine is that the design parameters such the cutter spacing, cutter

penetration, cutter thrust and cutting speed can be controlled.

The LCM test is used for the analysis of forces over the disc cutter under different
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Figure 6.3. Individual force acting on a disc cutter.

Figure 6.4. Stress field and resultant fractures beneath the penetrating edge of a
disc cutter.

conditions of spacing between cuts and penetration into the rock, providing a direct

measure of rock cuttability under simulated field conditions. The main parameters

obtained in the test are the reaction forces, that are finally used for the estimation of

the full TBM performance in operating conditions.

In Figure 6.5, the LCM setup of the CSM is depicted. The LCM features a large stiff

reaction frame on which the cutter is mounted. A triaxial load cell, between the cutter and

the frame, monitors forces and a linear variable displacement transducer monitors travel

of the rock sample. A servo controlled hydraulic actuator forces the sample through the

cutter at a preset depth of penetration, width of spacing and constant velocity. During

the cut, the triaxial load cell measures the normal, rolling, and side forces acting on the

cutter [43].
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Figure 6.5. Linear cutting machine. Colorado School of mines.

6.2 Discretization of the linear cutting test model

The aim of this section is to analyze the capabilities of the DEM and DEM/FEM coupling

presented in the previous chapter for the modelling of the rock cutting process with disc

cutters, evaluating the influence of the different rock material properties, as strengths or

Young modulus, and process parameters like penetration depth, spacing between cutter

discs or advancing velocity. For this reason, a modelling of the full-scale LCM test is

performed. Most of the results are compared with an empirical model commonly used in

industry.

The numerical model considers the rock material sample discretized with DEM or

coupled DEM/FEM. A more complex model of the rock cutting process should consider

a thermo-mechanical coupled model, with the cutter disc discretized with FEM, in order

to obtain the thermal-mechanical deformation and wear in the disc cutters. Nevertheless,

the purpose of this analysis is to reproduce the interaction forces, and the cutter discs

discretized as rigid bodies.

6.2.1 Disc cutters selection and discretization

For the geometry of the disc cutter samples, standard constant cross section (CCS) disc

profiles of Herrenknecht AG are considered, with ring diameters of 17 and 19 inch. The

detailed description of both disc profiles are depicted in Figure 6.6.

The CCS-shape disc cutters are used extensively since the late 1970s, in replace of the
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V-shapes, because of their long-term durability and overall performance advantages [1].

(a) 17” diameter disc. (b) 19” diameter disc.

Figure 6.6. CCS type disc cutter profiles.

Both cutter discs are discretized with a structured mesh of triangular elements. The

17” diameter disc is discretized with 9200 elements, considering a refinement in the cutter

tip in order to reproduce its curvature. The 19” diameter disc is discretized with 8880

elements. In Figure 6.7, a sample of the model considered for the linear cutting test is

shown.

(a) 17” diameter disc. (b) 19” diameter disc.

Figure 6.7. Discretization of disc cutters.

Furthermore, we must consider the definition of the mass and moment of inertia in the

disc cutter, because a virtual point is used to apply the movement and velocity conditions
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in the axis of the cutter. These values have not a significant effect upon the normal forces,

but can be relevant for the rotational forces. The mass considered in both discs is m = 10

kg, and moment of inertia I = 0.001 kg m2. All the degrees of freedom in the disc axis

are fixed, except the rolling axis.

6.2.2 Rock material sample

Initially, a unrelieved rock specimen is considered. A geometry for the rock material

sample of 0.4 x 0.15 x 0.4 m is selected in order to obtain optimum results quality and

the related computational cost. The full-scale LCM test considers a 1.0 x 0.7 x 0.7 m

of block rock samples, in order to avoid any kind of boundary effect. Nevertheless, the

simulation assumes that in the rock sample size selected boundary effects are negligible.

For the rock specimen, the mechanical properties are defined for a real granitic

gneiss material, with values obtained from laboratory tests [71]. Two different material

properties are considered for comparison purpose. For the cutting process, the most

important material properties are UCS and BTS. Then it is possible to obtain a good

result even with a less accurate in the estimation of the model parameters for the rest

of mechanical properties. The mechanical properties considered for both rock material

samples are presented in Table 6.1.

Parameter Description Material 1 Material 2

σc Uniaxial compressive strength (MPa) 147.3 102.6
σt Brazilian tensile strength (MPa) 10.2 11.5
E Young modulus (GPa) 40.0 40.0
ν Poisson’s ratio 0.23 0.23
ρ Density (kg/m3) 2650 2650

Table 6.1. Mechanical properties for the linear cutting test.

Due to the high computational cost involved in the simulations, a good compromise

between number of elements and model size should be selected. In order to maintain

a rock specimen of sufficient size, a coupled DEM/FEM approach is considered. At

the bottom of the rock sample, in the zone in interaction with the disc cutter, a DEM

subdomain is defined of size 0.15 x 0.05 x 0.4 m, as shown in Figure 6.8. Both fixed and

adaptive DEM/FEM coupling schemes are used, in order to compare the capabilities of

both schemes. In both cases, the same DEM assembly is considered, and the domain
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(a) Fixed DEM/FEM coupling

(b) Adaptive DEM/FEM coupling

Figure 6.8. Unrelieved rock specimen discretized with the fixed and adaptive
coupled DEM/FEM scheme.

discretized with FEM changes. In the case of the adaptive DEM/FEM scheme, all the

rock sample is discretized with FEM.

The domain discretized with FEM has 5040 tetrahedral elements for the case of

adaptive DEM/FEM coupling. For the case of fixed coupling 4752 tetrahedral elements

have been used.

The rock portion discretized with DEM has 35604 spherical particles. The range

of radius is 1.4-3.9 mm, with a characteristic radius r̃ = 2.55 mm. The particle size

distribution is presented in Figure 6.9. The detail of the particle assembly characterization
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Figure 6.9. Radius size distribution of particle assembly for the LCM test.

is shown in Table 6.2.

Parameter Description Value

Np Number of particles 35604
r̄ Average radius (mm) 2.5516
r̃ Characteristic radius (mm) 2.7971
nc Coordination number 11.449
e Porosity (%) 24.9122

Table 6.2. Characterization of the particle assembly for the LCM test.

Considering the particles assembly characterization and the mechanical properties of

the rock, the DEM model parameters are estimated using the methodology presented in

Section 4.4, and presented in Table 6.3 for both material samples.

