883 research outputs found

    Fixed interval scheduling problem with minimal idle time with an application to music arrangement problem

    Full text link
    The Operational Fixed Interval Scheduling Problem aims to find an assignment of jobs to machines that maximizes the total weight of the completed jobs. We introduce a new variant of the problem where we consider the additional goal of minimizing the idle time, the total duration during which the machines are idle. The problem is expressed using quadratic unconstrained binary optimization (QUBO) formulation, taking into account soft and hard constraints required to ensure that the number of jobs running at a time point is desirably equal to the number of machines. Our choice of QUBO representation is motivated by the increasing popularity of new computational architectures such as neuromorphic processors, coherent Ising machines, and quantum and quantum-inspired digital annealers for which QUBO is a natural input. An optimization problem that can be solved using the presented QUBO formulation is the music reduction problem, the process of reducing a given music piece for a smaller number of instruments. We use two music compositions to test the QUBO formulation and compare the performance of simulated, quantum, and hybrid annealing algorithms.Comment: 15 pages, 3 figure

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Hierarchical workflow management system for life science applications

    Get PDF
    In modern laboratories, an increasing number of automated stations and instruments are applied as standalone automated systems such as biological high throughput screening systems, chemical parallel reactors etc. At the same time, the mobile robot transportation solution becomes popular with the development of robotic technologies. In this dissertation, a new superordinate control system, called hierarchical workflow management system (HWMS) is presented to manage and to handle both, automated laboratory systems and logistics systems.In modernen Labors werden immer mehr automatisierte Stationen und Instrumente als eigenständige automatisierte Systeme eingesetzt, wie beispielsweise biologische High-Throughput-Screening-Systeme und chemische Parallelreaktoren. Mit der Entwicklung der Robotertechnologien wird gleichzeitig die mobile Robotertransportlösung populär. In der vorliegenden Arbeit wurde ein hierarchisches Verwaltungssystem für Abeitsablauf, welches auch als HWMS bekannt ist, entwickelt. Das neue übergeordnete Kontrollsystem kann sowohl automatisierte Laborsysteme als auch Logistiksysteme verwalten und behandeln

    Quantum annealing for vehicle routing and scheduling problems

    Get PDF
    Metaheuristic approaches to solving combinatorial optimization problems have many attractions. They sidestep the issue of combinatorial explosion; they return good results; they are often conceptually simple and straight forward to implement. There are also shortcomings. Optimal solutions are not guaranteed; choosing the metaheuristic which best fits a problem is a matter of experimentation; and conceptual differences between metaheuristics make absolute comparisons of performance difficult. There is also the difficulty of configuration of the algorithm - the process of identifying precise values for the parameters which control the optimization process. Quantum annealing is a metaheuristic which is the quantum counterpart of the well known classical Simulated Annealing algorithm for combinatorial optimization problems. This research investigates the application of quantum annealing to the Vehicle Routing Problem, a difficult problem of practical significance within industries such as logistics and workforce scheduling. The work devises spin encoding schemes for routing and scheduling problem domains, enabling an effective quantum annealing algorithm which locates new solutions to widely used benchmarks. The performance of the metaheuristic is further improved by the development of an enhanced tuning approach using fitness clouds as behaviour models. The algorithm is shown to be further enhanced by taking advantage of multiprocessor environments, using threading techniques to parallelize the optimization workload. The work also shows quantum annealing applied successfully in an industrial setting to generate solutions to complex scheduling problems, results which created extra savings over an incumbent optimization technique. Components of the intellectual property rendered in this latter effort went on to secure a patent-protected status

