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Summary 

Sleep in preterm infants plays a vital part in neural development. The preterm infant 

sleep can be separated in mainly active sleep, quiet sleep, and wake. During the 

different sleep states, various developmental tasks are executed. These tasks range 

from the formation of new neural connections, the definition of neural regions, and 

the launch of developmental processes in stimulus-deprived regions during the more 

active sleep state, to error correction, neural region redefinition, and resting during 

the more quiet sleep state. Thereby, each state activates different parts of the 

autonomous nervous system resulting in physiological changes such as heartbeat ac-

/deceleration, blood pressure variations, alteration in respiration, and electrical 

activity of the brain.  

These physiological changes can be measured using, for example, 

electrocardiography (ECG), electroencephalography (EEG), and electromyography 

(EMG). If we can monitor the preterm infant sleep states continuously using these 

measures, we can also monitor the preterm infant neural development, as the change 

of the sleep state distribution over time is linked to the course of neural development. 

Thereby, continuous neural monitoring might help to identify miss-development early 

on. However, in preterm infants, the central- and autonomous nervous system, which 

control the circadian oscillator and steer physiological responses, are not yet fully 

developed, resulting in not yet entrained state patterns and clear sleep state borders. 

Therefore, classifying sleep states in preterm infants is a more challenging task 

compared with that in adults. Further, preterm infants spend most of their time asleep 

to create a developmental supporting environment by shielding themselves from 

excessive external stimuli. Thus, preterm infants are awake for only a small portion of 

the day, which further increases the challenge to classify all states, including wake. To 

date, mainly polysomnography is applied to gain insight into the sleeping patterns of 

a preterm infant. Polysomnography pools several measurements, such as the already 

mentioned EEG, ECG, and EMG, which requires to apply multiple sensors. They 
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often present an additional burden on the fragile preterm infants due to electrode 

application on the infirm skin, and the amount of weight added by connecting cables. 

Therefore, the goal of this thesis is to investigate the use of only ECG analysis for 

sleep state classification. ECG is chosen as it is often already implemented as a 

standard, continuous measurement, so no additional sensors have to be introduced. 

We further examine in Chapter 2 the possibilities to measure ECG unobtrusively and 

review other methods to measure vital signs in preterm infants unobtrusively for sleep 

state analysis. 

With the rise of machine learning, especially with the public releases of the Lua 

library Torch in 2002, python library SciKit-learn in 2012, and Googles TensorFlow 

in 2015 among others, complex signal and feature relation analyses have become 

manageable for tasks that contain a multitude of different parameters influencing each 

other. We investigated in Chapter 3 the possibilities of machine learning techniques, 

such as support vector machine, to classify the primary sleep states in preterm infants. 

As results were reasonable, we further used those methods to investigate in Chapter 

4 whether machine learning would have a similar outcome when used in combination 

with capacitive ECG. Capacitive ECG uses capacitive sensors applied, e.g., in a 

mattress, to measure the ECG contactless. Using capacitive ECG would be a big step 

forward for in-hospital use as it is a measurement technique constituting no harm or 

additional burden to the preterm infant.  

With the latest advancements in machine learning towards deep learning, particularly 

in time series analysis and implementation of concepts such as long short-term 

memory (LSTM) units and gated recurrent units (GRUs), sleep classification received 

another strong analysis tool as patterns of complex interactions within sleep can now 

be more easily identified over long time periods. We examined the use of LSTM and 

GRU architectures for preterm infant sleep analysis in Chapter 5. The results were 

similar compared to the classification with classic machine learning techniques, even 

though deep learning has much greater potential compared with classic machine 

learning in understanding highly complex and nonlinear cross-correlations between 
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features, because of the general difficulty of classifying the ambiguous preterm infant 

sleep states in combination with the low amount of training data. Gathering patient 

data of the preterm infant patient group is particularly difficult and constrained us 

from expanding the amount of data. In the final part of this thesis in Chapter 6, next 

to the used methods and overall results, we discuss ethical questions regarding 

continuous monitoring for preterm infants. We also give an outlook into the future 

of preterm infant sleep monitoring and give suggestions for further research 

directions.  

In summary, we investigate the classification of preterm infant sleep based on ECG 

and capacitive ECG using classic machine learning techniques and recent LSTM and 

GRU deep learning architectures. 
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Nederlandse samenvatting 

Slapen bij premature kinderen speelt een vitale rol in de neurale ontwikkeling. De 

vroeggeboorteslaap kan worden gescheiden in voornamelijk actieve slaap, stille slaap 

en wakker. Tijdens de verschillende slaaptoestanden worden verschillende 

ontwikkelingstaken uitgevoerd. Deze taken strekken zich uit van de vorming van 

nieuwe neurale verbindingen, de definitie van neurale gebieden, en de het starten van 

ontwikkelingsprocessen in stimulus-arme gebieden tijdens de actievere slaaptoestand, 

tot foutcorrectie, herdefinitie van neurale gebieden en rust tijdens de rustiger 

slaaptoestand. Daarbij activeert elke staat verschillende delen van het autonome 

zenuwstelsel, wat resulteert in fysiologische veranderingen zoals gehoorde acceleratie 

en afremming, bloeddrukschommelingen, veranderingen in de ademhaling en 

elektrische activiteit van de hersenen.  

Deze fysiologische veranderingen kunnen worden gemeten met behulp van 

bijvoorbeeld elektrocardiografie (ECG), elektro-encefalografie (EEG) en 

elektromyografie (EMG). Als we de premature kinderslaaptoestand continu kunnen 

monitoren met behulp van deze maatregelen, kunnen we ook de premature neurale 

ontwikkeling van het kind volgen, aangezien de verandering van de 

slaaptoestandsverdeling in de tijd gekoppeld is aan het verloop van de neurale 

ontwikkeling. Daarbij kan continue neurale monitoring helpen om mis-ontwikkeling 

in een vroeg stadium op te sporen. Bij premature kinderen is het centrale en autonome 

zenuwstelsel, dat de circadiane oscillator controleert en de fysiologische reacties 

stuurt, echter nog niet volledig ontwikkeld, wat resulteert in nog niet ingesloten 

toestandspatronen en duidelijke grenzen van de slaaptoestand. Daarom is het 

classificeren van slaaptoestanden bij premature zuigelingen een meer uitdagende taak 

in vergelijking met dat bij volwassenen. Verder brengen premature kinderen het 

grootste deel van hun tijd door in slaap om een ontwikkelingsondersteunende 

omgeving te creëren door zich te beschermen tegen overmatige externe prikkels. Zo 

zijn te vroeg geboren baby's slechts een klein deel van de dag wakker, wat de uitdaging 
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om alle staten, inclusief het wakker worden, verder vergroot. Tot op heden wordt 

voornamelijk polysomnografie toegepast om inzicht te krijgen in de slaappatronen 

van een prematuur kind. Polysomnografie bundelt verschillende metingen, zoals het 

reeds genoemde EEG, ECG en EMG, waarbij meerdere sensoren moeten worden 

toegepast. Ze vormen vaak een extra belasting voor de kwetsbare premature kinderen 

door het aanbrengen van elektroden op de zwakke huid en de hoeveelheid gewicht 

die wordt toegevoegd door het aansluiten van kabels. Het doel van deze dissertatie is 

dan ook om het gebruik van alleen ECG-analyse voor de classificatie van de 

slaaptoestand te onderzoeken. Er wordt gekozen voor ECG, omdat het vaak al als 

een standaard, continue meting wordt toegepast, zodat er geen extra sensoren moeten 

worden ingevoerd. Verder onderzoeken we in hoofdstuk 2 de mogelijkheden om 

ECG onopvallend te meten en bekijken we andere methoden om de vitale functies 

bij premature kinderen onopvallend te meten voor analyse van de slaaptoestand. 

Met de opkomst van machinaal leren, vooral met de publieke releases van de Lua 

bibliotheek Torch in 2002, de pythonbibliotheek SciKit-learn in 2012 en Google’s 

TensorFlow in 2015 zijn complexe signaal- en kenmerkende relatieanalyses 

beheersbaar geworden voor taken die een veelheid aan verschillende parameters 

bevatten die elkaar beïnvloeden. In hoofdstuk 3 hebben we de mogelijkheden 

onderzocht van technieken voor machinaal leren, zoals een ondersteunende 

vectormachine, om de primaire slaaptoestand bij premature kinderen te classificeren. 

Aangezien de resultaten redelijk waren, hebben we deze methoden verder gebruikt 

om in hoofdstuk 4 te onderzoeken of machinaal leren in combinatie met capacitieve 

ECG's een vergelijkbaar resultaat zou hebben. Capacitieve ECG's gebruiken 

capacitieve sensoren die bijvoorbeeld in een matras worden toegepast om het ECG 

contactloos te meten. Het gebruik van capacitieve ECG's zou een grote stap 

voorwaarts zijn voor gebruik in het ziekenhuis, omdat het een meettechniek is die 

geen schade of extra belasting voor de premature zuigeling oplevert.  

Met de laatste ontwikkelingen in het machinaal leren in de richting van diepgaand 

leren, met name in de analyse van tijdreeksen en de implementatie van concepten 
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zoals long short term memory eenheden (LSTM) en gated recurrent units (GRU's), 

heeft de slaapclassificatie een ander sterk analyse-instrument gekregen, aangezien 

patronen van complexe interacties in de slaap nu gemakkelijker kunnen worden 

geïdentificeerd over lange perioden. We onderzochten het gebruik van LSTM en 

GRU architecturen voor premature zuigelingsslaapanalyse in hoofdstuk 5. De 

resultaten waren vergelijkbaar met de classificatie met klassieke technieken voor 

machinaal leren, hoewel diepgaand leren veel meer potentieel heeft in vergelijking met 

klassiek machinaal leren om zeer complexe en niet-lineaire cross-correlaties tussen 

kenmerken te begrijpen, vanwege de algemene moeilijkheid van het classificeren van 

de dubbelzinnige premature kinderslaaptoestanden in combinatie met de geringe 

hoeveelheid trainingsgegevens. Het verzamelen van patiëntgegevens van de groep 

premature zuigelingen is bijzonder moeilijk en beperkt ons ertoe de hoeveelheid 

gegevens uit te breiden. In het laatste deel van dit proefschrift in hoofdstuk 6 

bespreken we, naast de gebruikte methoden en de algemene resultaten, ethische 

vragen met betrekking tot continue monitoring voor premature kinderen. We geven 

ook een vooruitblik op de toekomst van het onderzoek. 

Samenvattend onderzoeken we de classificatie van premature zuigelingsslaap op 

basis van ECG en capacitieve ECG's aan de hand van klassieke technieken voor 

machinaal leren en de meest recente LSTM- en GRU-dieplerende architecturen. 
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Thesis outline 

The thesis is composed of six chapters. In the first chapter (General introduction), 

we give a general overview of preterm infants and preterm infant sleep, including the 

different sleep states and their functions in preterm infant neural development. Next 

to the motivation for this thesis, we also state the research question, which this thesis 

tries to answer. 

In the second chapter (Methods to obtain ECG signals unobtrusively in preterm 

infants), we will summarize different measurement techniques for preterm infant 

sleep, with a focus on unobtrusive methods to measure ECG signals, minimizing 

harm and disturbance for the preterm infants. Several methods are compared and 

rated based on their unobtrusiveness and signal recording capability.  

The third chapter (Machine learning on preterm infant sleep) aims to classify AS 

and QS by using a nonlinear kernel support vector machine. Here classic ECG signals 

are used recorded with standard adhesive electrodes.  

The fourth chapter (Use of unobtrusive ECG measurement for the use with 

machine learning) combines the ideas of automated sleep classification and 

unobtrusive signal acquisition. An ECG signal was used for machine learning, which 

was recorded by capacitive sensors embedded in a NICU incubator mattress. For 

machine learning, different algorithms were compared based on their sleep 

classification performance. The all-state classification was performed with a focus on 

AS and QS classification.  

The fifth chapter (Deep learning approach for sleep state classification in preterm 

infants) examines different deep learning architectures to classify all preterm infant 

sleep states with different recurrent neural network topologies. The used features were 

again based on conventional ECG recordings.  

The sixth chapter (Conclusions and future perspective) discusses the work of this 

thesis and answers the main research question raised in the introduction. Further, it 
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explores possible progress in the field of preterm infant sleep to encourage and 

support research, suggesting further possible directions and use cases. 



1.1 - Motivation 
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1 General introduction 

1.1 Motivation 

Every year, around 15 million babies are born before 37 weeks of pregnancy [1]. 

Those early births may face a lifetime of medical issues, general complications, daily 

handicaps, and worries for the parents. Every bit of aid for such a fragile patient group 

can create a positive impact on a whole human life and its interconnected persons. As 

technicians, we might not be able to aid a patient directly, but we can provide the 

professional caretakers with the latest tools at hand, enabling them to focus their full 

attention, time, and energy on the most pressing tasks. The base for our research was 

the connection between sleep development and neural development. On this base, 

we were once confronted with the question why sleep should be automatically 

monitored regarding neural development, as the overall state of a preterm infant can 

be determined by a capable neonatologist or nurse via observations. The simple 

answer would be “knowledge is the key to aid.” Only with continuous monitoring do 

we have the chance to reveal new patterns, hidden connections, and nonlinear 

dependencies, which are concealed to the human eye. Automatic, continuous sleep 

monitoring might at first only seem as a caretaking aid, but as the sleep states changes 

over time are closely linked to the neural development, sleep monitoring can indicate 

miss-development at an early stage where interventions have the greatest effect. 

Further, continuous information on sleep and development can lead to new research 

questions regarding ex- and internal influences on sleep. New caretaking-, structural-

, or regulatory concepts, and their effect on sleep and development can be investigated 

much easier in large scale. Further, different treatment plans for miss-development 

can be explored with an immediate observation of interaction and effectiveness. To 

summarize, automated, continuous sleep and neural development monitoring can 

become the gateway to next-level preterm infant development care.  
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1.2 Definitions of preterm infants and age determination 

A baby is defined as a preterm infant when it is born alive before 37 weeks of 

pregnancy. Preterm infancy can be divided into three subcategories based on 

gestational age (GA). Extremely preterm are infants born with less than 28 weeks of 

pregnancy. Very preterm are infants born from 28 weeks to 32 weeks of pregnancy. 

Moderate and late preterm infants are born from 32 weeks to 37 weeks of pregnancy 

[1]. Term babies are infants born 37 weeks to 42 weeks of pregnancy. 

In this thesis, age determinations are used as described by the American Academy 

of Pediatrics (Figure 1) [2].  

The two main used definitions are as follows: first, the GA, which is the age from 

the last gestation to the time of birth; and second, the postmenstrual age (PMA) or 

postconceptional age (PCA), which are both the duration until the date of assessment. 

PMA starts with the last gestation, whereas PCA starts with conception and is 

calculated with two additional weeks.  

  

 

Figure 1 Age terminology during the perinatal period. From [2]. 
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Another useful classification of preterm infants is by weight. Small for gestational 

age defines preterm infants below 2500 g (10th percentile for their GA). Large for 

gestational age are preterm infants heavier than 4500 g (90th percentile for their GA). 

Low birth weight is further categorized into very low birth weight and extremely low 

birth weight with less than 1500 and 1000 g, respectively [1], [3]. 

1.3 Neonatal intensive care unit 

Preterm infants are stationed, if existing, at the neonatal intensive care unit (NICU) 

[4], intensive care nursery (ICN), neonatal medium care unit (NMCU), newborn 

intensive parenting unit (NIPU) [5], or, similar, mother neonatal intensive care units 

(M-NICU) [6] to mitigate or ideally prevent as many short- and long-term health risks 

in this particular fragile patient group as possible. The NICU was in the care of 

preterm infants with specific equipment and trained staff to the needs of preterm 

infant care. The preterm infants are placed in an incubator to shield them from the 

hostile environment outside the womb. The incubator can be regarded as a mimic of 

the womb to give the preterm infant the best possible environment to continue the 

disrupted development process. Incubators can range from a simple “box” to an 

elaborate shielded and monitored environment. The latest equipment for high-end 

incubators, to name only a few, includes built-in blue light therapy for jaundice, 

automatic temperature control, shielding airflow to prevent temperature loss with 

opened incubator doors, positive air pressure to prevent infection intrusion, video 

monitoring with streaming function to the parents, and detachable monitoring 

systems for easy and fast patient transfer without loss of vital sign monitoring. Those 

high-end incubators are mainly affordable in high-income countries. In addition to 

the latest equipment, modern NICUs also focus on developmental monitoring. Given 

an increased survival rate over the years, modern NICUs are changing their care from 

a mostly survival centric toward a survival and developmental centered care. The 

Neonatal Individualized Developmental Care and Assessment Program (NIDCAP) 

was introduced in 1986. High technological and medical standards, in combination 
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with developmental centered programs, result in different mortality and morbidity 

rates among low-, mid-, and high-income countries. The preterm mortality risk is 

positively linked to lower per capita gross domestic product (GDP) [7]–[9]. 

1.4 Statistics on preterm infants 

Preterm infants are a very specific, highly critical, and small patient group in 

comparison with adult patients. Preterm care often receives lower to no budgets 

depending on the general economic situation of a country and the overall standard of 

care. As a result, preterm infant birth rates, mortality rates, and morbidity rates diverge 

among high-, mid-, and low-income countries, correlating positive with the GDP [7]–

[9]. 

The World Health Organization (WHO) states that more than 60% of preterm 

births occur in Africa and South Asia [9]–[11]. Those individual countries with over 

250,000 preterm infant births per year (measured in 2010) are India, China, Nigeria, 

Pakistan, Indonesia, USA, Bangladesh, the Philippines, Dem. Rep. of Congo, and 

Brazil. Among those, the countries where over 15% of births are preterm are mainly 

found in the continent Africa and the countries Pakistan and Indonesia [11]. The 

differences become more prominent when the survival rate is considered. In high-

income countries, almost 95% of preterm born between 28 and 32 weeks GA survive. 