Parameter Description Material 1 Material 2

Kn Stiffness in normal direction (MN/m) 160.79 160.79
Kt Stiffness in tangential direction (MN/m) 16.325 16.325

Kt/Kn Stiffness ratio 0.1015 0.1015
Rn Strength of cohesive bonds in the normal direction (kN) 0.8482 0.5908
Rt Strength of cohesive bonds in the tangential direction (kN) 4.1759 2.9087
ρ Density (kg/m3) 3085 3085

Table 6.3. DEM model parameters for the LCM test.
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The change of density is obtained assuming the void ratio of the generated mesh, in

order to preserve the equivalent mass.

In the rock specimen, the lateral and bottom surfaces were restricted, as shown in

Figure 6.10. The bottom surface have been completely restricted in its movement, while

lateral surfaces has been restricted in direction of the side-force (z-direction). This allows

the displacement in the normal and rolling forces in the rock specimen.

y

z

Figure 6.10. Boundary conditions employed in rock specimen sample for the
LCM test.

6.2.3 Cutting process parameters

The cutting process parameter, such as velocity or penetration rates are taken from a real

TBM drive [71]. The selected parameters consider different penetrations for each material

specimen. For the advancing velocity, two different values are defined for each material

sample. Nevertheless, most of simulations presented in this chapter have been carried

out with the velocity of case 2 of material 1. This is because the velocity presents a low

influence in the interaction forces, as will be shown bellow.

The cutting process parameters are shown in Table 6.4, for the two different rock

material samples.

In the LCM test, one of the most important parameters is the spacing between the

disc cutters [97]. As initially the simulation are performed in unrelieved rock samples,

the spacing between disc cutters is not considered. Later on, the spacing is introduced in

order to analyze its influence in a more realistic situation.
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Parameter Description Material 1 Material 2
Case 1 Case 2 Case 1 Case 2

p Penetration rate (mm) 3.9 3.9 3.2 3.2
v Cutting velocity (m/s) 0.6519 2.3702 0.6190 2.3979

Table 6.4. Cutting process parameters for the LCM test.

6.3 Cutting forces prediction models

Since the middle of the 1950’s, a wide variety of performance prediction methods have been

developed for the estimation of the TBM performance. These methods can be classified

in two categories: theoretical/experimental models, based on laboratory test and cutting

forces, and empirical models, based on field performance of the TBM and rock properties.

Within the category theoretical/experimental models, we will focus in methods based in

the cutter load approach, which allow us to estimate the cutting forces in a single disc

cutter. A detailed review of the different performance prediction methods can be found

in [48, 91].

Considerable research has been performed on the estimation of the cutting forces,

based on the correlation of different parameters, as the disc cutter geometry, spacing,

penetration rate, disc rolling velocity and rock material properties.

Roxborough and Phillips [100] proposed a model based in basic principles and cutter

geometry for the estimation of the normal and rolling forces on a single V-shape disc

cutter. The normal force is calculated as a product of the area of the disc contact against

the rock surface, and the compressive strength of the rock mass. This model does not

include the spacing between the cutters, which is an important parameter that should be

taken into account.

Sanio [101] presents a model based in the tensile failure for the chip formation, where

is possible to estimate the cutting forces in V-shape disc cutters. The model allows to

estimate the pressure in the crushed zone from the fracture toughness. This model can

take into account the joint effects, by a correction factor based in the joint orientation.

Sato [103] follows the previous approach, but in a rotary cutting machine. The model

shows the independence of the cutting coefficient (ratio of rolling and normal forces) with

the spacing, and increasing with a square root of the penetration. Later studies introduce

the effect of the tool orientation.
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As V-shape disc cutters are no longer used on TBMs or other mechanical excavators,

the Colorado School of Mines developed a model for the CCS-shape cutters [95, 97]. This

model will be used for the comparison with the simulation of the LCM test.

6.3.1 Colorado school of mines model

The first version of this model was developed by Ozdemir in [87], and later was updated

by Rostami [95, 97]. The CSM model estimates the cutting forces considering a given

penetration, rock mass properties, cutter geometry and cutting conditions. The model is

based in a large data base of full scale LCM tests, and does not consider the rock mass

conditions, as fractures or joints.

The model proposes a pressure distribution P in the crushed zone as

P (θ) = Po

(
θ

φ

)ψ
(6.1)

where ψ a constant for the pressure distribution function (typically varies between 0.2 for

V-shape and very sharp cutters to -0.2 for wider tip cutters), φ angle of contact between

rock and cutter, defined as

φ = cos−1

(
R− p
R

)
(6.2)

and Po is the base pressure in the crushed zone, established from regression analysis of

several tests, and estimated from rock strength and cutting geometry:

Po = C 3

√
σ2
c σt s

φ
√
RT

(6.3)

where C is a dimensionless constant (usually C=2.12), and s the spacing between cutters.

The total resulting cutting force FT can be obtained by integrating the pressure over

the contact area (Figure 6.11), as

FT =

∫ φ

0

T RP (θ) dθ =
T RPo φ

1 + ψ
(6.4)

where T is the cutter tip width and R the cutter radius.

To recover the normal and rolling forces, the cutting coefficient CC (also called rolling

coefficient) is used, which is the ratio of both forces defined by the angle β as

CC =
Fr
Fn

= tan(β) (6.5)
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Fr

Fn

FT

β

φ

p

R

Figure 6.11. Scheme of forces acting on a disc cutter and incidence angles.

Assuming a uniform distribution of the pressure in the contact area, the model

proposes a geometrical definition of β as the middle point of the contact area, i.e.

β =
φ

2
(6.6)

Finally, the normal and rolling forces are estimated projecting the total force in each

direction as

Fn = FT cos (β) =
T RφPo

1 + ψ
cos

(
φ

2

)
(6.7)

Fr = FT sin (β) =
T RφPo

1 + ψ
sin

(
φ

2

)
(6.8)

This model have been used in many tunneling projects with a higher degree of success,

for the estimation of the TBM cutterhead performance [46, 96, 98].

6.4 Numerical results and comparisons

Several simulations have been performed considering different materials, disc profiles and

cutting conditions. Initially, the simulations have been performed in the unrelieved rock

material presented before, where the potentiality of the simulation scheme is analyzed,

and different parameters involved in the cutting process are studied.
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Later on, simulations considering different penetrations and spacing between disc

cutters were carried out for relieved rock specimens. A comparison of the reaction forces

and the specific energy, with the CSM empirical model is performed.

6.4.1 Unrelieved rock specimen

The LCM test is performed considering the unrelieved rock specimen for both materials.

The evolution of the simulation with disc diameter of 19” and the material 1, with a

cutting velocity of 2.3702 m/s (case 1), is shown in Figure 6.12, where the movement of

the disc cutter and the damage in the specimen can be appreciated.