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Get PDF
    [EN] Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.Azzouz, A.; Ennigrou, M.; Ben Said, L. (2017). A hybrid algorithm for flexible job-shop scheduling problem with setup times. International Journal of Production Management and Engineering. 5(1):23-30. doi:10.4995/ijpme.2017.6618SWORD233051Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345-378. doi:10.1016/j.ejor.2015.04.004Azzouz, A., Ennigrou, M., & Jlifi, B. (2015). Diversifying TS using GA in Multi-agent System for Solving Flexible Job Shop Problem. Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. doi:10.5220/0005511000940101Azzouz, A., Ennigrou, M., Jlifi, B., & Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving Flexible Job Shop Problem. 2012 11th Mexican International Conference on Artificial Intelligence. doi:10.1109/micai.2012.12Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15. doi:10.1016/j.jmsy.2011.02.004Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:10.1007/bf02023073Cheung, W., & Zhou, H. (2001). Annals of Operations Research, 107(1/4), 65-81. doi:10.1023/a:1014990729837Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342. doi:10.1007/s10845-007-0026-8González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-Third International Conference on Automated, pp. 91-99.Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4), 205-215. doi:10.1007/bf01719451Imanipour, N. (2006). Modeling&Solving Flexible Job Shop Problem With Sequence Dependent Setup Times. 2006 International Conference on Service Systems and Service Management. doi:10.1109/icsssm.2006.320680KIM, S. C., & BOBROWSKI, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. International Journal of Production Research, 32(7), 1503-1520. doi:10.1080/00207549408957019Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the International MultiConference of Engineers and Computer Scientists,2, 978-988.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. doi:10.1080/00207543.2012.746480Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170-181. doi:10.1007/s00170-008-1693-0Najid, N. M., Dauzere-Peres, S., & Zaidat, A. (s. f.). A modified simulated annealing method for flexible job shop scheduling problem. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2002.1176334Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. doi:10.1007/s10845-015-1039-3Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp. 15-22.Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35(10), 3202-3212. doi:10.1016/j.cor.2007.02.014Sadrzadeh, A. (2013). Development of Both the AIS and PSO for Solving the Flexible Job Shop Scheduling Problem. Arabian Journal for Science and Engineering, 38(12), 3593-3604. doi:10.1007/s13369-013-0625-ySaidi-Mehrabad, M., & Fattahi, P. (2006). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6), 563-570. doi:10.1007/s00170-005-0375-4Vilcot, G., & Billaut, J.-C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 49(23), 6963-6980. doi:10.1080/00207543.2010.526016Shi-Jin, W., Bing-Hai, Z., & Li-Feng, X. (2008). A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. International Journal of Production Research, 46(11), 3027-3058. doi:10.1080/00207540600988105Wang, S., & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3), 436-447. doi:10.1016/j.cie.2010.05.016Zandieh, M., Yazdani, M., Gholami, M., & Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem. Journal of Applied Sciences, 9(4), 662-670. doi:10.3923/jas.2009.662.670Zambrano Rey, G., Bekrar, A., Prabhu, V., & Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. doi:10.1080/00207543.2014.881575Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021Zhou, Y., Li, B., & Yang, J. (2005). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm. The International Journal of Advanced Manufacturing Technology, 30(1-2), 105-111. doi:10.1007/s00170-005-0022-0Ziaee, M. (2013). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 71(1-4), 519-528. doi:10.1007/s00170-013-5510-zZribi, N., Kacem, I., Kamel, A. E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(4), 652-661. doi:10.1109/tsmcc.2007.89749

    Train scheduling with application to the UK rail network

    No full text
    Nowadays, transforming the railway industry for better performance and making the best usage of the current capacity are the key issues in many countries. Operational research methods and in particular scheduling techniques have a substantial potential to offer algorithmic solutions to improve railway operation and control. This thesis looks at train scheduling and rescheduling problems in a microscopic level with regard to the track topology. All of the timetable components are fixed and we aim to minimize delay by considering a tardiness objective function and only allowing changes to the order and to the starting times of trains on blocks. Various operational and safety constraints should be considered. We have achieved further developments in the field including generalizations to the existing models in order to obtain a generic model that includes important additional constraints. We make use of the analogy between the train scheduling problem and job shop scheduling problem. The model is customized to the UK railway network and signaling system. Introduced solution methods are inspired by the successful results of the shifting bottleneck to solve the job shop scheduling problems. Several solution methods such as mathematical programming and different variants of the shifting bottleneck are investigated. The proposed methods are implemented on a real-world case study based on London Bridge area in the South East of the UK. It is a dense network of interconnected lines and complicated with regard to stations and junctions structure. Computational experiments show the efficiency and limitations of the mathematical programming model and one variant of the proposed shifting bottleneck algorithms. This study also addresses train routing and rerouting problems in a mesoscopic level regarding relaxing some of the detailed constraints. The aim is to make the best usage of routing options in the network to minimize delay propagation. In addition to train routes, train entry times and orders on track segment are defined. Hence, the routing and scheduling decisions are combined in the solutions arising from this problem. Train routing and rerouting problems are formulated as modified job shop problems to include the main safety and operational constraints. Novel shifting bottleneck algorithms are provided to solve the problem. Computational results are reported on the same case study based on London Bridge area and the results show the efficiency of one variant of the developed shifting bottleneck algorithms in terms of solution quality and runtime

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Delivery pattern planning in retailing with transport and warehouse workload balancing

    Get PDF
    Goods from warehouses must be scheduled in advance, prepared, routed, and delivered to shops. At least three systems directly interact within such a process: warehouse workforce scheduling, delivery scheduling, and routing system. Ideally, the whole problem with the preceding inventory management (restocking) would be solved in one optimization pass. In order to make the problem simpler, we first decompose the total problem by isolating the delivery scheduling. Then we connect the optimization model to the rest of the system by workload balancing goal that is a surrogate of coordination and criterion for the system robustness. This paper presents the practical application of top-down discrete optimization that streamlines operations and enables better reactivity to changes in circumstances. We search for repetitive weekly delivery patterns that balance the daily warehouse and transportation utilization in the absence of capacity constraints. Delivery patterns are optimized for the quality criteria regarding specific store-warehouse pair types, with a special focus on fresh food delivery that aims at reducing inventory write-offs due to aging. The previous setup included semimanual scheduling based on templates, historical prototypes, and domain knowledge. We have found that the system augmented with the new automated delivery scheduling system brings an improvement of 3% in the performance measure as well as speed in adjusting to the changes, such was the case with changes in policies during COVID-19 lockdowns
    corecore