Around 90% of those preterm infants survive without impairment. By contrast, only 

30% of the same preterm infants survive in low-income countries where almost all 

preterm infants born below 28 weeks GA die in the first few days after birth. Almost 

all those born at <28 weeks do not survive in the first few days of life [9]. Besides 

differences among countries, socioeconomic factors of patients also play a role in 

preterm infant birth rates. For example, in 2009, the USA reported up to 17.5% of 

preterm births among black citizens compared with 10.9% in white citizens [12].  
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Nevertheless, all preterm infants around the globe have to fight the same struggles 

and are confronted with the same health problems. In the next section, we give an 

overview of preterm infant health and long-term outcome.  

1.5 Health and outcome in preterm infants 

The development of the lungs is not finished in the last trimester of pregnancy and 

continues into the postnatal period. In particular, the surfactant system and the 

development of the true alveoli are incomplete. As preterm infants are born too early, 

respiratory system problems and diseases are at 73.8% most common in this patient 

group [13]. Respiratory system diseases can be respiratory distress syndrome, 

pneumothorax, apnea, bronchopulmonary dysplasia (BPD), and pneumonia (even 

though pneumonia is caused by an infection). They can lead to respiratory symptoms 

during infancy. About 51%–97% of preterm infants with a respiratory system disease 

report coughs, and 39%–45% report wheezes [14]–[16]. Re-hospitalization in the first 

two years was required in 14%–38% of the cases, whereas long-term inhalation 

therapy was necessary in 13% of the cases [16]–[18]. As the immune system is also 

developing during the last trimester of pregnancy, preterm infants are highly 

vulnerable to infections [19]. With 39.4%, infectious diseases are the second common 

neonatal disease. Late-onset infections are quite common, occurring in about 20% of 

very low birth weight infants [20]. The early-onset of systemic infections in very low 

birth weight infants has a mortality of close to 40% in high-income countries, and the 

same group without early-onset infections has only a 13.3% mortality rate. In addition 

to an increased mortality rate, early-onset infections can lead to neurodevelopmental 

impairments such as cerebral palsy, visual- and hearing impairment [20]. The third 

most common diseases in preterm infants are nervous system diseases (38.3%) such 

as peri-/intraventricular hemorrhages and periventricular leukomalacia [13]. Both are 

highly likely in preterm infants compared with full-term babies. However, (well)-

developing neural areas make them less likely to occur [21]. The autonomic nervous 

system is generally very immature, resulting in overall physiological complications, for 
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example, desaturation, bradycardia, and apnea. A recent study by Joshi et al. [22] 

analyzed a total of 8,522 patient days to find the distribution of physiological 

complications displayed in Table 1. 

Table 1 Distribution of physiological complications in preterm infants [22]. 

Desaturation 66.5%  
Bradycardia 21.8% 
Apnea  4.5% 
Asystole  2.0% 
High arterial blood pressure  1.8% 
Ventricular fibrillation/tachycardia  1.5% 
Low arterial blood pressure  1.4% 
Tachycardia 0.4% 

 

They later found that part of the alarms, marking the physiological complications, 

was tied to the enteral feeding routine of the trial unit and resulted in advice to feed 

infants in a lateral position by the gravity feeding method [23].  

Despite all the technological advances in the field of pediatrics, all these complications 

can lead to a high mortality rate for extremely premature infants. The mortality rate 

in developed countries lies at 50% for preterm infants born at 23–24 weeks GA and 

34 weeks GA in low- and middle-income countries. The chance of survival drastically 

rises with GA. With 28 weeks GA, over 90% of preterm infants survived [24]–[26] 

(see Figure 2). In survivors of such early preterm infants, the risk of morbidity lies at 

20%–50%. The morbidity is closely connected with the GA of the preterm infant. 

Stoll et al. [26] reported the rates for surviving without morbidity, as shown in Figure 

3. The survival rate per GA has been increased due to modern technology, especially 

for extreme preterm infants around 24 weeks GA. The number of acute and chronic 

morbidities also increases as more early preterm infants survive. Glass et al. [27] 

pooled data from different trials presenting an overview of acute and chronic 

morbidities (presented in Table 2). 
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Figure 2 Rate of survival in percent over gestational age in developed countries. Adapted from 
[26]. 
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Figure 3 Mean percentage of survival without morbidity over gestational age (pos. std. light 
grey). Adapted from [26]. 
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Table 2 Acute and chronic morbidity Risks. From [27]. 

Acute/NICU Percent 

Any retinopathy of prematurity (ROP) 63.7 
Severe ROP 12.3 
Intraventricular hemorrhage (IVH) 14.1 
Surgical necrotizing enterocolitis (NEC) 10.1 

Chronic Problems  

Bronchopulmonary dysplasia (BPD) 42.2 
Blindness 0.8 
Hearing loss 3.1 
Cerebral Palsy 6.1 
Cognitive Delay 5.2 

 

1.5.1 Chronic respiratory system disease - bronchopulmonary dysplasia 

As respiratory system diseases are the number one occurrence in preterm infancy, 

long-term morbidities are most commonly lung related. In particular, BPD is a 

frequent issue. The frequency of BPD is related to the continuous development of 

the respiratory system during the last trimester. Injuries or infections during that 

period often initiate BPD. Injuries and infections are often caused by ventilation 

and/or intubation during preterm infancy, which is necessary as the respiratory 

system is not yet fully developed. BPD results in airway inflammation, fibrosis with 

severe epithelial injury, smooth muscle hyperplasia, abnormal vascular growth, 

reduced alveoli count, and fibroproliferation. Unfortunately, a preterm infant with 

severe BPD survives the first three years of life only in 5% of the cases [27].  

1.5.2 Neurological development, complications, and long-term outcome 

This thesis focuses on preterm infant sleep classification methods, which could be 

used for continuous sleep and ensuring neural development monitoring. To stress the 

importance of neural development monitoring and to understand the fragile construct 

and the high potential for aberrations and defects, the following sections describe the 

neural development in the last trimester of pregnancy.  
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In the last trimester of pregnancy, four main neural developmental phases can be 

identified:  

 neural migration, 

 dendrite and axon sprouting,  

 synaptogenesis,  

 apoptosis. 

After millions of neurons and glial cells are produced (neural proliferation), the 

neurons migrate to their designated destination during the neural migration phase. 

The neurons are pushed from the core to the outer hemisphere by newly generated 

neurons in the core, or they migrate along the glial cells that function during that 

phase as a guiding system. If something goes wrong during the migration phase, 

indications will appear immediately after birth. The most articulated signs of migration 

disorder are seizures. A more rare condition is a semi- or non-developed corpus 

callosum [28]. 

After the neurons reach their destination, they start to sprout dendrites and axons 

to build up a neural network. For this network, the axons need a connector, which is 

the synapse. The first synapses can be found at 8 weeks GA in the spinal cord. After 

28 weeks GA, synapse generation starts to boom in an episode called synaptogenesis, 

which lasts until around three months post-term. Synaptogenesis and synapse 

elimination are the bases for lifelong brain plasticity [19], [28], [29].  

Apoptosis refers to programmed cell death. This cell death is initiated by the cells 

and is part of cell metabolism. In the time of brain development before birth, 

apoptosis is important to ensure the right connection between the developing brain 

regions and the single nerve cells. In the earlier processes of neuronal proliferation 

and migration, a large number of neurons flood the developing brain, giving it high 

plasticity. About half of the neurons are eliminated before maturation to remove the 

overhead. The process of apoptosis reduces brain plasticity but also stabilizes it [29]. 

Failure in cell death can have a significant impact on brain development. Unintended 
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surviving cells can cause many different defects, such as glioma, cranial defects, and 

encephalocele [30]. Cell death peaks in the last trimester in the globus pallidus 

between weeks 26 and 33 weeks GA [28]. 

During the last trimester, the brain volume increases by two-thirds of its volume at 

term age (see Figure 4). At around 32 weeks GA, 50% of the volume is reached [31]. 

The myelinated white matter increases its volume by 500%, the cortical grey matter 

increases up to 50%, and the cerebellar volume increases its volume by 25% [32]. 

During this time, the brain is at high risk of injuries and interrupted development. 

Apart from the former stated direct neurological impairments linked to errors during 

certain development phases, preterm infants with reduced total brain volume show 

reduced naming vocabulary, word reading, and overall poor language skills; reduced 

picture memory; lowered pattern construction; and generally low Bracken school 

readiness assessment in later life [32], [33]. Moreover, reduced hippocampal volume 

is linked to a low score on the Bayley Scales of Infant Development [32], which  

  

 

Figure 4 Brain volume growth over gestational age. With permission from [31]. 
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quantifies developmental outcome during the first three years of life [34]. Disturbed 

connectivity in the neural network linked to cognitive deficiency can lead to anxiety, 

hyperactivity, and general social and behavioral problems [35]. Volpe et al. [29] stated 

that injury or neural misdevelopment during preterm infancy constitutes 

neuropsychological abnormalities, which can last into late childhood, adolescence, 

and adulthood. Volpe’s statement is recognized by the WHO in the “born to soon” 

report [9]–[11] by stating that preterm babies born at 34–36 weeks GA have the most 

significant public health impact due to their large number. 

Given that neural development plays such a significant role in the long-term 

outcome of a preterm infant, we want to examine the connection between sleep and 

neural development.  

1.6 Sleep and neural development 

Sleep is one of the most critical factors for the neural development of preterm 

infants [36]. In preterm infants, four different states are commonly distinguished: 

active sleep (AS), quiet sleep (QS), intermediate/transitional sleep (IS), arousal, and 

wake (W) [37], [38].  

During the first month after birth, preterm infants spend up to 70% of their time 

sleeping, whereas term babies spend around 60% of their time asleep [39]. The change 

in total sleep time (TST) with neonatal development is accompanied by a change in 

sleep organization. As a result, the length of AS decreases while QS increases [39]–

[45]. This change in sleep state organization is a strong representation of the 

maturation and consolidation process. Differentiation of the single sleep states and 

determination of their share in the TST indicate whether the developmental process 

follows the anticipated path or not [45]. These changes in sleep states over time are 

shown in Figure 5.  

Interestingly, some work of Curzi Dascalova et al. showed slightly contrary results 

to the generally accepted trends with increasing AS and QS in an early study [40], and  
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Figure 5 Sleep state development over time.   
The graphic shows active sleep and quiet sleep over gestational age. The active sleep is decreasing 
while quiet sleep is increasing. The data are compiled from [37], [42]–[44], [46]–[49]. 

 

increasing AS and decreasing QS in a later study [41]. The diverse results may result 

from different annotation methodologies, definitions, and/or signal qualities, which 

they acknowledge in their publication [40]. Moreover, the separation of sleep states at 

a very early age of 27 weeks GA is known to be extremely difficult, which is reflected 

in a high standard derivation of their results in the later study [41]. 

The IS state is used for the transitions between states. During IS the sleep state 

cannot be identified explicitly as AS, QS, or wake, as the boundaries are blurred. Even 

though it is a blend of features from AS and QS, it is seen as an independent mode 

of the CNS functioning [50]. The IS state is stable and well organized in healthy 

preterm infants. The duration differs between AS-QS and QS-AS transitions with a 

longer duration of AS-QS (~5 min) than QS-AS (~2 min) [50]. Given that the 

differentiation of AS and QS improves with maturation, the time spent in IS rapidly 

decreases from 34 weeks GA onwards [51], [52].  
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In the preterm infants, a sleep cycle is defined from either wake or QS to the same 

state reappearing. The duration of sleep cycles appears stable at 30–70 min. With 

development, the mean sleep cycle duration progressively increases to about 75 min 

[53]. Early preterm infants can show erratic and unstable sleep cycles [54], which we 

also observed in few recordings. From experience, each AS and QS state can last 

approximately 20 min in stable preterm infants of around >32 weeks GA. The 

preterm sleep cycle follows the pattern wake-AS-QS-AS-wake [38] (see Figure 6). 

1.6.1 Importance of active sleep for brain development 

Observations indicate that AS triggers the developmental process [55]. Given a lack 

of external impulses, the brain activates selectively several neural processes during AS, 

resulting in activity patterns in neural populations who need activation to develop 

[56]. AS functions as a brain development ignition [55]. In general, neural activity has 

been shown to increase during AS [52], [55]. In addition, the preterm REM phases 

during AS indicate central neural activity in the brain [45]. Those REM phases in AS 

 

Figure 6 Example extract of one sleep cycle hypnogram of an early preterm infant (around 30 
weeks GA) with a sleep cycle duration of 30 min. The total duration gradually increases to 
about 75 min until term age.  
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are mainly detected directly after transition to QS or from QS [50].  

To further explore the impact of AS on brain development experimentally, several 

groups have tested the outcome of REM (AS) deprivation in neonatal and premature 

animals [56]–[60]. Lopez et al. [57] demonstrated the mentioned endogenous 

stimulation on mammals, and deprivation was found to lead to a destabilization of 

the neural circuits during development. This phenomenon also delays the 

development of synaptic plasticity [57] and long-term potentiation, which is linked to 

the refinement of neural circuits [57], [61]. Newborn REM-deprived mammals from 

the experiments of Mirmiran et al. [59], [60] showed altered patterns of fight-or-flight, 

social, and sexual behavior in later life. Furthermore, Marks et al. [56] showed that the 

operational capabilities of brain areas and their functions (e.g., the visual cortex) are 

less developed with the lack of REM sleep. Sleep itself is altered consequently from a 

REM deprivation by an increase in basal forebrain adenosine, thereby inhibiting the 

release of neurotransmitters, including serotonin [62].  

1.6.2 Importance of quiet (NREM) sleep for brain development 

Only a few studies have analyzed QS in detail [52], [56], [63]. This limitation might 

be due to the low share of QS compared with AS in the early life of a preterm infant 

or the minimized neural activities during QS [56] compared with AS, making AS more 

suited for the most common sleep analysis method using EEG. Nonetheless, QS is 

also essential for development as described by Peirano et al. [52], who pointed out 

that the increase in QS over time corresponds in animals with thalamocortical and 

intracortical innervation, as well as heightened synaptogenesis. Furthermore, QS is 

associated with pre- and postsynaptic region remodeling [52], which is critical for 

brain development and neural plasticity [64]. They added that visual cortex plasticity 

is dominant in animals during QS if monocular deprivation requires visual cortex 

adjustment. This phenomenon illustrates the capability of QS to adjust for failures 

during development [52]. Further, it has been shown that habituation to audio 

stimulation was found in both AS and QS states but was achieved faster during QS 
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[65]. Considering the known dominant parasympathetic nerve activity during QS with 

lowered blood pressure (BP) and heart rate (HR) [66], another task of QS is to 

consolidate and reenergize the system of the preterm infant, as the parasympathetic 

nervous system is known for its resting function by reducing sensory activation and 

response to external stimulation [67]. This hypothesis is underlined by the “sleep 

stress” phenomena, which is a change in the regular neonatal wake-AS-(IS)-QS sleep 

state sequence into a wake-QS pattern when faced with excessive stimulation to 

achieve a stimulus withdrawal. The preterm infant skips AS and changes directly into 

QS after wake as a response adaption to external stimuli to preserve energy by 

reducing responsiveness [65].  

In the following sections, we demonstrate how many influencing factors are 

interconnected and have to be considered when we try to classify sleep. Therefore, 

we look into the interconnection between sleep and the cardio-respiratory system. All 

these systems are linked via the autonomous nervous system.  

1.6.3 Adult and preterm sleep states 

While focusing mainly on preterm infant sleep, a brief look into the comparability 

of adult and preterm infant sleep is of interest. In comparison to the four preterm 

infant states, including IS and wake, adults sleep is segmented into five states with 

three deep sleep states, one REM sleep state, and the wake state [68]. At first glance, 

the sleep states seem comparable despite the different sum of states. The impression 

of comparability is based on the seeming summation of the adult deep sleep states in 

the preterm infant QS state, and the adult REM sleep in the preterm infant AS state. 

Preterm infant AS even shows episodes of REM [69] and the muscle tone known in 

adults [46]. In addition, the naming convention is sometimes similar using REM and 

N-REM in preterm sleep description.  

Nevertheless, there are some differences. The first difference is the time duration 

and cycle of sleep states. Generally, preterm infants spend about 70% in 24 h sleeping 
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while adults only 16-29%. The states themselves are also shifted, with adults only 

spending 20-25% of their sleep in REM [70], while preterm infants between 80% and 

60% (Figure 5). However, more important, there are also small differences in the brain 

activity itself, represented in the different EEG signals. The waves and their frequency 

ranges are similar but with a larger spread in preterm infants and lower mean voltage 

for the lower borders [71]. Further, sleep spindles, which appear to be important for 

memory consolidation [72], are not apparent before 42 weeks GA [73]. Another 

difference is the unique pattern of delta brushes in preterm infants. Delta brushes are 

transient patterns characterized by a slow delta wave with superimposed fast activity. 

The occurrence, amplitude, frequency, and occurrence during specific sleep states 

change over the course of development. In preterm infants, delta brushes seem to be 

a response to audio-visual stimuli and stroking [74]. Delta brushes can appear in adults 

but are an indication of patients with either anti-N-methyl-d-aspartate receptor 

(NMDAR) encephalitis, intensive care unit patients with high mortality rate, or, in 

rare cases, mesial temporal lobe epilepsy (MTLE) [75]. The missing sleep spindles and 

unique delta brushes indicate that the function of sleep in preterm infants and adults 

are still different in some core functions.  

Of course, sleep from preterm births is the rudimentary basis from which adult sleep 

develops. Therefore, many functions in preterm infant sleep constitute as preliminary 

stages of the later functions in adult sleep. This manifests in some operational 

similarities; for example, Diekelmann et al. [76] describe that during adult REM sleep, 

the brain plasticity is increased by a local upregulation of immediate-early-genes and 

reduced electroencephalographic coherence between brain regions. This seems to 

effectively support local synaptic consolidation. Within preterm sleep, synaptic 

consolidation takes place mainly during QS, where also the brain plasticity is 

heightened. Apparently, the functionality is very similar but shifted from QS in 

preterm infant sleep to REM sleep in adults. Further, during preterm infant AS, 

synaptic interconnections are created while in adults, those are consolidated, which 

could be seen as a morphed/developed functionality. Further described in the Nature 
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review [76], during adult deep sleep system consolidation promotes the reactivation 

and redistribution of selected memory traces for long-term storage. This can be 

compared to the region remodeling and adjustment during QS, posing similar core 

functionality [52]. Stronger comparability between QS and adult deep sleep can be 

seen in the role of error processing. As described in chapter 1.6.2, QS adjusts for 

failures during development [52] and change of sleep pattern in favor of QS to 

preserve energy after stressful events [65]. For adults, it has been shown that deep 

sleep may help in the recovery from brain injury. Increased deep sleep has shown 

beneficial effects in stroke, traumatic brain injury, and Alzheimer’s disease patients 

[77].  