In the full-scale LCM laboratory test, the results obtained are normally the volume of

rock that has been cut and the reaction forces over the disc cutter. The advantage of the

computer simulation is the capability of analysing more aspects of the process, as the stress

field over both rock and disc, friction, interaction surface, etc. In Figure 6.13, an upper

view of the evolution of the principal stress (σ3) is shown. A stress concentration in the

contact area can be appreciated during the evolution of the cutting process. Furthermore,

the asymmetric distribution of stress due to the particle assembly presents a more realistic

situation.

The distribution of stress in the rock around the contact point is shown in Figure 6.14,

where the average stress in the particle assembly is projected over a longitudinal cut of the

rock. A mesh of tetrahedral elements is generated from the center of the particles. This

procedure allows the visualization of the different variables in the equivalent continuum.

It can be noted a small discontinuity between the stress in the DEM and the FEM

regions. This is directly related to the average procedure for stress calculation, as the

average stress calculation in the DEM region does not include the FEM nodes, which

introduce this small difference.

This information can not be directly obtained in real laboratory tests and it is useful

for analyzing the behaviour of the rock during the cutting process, and to verify the

empirical/theoretical models, as it will be shown later.

The evolution of the normal and rolling cutting forces during the cutting process is

depicted in Figure 6.15. The average value of the normal force is estimated considering

the forces between 0.1 and 0.25 m, in order to avoid the boundary effect, resulting in

a force of 191.08 kN. This value can not be compared with the CSM model, because

the model considers a spacing between disc cutters. This require a relieved rock sample,
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(a) t = 0.000 s (b) t = 0.030 s

(c) t = 0.060 s (d) t = 0.090 s

(e) t = 0.120 s (f) t = 0.150 s

Figure 6.12. Evolution of damage in the LCM test with unrelieved material 1 and
ring of 19”.
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(a) t = 0.000 s (b) t = 0.030 s

(c) t = 0.060 s (d) t = 0.090 s

(e) t = 0.120 s (f) t = 0.150 s

Figure 6.13. Upper view of principal stress distribution (σ3) in the LCM test with
unrelieved material 1 and ring of 19”.
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(a) t = 0.000 s (b) t = 0.030 s

(c) t = 0.060 s (d) t = 0.090 s

(e) t = 0.120 s (f) t = 0.150 s

Figure 6.14. Lateral view of principal stress distribution (σ3) in the LCM test
with unrelieved material 1 and ring of 19”.
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Figure 6.15. Cutting forces in LCM test with unrelieved material 1 and ring of 19”.

which is not the case in the simulation. Nevertheless, for this material and disc profile

an average normal force has been measured in-situ by a real TBM, with a normal force

of 231.8 kN [71], which yield an error of 20% with the computed value. No information

about the spacing is provided, but for the estimation of the TBMs performance it is

common to consider a friction looses of 1.2. Considering this factor, a very close value to

the experimental result can be obtained in the simulation.

For the evolution of the rolling force, depicted in Figure 6.15 (bottom), the average

value is estimated in 19.608 kN. In this case experimental results are not available, however

results can be considered to be good taken into account the range of values of the cutting

coefficients CC found in the literature. Considering the CSM model, the angle φ for this

case is 10.32◦. Replacing this value in (6.5) and (6.6), the estimated rolling force is 17.25

kN, which has a difference of 13.7 % with the value obtained in the simulation.
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The same simulation is performed now using the rock material 2, and the velocity

of case 2. The evolution of the normal and rolling forces are shown in Figure 6.16. The

estimated average value for the normal force is 159.40 kN. For this case, the actual average

force measured in the TBM is 178.6 kN. Even considering the common coefficient for lost

of performance, the value is still within the computed range, and hence, the numerical

results can be considered acceptable.
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Figure 6.16. Cutting forces in LCM test with unrelieved material 2 and ring of
19”.

The rolling force computed in this case presents an average value of 12.00 kN. Taken

the same value of CC considered before for the CSM model, the value for the rolling force

is 14.39 kN. Differently than in the previous case, now the computed rolling force is lower

than the estimated by the CSM model in 17%.

In both cases, the stress in the contact area between the disc and rock specimens

present a distribution different than the proposed by the CSM model. In the simulations,

the stress presents a distribution similar to a Gaussian distribution. In order to verify
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the stress results in the crushed zone, a zoom of the principal stress distribution in the

contact area, for the rock specimen 1, is presented in Figure 6.17. The concentrated stress

in a small region close to the attack point can be appreciated, while in the region close to

the top of the contact area, in the lowest part of the disc cutter, the stress is almost zero.

Figure 6.17. Detail of principal stress distribution in crushed zone for the LCM
test with unrelieved material 1 and disc diameter 19” (t=0.09 s).
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The simulation is now performed with the disc cutter of diameter 17”, in order to

show the influence of the ring shape in the interaction forces. The evolution of the normal

and rolling forces for the rock material 1 are depicted in Figure 6.18.
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Figure 6.18. Cutting forces in LCM test with unrelieved material 1 and ring of 17”.

The average normal force is estimated to be 264.40 kN. This is considerably higher

than with the 19” disc cutter. As the material properties and the penetration are the

same, the increase of the force is strictly related to the geometry. Following the CSM

model, if the disc diameter and tip in the 19” disc cutter are higher, the area of the

contact surface is higher, which yield a higher value of the total contact force.

This can be explained considering a different geometric aspect, which is related with

the volume of material cut. Even if the area of the contact surface is higher in the 19” disc

cutter, the transversal area of the disc (based in its profile) immersed in the rock is higher

in the 17” disc. This is due to the trimmed area in the profile of the 19” disc, of 120 deg

(see Figure 6.6). Taken into account the penetration of p = 3.9 mm, the transversal area

of the 17” disc is around 75% higher than in the 19” disc.
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(a) t = 0.000 s (b) t = 0.030 s

(c) t = 0.060 s (d) t = 0.090 s

(e) t = 0.120 s (f) t = 0.150 s

Figure 6.19. Evolution of damage in the LCM test with unrelieved material 1 and
ring of 17”.
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(a) t = 0.000 s (b) t = 0.030 s

(c) t = 0.060 s (d) t = 0.090 s

(e) t = 0.120 s (f) t = 0.150 s

Figure 6.20. Lateral view of principal stress distribution (σ3) in the LCM test
with unrelieved material 1 and ring of 17”.
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Figure 6.18 shows the evolution of the rolling force, with an average value of 28.55

kN. This value is close to the estimated by the CC with the CSM model, with an angle

φ = 10.91◦, which yield a value for the rolling force of 25.24 kN.

The evolution of the cutting process and the damage in the rock specimen is depicted

in Figure 6.19, while the distribution of stress in the rock, around the contact area, is

presented in Figure 6.20, in a longitudinal cut over the equivalent FEM mesh.

