7 research outputs found

    Postmortem Analysis of Decayed Online Social Communities: Cascade Pattern Analysis and Prediction

    Full text link
    Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members, which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity decay are not fully understood. In this work, we analyze decayed and alive sub-websites from the StackExchange platform. The analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally, we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant difference of the decay patterns between the decayed and the alive sub-websites. These patterns are mainly: cascade size, cascade virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactory prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are: (1) the decay process is not governed by only one network measure; it is better described using multiple measures; (2) the expert members of the StackExchange sub-websites were mainly responsible for the activity or inactivity of the StackExchange sub-websites; (3) the Statistics sub-website is going through decay dynamics that may lead to it becoming fully-decayed; and (4) decayed sub-websites were originally less resilient to inactivity decay, unlike the alive sub-websites

    Prioritizing high-contact occupations raises effectiveness of vaccination campaigns

    Get PDF
    Published: 14 January 2022A twenty-year-old idea from network science is that vaccination campaigns would be more effective if high-contact individuals were preferentially targeted. Implementation is impeded by the ethical and practical problem of differentiating vaccine access based on a personal characteristic that is hard-to-measure and private. Here, we propose the use of occupational category as a proxy for connectedness in a contact network. Using survey data on occupation-specific contact frequencies, we calibrate a model of disease propagation in populations undergoing varying vaccination campaigns. We find that vaccination campaigns that prioritize high-contact occupational groups achieve similar infection levels with half the number of vaccines, while also reducing and delaying peaks. The paper thus identifies a concrete, operational strategy for dramatically improving vaccination efficiency in ongoing pandemics

    Prioritizing high-contact occupations raises effectiveness of vaccination campaigns

    Get PDF
    A twenty-year-old idea from network science is that vaccination campaigns would be more effective if high-contact individuals were preferentially targeted. Implementation is impeded by the ethical and practical problem of differentiating vaccine access based on a personal characteristic that is hard-to-measure and private. Here, we propose the use of occupational category as a proxy for connectedness in a contact network. Using survey data on occupation-specific contact frequencies, we calibrate a model of disease propagation in populations undergoing varying vaccination campaigns. We find that vaccination campaigns that prioritize high-contact occupational groups achieve similar infection levels with half the number of vaccines, while also reducing and delaying peaks. The paper thus identifies a concrete, operational strategy for dramatically improving vaccination efficiency in ongoing pandemics

    Coupling dynamics of epidemic spreading and information diffusion on complex networks

    No full text
    The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases (H7N9 and Dengue fever) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes. Secondly, inspired by empirical analyses, we propose a nonlinear model to further interpret the coupling effect based on the SIS (Susceptible-Infected-Susceptible) model. Both simulation results and theoretical analysis show that a high prevalence of epidemic will lead to a slow information decay, consequently resulting in a high infected level, which shall in turn prevent the epidemic spreading. Finally, further theoretical analysis demonstrates that a multi-outbreak phenomenon emerges via the effect of coupling dynamics, which finds good agreement with empirical results. This work may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Multimedia Computin
    corecore