A more philosophical approach to AS and memory consolidation is, to ask whether 

the neural activation in stimuli deprived brain areas [55] could be considered as 

artificial memories, or whether we factor them as real memories of ad hoc experiences 

of stimuli. We cannot answer this question, but maybe these represent the preterm 

infant versions of memories to prepare for the following memory consolidation task 

of adult REM sleep. 

1.6.4 Interconnection between sleep and the cardio-respiratory system 

Sleep in the form of AS and QS influences physiological events via the autonomic 

nervous system (ANS). The sleep itself is partly controlled via the central nervous 

system (CNS) circadian oscillator function, the suprachiasmatic hypothalamic nucleus 

(SCN). Both ANS and CNS are linked in cognitive and autonomic modulations with 

complex interactions summarized in a central autonomic network model [78], [79]. 

As the SCN circadian clock first develops in humans from 38 weeks GA [80], [81], 

and the signals we use for sleep classification are mainly influenced via the ANS, we 

will only summarize the ANS steered physiological interconnection of the cardio-

respiratory system (Figure 14). As the interconnections are multiple, multi-dependent, 
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and highly complex, we do not claim to provide a complete overview. This section is 

merely an overview, highlighting the many and non-trivial influencing factors on 

preterm infant sleep states or features that require equivalent complex methods and 

algorithms to classify the sleep states based on cardiac signals. 

As a basic principle, the QS activates the parasympathetic nervous system (PNS), 

whereas the AS activates the sympathetic nervous system (SNS). The SNS is a quick 

response and mobilizing system, whereas the PNS is a more gradually activated 

dampening system. Both the SNS and PNS activate the lung functions, whereas the 

SNS enhances the lungs and dilates the bronchioles of the lung through circulating 

epinephrine, which allows for greater alveolar oxygen exchange. The PNS, in return, 

constricts the bronchiolar diameter when the need for oxygen has diminished [82]. 

Both systems have a direct effect on the heart and lungs (Figure 7). The SNS increases 

 

Figure 7 The autonomous nervous system has a direct influence on the heart and lung activities 
via the para- and sympathetic nervous system. The different dotted lines resemble the 
connection between QS and the PNS, and AS and the SNS. 
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the HR and heart contractility of cardiac cells to enhance blood flow to the skeletal 

cells and provides vasodilation (widening of blood vessels) for the coronary vessels 

of the heart. Cardiac contractility changes the ability to produce the force during 

contraction [83]. The PNS increases the resting potential and decreases the rate of 

diastolic depolarization; under these circumstances, the HR slows down, and cardiac 

contractility decreases. The force of contraction, developed by the heart muscle, also 

depends on the frequency at which the muscle is stimulated (HR). As the stimulus 

frequency is increased, the force is increased as well until the maximum is reached; 

here, the force of contraction begins to decrease. An increase in the level of circulating 

epinephrine and norepinephrine from the SNS also increases the force of contraction 

[83]. Therefore, the stroke volume is directly related to the heart by the heart volume, 

and by the time the heart has to fill the chambers. With increased cardiac contractility, 

the possible force of contraction increases (Figure 8). 

 

 

Figure 8 Stroke volume and force of contraction are influenced by cardiac contractility, heart 
rate, and the heart itself. These connections are marked yellow. 
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As mentioned before, the CNS influences breathing by enhancing the lungs and 

dilating the bronchioles, thereby affecting the breathing depth and breathing rate. 

With greater lung volume, breathing can be deeper and slower. Greater oxygen 

exchange by dilated bronchioles can decrease the breathing rate. The breathing rate 

and breathing depth also influence each other. Less depth increases the rate and vice 

versa to keep the oxygen saturation on the same level with no changed surrounding 

parameters (e.g., behavior). The overall lung volume changes with age and influences 

the maximum breathing depth and its rate (Figure 9). 

The breathing depth influences the R peak amplitude (normal amplitude) of the HR 

due to the sinus arrhythmia. The force of contraction and the stroke volume affect 

the normal amplitude; the higher the force of contraction and the higher the stroke 

volume, the higher the normal amplitude. Although the force of contraction and the 

stroke volume depend on each other to influence the normal amplitude, as the force 

 

Figure 9 The lung regulates over the respiratory movement the depth and speed of breathing. 
With a larger volume, the respiratory movement is altered. These connections are marked 
yellow. 
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of contraction and the stroke volume are small in preterm infants, those effects are 

less noticeable in this patient group. The distance of the R peaks (normal to normal 

peak) is set by the HR. However, the breathing speed influences the normal to normal 

peaks as faster breathing shortens the time between normal to normal peaks [84] 

(Figure 10).  

The normal to normal peaks can be convolved into the HR variability (HRV). 

Respiratory events such as sighs, apnea, or periodic breathing influence the HR. 

Moreover, generally slow rhythmical fluctuations within a period of 30 heartbeats or 

around 10s can be observed in many preterm RR series. Sucking and 

thermoregulation may cause this 10s rhythm. Similarly, cardiac arrhythmia (premature 

beats) creates short HR deceleration (spikes) and missed R peak detection, changing 

the HRV signal [85]. Furthermore, the stroke volume is influenced by the in- and 

exhaling where stroke volume and cardiac output decrease with inspiration. This 

reduction is also transferred via changes in the intrathoracic pressure. The large 

negative intrathoracic pressure increases the pressure across the wall of the left 

ventricle. This pressure gradient causes an increase in afterload. This results in a 

 

Figure 10 The Normal to Normal peak is influenced by the heart rate and speed of breathing. The 
Normal amplitude is tied to the force of contraction, stroke volume, and breathing depth. These 
connections are marked yellow. 
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decrease in stroke volume and an increased HR [86] (Figure 11). 

Inspiration/expiration via intrathoracic pressure changes does not only change the 

HR/HRV but also the BP [87]. Normal BP variations during respiration come from 

negative intrathoracic pressure during inspiration in contrast to expiration and is 

known as the pulsus paradoxus [88]. As described above, the large negative intra-

thoracic pressure increases the pressure across the wall of the left ventricle. This 

pressure gradient causes an increase in afterload, resulting in a decrease in stroke 

volume and contributing to the decreased BP [89]. A change in the contraction force 

also changes the BP. With higher contraction force, the BP increases, and vice versa. 

The ANS itself also influences the BP. The BP fluctuates substantially with behavior 

(e.g., feeding and moving), but the 24 h BP is tightly regulated. The neural control of 

circulation is primarily designed to regulate blood volume and blood flow at the 

expense of BP [90]. How a set point for BP is encoded by the CNS, and the nature 

of the error signal has yet to be determined. The only well-identified neural (ANS) 

sensor of BP is the baroreceptor. The decrease in systolic BP leads to a faster HR due 

to the baroreceptor reflex, which stimulates sympathetic outflow to the heart [91].  

 

Figure 11 Heart rate variability is directly tied to the Normal to Normal peaks and amplitude. 
Inspiration/expiration influences the intrathoracic pressure change, which influences the heart 
rate variability, heart rate, and stroke volume. These connections are marked yellow. 
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The cardiac baroreceptor reflexes become more functional with postnatal 

development feedback loop produces low-frequency periodicities of the HRV, and it 

is affected by both sympathetic and parasympathetic modulation of the heart [92]. 

The low frequency does not reflect cardiac sympathetic tone [93] (Figure 12).  

The BP is also influenced by vascular resistance, which is influenced by the CNS 

and thermoregulation [90]. Thermoregulation has an impact on the HRV and vascular 

resistance. Very low-frequency power may reflect thermoregulation to ambient and 

are poorly developed until 34 weeks GA [94]. The baroreflex temperature changes 

[95]. Vascular resistance can change due to blood viscosity (low frequency) and the 

radius of the vessel, which can change more quickly due to environmental changes 

(incl. thermoregulation) or the CNS. Chemoreceptors create information flow from 

the HRV to the respiratory system. Thus, fluctuations in arterial pH and pCO2 drives 

respiration via the central and peripheral chemoreceptors [96] (Figure 13).  

The time delay and dynamics in this feedback system are modified by fluctuations 

in systemic and cerebral circulations, which are influenced by HRV [97]. The central 

and peripheral chemoreceptors are the sensors of the ANS  

 

Figure 12 Blood pressure is tied to the intrathoracic pressure change, stroke volume of the heart, 
and the force of the heart contractions. The blood pressure has a direct influence on the ANS 
and an indirect influence via the baroreceptors. The baroreceptor also influences the heart rate 
and heart rate variability. These connections are marked yellow. 
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Figure 13 Blood pressure is further influenced by mechanical parameters of vascular resistance, unstressed volume, and vasomotor activity. Thermoregulation 

also influences vascular resistance. This has a direct impact on heart rate variability. The heart rate variability accounts for central and system fluctuations. These 
connections are marked yellow. 
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Figure 14 The connection between heart and lung and lung to the brain is delayed. Those delays influence the ANS via peripheral and central chemo-
receptors closing the loop. The delays are influenced by the HRV-induced fluctuations and the process of gas exchange in the alveoli. These connections 
are marked yellow.
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toward chemical changes (here the changes in pH and pCO2 in the blood). The arterial 

baroreflexes have a powerful inhibitory influence on the chemoreflexes [98]. Very 

low-frequency periodicities, in the frequency range less than 0.04Hz, have been 

ascribed in different ways to modulation by chemoreception [99]. There is a strong 

negative influence of the peripheral chemoreceptors toward the central 

chemoreceptors [100]. 

1.7 Research Question 

The main research question addressed in the presented thesis is as follows:  

Can preterm infant sleep states be automatically classified only based on electrocardiography (ECG)-

derived features?  

Other groups have looked into (preterm) infant sleep classification based on 

different physiological signals such as EEG [54], [101], [102], activity [103], [104], 

video analysis, or respiration [105]. Nevertheless, the signals used in those studies are 

usually not continuously recorded in a NICU. We believe that continuous monitoring 

is necessary for sleep pattern analysis, sleep cycle prediction, and neural development 

monitoring. Moreover, a preterm infant is already struggling with the harsh conditions 

of its new living conditions, so burdening a preterm infant with an additional sensor 

for continuous monitoring should be avoided. For both stated reasons, we focused 

on the ECG signals for analysis as they are commonly used in the NICU for 

continuous heart signal monitoring. Focusing on the less developed countries, ECG 

systems are more broadly present and cheaper accessible in the health care 

environment than other monitoring systems such as video or EEG. Accessibility and 

affordability of neurodiagnostic tests are linked to the economic status of a country 

[106]. Therefore, an ECG-based sleep state classifier can potentially be adapted on a 

much broader scale, including low-income countries.  

A further question focusses on the approach of classifying the sleep states. As laid 

out in the previous chapter, there are many cardiorespiratory influencing factors. It 
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should be investigated if it is possible to describe the sleep state differences with linear 

models or if these underlying cardiorespiratory factors influence the measured ECG 

signal in a way that nonlinear functions have to be implemented. Do these nonlinear 

functions have to be of such complexity that deep neural networks are in need to 

describe the interdependencies in higher dimensionality?  

A subsequent question is the target of classification. Is it possible to classify all states 

to an adequate degree? Which state combinations can be classified with which grade 

of complexity? Is it possible to classify the two major states AS and QS only with 

linear classification methods? 

In the following chapters, we address those questions to give insights into 

automated preterm infant sleep classification and provide information for the preterm 

infant research community.  
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2 Methods to obtain ECG signals unobtrusively in 

preterm infants 

This chapter is adapted from Jan Werth, Louis Atallah, Peter Andriessen, Xi Long, Elly 
Zwartkruis-Pelgrim, Ronald M. Aarts. Unobtrusive sleep state measurements in preterm infants - 
A review. Sleep Medicine Reviews 32:109-122, 2017 © Elsevier 
 

2.1 Abstract 

Sleep is important for the development of preterm infants. During sleep, neural 

connections are formed, and the development of brain regions is triggered. In general, 

various rudimentary sleep states can be identified in the preterm infant, namely, active 

sleep (AS), quiet sleep (QS), and intermediate sleep (IS). As the infant develops, sleep 

states change in length and organization, with these changes as important indicators 

of brain development. As a result, several methods have been deployed to distinguish 

between the different preterm infant sleep states, among which polysomnography 

(PSG) is the most frequently used. However, PSG is limited by the use of adhesive 

electrodes or patches that are attached to the body by numerous cables that can 

disturb sleep. Given the importance of sleep, this chapter explores more unobtrusive 

methods that can identify sleep states without disturbing the infant. After a brief 

introduction to preterm sleep states, an analysis of the physiological characteristics 

associated with the different sleep states is provided, and various methods of 

measuring these physiological characteristics are explored. Finally, the advantages and 

disadvantages of each of these methods are evaluated, and recommendations for 

neonatal sleep monitoring are proposed. 
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2.2 Introduction 

Sleep and its sleep states have a specific role in preterm infants. Active sleep (AS) is 

predominant during the first weeks after birth and is associated with an active 

developmental process such as forming of neural connections and developing specific 

brain regions [45], [52], [55], [56]. By contrast, quiet sleep (QS) is considered a resting 

and reenergizing state. In QS, errors during development are repaired, and the brain 

plasticity is used to reform brain regions to the demands of the situation at hand [52], 

[56], [63]. As the distribution of AS and QS changes throughout development, the 

state of development can be recognized by the sleep state distribution [39]–[45]. 

Therefore, continuous monitoring can provide an indicator of such development over 

time. Currently, this monitoring is mainly performed with polysomnography (PSG) 

and/or behavioral observations to determine the quality of sleep and potentially 

detect pathological sleep events. PSG contains many measurements that require the 

attachment of sensors and electrodes to the body of the infant. The use of adhesive 

electrodes on preterm infants can cause damage to their fragile skin, making them 

more prone to infections and leading to disfiguring scars in 10% of the cases [107], 

[108]. In addition, cords and patches can be an extra burden as the muscles of preterm 

infants usually are not strong enough to master the weight of the cables. Given the 

necessity of sleep monitoring and the obtrusiveness of commonly used methods, 

unobtrusive sleep measurement methods provide a much more comfortable 

alternative with a minimal burden on preterm neonates. 

 

These techniques can also be used for long-term automated sleep and development 

monitoring due to their unobtrusiveness. Thus, long-term monitoring can lead to 

personalized sleep pattern identification, which can be implemented in the care plan 

around the preterm infant. Additionally, alarm sounds can be adapted to the sleep 

state of the preterm infant to reduce disturbance to the infant and alarm fatigue of 

the caretaker. Alarm fatigue can lead to an increase of missed or delayed attention to 

critical situations by desensitization of caretakers to alarms [109]. Furthermore, 
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continuous sleep monitoring can help detect sleep-associated events such as central 

apnea and may reveal medication effects on the sleep architecture and neural 

development of preterm infants. Sleep monitoring might also support identifying 

discomfort or stress by an altered sleep architecture.   

In general, sleep monitoring will increase the awareness of the caretakers to sleep by 

integrating the moments of necessary neonatal (intensive) care without disturbing the 

indispensable sleep of the vulnerable preterm infant. 

2.3 Measurements methods 

Infant sleep is scored by two main methods: PSG and behavioral sleep 

measurement. The scoring parameters of both methods can be found in the 

corresponding publications, e.g., [51]. The three ways to perform classification with 

the two methods are: the use of PSG methods alone [36], [54], [110]–[112], the use of 

behavioral methods [43], [44], [113], [114], and the use of both methods in 

combination [37], [41], [47], [51], [115], [116]. However, the standard in preterm infant 

sleep classification is still the use of manually annotated EEG signals.  

In the following sections, we give an overview of central signal modalities for 

preterm infant sleep analysis.  

2.3.1 EEG signals 

EEG signal patterns can be used to distinguish sleep states. The EEG signal patterns 

that separate the sleep states are described in detail in several publications [66], [117]. 

These patterns change with the development of the preterm infant and are also well 

discussed in the literature, e.g., [66], [117], [118]. Niemarkt et al. [117] explain that the 

EEG signal of a preterm infant before 32 weeks GA is formed by continuous (tracé 

continue) and discontinuous background patterns. During development, the inter-

burst intervals (IBI) of the discontinuous patterns shortens, and the burst length 

increases. With advancing development, the discontinuous pattern can then be 
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separated into tracé discontinue and tracé alternant. The tracé alternant is detectable 

from 34 GA onwards and is connected with QS [117].   

With manual EEG annotation sleep state separation is usually possible as early as 

week 32 to 34 GA (for <34 weeks GA with the use of other EEG patterns than tracé 

alternant [117]). In the review by Grigg-Damberger et al. [51], it is stated that sleep 

states cannot be determined earlier than 32 weeks GA on the basis of EEG alone. 

Therefore, sleep state separation at an earlier stage needs additional PSG 

measurements to be combined with the EEG measurement. After that, the sleep 

states can then be separated during 50%-80% of the time [39], while the remaining 

time is labeled as IS.  

In Parmelee et al. [119], it is explained that not all parameters show the same 

variability at a certain age and are thereby less suitable to determine sleep states in 

premature infants at that particular age. They gave an overview of the different 

parameter usefulness over age (see Table 3). 

The earliest separation of the sleep states was performed at 26-30 weeks GA by 

Sheldon [120] using only the behavioral signs. Curzi-Dascalova et al. [41] separate the 

states also early at 27 weeks GA by using EEG in combination with other PSG 

parameters, and HR. An overview of the selected group findings on first AS and QS 

separation can be seen in Figure 15. 

Table 3 Usefulness of measurements for sleep state determination from Parmelee et al. [119]. 
This table shows the different usability of parameters for sleep state separation due to their 
variability at a certain gestational age (GA). 