Similarly to the disc cutter of 19” diameter, the stress presents a non-uniform

distribution, different to the proposed by Rostami in [97]. This phenomena is particularly

interesting and should be analyzed in more the detail.

As mentioned before, the stress distribution around the contact area with both disc

cutters presents a non-uniform distribution, which is different to the uniform pressure

distribution proposed by Rostami [95, 97]. In order to have a better idea about this

phenomenon, the average force distributions over the disc cutters are shown in Figure 6.21.

The average force in both simulations presents a quasi-gaussian distribution. In the attack

point, where the disc cutter start the contact with the rock the force is small in comparison

with the pick force. The same occurs in the final part of the contact surface, where the

force disappear almost completely. The pick force is not localized in the intermediate

region, as proposed in the CSM model for the estimation of angle β [54, 96].

(a) Disc of 19” (b) Disc of 17”

Figure 6.21. Average distribution of normalized forces over disc cutters in LCM
test with unrelieved material 1.

Taking the average of the normalized force distribution by the pick value in both

cases, the estimated distribution obtained in the simulation is depicted in Figure 6.22.

It is a gaussian distribution displaced to the right. This means that angle β is higher
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than φ/2.

0 φ

Figure 6.22. Estimated force distribution over disc cutter.

The β angle and cutting coefficient (CC) obtained in the simulation and predicted

by the CSM model are summarized in Table 6.5. It can be noted that in both disc cutter

geometries the angles β obtained in the simulations are higher than those estimated by

the CSM model. This confirm the results obtained previously.

CSM model Simulation
19” 17” 19” 17”

β (deg) 5.158 5.453 5.859 6.163
CC 0.09027 0.09546 0.10262 0.10798

Table 6.5. Comparison of angle β in the LCM test with unrelieved material 1.

Most of the studies on the rock cutting with disc cutters found in the literature just

consider the measurement of the interaction forces. However, the distribution of the

forces over the disc seems not have been studied in detail. This point that can be crucial

to understand the process resulting in an interesting example of the capabilities of the

simulation technology proposed in that field.

In the next section, the comparison of the results obtained for both disc cutter

geometries is presented, considering the different parameters related to the process. The

simulations are performed considering the unrelieved rock specimen. Then relieved rock

specimens are considered for the analysis of the disc spacing and the specific energy

involved in the cutting process.
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6.4.1.1 Sensitivity analysis of the cutting parameters

This section presents the analysis of influence for the different parameters involved in

the rock cutting process. Most of the parameters are analyzed in an unrelieved rock

specimen. However, for the spacing between disc cutters relieved rock specimens with

different penetrations are considered.

Two different categories can be established for the different parameters involved in

the rock cutting process, The first category is related to the mechanical properties of the

rock specimen. Most of the studies reveal that the relevant mechanical properties of the

rock are the compressive and tensile strengths. The elastic constants of the rock are not

considered important for the estimation of the cutting forces, and are not analyzed in this

section.

The second category involves the geometric settings of the cutting process. Here we

can found the profile of the disc cutter, the spacing between discs and penetration.

All these relevant parameters, which are considered in the empirical/theoretical model,

are analyzed in order to verify its influence on the interaction forces.

In order to obtain a most accurate measurement of the average values of the interaction

forces, a range of the evolution of the forces is considered in order to avoid the boundary

effect on the resulting forces. For the analysis presented below, a range between 0.1 and

0.3 m of the disc cutter displacement is considered.

Uniaxial compressive strength

One of the most significant mechanical parameters is the limit of compressive strength

of the rock material, which is represented by the uniaxial compressive strength (UCS).

This value represents the uniaxial compressive stress reached when the material fails

completely.

Figure 6.23 shows the relationship between the average normal and rolling forces

obtained in the simulation and the value of UCS estimated by changing the DEM

parameter Rt. The relationship between UCS and Rt is obtained from the methodology

for estimation of the DEM model parameters presented in Chapter 4.

The trend line shows the linear increasing of the forces in terms of the compressive

strength. The different values of the UCS are estimated with the dimensionless scale

function. As the macro strength ratio is constant due to the micro strength ratio is

constant, the linear change it is expected as shown 6.3 for the CSM model. As the macro
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Figure 6.23. Normal and rolling forces with different values of UCS in LCM test,
with unrelieved material 1 and ring of 19”.

strength ratio is constant, the tensile strength in the equation can be replaced by the

compressive strength times the strength ratio This allows us to take out the compressive

strength of the root and obtain a linear equation of the pressure as a function of the

compressive strength.

Even if the CSM model, and other theoretical models in the literature, relate the

cutting coefficient with a poorly geometric considerations, as penetration and disc cutter

radius, Figure 6.24 shows a linear relationship between the compressive strength and the

cutting coefficient.

Even if the influence does not seem to be important, it would be interesting to verify

this relationship with experimental results.

Cutting velocity

During the excavation process with a TBM, the disc cutters present different advancing

velocities due to its position in the TBM cutterhead. As the normal force is distributed
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Figure 6.24. Cutting coefficient for different values of UCS in LCM test, with
unrelieved material 1 and ring of 19”.

through the cutterhead, it should be uniform in all the disc cutters.
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Figure 6.25. Normal and rolling forces for different values of cutting velocity in
LCM test, with unrelieved material 1 and ring of 19”.
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Figure 6.25 shows the normal and rolling forces for different cutting velocities. The

normal force decreases its value when the velocity increases, but the change rate is not

significant. The same occurs with the rolling forces, but the rate is even lower than for

the normal forces. Similar results were obtained by Cho et al. [29], via a FEM simulation

of V-shape profile disc cutters.

Most of the theoretical/empirical models not include this parameters, assuming that

this can be negligible. Even if the influence is small, this should be take into account for

a more detailed analysis.

These values can be affected by different aspects related to the simulation process, as

damping, time step or the moment of inertia selected for the rotation degrees of freedom

in the disc cutter axis. The possible influence of those parameters should be studied in

more detail. Nevertheless, this is considered out of the focus of the present work.

Penetration depth

The penetration depth, or penetration rate, is considered one of the most important

geometric parameters, together with the disc spacing, that affect the performance of the

TBM, as it indicates the advance rate of the TBM cutterhead.

All theoretical models assign an important role to this parameter, relating it with

the volume of rock material excavated. This is linked with the energy required for the

excavation process.

In Figure 6.26, the normal forces and rolling forces for different penetration depths

are presented for the disc cutter of diameter 19” in both unrelieved rock specimens.

When the penetration depth increases, the normal force and the rolling force also

increases. The influence of the penetration depth can be appreciated mainly in the rolling

force, that is directly related with the energy required in the cutting process.

