76 research outputs found

    An intelligent recommender system based on short-term disease risk prediction for patients with chronic diseases in a telehealth environment

    Get PDF
    Clinical decisions are usually made based on the practitioners' experiences with limited support from data-centric analytic processes from medical databases. This often leads to undesirable biases, human errors and high medical costs affecting the quality of services provided to patients. Recently, the use of intelligent technologies in clinical decision making in the telehealth environment has begun to play a vital role in improving the quality of patients' lives and reducing the costs and workload involved in their daily healthcare. In the telehealth environment, patients suffering from chronic diseases such as heart disease or diabetes have to take various medical tests such as measuring blood pressure, blood sugar and blood oxygen, etc. This practice adversely affects the overall convenience and quality of their everyday living. In this PhD thesis, an effective recommender system is proposed utilizing a set of innovative disease risk prediction algorithms and models for short-term disease risk prediction to provide chronic disease patients with appropriate recommendations regarding the need to take a medical test on the coming day. The input sequence of sliding windows based on the patient's time series data, is analyzed in both the time domain and the frequency domain. The time series medical data obtained for each chronicle disease patient is partitioned into consecutive sliding windows for analysis in both the time and the frequency domains. The available time series data are readily available in time domains which can be used for analysis without any further conversion. For data analysis in the frequency domain, Fast Fourier Transformation (FFT) and Dual-Tree Complex Wavelet Transformation (DTCWT) are applied to convert the data into the frequency domain and extract the frequency information. In the time domain, four innovative predictive algorithms, Basic Heuristic Algorithm (BHA), Regression-Based Algorithm (RBA) and Hybrid Algorithm (HA) as well as a structural graph-based method (SG), are proposed to study the time series data for producing recommendations. While, in the frequency domain, three predictive classifiers, Artificial Neural Network, Least Squares-Support Vector Machine, and NaĂŻve Bayes, are used to produce the recommendations. An ensemble machine learning model is utilized to combine all the used predictive models and algorithms in both the time and frequency domains to produce the final recommendation. Two real-life telehealth datasets collected from chronic disease patients (i.e., heart disease and diabetes patients) are utilized for a comprehensive experimental evaluation in this study. The results show that the proposed system is effective in analysing time series medical data and providing accurate and reliable (very low risk) recommendations to patients suffering from chronic diseases such as heart disease and diabetes. This research work will help provide high-quality evidence-based intelligent decision support to clinical disease patients that significantly reduces workload associated with medical checkups would otherwise have to be conducted every day in a telehealth environment

    Deep neuro‐fuzzy approach for risk and severity prediction using recommendation systems in connected health care

    Get PDF
    Internet of Things (IoT) and Data science have revolutionized the entire technological landscape across the globe. Because of it, the health care ecosystems are adopting the cutting‐edge technologies to provide assistive and personalized care to the patients. But, this vision is incomplete without the adoption of data‐focused mechanisms (like machine learning, big data analytics) that can act as enablers to provide early detection and treatment of patients even without admission in the hospitals. Recently, there has been an increasing trend of providing assistive recommendation and timely alerts regarding the severity of the disease to the patients. Even, remote monitoring of the present day health situation of the patient is possible these days though the analysis of the data generated using IoT devices by doctors. Motivated from these facts, we design a health care recommendation system that provides a multilevel decision‐making related to the risk and severity of the patient diseases. The proposed systems use an all‐disease classification mechanism based on convolutional neural networks to segregate different diseases on the basis of the vital parameters of a patient. After classification, a fuzzy inference system is used to compute the risk levels for the patients. In the last step, based on the information provided by the risk analysis, the patients are provided with the potential recommendation about the severity staging of the associated diseases for timely and suitable treatment. The proposed work has been evaluated using different datasets related to the diseases and the outcomes seem to be promising

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    On the automated analysis of preterm infant sleep states from electrocardiography

    Get PDF

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Aerospace Medicine and Biology: Cumulative index, 1979

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 190 through 201 of 'Aerospace Medicine and Biology: A Continuing Bibliography.' It includes three indexes-subject, personal author, and corporate source

    Preface

    Get PDF
    • 

    corecore