Age in weeks GA 22 26 30 34 38 

Body movement + + ++ +++ ++++ 

Eye movement  + ++ +++ ++++ 

Breathing rate   + ++ +++ 

EEG   + ++ +++ 

Chin electromyography    + +++ 
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While AS is always detected in an earlier stage of development [40], [120], QS can 

be separated at a later stage at normally 32 weeks GA [121]. The difference in the time 

of first sleep stage separation (as shown in Figure 15) may have occurred due to the 

used measurement method, the signal quality, the medical condition, and/or stability 

of the preterm infant. This difference could also be related to the number of 

annotators, the experience of the annotator, as well as the confidence of the 

annotators in their findings. 

The main methods of PSG regarding the preterm sleep state separation are shown 

in Table 4. 

 

 

Figure 15 AS and QS separation over gestational age (GA).  
The different time points at which active sleep and quiet sleep can be separated are shown 
here. The used method by which the sleep states where separated is included. Citations are 

from upper left to lower right: [120], [299], [41], [39], [119], [300]. 
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Table 4 Polysomnography attributes.  
This table shows how the different preterm infant sleep states are observed using different 
features. The states are active sleep (AS), quiet sleep (QS) intermediate sleep (IS), awake (W), and 
arousal. The vital signs/movements are brain activity, heart rate, eye movements, heart rate 
variability, muscle activity, and respiration. 

 
Brain 
activity Heart rate 

Eye 
movements 

Heart rate 
variability 

Muscle 
activity Respiration 

AS 

Continuous 
mix of EEG 
patterns 
40-80µV in 
amplitude 

Mostly 
irregular 

Slow and rapid 
bursts and 
isolated eye 
movement; 
20s epochs of 
REM bursts 

Low 
frequencies 
are 
dominant  
0.03 to 0.39 
Hz 

Low 
amplitudes 
superimpose
d with 
twitches and 
phasic 
saccadic 
movements; 
Low tone 
between 
movements 

Uneven; 
Faster in rate; 
Costal 
respiration; 
Higher minute 
ventilation 
during REM; 
Paradoxical 
breathing can 
appear 

QS 

<34 GA 
Discontinuo
us with 
delta bursts  
>32< 46 GA 
tracé 
alternant 
50-150µV in 
amplitude 
 

Mostly 
regular with 
some 
acceleration 
during 
startles 

No Eye 
movement 
(infrequent eye 
movement can be 
seen ) 

High 
frequencies 
are 
dominant 
0.4 to 1 Hz 

Low 
amplitude; 
Tonic motor 
activity 

Relatively 
regular and 
abdominal; 
Slow and 
constant in 
Amplitude; 
Can also be 
irregular 

IS 
Defined if no 
other state 
fits 

“ “ “ “ “ 

W 

Mixed EEG 
pattern with 
movement 
artifacts 

High and 
irregular 
heart rate 

Open and moving 
eyes; 
No REMs; 
Eyes can be 
closed during 
crying 

Variable High muscle 
tone 
superimpose
d with 
general body 
movements 

Regular; 
Tracking motor 
activity 

Arousal 

Decreased 
amplitude 
and 
increased 
frequency 

Heart rate 
acceleration  

Open and fixed 
eyes  

Increased 
beat to beat 
variability 

General body 
movement 
incl. startle 
>1min = 
awakening 

Increased 
respiration 
variability and 
pauses; Sighs 
can be heard 
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2.3.2 Heart rate variability 

Preterm infant HR lies between 120 and 160 bpm [85], [122]. The HR and the heart 

rate variability (HRV) change with the development of the preterm infant with a 

decreasing HR and increase of R peak intervals [122], [123]. Thereby, the HRV is 

highly related to the developmental stage [124], [125]. With the development, not only 

the absolute values of the HRV and HR change but also the response time to ex- and 

internal changes increases over time [125]. In addition to their long-term trends, the 

HR and HRV are also directly connected with the immediate sleep states changes, 

resulting in immediate changes in the HR and HRV. Thereby, the HR decreases 

during QS and increases during AS [124], while the HRV reflects the function of the 

cardiovascular autonomic control and ANS, as described in section 1.6.3. Therefore, 

the different sleep states can be distinguished in the power spectrum and time-domain 

features of the HRV [123]. The HRV also changes with development due to the 

maturity of the ANS and, more specific the parasympathetic control of HRV [126]. 

Krueger et al. [127] showed that the high frequencies between 0.3 and 1.3 Hz 

increased within female patients from 28 weeks GA to 34 weeks GA. Other features 

like the low frequencies between 0.04 to 0.2 Hz, or the ratio between low and high 

frequencies did not change significantly over maturation. Other group findings 

confirm these trends for older preterm infant groups between 31 weeks GA to 41 

weeks GA without gender differentiation but also a decrease in the ratio between low 

and high frequencies [128]–[130]. 

2.3.3 Respiration 

A preterm infant breathes 40 – 80 times per minute [85], [122]. As with HR and 

HRV, the breathing patterns change throughout the preterm infant’s development. 

The breathing/respiration rate (BR) gets more regular within QS with maturation [43], 

[46]. These breathing patterns can also be considered as an indicator of the sleep 

states, where the respiratory peak can be used to estimate the vagal activity and 
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separate the sympathetic and parasympathetic dominance respectively AS and QS 

[131]. Another way to identify sleep state changes is to use the mentioned regularity 

of BR. These changes are reflected in both frequency [43] and amplitude [46] of the 

BR signal. The BR is relatively even during QS while more irregular during AS [37], 

[43], [116]. Holditch-Davis et al. [43] measured the regularity in the BR and divided it 

into very regular, regular, and irregular. The following are the criteria they used to 

separate these categories: 

Regular respiration: 

 No more than one breath is between 20% - 50% of the max peak height. 

 The narrowest peak to peak is at least 50% of the widest peak to peak interval. 

 Very regular respiration criteria are not met. 

Very regular respiration 

 During a 10s epoch, the smallest breath is at least 80% of the height of the 

largest breath. 

 The narrowest peak to peak interval is at least 67% of the widest peak to peak 

interval. 

All other breathing patterns can be classified as irregular patterns. 

2.4 Methods for behavioral sleep classification 

Behavioral measurements for sleep state analysis are used to assist the PSG analysis 

for a more robust annotation. However, they can also be used on their own to separate 

sleep states. Behavioral classification for sleep uses general body movements [37], 

[41], [112], [115], [116], specific body movements like face, eye, chin, or limb 

movement [37], [47], [54], [110], [116], and BR [43], [51], [111]. General body 

movements (also referred to as motor activities) range from low activity in drowsy or 



2.4 - Methods for behavioral sleep classification 

 

60 

 

alert states to high activities during crying periods [46]. The sleep states can be 

behaviorally scored in the following manner:  

AS: The eyes are closed [38], [69], [103] or slightly opening and closing [114]. They 

might open during REM in AS [69]. A wide range of motor activity can be detected 

[46]. Motor activity is sporadic and appears in bursts of 5-60 seconds [69], but the 

muscle tone is low in between the movements [43], [69]. The facial expressions 

include smiles, grimaces, and frowns; also bursts of sucking movements are seen [38], 

[103] as well as small twitches. Sighs and sobs can be heard [103]. 

QS: The eyes are closed [38], [69], [103]. Little or no motor activity is detectable 

[46]. Motor activity only appears with occasional startles, sighs, or other brief 

discharges. A tonic motor level is maintained [43], [103]. Mouth movements or 

sucking can be seen [38], [69]. 

An overview of the behavioral observations regarding the sleep states can be found 

in Table 5. 

Preterm infant behavioral patterns are often considered static over time. However, 

Holditch-Davis et al. [43] found decreasing body movement with maturation. They 

realized that their finding contradicts other publications and account it with a longer 

follow up period of their trial [43]. If body movements are used to annotate sleep, and 

the sleep organization is changing with maturation, it can be assumed that the body 

movements undergo the changes as well. Therefore, age should also be considered as 

a factor in the behavioral annotation.  
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Table 5 Behavioral attributes.  
This table shows behavioral attributes that are used to identify sleep/wake states. These states are 
active sleep (AS), quiet sleep (QS), intermediate sleep (IS), wake (W), and arousal.  

 
Movement /  
Motor activity Eyes  Face Audio 

AS Wide range; 
Small twitches; 
Sporadic motor burst of 
5-60s; 
Low muscle tone in-
between 
 

Closed or  
slightly opening 
and closing eyes; 
REM 

Smiles; 
Grimaces; 
Frowns; 
Bursts of sucking  

Sighs; 
Sobs 

QS Little or none startles; 
Continuous tonic levels;  
Motor low 

Closed eyes Episodes of rhythmic 
mouth movements;  
Sucking 

Sighs  

IS Defined if no other state 
fits 
 

" " " 

W Head and 
arm movements; 
Orientation response; 
Motor high or low 
 

Open eyes; 
Focused eyes;  
No REM;  
Scanning 

In quiet wake relaxed;  
No smile or frown 

Crying; 
Fussing 

Arousal Head and hand 
movements; 
Motor can have 
different states 

Open eyes; 
Fixed and 
focused  

Mouth movement Sighs 

 

2.5 Unobtrusive measurement methods for sleep state 

monitoring 

Contrary to behavioral observations, other sleep monitoring methods require the 

attachment of adhesive electrodes, including cables running over their limbs. As 

mentioned in the introduction of this chapter and the general introduction, those are 

additional burdens for the fragile preterm infant. Therefore, unobtrusive methods for 

vital signs and movement measurements regarding preterm infant sleep state 

classification are described in the following sections 2.6 to 2.8. An overview of the 



2.5 - Unobtrusive measurement methods for sleep state monitoring 

 

62 

 

different measurement methods for vital signs and movements is given beforehand 

in Table 6. 

In the following sections, we will discuss different methods to obtain the necessary 

vital signs and movement signals for preterm infant sleep state classification. 

Clustered in the following groups: 

 PSG with electrical origin 

o EEG, electrocardiogram (ECG), and electrooculogram (EOG) 

 PSG with mechanical origin 

o HR, BR 

 Behavioral signals 

o Body movement, facial expression 
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Table 6 Unobtrusive methods.  
The measurement methods are listed in relation to the vital signs and movement measurements. The methods are merged for several vital signs or 
movement. The degree of unobtrusiveness of the methods is indicated with colors and diagonal lines [for b&w prints]. Red (two diagonal lines) indicates 
high to medium obtrusiveness and green (no diagonal line) indicates minimal obtrusiveness. The methods are explained in sections 2.6 to 2.8. 

 Unobtrusiveness 
EEG-
signal 

ECG-
signal 

Eye 
movement 

Heart rate Respiration Movement 
Facial 

expressions 

Dry electrodes 

  No conductive gel needed; 
High impedance; 

Low movement artifacts; 
Applying pressure needed 

- - - 

Needle patch 

  Minimal invasive but skin penetration; 
Very low impedance; 

Suitable for long term monitoring; 
Possible low acceptance by parents 

- - - 

Capacitive 
electrodes 

  
Unobtrusive; 

Prone to motion artifacts 
- - 

Laser Doppler 
vibrometry 

 

- - - 

Unobtrusive;  
Prone to motion artifacts; 

Heart rate, respiration, and 
movement has to be separated; 

Need clear field of view 

- - 

Ballistocardiogram   - - - 

Unobtrusive; 
Sensitive; 

Prone to motion artifacts; 
Heart rate, respiration, and movement has to be 

separated; 
Camera needs clear field of view 

- 

Photoplethysmogram  - - - - 

Accelerometry 
(behavioral) 

  - - - 
- 

Doppler radar   - - - - 

Camera   - -   
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2.6 Unobtrusive EEG/ECG/EOG signal measurement 

In this section, unobtrusive measurement methods for electric originated signals 

with dry electrodes and capacitive electrodes are reviewed. Normal gel electrodes are 

not useful for long term monitoring of preterm infants because of impedance changes 

due to drying gel [132]. Additionally, there are inflammation risks at the electrode-

skin contact [108]. In some rare cases, toxicological concerns of the gel electrodes 

were reported.  

In preterm infants under 34 weeks GA, the epidermis is 2-3 layers thick with barely 

any protective outer skin layer (the stratum corneum) [107]. Therefore, all electrodes 

in contact with the fragile skin are considered obtrusive.  

2.6.1 Dry electrodes 

Dry electrodes create contact with the skin without the need for skin abrading to 

reduce skin resistance or any application of conductive gel to ensure correct electrode 

contact. There is a variety of dry electrodes like, e.g., different metal disks, conductive 

rubber, spring-loaded fingers, or conductive foam. The principle is that in most cases, 

the material follows the skin contour without leaving any high impedance air gap, as 

shown in Figure 16. The interface impedance with dry electrodes is higher than with 

gel electrodes as only the skin moisture/sweat is used as a conductive bridge, which 

has a lower ion conductivity than conductive gel [108]. Lower impedance means that 

smaller signal amplitudes can be measured (e.g., low EEG amplitudes). Also, the 

thermal noise (Johnson noise) of the gel electrode itself is lower, leading to a higher 

signal to noise ratio (SNR).  

A dry electrode type with minimal skin contact is the Nanoneedle array (Figure 17). 

This electrode consists of 50 nm wide and 10-15 µm long carbon tubes [134], which 

can puncture through the high impedance 10-15 µm thick stratum corneum [135], 

reaching the underlying low impedance layers. Although the Nanoneedle arrays could  
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Figure 16 Use of conductive foam in combination with a flexible electrode (From [133] with the 
permission of the authors).   
The regular flexible electrode contains many high resistant air gaps between electrode and skin (left 
side). It is also prone to movements. The conductive foam closes the gaps and reduces the 
movement (right side).  

 

be considered invasive, Lopez Gordo et al. [132] state that due to the minimal 

diameter of the needles, the infection risk is minimal. This makes them less harmful 

while showing similar impedance and fewer motion artifacts than classic wet 

electrodes. Other dry electrodes have to be fixated with pressure or adhesives to the 

preterm infant; for that matter, they become almost as obtrusive as the Nanoneedle 

electrode, which only needs minimal applying pressure. Additionally, Nanoneedles 

have a minimal surface in contact with the skin and the skin penetration affiliates with 

only minimal infection risk. The needle stability also minimizes the infection risk and 

additionally stabilizes the impedance [132]. Due to their minimal penetration depth, 

the Nano- and Microneedle arrays are painless (so far only shown for adults). The 

underlying nerves are not stimulated enough to trigger pain [136]. If that holds also 

in neonates has to be investigated. 
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Nanoneedles should not be confused with more routinely used subdermal needle 

electrodes. Subdermal needle electrodes are, with around 0.5 mm, relatively thick 

compared to Nanoneedles (factor 10000), posing a higher infection risk. They also 

can cause pain due to the penetration depth reaching the underlying nerves [137]. 

Even though they are routinely used, the American Clinical Neurophysiology Society 

does not recommend using subdermal needle electrodes on neonates or infants [138]. 

Therefore, we did not proceed with further investigations into subdermal needle 

electrodes. 

2.6.2 Capacitive electrodes 

Another unobtrusive vital sign measurement method is the use of capacitive 

coupling. This method allows the skin to couple capacitively to the measurement 

electrode without any direct contact with the skin of the preterm infant. However, the 

biggest problem with these electrodes is their sensitivity to movement and dielectric  

 

Figure 17 Electron microscope image of a multiwalled Carbon nanotube pad (From [134] with 
permission from the author). 
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artifacts. The coupling capacitance is altered by every movement [139], [140] 

producing artifacts. A problem, more for EEG than ECG measurements, is the small 

amplitude of signals and the high resistive elements of capacitive electrodes [140]. 

Therefore, the attached amplifier circuits need to have very low noise [141] not to 

mask the EEG signal, which makes the measurement unit more complex. Chi et al. 

[142] and Sullivan et al. [141] created contactless EEG/ECG electrodes with noise 

amplitudes comparable to gel electrodes. To lower the motion artifacts without 

increasing the complexity of the measurement unit Serteyn et al. [143] used an 

estimation of artifacts to lower them in their measurements, reaching a noise level 10 

times smaller than the recorded ECG amplitude. This indicates that it is better to 

eliminate motion artifacts during post-processing rather than with more complexity 

in the amplifier circuits. For ECG monitoring alone, the electrodes can also be placed 

under the preterm infant, e.g., in a mattress, to detect the HR or HRV. Atallah et al. 

[107] used a sensor array (shown in Figure 18), which also takes into account that the 

preterm infant is not always in the same position. They developed a mattress with 

eight capacitive sensors and adaptive channel selection, allowing contactless ECG and  

 

Figure 18 Inside of a neonatal mattress with 8 integrated capacitive sensors (From [107] 
with permission from the author). 

 



2.6 - Unobtrusive EEG/ECG/EOG signal measurement 

 

68 

 

 

 

HR measurements. With this method, they were able to achieve a sensitivity for ECG 

up to 89% dependent on motion, and a positive predictive value of 99% independent 

of motion, which can be interpreted as very high accuracy. Thereby, the results 

improve with fewer layers of cloth between the infant and electrodes [107]. Figure 19 

looks into obtrusiveness, resistance, noise coupling, and infection risk of the 

electrodes discussed in this section. Capacitive sensors show excellent results 

regarding those parameters compared to gel electrodes, which appear to perform the 

poorest. This is due to their unobtrusiveness and low infection risk. On the technical 

side, gel electrodes perform well regarding resistance and noise coupling, but this does 

 

Figure 19 Comparison of different electrode types.  
The four different electrode types: gel, dry, capacitive, and needle patches are illustrated 
for their properties: obtrusiveness, resistance, noise canceling, and infection risk. The gel 
electrode show poor results in unobtrusiveness and infection risk compared to capacitive 
electrodes. Dry electrodes and needle patches share a medium obtrusiveness, where the 
needle patch has almost no infection risk. On the technical side, gel electrodes and needle 
patches show low resistance and noise coupling compared to dry and capacitive electrodes.  
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not make them more suitable for preterm infants. The Nanoneedle patches are a good 

tradeoff between good technical properties and minimal harm to the infant. However, 

their use for the neonatal population needs to be carefully assessed.  

2.7 Unobtrusive heart rate and respiration measurements 

For signals of mechanical origin, e.g., simple HR measurement, without the ECG 

waveform, there are additional methods to dry and capacitive electrodes that also 

allow contactless measurements.  