The CSM model bases the estimation of the cutting coefficient on these parameters,

assuming a purely geometric criteria (see Equation (6.5)). Figure 6.27 shows the

comparison of the resulting cutting coefficient in the simulations and the theoretical

coefficient as estimated by the CSM model.

It can be noted that the resulting cutting coefficient for the rock material 2 presents

a higher value than that obtained with the rock material 1 and the CSM model. This
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Figure 6.26. Normal and rolling forces for different penetration depths in LCM
test, with ring of 19” and both unrelieved rock materials.
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different penetration depths in LCM test, with ring of 19” and both
rock materials.
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confirms the results of Figure 6.24, where it is shown that the cutting coefficient decreases

while the compressive strength increase. As the only difference between both cases are the

mechanical properties of the rock specimens, we can conclude that the cutting coefficient

is also influenced by the mechanical properties, and not just for the penetration and radius

of the disc cutter, as assumed in the CSM model.
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Figure 6.28. Comparison of normal and rolling forces for different penetration
depths in LCM test, with rock material 1 and both disc cutters.

Together with the penetration, the disc cutter geometry is used in the theoretical

model for the estimation of the contact forces and the cutting coefficient. In order to verify

its influence the simulation is performed with both disc cutters for different penetration

depths. The comparison of the normal and rolling forces for both disc cutters is presented

in Figure 6.28.

The disc cutter of diameter 17” presents higher values for the interaction forces in

both directions. This has been explained before, considering that the excavated volume

is higher for this disc cutter geometry. Even taking into account that the disc cutter of
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19” have a higher tip length, the profile shows that this value is projected and the tip of

the disc presents a small angle, and have not a completely a constant cross section.

In the case of the normal forces, random results for lower penetration depth has been

founded for the disc cutter of 17”. For penetration depths between 2-3 mm, the normal

force seems to increase when the penetration decrease. This is not consistent with the

rest of the values and the force for a penetration of 2 mm is not considered for the trend

line. These phenomena can be related to the particle size distribution, as the penetration

is lower than the average particle radius.

Figure 6.29 shows the comparison of the cutting coefficient resultant in the simulations

with that estimated by the CSM model. The figure shows that the theoretical model

underestimates the CC value for the disc cutter of 17”. Results are closer on the case of

the disc cutter of 19”. The influence of different disc profile geometry parameters, as the

contact surface area, should be investigated to verify the results and study in more detail

its influence on the cutting coefficient.
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Figure 6.29. Comparison of simulated and theoretical cutting coefficient for
different penetration depths in LCM test, with rock material 1 and
both disc cutters.
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6.4.2 Relieved rock specimen

All the results presented previously on this chapter has been obtained in unrelieved rock

samples. In a real cutting process, as well as in LCM tests, the rock cutting analysis

considers the influence of the previous passes of disc cutters, and the interaction of

adjacent cutting paths.

The optimum spacing between disc cutters is one of the most important parameters in

the design of TBMs for hard rock conditions. The spacing, and its relationship with the

cutter penetration, have a direct effect in the chip formation and machine performance.

The chips are formed by fracture propagation to an adjacent groove, as depicted in

Figure 6.30.

Chip formation

p

s

Crushed zone

Figure 6.30. Influence of cutters spacing in fracture path.

The LCM test has been developed for the study and optimization of these parameters,

considering the rock material properties and the disc cutter geometry. The optimum

spacing between adjacent cutting for a given penetration of cutters is defined for the

minimum energy required for the chip formation.

Figure 6.31 shows different cutting situations depending on the spacing selected. In

the first case (Figure 6.31(a)), with a large spacing between cuttings, the generated crack

length is not enough to meet with cracks already developed from the adjacent cut, and

hence chips are not formed. This generates ridges between the adjacent grooves and the

material can not be take out. In the second case (Figure 6.31(b)), the small spacing

between cuttings generate an excessive loading on the rock, producing longer cracks and

an over brake of the rock.

In the last case (Figure 6.31(c)), an optimum spacing between cuttings generates the

formation of chips with an optimum size, where the cracks generated meet the crack
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(a) Ridge formation do to lack of pressure and length of cracks

(b) Over break due to excessive loading and longer cracks

(c) Normal cutting with optimum crack length and direction

Figure 6.31. Chip formation for different cutting situations [1, 97].

previously formed in the adjacent cut. The generation of theses optimum-size chips

increases the effectiveness of the cutting process, and consequently the efficiency of the

full TBM.

The analysis of the influence of spacing and spacing/penetration parameters requires a

modification of the original model for the rock specimen. In Figure 6.32, a new geometry

for the rock sample is presented, where the influence of a previous cutting groove is

considered.

For the new rock specimen geometry, the total size considered is the same that for the

original one. Nevertheless, the with of the DEM domain is increased due to the maximum
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Figure 6.32. Numerical model of the LCM test, with spacing and penetration.

spacing that we want to reproduce. The maximum spacing considered is 130 mm, so the

width of the new DEM domain is 0.23 m, as depicted in Figure 6.33.
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Figure 6.33. Geometric description of the DEM and FEM subdomains in relieved
rock specimens for the LCM test (m).

The parameter l in Figure 6.33 varying depending on the spacing between the disc
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cutter and the previous pass, in order to maintain the length from the disc cutter to the

DEM/FEM coupling interface.

Two different specimens are generated, for 4 mm and 8 mm of the penetration. The

subdomain discretized with DEM have 51668 and 50714 particles, respectively. The

particles assembly characterization parameters are summarized in Table 6.6.

Penetration
Parameter Description 4 mm 8 mm

Np Number of particles 51668 50714
r̄ Average radius (mm) 2.5621 2.5593
r̃ Characteristic radius (mm) 3.0039 2.9992
nc Coordination number 9.0635 9.1028
e Porosity (%) 22.6470 22.8205

Table 6.6. Characterization of the particles assembly for LCM test with relieved
rock specimens.

Using the methodology developed in Chapter 4, the DEM model parameters are

estimated for the rock specimen 1. The model parameters for the new rock specimens are

summarized in Table 6.7.

Since the CSM model consider the spacing between disc cutters, now is possible to

compare the estimated forces by the CSM model and those obtained in the simulations.

Figure 6.34 shows the normal forces and the rolling forces.
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Penetration
Parameter Description 4 mm 8 mm

Kn Stiffness in normal direction (MN/m) 160.79 160.79
Kt Stiffness in tangential direction (MN/m) 16.325 16.325

Kt/Kn Stiffness ratio 0.1015 0.1015
Rn Strength of cohesive bonds in the normal direction (kN) 0.8482 0.5908
Rt Strength of cohesive bonds in the tangential direction (kN) 4.1759 2.9087
ρ Density (kg/m3) 3085 3085

Table 6.7. DEM model parameters for LCM test with relieved rock specimens.
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Figure 6.34. Normal and rolling force for different spacings in LCM test with
relieved material 1 and ring 19” and both penetration depths.