2.7.1 Ballistocardiogram  

A ballistocardiogram (BCG) is the measurement of the cardiac activity, which aims 

to retrieve the mechanical signal from the platform on which the patient is lying. This 

could be, e.g., the mattress inside an incubator or the incubator rack itself [144]. The 

signal is created by the force of the heart pumping blood through the body. The 

propagation to the outside depends on blood pressure and vein elasticity [145]. The 

generated pulse wave can be monitored electrically with piezo elements (e.g., bed film 

sensors, Figure 20) [146], mechanically with load cells [147], [148], or accelerometers, 

in this form of application known as kinetocardiogram [149]. The difference between 

the methods is that measuring with accelerometers needs time-varying pressure, while 

piezo and load sensors measure an absolute pressure value. With any of these sensors, 

BCG can be used for both HR monitoring and BR monitoring [147], [148]. These 

methods have been successfully used with adult patients [146]–[149] and even tested 

in the neonatal intensive care unit (NICU) [150]. In adult patients, BCG showed the 

same result as classic PSG with a mean epoch to epoch agreement of 92.5% and a 

kappa of 0.62 between BCG and PSG [151]. The test on a preterm infant showed a 

high correlation between ECG reference with BCG of 0.91 and BR reference with 

BCG of 0.74 [150]. There are commercial products for infants using BCG, e.g., 

AngelCare [152], NannyCare [153], or Nanny [154], but they are mostly used as 
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sudden infant death syndrome alarm systems rather than continuous monitoring 

devices. 

BCG methods pose a difficulty in designing algorithms for separating the HR and 

BR from motion, and noise. Brink et al. [147] found that for adults, even the 

resonance frequency of the mattress could lead to misinterpretation of signals. This 

might not be relevant for preterm infants but emphasizes that slight movements can 

already affect the signal. These problems may be solved by adaptive signal processing, 

as done by Liu et al. [155], who presented a new method to separate the BR in adults 

from movement with pressure-sensitive textile detecting body position, movement, 

and BR during sleep with high resolution. They achieved a low error rate of 5.7 – 

1.7% for BR detection. Another problem in the NICU is the signal amplitude. The 

small body of a preterm infant does not produce large mechanical waves. Therefore, 

the sensors need to be placed as close as possible to the body and should not be 

shielded by damping material. On the other hand, preterm infants move in a smaller 

range than adults during sleep, which results in smaller amplitudes of motion artifacts 

and higher SNR.  

 

  

 

Figure 20 Bed film sensors.  
The Sensor-mat of Tekscan [301] is made from numerous piezoelectric sensors and is 
placed between the mattress and the sheets to record movements. (Courtesy of 
Mohammed Meftah).  
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2.7.2 Radar 

Unobtrusive monitoring of HR and BR is also possible via radar. The heart wave 

and the respiratory movements are propagated to the surface and can, therefore, be 

detected by a non-contact system. A radar signal is directed towards the body of the 

preterm infant, where it is reflected with a frequency shift. The moving body surface 

modulates the phase due to the Doppler effect (See Figure 21). This phase shift can 

be retransformed into HR and BR signals [156]. Thereby, the radar signals are 

reflected in different amounts by different materials, depending on the permittivity of 

the material. This is an advantage of the radar technology over other non-contact 

methods because the radar signal will be reflected by the preterm infant body (water 

permittivity= 50-88) but almost not by the clothing (cotton permittivity= 1-3) and 

incubator shield (PMMA permittivity= 5), making it independent of a clear field of 

view (e.g., under the incubator mattress). With the (adult) patient in the optimal 

position, the detection accuracy is up to 99.9% [157]. A preterm infant can easily be 

placed at the optimal position without a great range of random movements making 

this method more viable for the NICU than for adults. The use of radar for vital sign 

measurement suffers from similar effects as discussed for the previous methods; 

noise, movement, and even background movement from several meters away [158] 

can deteriorate the accuracy [156]. Recently, however, several algorithms have been 

proposed to deal with these problems. Solutions to the common radar problem of 

offset recalibration due to unwanted reflections from static objects have also been 

proposed [157]. Despite that, this method has, due to its experimental state, not been 

used in the NICU so far.  

2.7.3 Laser Doppler vibrometer 

A similar method to the Doppler radar is the Doppler laser vibrometer. The Laser 

beam is sent to, e.g., the chest of the preterm infant, where it is reflected with a shift 

in the phase due to the Doppler effect. The reflected light is then captured with a  
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photodetector (See Figure 21). With the captured light signals, the phase shift can be 

translated into movement (e.g., chest movement), which can be related to the HR and 

BR. Marchionni et al. [159] used this method successfully in the NICU, achieving very 

high correlations of HR/BR detection with the reference ECG and ventilation of 0.96 

and 0.99. The energy of the laser beam has to be limited to avoid damage to the eyes 

or skin. However, this limitation does not interfere with the measurement. As with all 

mentioned non-contact measurement systems, the motion artifacts could reduce the 

accuracy of the method. The Doppler laser does not need direct skin contact to 

measure movement, but when used on textiles, noise is added to the measurement 

when the textile is slipping or moving in a different direction to the HR or breathing 

movements.  

2.7.4 Photoplethysmography 

Another unobtrusive way of HR and BR monitoring is via photoplethysmography 

(PPG). PPG is a common, simple, and low-cost optical technique that can be used to 

detect blood volume changes in the skin [160]. The PPG sensor emits light via LEDs 

into the skin and detects the reflected light. The determination of HR via PPG is 

based on the different absorption levels of light by hemoglobin and the surrounding 

tissue. The blood volume change in the veins, by the pumping heart, changes the 

amount of absorbed light and, consequently, the detected amount of reflected light.  

 

Figure 21 Basic principle of a Doppler radar/laser.  
A radar or laser beam hits the target (upper signal) and is reflected by the target with a Doppler 
shift according to the target movement (lower signal). If the patient`s e.g., chest is moving out, 
the frequency increases and vice versa. From the shift of the incoming to the outgoing 
radar/laser signal, the target movement can be calculated. 
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Thereby, the blood volume change can be measured and translated into HR and 

subsequently, BR. In addition to HR and BR assessment, PPG can detect respiratory 

sinus arrhythmias, which can be used to has been applied mostly to adult patients 

algorithms have been proposed [161]–[164]. Although they have not been tested on 

preterm infants, they have been used for newborn term infants [161], [165], [166] and 

term infants in the NICU [161], [167] with very high correlations of r=0.99 between 

the reference ECG and PPG as well as reference BR and PPG. The problems with 

this method for (possibly) preterm and/or term infants are the movement artifacts 

[167] and the complicated realization of a breathing protocol to calibrate the analysis. 

The calibration helps to separate the BR from other variations in the PPG around the 

same frequency range, e.g., temperature fluctuations, vasomotion, and/or 

baroreceptor oscillations (Mayer waves).  

 

Figure 22 PPG on the foot of a preterm infant (With permission of the parents).  
The PPG sensor is attached on the infant’s foot. Here an adhesive plaster is used for fixation. 
This can also be done with non-adhesives, e.g. a sock. 
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The classic PPG is performed with an attached light source and photodetector 

directly on the skin (Figure 22), where it is mostly wrapped around the foot of the 

preterm infant. It does not need any abrading of the skin and is thereby only slightly 

obtrusive. As described in the next section, a more recent and advanced method is 

the use of non-contact video PPG analysis.  

2.7.5 Camera 

The camera measurement method of PPG uses the same basic principles as classic 

ankle/foot PPG, which are described in the previous section, but avoids the use of 

any attached sensors. Another difference between the methods is that the camera 

measures the ambient light emitted from the skin of the patients instead of the LED 

light. An example is a work by Verkruysse et al. [168] who used a simple, inexpensive 

camera to detect the BR and HR with the use of ambient light as illumination. A 

simple webcam is sufficient and shows comparable results as a high-end camera 

system [169]. Koolen et al. [170] showed that analysis of HR is also possible in 

neonates using a camera. A pilot study in the NICU by Aarts et al. [171] resulted in 

13 out of 19 preterm infant HR measurements with >90 % matching the reference 

ECG. However, they used a camera dependent on good illumination in the visible 

spectrum. Yet, the presented studies derive only HR, which is insufficient in this form 

alone for sleep state classification. ECG sleep state classification needs HRV, which 

needs precise R peak detection. Nevertheless, with improved camera techniques, the 

results in a laboratory setting can reach correlation values of 1.0 for HR, 0.91 for BR, 

and 0.97 for HRV [172].  

This demonstrates that illumination is an important factor for camera-based 

approaches. This is especially important with monitoring preterm infants in an 

incubator. The light is mostly dimmed in the patient room, and the incubator is 

covered to avoid disturbance of the preterm infant. The light intensity is 3-6 Lux (a 

candle at a distance of one meter has 1 Lux) in a covered incubator and 60-120 Lux 

in an uncovered incubator with dimmed lights. Recently, Van Gestel et al. [173] 
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showed that for HR measurement, the use of cameras in the IR spectrum shows the 

same results as cameras operating in the visible spectrum, enabling the analysis in 

pitch dark incubator settings. This makes continuous and less obtrusive 

measurements possible. In this case, the camera has to be equipped with a near infra-

red (NIR) light source. To protect the preterm infant's eyes, the maximum NIR 

radiation is required to be limited to 10 mW/cm2 and the maximum total infra-red 

(IR) radiation to 60 mW/cm2 [174]. When using an artificial light source, it has to be 

considered that not only the light amplitude is important for the monitoring via video 

but also the modulation of the light source, which can desynchronize the signals. 

However, Tarrasenko et al. [175] showed very recently that this artificial light flicker 

noise can be eliminated with autoregressive methods. An additional problem is that 

of movement artifacts [176]. However, movement artifacts can be removed with an 

algorithm to synchronize frames [168] or cross-correlate several frames, increasing 

the SNR for BR and HR [176].  

2.8 Unobtrusive behavioral measurements 

Video analysis can also offer a solution for behavioral sleep analysis. Limb 

movements, face twitches, and REM can all be detected visually. The illumination 

problem is the same as that discussed in the camera section above. Camera systems 

were used to annotate sleep in premature infants [63]. However, no automated 

algorithms were used in most of the cases. Instead, time-lapsed video analysis was 

used to annotate the videos manually [44]. One of the few exceptions is the work of 

Scatena et al. [177] in which the open-source video analysis tool ZoneMinder was 

used to automate the video analysis for sleep in adults. However, the results were only 

fair with a Cohens Kappa value of 0.47 and 0.654 between the software and reference 

PSG and the software and reference actigraphy. No automated video analysis has 

been conducted for preterm infants yet. Due to the similar vessel composition of 

preterm infants and adults, adaptation in the video analysis and actigraphy software 

might enable an automated analysis for preterm infants. Similar to HR and BR with 
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BCG, actigraphy can be acquired by the use of pressure sensors or accelerometry 

embedded in, e.g., the neonatal mattress [69], [178], detecting sleep, wake, or activity 

patterns [179]. Pressure sensors can detect slight changes in the g force (>0.05 g) 

[103], [177], making it suitable for the less intense movements of preterm infants. The 

signals of the movements are stronger than those of HR and BR, which implies easier 

monitoring. Limb movement measurement for preterm infants can be obtained by a 

wrist or ankle worn accelerometer [40]. In this case, the signal that was considered 

previously as noise can now be used for sleep state separation. However, the noise 

signal information needs to be combined with other measurements if small motion 

patterns need to be registered. 

  

 

 

Figure 23 Visual illustration of a possible future NICU including unobtrusive vital sign measuring 
methods (Monitor graphic with courtesy of Mine Danisman-Tasar).   
The vital signs could lead to a sleep state monitoring system reflecting the actual sleep state 
and additional information as, e.g., state development over longer periods, short term 
estimations, and/or warnings about sleep abnormalities. 
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To conclude this chapter, Figure 23 illustrates a possible future NICU, including 

some of the discussed measurement features. The vital signs, measured with this 

method, can lead to a monitoring system, as in Figure 23 and Figure 24, presenting, 

e.g.,  

 Actual and past sleep states 

 Estimated time of state change 

 Recommend time slot for optimal caretaking 

 Long term display of sleep states with boundaries of “normal/expected” 
changes 

 Display of sleep-related events (e.g., possible sleep apnea event) 

 

 

Figure 24 Detail of sleep monitoring visualization (Courtesy of Mine Danisman-Tasar). 

The sleep states could be visualized over the past hours to get an overview of the state 
patterns of the neonate. Additionally caretaking, feeding, or other interventions can be 
highlighted, and optimal timeslots for caretaking can be suggested. Thereby caretakers 
can plan and coordinate their shifts according to the neonatal sleep and keep an overview 
over changes and incidences.  

 



2.9 - Conclusions and recommendations 

 

78 

 

2.9 Conclusions and recommendations 

First, we want to repeat the most important points: 

 Sleep plays a very important role in the development of preterm infants. Its 

disturbance can lead to negative long term effects. 

 The variation of the sleep states AS and QS over time is an indicator of 

development. 

 Sleep states can be separated in different ways. The classic method is EEG. 

However, EEG can separate the sleep states only at a later stage (clearly at 

36 GA) compared with other PSG or behavioral methods (26-30 GA). 

 There are several approaches for unobtrusive PSG and behavioral sleep state 

monitoring such as EEG/ECG measurements via capacitive electrodes or 

dry electrodes, as well as HR, HRV, BR, and movement monitoring via BCG, 

Doppler-radar, Doppler-laser, or camera monitoring. 

 Sleep state separation should be performed via HR, HRV, BR, and/or 

movement. Multiple unobtrusive methods are available to measure these 

signals. Sleep states can be detected earlier with behavioral measurements 

than with EEG signals.  

 The obtrusiveness of methods to obtain the vital signs for sleep state 

separation varies. The described methods differ in the way they come in 

contact with the preterm infant. Classic adhesive electrodes and cables are a 

burden for the preterm infant. 

In order to rank the presented methods and give recommendations, we divide the 

discussed methods into the origin of the signal: electrical (EEG, ECG, EOG) and 

mechanical origin (HR, BR) plus behavioral signals (body movement, facial 

expression). 

For measuring the signals of electrical origin such as EEG, ECG, and EOG, 

capacitive electrodes and Nanoneedle array seems to be optimal solutions. Capacitive 
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electrodes have good signal properties for ECG, while including EEG, the 

Nanoneedle array seems to be the better alternative. There is minimal harm involved 

in Nanoneedle arrays in contrary to the skin damage induced by classic adhesive 

electrodes. However, the acceptance of needle patches for preterm infants by the 

parents or legal guardians could be problematic due to the negative associations of 

needles with pain and discomfort.  

For signals of mechanical origin, the measuring methods are quite similar in their 

(un)obtrusiveness and performance. BCG and radar are non-contact methods and do 

not need a free field of view. Radar has the drawback that, currently, in most cases, 

recalibration is needed for each individual change in the measurement setup; however, 

recently proposed algorithms can deal with this problem. For BCG, the small signal 

amplitude of preterm infants HR and HRV might be a problem, and it showed lower 

performance values in clinical trials than the other methods. Vital sign measurement 

via laser needs a free field of view on the blanket covering the neonate or the neonate 

itself to be able to operate. This is a drawback compared to the similar operating radar, 

favoring radar over BCG and laser. It remains to be investigated which of the methods 

deals best with the problem of motion artifacts. With the inclusion of behavioral 

observation for sleep state separation, the camera seems to be the optimal solution 

allowing simultaneous HR, BR, and behavioral measurements while additionally 

providing general visual surveillance. However, a free field of view is always required. 

If the camera is repositioned or blocked by, e.g., the staff, sleep monitoring is not 

possible. The incubator is often covered, and the lights in the NICU are frequently 

dimmed to minimize disturbance for the preterm infant. Therefore, IR illumination 

is needed to obtain a clear video image with sufficient resolution for a sleep state 

annotation algorithm or manual annotator. 

In terms of costs, it is difficult to judge the above techniques, as most are still in the 

research phase and are not commercially available. Nevertheless, in most cases, the 

reusability will fix the expenses.  
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Most of the mentioned methods are currently not used in the NICU or only in first 

trials for preterm infants; this could be due to the long development and approval 

time for medical devices as well as the coherent cautious implementation of new 

approaches especially in the sensible and high-risk environment of the NICU. 

Finally, each measurement method has different advantages and disadvantages, but 

the use of Nanoneedle patches, BCG, Doppler laser, Doppler radar, and/or camera 

enables to measure the vital signs HR and BR unobtrusively for preterm infant sleep 

monitoring. The performance of the methods compared to the golden standards are 

very high, making them excellent candidates for the use in the NICU. Further 

method-fusion could even increase the performance, to the end that, in the future, 

they possibly replace the standards without any loss off crucial information.  

In the next chapters, we focus on ECG as a possible unobtrusive signal for sleep 

staging. However, before using unobtrusive measurement methods to obtain the 

ECG signals, we want to prove that ECG alone is suitable as a signal for a machine-

learning algorithm to separate the main sleep states in preterm infants.  
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3 Machine learning on preterm infant sleep 

This chapter is adapted from Jan Werth, Xi Long, Elly Zwartkruis-Pelgrim, Hendrik Niemarkt, 
Wei Chen, Ronald M. Aarts, Peter Andriessen. Unobtrusive assessment of neonatal sleep state 
based on heart rate variability retrieved from electrocardiography used for regular patient monitoring. 
Early Human Development; 113:104-113, Oct 2017 © Elsevier 

3.1 Abstract 

As an approach of unobtrusive assessment of neonatal sleep states, we aimed at an 

automated sleep state classification based only on heart rate variability. The signals are 

obtained from electrocardiography used for regular patient monitoring. We analyzed 

active and quiet sleep states of preterm infants between 30 and 37 weeks 

postmenstrual age. To determine the sleep states, we used a nonlinear kernel support 

vector machine for sleep state separation based on known heart rate variability 

features. We used unweighted and weighted misclassification penalties for the 

imbalanced distribution between sleep states. The validation was performed with 

leave-one-out-cross-validation based on the annotations of three independent 

observers. We analyzed the classifier performance with receiver operating curves 

leading to a maximum mean value for the area under the curve of 0.87. Using these 

sleep state separation methods, we show that automated active and quiet sleep state 

separation based on heart rate variability in preterm infants is feasible. 

3.2 Introduction 

Newborn infants show two distinct sleep states defined as AS and QS [117]. In full-

term infants, AS is traditionally associated with REM, increased variability in 

cardiorespiratory rates, low muscle tone, and body movements in combination with 

specific continuous patterns of the EEG. In contrast, QS is associated with the 

absence of REM, decreased variability in respiratory rates, and fewer body 

movements in combination with a discontinuous EEG pattern. Even in very preterm 

infants, rudimentary sleep states can be identified from 26 weeks PMA [66]. 
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The important role of sleep states in brain development is only beginning to be 

understood. It has been shown that sleep cycles are necessary for normal sensory and 

cortical development of the fetus and newborn [180], [181]. AS is important in 

providing the early stimulation and activity requirements of the growing brain. During 

AS, several organizational events take place such as the topographic alignment of the 

somatosensory, auditory, and the visual system and their connection to the cortex 

structures. [180], [181] 

The time spent in AS and QS has been shown to be associated with maturation [43], 

[181], [182]. The distribution changes from 80% AS and 18% QS at early GA to 

around 60% AS and 30% QS at term age (see Figure 5) [183]. The NICU environment 

has a profound detrimental effect on sleep pattern development. Significant 

differences are found in sleep behavior between fetuses and preterm infants at the 

same postmenstrual age. It has been shown that preterm infants spend less time in 

AS and more in QS compared to fetuses at comparable age [178], [180], [184]. The 

difference can be related to the clinical condition of the preterm infant or to the 

interaction with the “hostile” NICU environment with a variety of noxious stimuli 

and painful procedures [184], [185].  

Therefore, investigation of sleep states in preterm infants provides the opportunity 

to gain more insight into preterm brain development and identify which factors 

support or disrupt preterm brain development. Currently, PSG is considered the 

standard for sleep assessment. PSG employs audio and video recording of the infant 

as well as the typical recordings of respiration, HR, electromyography, electro-

oculography, and EEG. However, the instrumentation required for these studies is 

only found in sleep laboratories and not in a typical NICU setting (Table 7).
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Table 7 Review of literature on automated sleep staging. 

This table gives an overview of the literature on automated sleep staging, from 1987 until 2017. Abbreviations: postmenstrual age (PMA) [ gestational age 
+ postnatal age], polysomnography (PSG), electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), active sleep (AS), quiet 
sleep (QS), wake (W), sleep (S), heart rate (HR), heart rate variability (HRV), respiratory rate (RR), linear discriminant analysis (LDA), antedependence 
models (AM), learning vector quantization (LVQ), multi-layer perceptron (MLP), support vector machine (SVM), area under the curve (AUC).  

Author Year Population, 
PMA [wk] 

Gold standard 
Annotations 

Sleep states 
of interest 

Used signals 
for analysis 

Method Results 

Harper 
1987 [186] 

39-41 Manual scoring based 
on PSG 

AS, QS, W HR, RR LDA Agreement for separation of  
AS-QS-W  
HR: 82%; RR: 80%; HR+RR 85% 
 

Haddad 
1987 [105] 

44-56 Manual scoring EEG, 
EOG, chin EMG and 
behavior 

AS, QS  
 

HR, RR Kolmogorov 
Smirnov distances 

Agreement for separation of  
AS and QS 
AS 99% and for QS 93%  
 

Sadeh 
1995 [103] 

40-84 Manual scoring 
respiration and 
behavior 

AS, QS, W Actigraphy LDA Agreement for separation of  
AS-QS-W  
75-87% depending on PMA, and for 
S-W 89-98% depending on PMA 
 

Nason 
2001 [187] 

48-60 Manual scoring EEG, 
EOG, ECG, chest and 
abdominal 
movement 

S, W HR LDA; AM Agreement for separation of  
S and W  
LDA, 75%-90% depending on PMA   
AM: 89%-96%  
 

Lewicke 
2004 [188] 

33-58 Manual scoring EEG, 
EOG, EMG 

S, W HR 
Actigraphy  

Neural network 
(LVQ) 
 

Agreement for separation of  
S and W  
HRV: Sleep: 90% Wake: 57% 
Actigraphy: S 92%, W 42% 
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Lewicke 
2008 [189] 

39-53 Manual scoring EEG, 
EOG, EMG 

S, W HR Neural network 
(MLP; LVQ); 
Non-linear SVM 

Agreement for separation of  
S and W  
MLP, S 86%  and W 85%  
LVQNN, S 89% and W 80%  
SVM, S 90% and W 79%  
 

Fraiwan 
2011 [190] 

40 Manual scoring based 
on PSG 

AS, QS, W EEG Time-frequency 
analysis 

Agreement for separation of  
AS-QS-W   
63%-75% 
  

Terril  
2012 [111] 

48-84 Manual scoring based 
on PSG 

AS, QS, W RR Time-frequency 
analysis 

Agreement for separation of  
AS-QS-W   
80%-85% 
 

Palmu 
2013 [54] 

25-32 Manual scoring EEG, 
EOG, chin EMG 

S-W EEG Time-frequency 
analysis 

Agreement for separation of  
S-W, extracted from table 90% 
  

Isler 
2016 [191] 

37-44 Manual scoring EEG, 
EOG, chin EMG , 
respiration, behavior  

AS, QS RR variability Time-frequency 
analysis  
 

Agreement for separation of  
AS-QS 
AS 78%-90%, QS 87-100% 
 

Dereymaeker 
2017 [102] 

27-42 Manual scoring EEG 
and video 
 

QS EEG Time-frequency 
analysis  
 

AUC 0.97 for detecting  
QS 
  

Koolen 
2017 [101] 

24-45 Manual scoring EEG AS, QS EEG Non-linear SVM Accuracy for separation of  
AS and QS 
Accuracy: 85%, sensitivity 83%, 
specificity 87% 
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Furthermore, PSG requires the placement of multiple electrodes and sensors that 

are not tolerated by the skin of the vulnerable preterm infant.  

Recent advances in technology allow to collect a variety of physiological data in the 

clinical setting and to process and analyze these in an automated fashion. Various 

methods have been explored to develop sleep state separation techniques that require 

only a subset of standard PSG measures [190]–[192]. Automated sleep staging (or 

sleep state classification) based on, e.g., HRV is already successfully implemented in 

adults [68], [193]–[195]. For newborns, however, automated sleep scoring is still in 

the exploration phase, while the development of stable EEG based algorithms is only 

recently emerging 

The first research was introduced in the late eighties by Harper et al. [186] and 

Haddad et al. [105]. Harper et al. used cardiorespiratory signals with a discriminant 

analysis on 25 term infants over a period of 6 months to separate AS, QS, and wake. 

They created different models depending on age and achieved an overall agreement 

with the manual observations of 85%. Haddad et al. [105] exceeded the results of 

Harper et al. classifying only AS from QS based on respiratory variability with an 

accuracy of 99% on detecting AS and of 93% on detecting QS using Kolmogorov 

Smirnov distances. These good results might be explained by the age of the subjects, 

varying from 44 to 56 weeks PMA. Sleep state separation becomes easier with 

increasing maturation as each sleep state becomes more pronounced and can be 

separated more clearly. This was also found by Sadeh et al. [103] who separated AS, 

QS, and wake only using actigraphy. They created several movement-based features 

that were analyzed with linear discriminant analysis (LDA) for 41 term infants with 

age ranging from birth (term) to one year of age. The classification accuracy increased 

over the course of development from 89% to 97% for sleep and wake distinction. 

Nason et al. [187] confirmed this observation when they used wavelet analysis in 

combination with LDA and antedependence models (AM) to separate sleep and wake 

on one subject over a duration of 4 month. Performance increased over age from 75-

90% with an LDA and 90-96% with AM.  
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In 2004, the group of Lewicke and Schuckers used the CHIME study for sleep 

staging in term infants based on HRV. Lewicke et al. [188] first compared the use of 

HRV against actigraphy for sleep staging with a learning vector quantization (LVQ) 

neural network. They reported that the use of HRV resulted in a correct detection of 

sleep in 90% and wake in 57%, respectively. The use of accelerometer measurements 

led to 92% for sleep and 42% for wake detection, respectively. The lower agreement 

for wake could be explained with the use of accelerometer measurements, which 

might not detect wake episodes with less or no movement. In addition, the generally 

lesser amount of data on wake episodes in term infants can reduce neural network 

performance as it is directly linked to the quantity of training data. In a second study 

[189], they applied two additional classification methods together with the LVQ on 

an extended data set of 190 early term infants. In that study, they used only HRV as 

input for the LVQ, Multilayer perceptron neural network, and a support vector 

machine (SVM). With a huge amount of 57000 30s epoch for each training, test, and 

validation set, they were able to increase the correct prediction for wake to 80%. The 

SVM created the highest scores with a detection accuracy of 90% for sleep and 79% 

for wake. This was the first time that such an amount of data was analyzed for 

automated sleep staging for early term infants. It could be postulated that this was the 

first stable sleep staging algorithm for early term infants. Automated analysis of 

preterm infant sleep using cardiorespiratory signals was published in 2016. Similar to 

Haddad et al., Isler et al. [191] created a threshold-based algorithm where the 

threshold was derived from the normalized instantaneous breathing rate variance and 

respiration variability. By replicating the manual scoring process and tailoring the 

analysis specifically to the dataset, they reached a 100% agreement with the observer 

annotations. The more general performance of their method ranges from 78% to 92% 

agreement with the observer annotations[54] 

In 2017, Dereymaeker et al. [102] and Koolen et al. [101] published a classification 

algorithm of preterm infant sleep states using EEG signals. Dereymaeker et al. 

focused mainly on identifying QS, where they based their analysis on the heightened 
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discontinuity of the EEG during QS. Using a cluster-based adaptive sleep staging 

method, they achieved very high results from the Receiver Operating Characteristic 

(ROC) with an area under the curve (AUC) of 0.97 for detecting QS from other sleep 

states out of preterm infant data stream. Koolen et al. used six features on a nonlinear 

SVM classifier, resulting in an AUC of 0.83 for preterm infants <32 weeks PMA and 

0.87 for infants >32 weeks PMA. A more complete overview of sleep state 

classification based on EEG is given by Dereymaeker et al.[196]. 

As most previous studies were based on term newborns, in this paper, we aimed to 

investigate the feasibility of classifying AS and QS based on HRV only for preterm 

infants. This would be complementary to the studies by Koolen et al. and 

Dereymaekers et al. (focusing on EEG analysis) as well as the work by Isler et al. 

(focusing on respiratory analysis).  

3.3 Methods 

3.3.1 Population 

In this retrospective study, we analyzed eight healthy and stable preterm infants born 

at a mean gestational age of 30 ± 2.6 weeks, who were studied at a mean 

postmenstrual age of 34 ± 2.8 weeks. The mean birth weight was 1644 ± 309 g. More 

details can are presented in Table 8.Table 8  The infants were admitted to the neonatal 

department at Máxima Medical Center Veldhoven, the Netherlands. The clinical staff 

asserted the medical condition of the patients. Ethical approval was given by the 

medical ethical committee of the hospital, and written consent was given by the 

patient’s parents. 
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Table 8 Patients weight, gestational age [GA], and postmenstrual age [PMA]. 

Patient Weight [g] GA [wk; d] PMA [wk; d] 

1 1845 31; 5 33; 6 
2 2265 33; 6 34; 6 
3 1740 28; 6 34; 6 
4 1235 30; 1 31; 2 
5 1700 32; 6 33; 5 
6 1290 28; 6 29; 3 
7 1460 25; 4 31; 5 
8 1615 29; 6 32; 0 

3.3.2 Annotation 

Data were annotated by three independent observers for the following neonatal 

sleep states adhering the Prechtl system [197]: AS, QS, active- and quiet wake, 

vocalization, and body positions. The mean annotation time per infant was 

334 ± 54 min with simultaneous video recording, ECG, and thorax impedance. After 

removal of caretaking episodes, the recordings were divided into 30s epochs, and 

sleep states were assumed to be coded correctly if at least two annotators agreed. The 

total number of annotations was 4057 30s epochs, of which 845 were discarded 

because of signal corruption or disagreement between observers. Of the remaining 

3212 annotated 30s epochs, 283 had other sleep states than AS or QS. For the analysis, 

a total of 2929 30s epochs remained with AS (n=2617) or QS epochs (n=312). The 

Cohen’s kappa (κ) coefficient of agreement representing interrater variability ranged 

between 0.61-0.80 for AS (substantial) and between 0.41-0.60 for QS (moderate) 

[198].  

3.3.3 Data acquisition  

The ECG was recorded with three standard leads. The recording device was a 

Philips monitor (IntelliVue MX 800, Germany) using 250 Hz (n=2) and 500 Hz (n=6) 

sample frequency for the ECG. Sample frequencies of 250 Hz and higher are 

sufficient for linear HRV analysis [199]. From the ECG signal, the R peaks were 

detected with an in-house developed algorithm [200]. More on the analysis is 
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described in section 4.3.5. Subsequently, the R-R intervals were used for HRV feature 

analysis.  

3.3.4 HRV features 

We selected 20 HRV features using 18 commonly used features in adult sleep 

analysis [68], [194], [201], and two preterm infant specific frequency-domain features. 

The adult frequencies are divided into very low frequency (VLF), low frequency (LF), 

and high frequency (HF). We refer to Table 9 for details. To create the two additional 

premature frequency ranges we extended the HF feature to three HF features: HF, 

pHF1, and pHF2 with a standard adult frequency range from 0.15 to 0.4 Hz for HF, 

and additional ranges of 0.45-0.7 Hz for pHF1 and 0.7-1.5 Hz for pHF2 [202] to 

accommodate the increased cardiorespiratory rates in preterm infants. A sliding 

window of different lengths (1; 2.5; 5 min) centered on each 30s epoch was used to 

evaluate if different windowing gives additional information for separating sleep states 

in preterm infants.  

R-peaks in ECG, needed for the HRV, appear inherently non-equidistant in time. 

To avoid introducing extra parameters in resampling the signal, the Lomb-Scargle 

algorithm for spectral analysis was applied [203].  
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Table 9 Heart rate variability features. 

The HRV features are derived from the Task Force [201], and comments are added from neonatal 
studies. 

Feature [unit] Description Connotation 

BpE Beats per Epoch ECG R-R intervals detection. If ECG is 
noise distorted, BpE decrease. This 
mostly appears during AS and wake. 
Longer heart rate is reflected when long 
term windowed.  

TotPow [ms2] Total power or variance of NN 
intervals of a defined window 
size. 

Reflects overall heart rate variability 
[201], [204] 

VLF [ms2] The power of the very-low-
frequency band between 
0.003-0.04 Hz of a defined 
window size. 

Oscillations in VLF are attributed to 
peripheral resistance fluctuations 
caused by thermoregulation [205]. 

LF [ms2] The power of the low-
frequency band between 
0.04-0.15 Hz of a defined 
window size. 

LF fluctuations are assumed to be 
related to baroreflex activity and under 
the parasympathetic and sympathetic 
influence [205], [206]. Fluctuations in 
the neonatal baroreceptor loop are at 
approximately 0.07 Hz [122], [125], 
[206]. 

LFnorm [%] LF power in normalized units 
LF/(Total Power-VLF) x 100  

Normalization, to correct for total 
power variability.  

HF [ms2] The power of the high-
frequency band between 
0.15-0.4 Hz of a defined 
window size. 

HF fluctuations are associated with 
activities of the parasympathetic 
system and respiratory activity [122], 
[205], [207]. Respiratory activity is 
closely linked to preterm sleep states 
[183], [191] and seems more prominent 
during quiet sleep [207].  

HFnorm [%] HF power in normalized units 
HF/(Total Power-VLF) x 100 

Normalization, to correct for total 
power variability. 

pHF1 [ms2] The power of the high-
frequency band between 0.4-
0.7 Hz 

pHF1 fluctuations are associated with 
activities of the parasympathetic 
system and respiratory activity, 
especially in preterm infants [202]. 
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pHF2 [ms2] The power of the high-
frequency band between 0.7-
1.5 Hz 

pHF2 fluctuations are associated with 
activities of the parasympathetic 
system and respiratory activity number, 
especially in preterm infants [202]. 

LF/HF [n.u.] Ratio LF/HF This estimate claims to reflect the 
sympathovagal balance in adults, 
although the value has to be established 
in newborns [122]. Increased values 
may indicate greater sympathetic 
and/or lesser vagal modulation [206]. 

SDNN [ms] The standard deviation of 
normal to normal R-R 
intervals of a defined window 
length. 

Reflects the overall heart rate variability 
influenced by both the para- and 
sympathetic nervous system [201], 
[204]. 

RMSSD [ms] Root mean square of 
successive differences 
between adjacent R-R 
intervals of a defined window 
length. 

Influenced mainly by parasympathetic 
activity and respiratory activity.  

NNx [count] The number of pairs of 
successive R-R intervals that 
differ by more than 10, 20, 30 
or 50 ms of a defined window 
length. 

NNx reflects parasympathetic activity. 
While NN10 covers more overall 
changes, NN50 represents high-
frequency variations with influence 
from respiratory activity [208]. 

pNNx [%] The proportion of NNx divided 
by the total number of R-R 
intervals of a defined window 
length. 

pNNx are directly linked to the NNx 
features. pNNx for values of x<50 ms 
may provide more robust estimates of 
cardiac vagal tone modulation even in 
the presence of outliers [208], [209]. 

 

3.3.5 Feature selection  

Supervised learning for classification with an SVM needs a selection of normalized 

input features to avoid overfitting resulting in a decrease of performance. We 

implemented a linear and non-linear classification approach, including three feature 

selection methods (two filtering methods and a wrapper method), which were used 

to find the top feature subset separating AS from QS. First, the correlation-based 

feature selection (CFS) was applied, and second, because the classes are imbalanced, 



3.3 - Methods 

 

92 

 

the minority based feature selection method (FSMC). For both filtering feature 

selection methods, a greedy forward search was used to find the optimal feature 

subset. The CFS is sorting the features by the highest correlation between feature and 

class as well as the lowest correlation in-between features [210]. The FSMC is 

determining the difference between feature values for the majority and minority class. 

It sorts the features by the highest difference between the values for the majority and 

minority class [211]. Third, a mixed wrapper method was implemented (Figure 25). 