In the case of the normal force, the curve shows that the forces obtained in the

simulation are higher that those estimated with the CSM model for both cases.

For the rolling forces, again the estimated forces are lower than those obtained in the

simulations. In this case, the difference is lower than for the normal forces.
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The difference between the obtained forces and those estimated within the CSM model

shows the same behaviour that for the unrelieved rock specimens. The hypothesis for the

estimation of the cutting coefficient CC seems to be related with these differences.

In Figure 6.35 the cutting coefficients for different spacings between disc cutters,

for 4 mm and 8 mm of penetration, are presented. In both cases the curve shows a

completely independence of the spacing, as proposed by the CSM model. Nevertheless,

the cutting coefficients estimated with the CSM model are higher than those computed

in the simulations. These higher values of CC are reflected as lower values of the normal

forces in comparison with those obtained in the simulations.

0

5

10

15

20

0 30 60 90 120 150

C
ut

ti
ng

co
effi

ci
en

t
[%

]

Spacing [mm]

p=4mm - DEM
p=4mm - CSM
p=8mm - DEM
p=8mm - CSM

Figure 6.35. Cutting coefficient for different spacing and penetration values in
LCM test with material 1 and ring of 19”.

Comparing both cases, it can be seen that for a lower penetration depth results present

a higher difference with the values estimated with the CSM model. The same occurs with

the β angle. The estimated and calculated values of the cutting coefficient and angle β

are summarized in Table 6.8.

The difference between the CSM model and the simulations can be explained by the

definition of the pressure distribution in the disc cutters. Similar with was found in the

analysis of the unrelieved rock specimens, the distribution of pressure over the disc cutter

differs from that assumed in the CSM model, for which a uniform distribution of pressure

over the disc cutter is proposed. The average distribution of the forces over the disc

cutters for both penetration cases are presented in Figure 6.36, for a spacing p of 80 mm.

As for the unrelieved rock specimens, the pressure over the disc cutter presents a
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CSM model Simulation
4 mm 8 mm 4 mm 8 mm

β (deg) 5.224 7.397 5.240 6.826
CC 0.0914 0.1298 0.0917 0.1197

Table 6.8. Comparison of angle β and cutting coefficient in LCM test with relieved
material 1 and spacing of 80 mm.

distribution similar to a Guassian distribution.

(a) p = 4 mm (b) p = 8 mm

Figure 6.36. Average distribution of normalized forces over disc cutters in LCM
test with relieved material 1 and spacing of 80 mm.

For the definition of the optimum spacing/penetration ratio, an energy-based criteria

is commonly used in the literature [95, 96, 103]. This ratio is used as one of the main

design parameters in the TBMs, as it is required to define the configuration of the TBM

shield.

The specific energy SE is defined as the amount of energy required to excavate a unit

volume of rock, computed in units of kilowatt-hour per cubic meter (kWh/m3). The SE

for a single disc cutter is defined as the work done to excavate a volume V by

SE =
FR L

V
(6.9)

where L is the cutting distance (m) and V the cutting volume (m3).

Taken into account that for the optimum conditions (see Figure 6.31), the excavated

volume can be defined by the spacing s between the disc cutters and its penetration p,
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the volume can be written as

V = AL = s pL (6.10)

replacing the volume into (6.9), the specific energy is re-written as

SE =
FR
p s

(6.11)

Considering the definition of the specific energy and the simulation of the rock cutting

in the relieved rock specimens for different values of penetration and spacing, the specific

energy for the different cases is compared in Figure 6.37. The comparison of the specific

energy computed for the relieved rock specimen and the estimated by the CSM model,

for different values of penetration and spacing, are shown in Figure 6.37.
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Figure 6.37. Specific energy for different spacing and penetration depths in LCM
test with material 1 and ring of 19”.

In Figure 6.37, the computed results are compared with the CSM model results. A

good correlation of both results is obtained. This means that the simulation using the

DEM allows reproducing the values obtained with the most popular theoretical/empirical

model, and therefore, can be used for the analysis of the disc cutter on real conditions.

Furthermore, this modelling technique allows analysing in a more simple way the influence

of the disc cutter shape and, eventually, the change of the TBM performance due to wear

in the disc cutters.

As a final comment, it is interesting to consider the differences obtained with the CSM

model for the distribution for pressure over the disc cutters. The CSM model proposes a

uniform distribution with the angle β calculated as the simple average of the contact area.

However, the simulation shows a more complex situation with a Gaussian distribution.
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Hence, the angle β seems to be related not just to the geometrical parameters proposed

by the CSM model. But rather to the mechanical properties of the rock specimens.
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Chapter 7

Summary and conclusions

This work has presented the development of different aspects related with the modelling

of the rock cutting processes using the discrete element method. A summary of the results

of this work are presented along with the main contributions of this work.

In Chapter 2, the implemented model using cylindrical (2D) and spherical (3D)

particles has been summarized. The implementation assumes a linear perfectly-brittle

model, in which the stiffnesses and strengths are global parameters in the whole particle

assembly. A Velocity-Verlet algorithm has been used for the time integration scheme.

In Chapter 3, a new particle generation scheme has been introduced, in which the

main goal is to achieve high density assemblies. This new particle packing algorithm

presents a good level of isotropy and high coordination numbers. One of the interesting

characteristics of the method is that it can be used to generate particles in 2D or 3D

problems, taking as starting point a standard triangular or tetrahedral finite element

mesh. This allows the generation of particle assemblies with complex geometries.

One of the most important results of this work, presented in Chapter 4, is the

development of a methodology thats allow the estimation of the DEM contact parameters

via a combination of dimensional analysis and micromechanics. Most of the dimensional

analysis found in the literature do not correctly consider the characteristics of the

particle assembly, such as the porosity or the particle size distribution. In the

proposed methodology the dimensional analysis is corrected via the consideration of

micromechanical equations. Characteristic parameters of the particle assembly, such as

the coordination number or a characteristic radius are considered in the dimensionless

number, that take into account the distribution of the particle size and the contact branch

lengths.
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The sensitivity analysis of the different parameters of the DEM model implemented allows

the establishment of the influence of each of them in the modelling of rock materials. It can

be concluded that for the strength ratio of the rock materials considered in this work, most

of the bonds are broken by the tensile forces, no matter what failure model is selected.

This fact has a direct relationship to the failure envelope involved in the constitutive

model used, and should be studied with more detail in future work, to analyse possible

changes in the breakage model considered.

A coupling scheme that allows the use of DEM and the FEM in the same domain has

been presented in Chapter 5. The DEM/FEM coupling scheme introduced decreases the

computational time with a negligible influence in the accuracy of the results, and permits

the consideration of higher domains. By increasing the domain, the possible boundary

effects in the simulation are avoided. This is very important for the analysis of real size

excavation problems.

Also, a new adaptive algorithm that permits a change from FEM elements into DEM

elements as been introduced. With a criteria based on the stress, the algorithm allows a

progressive change from the FEM to the DEM discretization. This means that the DEM

domains are only used where a concentration of stress is obtained and failure could occur.

The FEM methodology used considers simple linear elastic behaviour, decreasing even

further the computational time required for the simulations.

The only problem found in this adaptive coupling is the necessity to introduce

equilibrium in the new particles after the projection of the kinematic variables, as the

rotation of the particles can not be projected. A simple study shows that with few

iterations the equilibrium in the new DEM domain can be achieved.

The study of different projection schemes for the kinematic variables, from the FEM

to the DEM elements, could be performed in the future, considering different stress

localization techniques.

All the developments presented in the previous chapters has been applied to the study

of the rock cutting process with disc cutters, presented in Chapter 7. The linear cutting

machine test is modeled considering different materials and disc cutter geometries, in

order to analyze the possibilities of the simulation technology developed for this important

industrial application. In this type of excavation process, the continuum-based simulation

technology has been historically experienced problems due to the fragmentation of the

rock, that can not be modeled in a simple way. The discrete-based methods allows the

fragmentation process to be simulated in a more natural way, but the complexity of

the parameter estimation and the computational cost involved has made its application
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impossible for real-scale problems.

The results obtained with the DEM and DEM/FEM simulation models have been

compared with a theoretical/empirical model developed by the Colorado School of Mines

in the last decade, which has been used extensively by industry for the design of tunnel

boring machines.

The simulations have been performed considering relieved and unrelieved rock

specimens, in order to analyze the influence of the different geometrical and mechanical

parameters involved in the cutting process. The results have shown a good correlation

between the forces obtained in the simulations and those estimated by the CSM model.

The specific energy estimated with the CSM model and obtained in the simulations

presents a good correlation. This means that the simulations using the DEM allows the

values obtained with the most popular theoretical/empirical model to be reproduced,

and can therefore be used for the analysis of disc cutters in real excavation conditions.

Furthermore, this modelling technique allows the influence of the disc cutter shape and,

eventually, the change of the TBM performance due to the wear in the disc cutters to be

analyzed in a more simplistic manner.

An important difference has been found in the distribution of pressure over the disc

cutters. While the CSM model proposes a uniform distribution of pressure, the simulation

shows a more complex situation with a Gaussian distribution. The cutting coefficient,

defined as a function of the angle β, is proposed by the CSM model as a function of

the contact area of the disc cutter. In the simulation, an influence of the mechanical

properties of the rock in the angle β has been found. Future simulations of the LCM test

with disc cutters should provide a more detailed analysis of the pressure distribution, as

well as the comparison with experimental results.

Summary of contribution of this work

The main contributions of the work are summarized bellow:

- A new particle packing algorithm for the particle assembly has been developed. The

algorithm allows the generation of high density isotropic assemblies.

- A methodology for the estimation of the DEM model parameters, based on the

dimensional analysis and taking into account the characterization parameters of the

particle assembly has been proposed.

- We have defined a characteristic radius that represents in a better way the particle

size distribution, and also considering the distribution of contacts through the

branch length.
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- A novel DEM/FEM adaptive coupling algorithm has been developed. It allows

the use of larger domains and decrease the computational cost involved in the

simulations.

- We have studied the rock cutting tests with disc cutter. Numerical results have been

compared with the most popular prediction model for the estimation of the cutting

forces and performance of the excavation machinery. Possible inconsistencies in the

prediction model were noted.

Recommendations for future work

Based in the results obtained in the present work, some topics for future work that can

allow the improvement of the DEM model used and a its application to the rock cutting

processes are suggested:

- A possible improvement of the constitutive model used, considering different failure

envelopes to reproduce, with more accuracy, the rock material behaviour. In

particular, for the reproduction of the real strength ratio of the rock material.

- The particle packing algorithm can be extended to non-spherical particles. Elliptical

particles can be implemented using the distance optimization algorithm. As the

contact detection is more complex and expensive for non-spherical particle, some

simplifications such as the consideration of a predefined aspect ratio or a fixed

rotational angle (changing position and size) can be taken into account.

- The projection of the stress state and the kinematic variables from the FEM to the

DEM elements, in the adaptive DEM/FEM coupling technique, can be improved

considering different localization techniques.

- For the modelling of the rock cutting test with disc cutters, a more detailed analysis

of the pressure distribution over the disc can be performed. This is the most relevant

aspect due to the discrepancies obtained with the theoretical/empirical model.
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Micromechanical stress tensor

The definition of the average stress tensor is widely discussed in literature [33, 68].

Normally its defined in terms of the force acting in the contact between particles and the

geometry of the assembly. Bellow, the formulation derivated by Kruyt and Rothemburg

in [33, 68] is presented.

The expression of the average stress tensor can be considered in two steps. First

is related with the forces exerted on the particles by the boundary that encloses the

assembly. The second step equates these quantities involving external forces to quantities

involving internal forces. Finally, the micromechanical expression for the average stress

tensor is obtained.

A.1 Stress tensor in terms of external forces

Considering the condition of quasi-static equilibrium and the absence of body forces, the

equilibrium conditions (continuum) are

∂σij
∂xj

= 0 (A.1)

The average stress tensor in the volume V and surface S is defined by the Hill’s lemma

[61], based in the representative volume element (RVE), as

σ̄ij =
1

V

∫
V

σijdV (A.2)

and rewritten

σ̄ij =
1

V

∫
V

∂(xiσkj)

∂xk
dV − 1

V

∫
V

xi
∂σkj
∂xk

dV (A.3)
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Considering the equilibrium condition, the second term it is zero. By the Gauss’s theorem,

the first term in (A.3) results in

σ̄ij =
1

V

∫
S

nkσikxjdV (A.4)

where ni is the normal to the surface S. Considering the loads to be point loads on the

surface S we have

σ̄ij =
1

V

∑
c∈S

f ci x
c
j (A.5)

where fi is the surface force exerted on the surface of the particle c, and xcj its position.

This gives us the expression for the average stress tensor in terms of external forces.