Starting the wrapper, a brute force forward search was used where all possible subset 

combinations of all features (without repetition) were generated, and for each subset, 

the sleep state separation performance was validated. With a search for highest 

performance, the optimal subset was determined. Due to the exponential increase of 

computation time per subset combination length (generation), subsets combinations  

 

  

 

Figure 25 The brute force method creates subsets with feature combinations of only one 
feature (1th generation) up to combinations of n features (nth generation). Thereby, features 
in each subset are not repeated (e.g., F1, F2, F1) and the order is ignored (F1, F2 = F2, F1). 
Afterwards, all created features are evaluated for their performance and the feature set with 
highest performance is chosen. The sequential forward search (best first) adds in each 
iteration one feature to the chosen subset, finds the highest performance in this iteration 
and continues to the next iteration. Finally, the subset with the overall highest performance 
is chosen to proceed.  
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of all features were limited to the seventh generation (137979 combinations/iterations 

in total).  

The remaining 10 generations of subset combinations were analyzed with a sequential 

forward search (best first), where only the next single best feature was added to the 

previous subset combination (105 iterations). The final subset with the maximum 

performance out of all combinations was determined. 

3.3.6 Classifier 

After the feature selection and within the wrapper method, an SVM classifier, 

embedded in Python`s Scikit-learn library [212], was used to train and test on the 

dataset. SVM is a widely used classifier [213], which is searching for hyperplanes 

separating the different classes with a maximum margin under the condition that 

misclassifications are minimized. Thereby, misclassification is penalized with a 

constant C, which is multiplied with the number of misclassifications. A large C value 

will increase the misclassification penalty (decreasing the misclassification), leading to 

a decrease of the minimum margin around the hyperplane separating the classes and 

vice versa. If the C value is chosen to be large, the generalization of the SVM model 

can get weakened. For this study, the C value was set to value 3.6 after a parameter 

search as a good balance between speed, accuracy, and generalization.  

As the data is unbalanced for AS and QS states, the C value can additionally be 

multiplied with value pairs representing the distribution of a dataset to compensate 

for the class imbalance. In preterm infants the class distribution change over time and 

development, therefore, we clustered the participants into four different GA ranges 

and computed the class weight pair for each cluster not on the actual data distribution 

per cluster, but on the gross expected distribution known from the literature [183] as 

seen in Figure 5. The subjects were ranked into the following clusters in GA: 31-

32 weeks (n=2), 33-34 weeks (n=1), 35-36 weeks (n=2), and 37-39 weeks (n=3). This 
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clustering should not be mistaken for an age clustering to create different 

feature/training sets, which is not feasible due to the limited population size. 

Within the wrapper feature selection method, a nonlinear SVM classification was 

used. The SVM is optimally extendible for nonlinear tasks using the “kernalisation” 

or “kernel trick” where the training data are transformed into a higher dimensional 

feature space where the problem then becomes linear again [214]. The applied SVM 

used the radial basis function (RBF) kernel for non-linear approximation. The RBF 

kernel also uses a free parameter γ, which determines the inverse influence of the 

support vectors. We used a γ value of 0.2. 

A leave one out cross-validation (LOOCV) was applied to attest the classifier 

performance. Cross-validation methods separate the total data into different parts of 

which one is used to validate the classifier and the remaining parts to train. 

Nevertheless, for small datasets, these methods can become biased as it is highly 

probable that training and testing sets are created from the same patients. To avoid a 

biased validation, the LOOCV uses the patients itself as separation. All but one 

patient are chosen for training and the remaining patient for testing. For a more 

detailed description, we refer to the literature [213]. 

3.3.7 Statistical analysis 

For continuous distributed data, median and interquartile range (IQR) were 

calculated. Data were analyzed with Matlab 2014b software program (MathWorks, 

Natick, Massachusetts, US). The performance of sleep state separation was calculated 

with the receiver operating curve (ROC) and the corresponding area under the curve 

(AUC). 

3.4 Results 

In , the median of all 20 HRV features for AS and QS are presented together with 

interquartile range with 25 and 75 percentiles for comparability with the literature.  
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We used 1, 2.5, and 5 min windows to investigate the effects of window length in 

preterm infant sleep staging. The combination of different window sizes did not 

increase the classifier performance. On the contrary, the analysis of only 30s epoch 

based HRV features lead to a lowered sleep staging performance of 0.71. Hence, we 

used the 5 min window length for sleep state separation and classifier methodology 

recommended by the Task Force [201]. To evaluate the linear approach of sleep state 

separation, we implemented the CFS and FSMC filter methodologies. The 

performance of the optimal subset was evaluated with a linear SVM classifier and 

resulted in a mean AUC of 0.32 ± 0.16 for CSF. The FSMC method could not identify 

any suitable features for a subset conformable with its selection rules. These results 

showed that sleep state separation with a linear kernel is not feasible for this set of 

features.  

After exclusion of sleep state separation with a linear kernel, we implemented a 

wrapper solution with a nonlinear kernel SVM. The optimal subset was obtained by 

training the SVM on seven preterm infants, while one is left out for cross-validation 

(Figure 26 and Figure 27). The performance analysis of sleep state separation was 

calculated with the ROC and AUC for each iteration of the wrapper and the following 

sequential forward search. The ROCs per patient and mean ROC of the chosen subset 

is shown in Figure 26, with a mean AUC value of 0.85 ± 0.46. As the sleep states were 

unbalanced, we adapted the classifier parameter C with weighting factors pairs 

calculated from the expected distribution, which grossly corresponds with the four 

age cluster (see Chapter 3.3). Using the different class weights, we achieved a better 

performance of the sleep staging with an AUC of up to 0.87 ± 0.42 (Figure 27). The 

optimal subset features resulted from the wrapper analysis for both classification types 

were BpE, NN20, SDNN, pNN20, and total power. 
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    AS QS 

        Percentile     Percentile 

Features Units Median IQR 25 75 Median IQR 25 75 

 BpE   counts  770 49 749 798 745 72 704 776 

 NN10   counts  118 159 44 203 90 178 8 186 

 NN20   counts  37 95 11 106 10 35 - 35 

 NN30   counts  21 64 3 67 2 10 - 10 

 NN50   counts  10 33 - 33 - 5 - 5 

 RMSSD   ms²  18 30 8 38 12 16 6 22 

 SDNN   ms²  24 16 16 32 13 11 8 19 

 pNN10   %  16 21 7 27 13 25 1 26 

 PNN20   %  5 13 2 15 1 5 - 5 

 pNN30   %  3 8 1 9 10 1 - 1 

 PNN50   %  1 4 - 4 - 1 - 1 

 HF   ms²/Hz  38,962 63,774 16,817 80,591 15,898 28,401 3 31,289 

 Hfnorm   %  12 8 8 16 10 6 7 13 

 LF   ms²/Hz  117,274 148,547 59,518 208,065 49,878 125,967 22 147,946 

 Lfnorm   %  39 41 21 62 55 38 32 70 

 VLF   ms²/Hz  258,488 380,003 114,717 494,720 57,558 87,281 31 118,391 

 ratioLFHF   n.u.  3 4 2 6 5 5 2 7 

 pHF1   ms²/Hz  26,039 80,965 6,262 87,227 9,764 24,230 1 25,335 

 totpower   ms²/Hz  687,347 897,832 303,403 1,201,235 204,300 364,824 76 441,208 

 pHF2   ms²/Hz  59,147 271,635 10,071 281,707 8,087 25,003 2 27,097 

 

Table 10 This Table 
presents the 
unscaled heart rate 
variability features 
for active sleep 
(AS) and quiet 
sleep (QS) as 
median, 
interquartile range 
(IQR) and [25th, 
75th] percentiles. 
For feature 
abbreviations, 
please see Table 9. 
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Figure 26 The “Receiver-Operating-Characteristic” for the eight fold leave one out cross 
validation of SVM sleep state separation. Patient 8 showed only active sleep and therefore this 
data was included in testing and training, but the ROC could not be calculated.  

 

 

Figure 27 The Receiver Operating Characteristic (ROC) for the eight fold leave one out cross 
validation of the Support vector machine (SVM) sleep state separation. Here we used adapted 
missclassification penalty value pairs for parameter C to counter class imbalance. Patient 8 
showed only active sleep and therefore this data was included in testing and training, but the 
ROC could not be calculated.  
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3.5 Discussion 

HR is an important physiological parameter for sleep monitoring in newborn 

infants, children, and adults. In this chapter, we explored the feasibility of sleep state 

separation by automated analysis of HRV features obtained from standard patient 

monitoring. A nonlinear kernel support vector machine for sleep state separation 

between AS and QS was used. The classifier performance with receiver operating 

curves resulted in a mean value for the AUC of 0.85 (Figure 26) and under 

consideration of sleep state distribution, an AUC of 0.87 (Figure 27), indicating that 

HRV features are valuable for automated sleep state separation in preterm infants. 

The early postnatal period for preterm infants is characterized by fluctuating periods 

of AS and QS states, with intermediate/undetermined sleep phases. These fluctuating 

states are associated with characteristic cardiorespiratory variability [43]. Although 

cardiorespiratory coupling is weak in very preterm infants, studies conducted in more 

mature infants show the presence of cardiorespiratory coupling [97]. In , the different 

HRV values for AS and QS per feature are presented. Overall, the high IQR of the 

various HRV values may reflect an immature autonomic nervous regulation. Also, 

recovery to a stable state of autonomous control after any disturbance is reflected by 

a relatively long time constant of approximately 10 minutes [215]. Our findings are 

comparable with other preterm infant HRV studies [206], [207], [216], and the time 

domain features show less complexity in HR regulation during QS, reflected in lower 

median values and IQR. As the respiratory sinus arrhythmia in preterm infants is less 

dominant than in term babies [207], the median increase with AS in the time domain 

can probably be linked to the dominance of the sympathetic nervous system in 

preterm infants [201], [217]. This might originate from the not fully developed 

adrenergic receptors in the sinus node [207]. It has been suggested that the limited 

cardiorespiratory coupling is stronger during QS than during AS [207]. This enhances 

the difference in median and IQR as more regular breathing patterns during QS 

reduce the signal complexity while the irregular breathing during AS does show only 
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limited influence. The predominance of the sympathetic nervous system is associated 

with an increase in LF power [205], increasing the feature values for LF and LFnorm 

compared to HF and HFnorm. However, also vagal modulation of baroreflex 

response to blood pressure disturbances is important [122]. In addition, the 

baroreceptor reflex sensitivity increases during maturation [125] with a reduced high-

frequency contribution to HRV in preterm infants. Like other studies, the LF/HF 

ratio showed slightly higher values for QS, probably indicating a greater sympathetic 

or less vagal modulation [206]. In general, the spectral power values were decreased 

in QS compared to AS, suggesting that the autonomic modulation is lower during QS 

[216]. This could be explained as the AS state is seen as the most basic state which is 

regulated by a network of several forebrain areas and the controlling brainstem [52] 

and therefore, earlier developed and more pronounced than the QS [123].  

3.5.1 Features 

In general, the approach to automatically separate sleep states using a 

cardiorespiratory signal consists of a feature extraction approach, followed by a 

classification step. The features we chose are derived from adult sleep analysis [204], 

[218], as the main objective was to prove the feasibility of separating sleep states in 

preterm infants based on HRV. We also added two additional features with increased 

frequency ranges to accommodate the general higher cardiorespiratory rates in 

preterm infants. The newly used frequency ranges for preterm infants (See Table 9) 

were proposed in 2008 by Indic et al. [202]. The new feature pHF1 consistently 

appeared in the top feature subsets underlining the importance and influence on sleep 

state separation and also the assumption of Indic et al. that higher cardiorespiratory 

rates in preterm infants need adapted frequency ranges seems to be valid. This is not 

surprising as other groups already explained [43] and demonstrate [111], [191] the 

benefit of respiration analysis for sleep staging. The top five feature subsets all resulted 

in comparable performance (AUC: 0.85-0.87). In those top five feature subsets, total 

power and SDNN were always present. pHF1, NN20, NN30, and pNN20 were 
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present three out of five times. The time-domain feature BpE appeared only in the 

top feature subset. 

To further increase classification performance and stability, recently published novel 

term [219] or preterm infant HRV features [220] can be implemented in future 

research. In addition, the preterm infant desaturation features presented by Kommers 

et al. [208] can be used to eliminate episodes of tachycardia, avoiding 

misinterpretation of autonomous activity due to, non-sleep-related, altered HRV. 

Also, instead of eliminating noise from the signal, it could rather be used as an 

additional information source supporting sleep state separation [85]. 

3.5.2 Sleep states separation 

The nonlinear SVM kernel was chosen based on a good separation performance 

with a mean AUC of 0.85 to 0.87 (Figure 26 and Figure 27). The SVM classifier was 

selected as it is robust against outliers while showing high performance for single and 

multiclass classification problems [221]. Outliers have to be expected as the sleep state 

annotation is challenging by various covariates. The age clustering for compensating 

changing state distributions increased the performance. Nevertheless, while the 

performance improved for most subjects (4), some did not change (2), and one patient 

decreased. This could be interpreted as hitting the right cluster improves the 

classification, while a false clustering can lead to a decrease in performance. In our 

opinion, only clustering on age is the reason for the possibility of a decrease in 

performance. Commonly, it is postulated that sleep state changes over gestational age 

[183]. This is certainly correct, but age is only one indicator of neural development. 

The coupling between age and development (sleep state distribution) can change with 

neural miss-development. Therefore, we suggest that the correct clustering has to be 

determined and based not only on age but rather overall condition, including weight 

and size and other biomarkers. 
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Nonetheless, also biomarkers that are not directly linked to neural development can 

give miss-information and potentially create false sleep staging, which consequently 

would lead to false results of development monitoring. Generally, it can be said that 

sleep state separation without additional background information should be aspired 

to.  

3.5.3 Unobtrusive HRV measurement 

In this study, adhesive ECG electrodes were used as part of standard care and 

patient monitoring. As described in Chapter 2, there have been innovative 

developments in obtaining unobtrusively cardiac signal measurements from which 

HRV can be derived. In general, the unobtrusive HRV measurements can be classified 

as contact and non-contact methods. The contact methods include a variety of 

options, including a neonatal jacket embedded with smart textile electrodes for ECG 

measurements [222], a neonatal snuggle embedded with reflectance 

photoplethysmography based on near infra-red spectroscopy technology for pulse 

oxygenation monitoring [223], and intelligent bedsheet embedded with polyvinylidene 

fluoride or electromechanical film sensors for ballistocardiography measurements 

[224]. These contact ECG sensors are suitable for the sleeping scenario by integrating 

into a bed sheet or a mattress. The non-contact methods include HRV extracted from 

thermal imaging, video analysis, Doppler effect, and capacitively coupled ECG [171], 

[173], [183], [225]. The imaging and Doppler methods could be embedded into a 

neonatal incubator for non-contact measurements. For example, the sensory neonatal 

jacket and snuggle provide a natural platform for seamlessly embedding sensors for 

unobtrusive measurements. A major limitation of most unobtrusive methods is the 

sensitivity to motion artifacts deteriorating the signal quality. In general, the type of 

unobtrusive HRV method depends on various factors, such as the neonatal sleep 

monitoring scenario, the environments of incubator inside NICU, the reliability of 

measurements, and the suitability for long term sleep monitoring.  
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3.5.4 Methodological limitations:  

The small sample size of analyzed preterm newborns is the main limitation of this 

study. Also, here we included only AS and QS states. However, AS and QS are the 

dominant states in the early weeks after preterm birth, and other states are less well 

defined in preterm infants. The objective of the study was to investigate the feasibility 

of separating AS and QS, which are most important for development monitoring, 

based on HRV measure alone. In follow up studies, described in Chapters 4 and 5, 

we integrated multi-stage analysis.   

Further, the dataset was reduced by 28% due to unused sleep states, corrupted data, 

and disagreement between observers. As the data was not reduced randomly, the sleep 

states AS and QS were afterward in a slightly shifted distribution of 89% to 11%. This 

could have affected the classification if too much of the QS state would have been 

disregarded. However, the QS state is still in the expected range, and the imbalanced 

distribution with an inflated AS was corrected with weighted misclassification 

penalties. 

To increase the performance of sleep state separation, several demographic variables 

such as gestational and postnatal age could be taken into consideration as these 

variables influence the HRV [226]. Note that the methodology of gestational age 

clustering in this study was used only for consideration of the sleep state distribution, 

not for age determined feature creation and training sets. In our case, age clustering 

for different classification was not feasible due to the small dataset. Clustering the 

data would have further decreased the training data. Finally, this study used mainly 

the (adult) recommendations from the Task Force as there is no consensus in 

newborns. The European and North American Task Force was formed in an attempt 

to set standards for future studies of HRV [201]. While important recommendations 

were made for the length of recordings and the required spectral indices, the 

conclusions were based on adult studies only. As the neonatal heart and breathing 

rate differs from adults, the recommendations of the Task Force may not be 
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applicable in preterm infants. However, until recommendations for neonatal 

standardized analytical methods are made, many fetal and neonatal studies use the 

recommendations of the Task Force [227], [228]. We followed this approach by using 

mainly the adult recommendations from the Task Force. Nevertheless, to account for 

the increased cardiorespiratory rates in preterm infants, we used two additional 

frequency-domain features, pHF1, and pHF2 [202].  

3.5.5 Future recommendations 

For a stable performance based on HRV features only and over a wide range in the 

preterm infant population, additional data is needed. For possible clinical application 

and a more holistic view on preterm infant sleep, the classification between all states 

should be considered. As earlier research showed good performance of respiratory 

analysis for sleep staging, we recommend using cardio and respiratory features in 

combination to achieve higher or more stable performance. Finally, as the R peak 

detection is essential for correct classification with HRV, we suggest to investigate 

and validate R peak detection algorithms specifically for preterm infants. 

3.6 Conclusion  

This study shows that using a nonlinear SVM classifier approach for HRV features 

provides good results for preterm infant sleep state analyses of AS and QS. While our 

findings cannot yet be seen as robust due to the limited population size, the classifier 

performance can compete with the literature [101], [111], [189]. Merging the different 

vital sign approaches, e.g., respiration [191] and activity [104] with HRV, will most 

likely lead to a robust, unobtrusive, and automated methodology for continuous 

preterm infant sleep monitoring. 