A.2 Stress tensor in terms of internal forces

The position of the contact point xcj can be written in terms of the particle p by

xcj = xpj + rpcj (A.6)

where rpcj is the so-called contact vector, connecting the center of mass of particle p with

the contact point c. Now, (A.5) can be rewritten for the particle q as

σ̄pij =
1

Vp

∑
c∈Sp

f ci (x
p
j + rpcj ) =

1

Vp

xpj ∑
c∈Sp

f ci +
∑
c∈Sp

f ci r
pc
j

 (A.7)

Considering the equilibrium condition (internal forces) for particle p in the absence

of body forces is defined as ∑
q

fpqi = 0 (A.8)

where the summation is over the particles q, in contact with p, and fpqi is the force exerted

by particle q on the particle p.

The first term of the sum in (A.7) can be avoided, considering the equilibrium

condition, and the average stress tensor for the particle p is obtained as

σ̄pij =
1

Vp

∑
c∈Sp

f ci r
pc
j (A.9)
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A.3 Average stress tensor

Considering the average function

Q = 〈Q〉 =
1

V

∑
p∈V

V pQp (A.10)

where Q is the quantity to be averaged, V the volume of the cell used for the average

procedure and V p is the volume fraction of the particle who intersect with V , i.e. the

subscript p ∈ V denotes the particle-in-volume averaging procedure. The volume fraction

is obtained from either Qp = 1.

Considering the average function defined in (A.10), the average stress tensor over a

control volume V is defined as

σ̄ij =
1

V

∑
p

Vpσ̄
p
ij (A.11)

Replacing the definition of the stress tensor for a particle q, defined in (A.9)

σ̄ij =
1

V

∑
p

Vp

(
1

Vp

∑
c

f ci r
pc
j

)
=

1

V

∑
p

∑
c

f ci r
pc
j (A.12)

As the contact force f ci it is the same for both particles p and q, then

fpci = −f qci (A.13)

The averaged stress tensor can be written as

σ̄ij =
1

V

∑
c

f ci l
c
j (A.14)

where lcj is the called branch vector, which joints the center of the particles in contact

(xq − xp).
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Appendix B

Micromechanical strain tensor

This section summarizes the definition of the micro-mechanical strain tensor by Bagi [7],

and compared with other formation in [9, 41]. The formulation describes accurated the

micro-mechanical deformation of granular systems, allowing to reproduce the macroscopic

strain through the averaging procedure.

B.1 Geometrical micro-variables

The granular system is divided in space cells defined by a Delaunay tesellation, consisting

in triangles in the two-dimensional case and tetrahedra in the three-dimensional case. The

cell is a simplex so it as D+1 nodes, with D as the dimension. The Delaunay tesellation

connect the center of the particle centers, and their edges correspond to the shortest path

beween them. In Figure B.1, it is shown that the edges can be physical contact between

the particles, called real contacts, as the edge po or virtual contacts, as the edge pq. All

of them are geometrically characterized by the branch vector, defined previously.

o

p

q

Figure B.1. Delaunay tesellation of three particles in 2D.

Considering the face k of the cell, opposite to the node k, the area-vector bk it is defined

in the following way:
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- The magnitude of bk is equal to the area of the face (length in 2D).

- The direction of bk is normal to the face, pointing outwards.

It is easy to probe that

D+1∑
k=1

bk = 0 (B.1)

The vector it is illustrated in Figure B.2.

bq

bp

q

p

(a) Space cell in 2D: Triangle

bp

bq

p

q

(b) Space cell in 3D: Tetrahedron

Figure B.2. Sketch of the quantities related with the space cell containing the
edge pq, with the area vectors bq and bq.

Based in the previous definition, the vector ak it is defined as

ak = − 1

D
bk (B.2)

Finally, the most important geometrical micro-variable of the space cell system,

called complementary area vector, can be defined. Vector dpq is defined considering the

summation in all the cells t that contain the edge pq, of the difference apt and aqt as follows

dpq =
1

D + 1

T∑
t=1

(apt − aqt ) (B.3)

This vector characterizes the neighborhood of the edge pq. It is interesting note that

for all the Delaunay tesellation, the complementary area vector de and the generalized

branch vector le satisfy the geometrical relationship

V δij =
∑
e

leid
e
j (B.4)



B.2. Strain tensor 181

where δij is the Kronecker delta function.

B.2 Strain tensor

Considering the strain tensor εij as the displacement gradient

εij =
∂ui
∂xj

(B.5)

According with the Gauss theorem, the average of εij in the Volume V is expressed as

the surface integral

ε̄ij =
1

V

∫∫∫
V

εijdV =
1

V

∫∫
S

uinjdS (B.6)

If the domain is divided into sub-domains, the average displacement gradient tensor can

be calculated separately for each sub-domain L as

ε̄Lij =
1

V L

∫∫
SL
uinjdS (B.7)

If the domain and the displacement gradient are continuous, the volume-weighted average

it is

ε̄ij =
1

V

∑
L

V Lε̄Lij =
1

V

∫∫
S

uinjdS (B.8)

Considering that the domain can be represented with the space cell system defined by

the Delaunay tesellation, the sub-domain are considered as the triangles or tetrahedra.

Considering that the displacement field u is linear along the boundary of the cells, the

displacement gradient can be written in the form

ε̄Lij =
1

V L

D+1∑
k

uki a
k
j (B.9)

where V L is the volume of the cell, k run over its nodes, uk is the translation of the node

k, and a is the vector defined in the previous section. Since the sum of ak in the cell is

zero, the equation B.9 can be modified by subtracting the same u0 vector from each nodal

displacement of the cell

ε̄Lij =
1

V L

D+1∑
k

(uki − u0
i )a

k
j (B.10)
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This physically means that the rigid body translation does not change the deformation

of the cell. If u0 is chosen as the average translation of the nodes

u0 =
1

D + 1

D+1∑
k

uk (B.11)

Equation (B.10) can be re-written as

ε̄Lij =
1

D + 1

1

V L

∑
p<q

(upi − u
q
i )(a

p
j − a

q
j) (B.12)

Considering the notation ∇upq = up − uq, and the definition of the complementary area

vector defined in (B.3), the volume-weighted average displacement gradient tensor can be

written as

ε̄ij =
1

V

∑
pq

∆upqi d
pq
j (B.13)

where pq are the edges that run over all the space cell system.

Note that the expression contains only discrete micro-variables, as the relative

displacement of the neighboring nodes and the corresponding complementary area vectors.

The skew-symmetric part of the tensor represents the average rigid-body rotation of the

space cells, and the symmetric part (similarly to the continuum mechanical variable)

expresses the deformations of the cells, been the strain tensor.
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