As we could show that machine learning, in general, is capable of preterm infant 

sleep classification, we want to examine if similar results can be obtained using only 

genuinely unobtrusive signal modalities. In the following chapter, we use capacitive 
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ECG in combination with machine learning to separate preterm infant sleep states. 

We also consider different machine learning algorithms and include all states into the 

classification task.  
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4 Use of unobtrusive ECG measurement for the 

use with machine learning 

This chapter is adapted from Jan Werth, Aline Serteyn, Peter Andriessen, Ronald M. Aarts, Xi 
Long. Automated preterm infant sleep staging using capacitive electrocardiography. Physiological 
Measurement; 40(5):055003, April 2019 © IOP Publishing 

4.1 Abstract 

To date, mainly obtrusive methods (e.g., adhesive electrodes in 

electroencephalography or electrocardiography) are necessary to determine the 

preterm infant sleep states. As any obtrusive measure should be avoided in preterm 

infants because of their immature skin development, we investigate in this chapter the 

possibility of automated sleep staging using electrocardiograph signals from non-

adhesive capacitive electrocardiography. Capacitive electrocardiography data from 

eight different patients with a mean gestational age of 30 ± 2.5 weeks are compared 

to manually annotated reference signals from classic adhesive electrodes. The sleep 

annotations were performed by two trained observers based on behavioral 

observations. Based on these annotations, the classification performance of the 

preterm infant active and quiet sleep states from capacitive electrocardiography 

signals showed a Kappa value of 0.56 ± 0.20. Adding wake and caretaking into the 

classification, a performance of Kappa 0.44 ± 0.21 was achieved. In-between sleep 

state performance showed a classification performance of Kappa 0.36 ± 0.12. Lastly, 

a performance for all sleep states of Kappa 0.35 ± 0.17 was attained. Capacitive 

electrocardiography signals can be utilized to classify the central preterm infant sleep 

states, active and quiet sleep. With further research based on our results, automated 

classification of sleep stated can become an essential instrument in the future intensive 

neonatal care for continuous brain maturation monitoring. Especially, being able to 

use capacitive electrocardiography for continuous monitoring is a significant 

contributor to reducing disruption and harm for this extreme fragile patient group. 
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4.2 Introduction 

Preterm infant sleep is strongly connected to brain maturation. A more in-depth 

explanation of the importance of sleep on brain maturation and the classification of 

sleep in preterm infants is reviewed in the introduction of this thesis. As a short 

refresher, sleep in newborns can be separated into three sleep states, active sleep (AS), 

quiet sleep (QS), and intermediate sleep (IS) and wake and/or caretaking. AS is known 

to activate neural activities and is essential in synaptogenesis of the neural 

interconnections. AS is the most dominant state, with around 70% of the total sleep 

time in the first weeks after birth. During QS, neural activity is also seen but less than 

in AS. QS is mostly described as a resting or reenergizing state. Also, developmental 

errors are corrected during QS using the heightened brain plasticity of the preterm 

infants to reorganize the brain structure. In the preterm brain, the time spent in AS 

and QS fluctuates quickly and may be difficult to separate during the first weeks after 

birth. Many episodes cannot be explicitly allocated to one specific state, and therefore 

IS is more prominent at that early state in preterm infants. The distribution of the 

sleep states can be a biomarker of brain maturation.  

In clinical practice, sleep staging is mainly based on manually annotated 

electroencephalogram (EEG) and/or behavioral analysis. These practices are time-

consuming and not continuous. Therefore, several research groups work on 

automated sleep staging algorithms for preterm infants [101], [102], [110], [191], [229], 

[230]. To date, the research is mainly focused on EEG and electrocardiography 

(ECG) analysis. For both signal types, standard adhesive electrode settings are used. 

As mentioned in Chapter 2, all electrodes in contact with the fragile preterm infant 

skin are considered obtrusive [108], [183]. The epidermis of a preterm infant under 

32 weeks’ of gestation is only two to three layers thick with almost no protective outer 

skin. Disrupting the immature epidermis results in an increased risk of infection, 

healing, and scarring [107].  
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In this chapter, the focus is on the use of ECG measurements from capacitive ECG 

(cECG) electrodes to determine different sleep states in preterm infants automatically. 

It will be determined which R-peak detection method is superior for cECG analysis. 

Secondly, it will be investigated how well the previously used features perform in 

comparison to newly implemented features for AS and QS separation. Then, it will 

be investigated how multi-class classification performs comparing the use of the ECG 

and cECG signals. Finally, we examine the difference in the successfully used features 

for the ECG and cECG classification. 

4.3 Methods 

4.3.1 Population 

In this retrospective study, eight stable preterm infants born with a mean gestational 

age (GA) of 30 ± 2.5 weeks were analyzed. These are not the same patients as 

researched in chapter 3. They were studied at a mean postmenstrual age (PMA) of 32 

± 2.6 weeks. More details can are presented in Table 11. The patients had a mean 

birth weight of 1652 ± 565 g. They were admitted to the neonatal intensive care unit 

(NICU) of the neonatal department at the Máxima Medical Center Veldhoven, The 

Netherlands. Ethical approval was given by the medical ethical committee of the 

hospital; written consent was given by the patient’s parents. 

Table 11 Patients weight, gestational age [GA], and postmenstrual age [PMA]. 

Patient Weight [g] GA [wk; d] PMA [wk; d] 
1 1606 30; 3 31; 2 
2 2410 33; 6 34; 3 
3 1160 27; 3 29; 0 
4 1845 31; 5 34; 6 
5 1840 30; 3 31; 1 
6 1420 29; 2 30; 4 
7 1110 27; 0 29; 1 
8 755 33; 2 34; 5 
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4.3.2 Annotations 

The data was annotated by two trained observers based on 30s epochs adhering the 

Prechtl system [197]. The observers used a reference ECG time series and video 

information for annotation. Their adapted annotation style was tested in another trial 

and proven to be on par with gold standard full PSG annotations [231]. They 

annotated the following states: AS, QS, IS, wake, caretaking, and unknown (unable to 

annotate). The total duration of annotated data was 40 h (4850 30s epochs) with a 

mean duration per patient of 5.2 ± 1.3 h (630 ± 157 30s epochs). The overall 

distribution of state was: AS: 62.7%, QS: 8.2%, IS: 13.7%, wake: 2%, caretaking: 

11.4% and unknown: 1.9%. The mean interrater reliability was high with Kappa of 

0.70. The highest agreement was found in AS, QS, and caretaking with a Kappa of 

0.75, 0.74, and 0.71. Caretaking was not perfectly agreed on mainly due to some 

difficulties in determining the exact beginning and end of the caretaking procedure. 

While the differences were found mainly in-between states with different start and 

duration of the transition state resulting in a Kappa of 0.59. Wake was agreed on with 

a Kappa of 0.69. After clarifying differences in concordance with a third trained 

annotator, the observers reached consent. The concordant annotations were used for 

further analysis. As a reminder, the Cohen’s Kappa statistic defines a score below 0.41 

as poor, over 0.41 as moderate, over 0.61 as substantial, and over 0.81 as almost 

perfect [232]. 

As preterm infants are mostly awake during caretaking periods, generating very 

similar signal structures, the labels caretaking and wake were merged under the label 

caretaking + wake (CTW). 

4.3.3 Data recordings 

For each infant, ECG, cECG, and videos were recorded in three to five sessions 

within one week. The reference ECG was recorded with three standard leads via a 

Philips Monitor (Intellivue Mx800, Germany) at a sampling frequency of 500 Hz. The 
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cECG sensors were connected to a data acquisition system (DAQ) system. The cECG 

data were recorded at 8 kHz, then downsampled to 500 Hz. The videos were recorded 

with a standard, medium resolution, grayscale camera. The camera was mounted 

either for facial view or total body view. All signals were time-synchronized to the 

video recordings.  

4.3.4 Capacitive ECG 

To obtain the cECG, a special incubator mattress with eight capacitive sensors was 

used. The electrodes were connected to the DAQ. The top layer of the mattress itself 

was made out of conductive material to function as a reference to the eight capacitive 

electrodes (Figure 28 and Figure 18). The mattress was covered with a polyurethane 

cover to withstand fluids (e.g., urine) and for easy cleaning and disinfection. The 

polyurethane layer was then covered with a cotton bed sheet for comfort and to 

reduce the triboelectric effect appearing on both electrodes types [233]. The 

triboelectric effect creates an electric charge when friction is applied between two 

different materials, e.g., due to the movement of the neonate, and is not the signal of 

interest but rather an artifact. The baby should be positioned as to cover both, at least 

a part of the sensors array and a part of the reference electrode. The position (supine, 

side, prone) does not influence the heart rate determination but changes the shape of 

the ECG signals. To provide further comfort, the neonate was placed on the mattress 

in a cotton snuggle. 

A vectorcardiogram and its projection on the Einthoven leads [234], were 

constructed from the raw data after a channel selection process. Before the channel 

selection, neutralization was used on the analog signal eliminating the input 

impedance of the sensor amplifier to reduce motion-induced noise [235]. The channel 

selection process first ranked the channels by its coupling factor between sensors and 

body. The coupling factor was determined by injecting a low-current1 kHz, whose 

signal amplitude decay is proportionate to the coupling into the electrodes [236]. 

Secondly, bad channels, i.e., those with a variance higher than a certain threshold,  
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were eliminated. For details about the channel selection, we refer to Atallah et al. 

[107]. The ECG was then reconstructed from at least three selected channels [237].  

The signals from the selected channels were first down-sampled, and a bandpass filter 

of 3 to 35 Hz was applied, thus removing all frequency components outside the 

(dominant) ECG band, e.g., the well-known 50/60 Hz common-mode interference 

was rejected. To subtract the common mode, which is significantly affected by people 

walking by, the signals were averaged, and the average signal subtracted from each 

channel signal. 

4.3.5 R peak detection 

To analyze the heart rate variability (HRV) from the cECG, R-peak detection, and 

normal-to-normal beat (NN) interval determination is very important. Slight 

variations in peak detection would introduce false sleep staging as the difference 

between the sleep states is only minimal. In this paper, we compare two R peak 

detection methods to determine which yield better results for the presented data. One 

 

Figure 28 Incubator mattress with eight capacitive sensors and a conductive cover material 
acting as the reference electrode. The mattress would be protected with a polyurethane 
cover to withstand fluids (e.g. urine) and for easy cleaning and disinfection. 
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method is from Wijshoff et al. [200] and a second from Rooijakkers et al. [238]. The 

algorithm from Wijshoff et al. was not initially intended for preterm infants but was 

confirmed to be working well in this patient group [229]. Rooijakkers’ method was 

created and confirmed for fetal monitoring. Wijshoff et al. calculated the first 

derivative of the ECG signal to search for the steepest ascent and descent of the QR 

and RS slopes. A variable threshold was applied to detect the peaks in the QRS 

complex. They then used a sub-peak detection to verify the peak position at the real 

max by interpolating around the found peaks. The sub-peak detection assured that 

there is no shift from the real peak due to off sampling. Rooijakkers et al. band passed 

the ECG signal locally with the use of time-discrete continuous wavelet transform 

with the peak wavelet frequency centered in the 10-25 Hz frequency band. They then 

segmented the ECG signal to obtain one QRS complex per segment. Those segments 

are run through a variable threshold to find the R peaks within a set time window, 

which is based on the previously found R peak.  

 

Cross-correlation was determined between the HRV signal created from the 

ground truth ECG and the cECG signal for each R peak detection method. The 

features for sleep state classification were created for both methods, and the 

classification performance was compared using the two different methods. 

4.3.6 Features 

To be able to separate the different states, in total, 34 ECG and HRV features in 

the time, frequency, and non-linear domain were determined. The features were 

calculated on the base of 300s windows centered on 30s epochs. The features are 

calculated for each 30s epoch and averaged over the corresponding 300s window. An 

overview of all used features can be found in Table 12. 

For the HRV, the needed ECG R-peaks are fundamentally non-equidistant in time. 

To avoid resampling the RR signal, and thereby introducing extra parameters, the 

Lomb-Scargle algorithm was applied to generate the frequency spectrum [203]. As a 
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base, a set of existing HRV features are reused, which were introduced in Chapter 3. 

These are linear HRV features focusing mainly on direct representation of changes in 

the para-/sympathetic nervous system expressed in cardiorespiratory changes. To 

refresh, for the two preterm infant features pHF1, and pHF2, introduced in Chapter 

3, the frequency band was extended based on adult sleep staging to 0.45-0.7 Hz for 

pHF1 and 0.7-1.5 Hz for pHF2, and then the spectrum power in these two bands was 

computed. 

To investigate the movement induced noise (e.g., body movement artifacts) of the 

capacitive electrodes, features calculated directly from the ECG signals (ECG and 

cECG) were introduced. Movement artifacts can be a direct and indirect indication 

for certain sleep states. Beats per epoch (BpE) counts the R peaks in an interval of 

300s. Line length (LL) and mean LL (aLL) calculates and averages the length of the 

ECG time series signal over a window of 300s. Also, the standard derivation is 

calculated over LL (SDLL) and aLL (SDaLL) in 300s windows. The LL is calculated 

with linear piecewise approximation using numerical integration for each segment of 

30s to calculate the arc length, which is then summed up over 300s epochs to gain the 

cumulative chordal distance. 

Kommers et al. [208] designed two new features specifically for preterm infants to 

capture regulatory changes during kangaroo care: the percentage of HR decelerations 

(pDec) and the magnitude of HR deceleration (SDDec). The two features indicate 

how many HR decelerations occur and the extent of those decelerations. They 

showed that pDEC and SDDec are strongly affected by kangaroo care, supporting 

that HR decelerations are a consequence of the autonomic nervous system response. 

Thereby, these features are expected to be influenced by sleep state changes. 

Lucchini et al. [220] suggested that non-linear sample entropy (SE) and quadratic 

sample entropy (QSE) describe the preterm infant autonomic response. As the 

autonomic response is directly linked to the sleep states, those non-linear features 

were incorporated. In the literature, it is described that the standard value for the 
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tolerance parameter r of 20% times the standard derivation is not accurate enough 

anymore, especially in preterm infants where instabilities are the norm [239], [240]. 

Therefore, the SE was calculated on an adaptive tolerance parameter r. The embedded 

dimension m was fixed to 2 following [220], [239]. The r-value per epoch was 

determined by calculating the SE over a range of r from 0.05 to 0.3 times the standard 

derivation (SER) for 300s epochs, which also includes the standard value for r. The 

calculation to find the optimal r-value was done as described in the following points:  

 Calculate SE over a range of r values (SER). 

 Generalize the SER curve by low pass filtering (e.g., moving average). 

 Find drop off/turning point of the SER curve where the amount of 

matches increases and entropy decreases. 

 Find the minimum value of the SER curve. 

 Calculate the mean SE value between the SER curve turning point and the 

minimum value. 

 Find the r with the closest entropy value to the calculated mean r-value in 

the original SER curve. 

In addition to SE and QSE, another fluctuation measure was calculated: the Lempel-

Ziv complexity measure (LZ) for the ECG (or cECG) and corresponding HRV signal. 

With LZ, the different signal structure is measured using the ECG (or cECG) and 

HRV time series as analytic signals. The LZ is more prone to signal length than SE 

and QSE, but when used on a fixed time window, the effect will not have any 

influence on the calculated LZ values. Another novel feature is the sample entropy 

area under the curve (SEAUC). Here the previous calculated SER curve is extended 

to a range of r of 0.1 to 20, creating a longer tail. Then the curve is integrated to show 

the difference between the curve shapes for different sleep states. With a higher 

entropy in the signal, matches are found later with a higher tolerance r, shifting the 

drop off/turning point and thereby the AUC value. 
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Table 12  Overview of the used ECG and HRV features for classification. 

NR Feature 

[unit] 

Description 

0 BpE [count] Beats per Epoch  

1,2 LL, aLL [mV] Line Length / mean Line Length 

3-6 NNx [count] The number of pairs of successive R-
R intervals that differ by more than 
10, 20, 30 or 50 ms of a defined 
window length. 

7-10 pNNx [%] The proportion of NNx divided by 
the total number of R-R intervals of 
a defined window length. 

11 RMSSD [ms] Root mean square of successive 
differences between adjacent R-R 
intervals of a defined window 
length. 

12 SDALL [mV] Standard derivation of averaged line 
length 

13 SDANN [ms] Standard Deviation of averaged NN 
intervals 

14 SDLL [ms] Standard derivation of line length 

15 SDNN [ms] The standard deviation of normal to 
normal R-R intervals of a defined 
window length. 

16 HF [ms2] The power of the high-frequency 
band between 0.15-0.4 Hz of a 
defined window size. 

17 HFnorm [%] HF power in normalized units 
HF/(Total Power-VLF) x 100 

18 LF [ms2] The power of the low-frequency 
band between 0.04-0.15 Hz of a 
defined window size. 

19 LFnorm [%] LF power in normalized units 
LF/(Total Power-VLF) x 100  

20 LF/HF [n.u.] Ratio LF/HF 

21 pHF1 [ms2] The power of the high-frequency 
band between 0.4-0.7 Hz 
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22 pHF1norm 
[%] 

pHF1 power in normalized units 
pHF1/(Total Power-VLF) x 100 

23 TotPow [ms2] Total power or variance of NN 
intervals of a defined window size. 

24 pHF2 [ms2] The power of the high-frequency 
band between 0.7-1.5 Hz 

25 pHF2norm 
[%] 

pHF2 power in normalized units 
pHF2/(Total Power-VLF) x 100 

26 VLF [ms2] The power of the very-low-
frequency band between 0.003-0.04 
Hz of a defined window size. 

27,28 SEN, QSE 
[n.u.] 

Sample entropy / Quadratic sample 
entropy 

29 SEAUC [n.u.] Sample entropy area under the 
curve 

30 pDEC [%] The percentage of HR decelerations 

31 SDDec [ms] Magnitude of HR deceleration 

32,33 LZNN [n.u.],  
LZECG [n.u.] 

Lempel-Ziv complexity measure on 
HRV and ECG 

 

4.3.7 Preprocessing 

Before feeding the features to the learning routine, preprocessing steps were 

performed. The data were first normalized per recorded session using the Python 

scikit-learn standard-scaler and Min-Max-scaler for comparison [212]. Selected 

features were averaged per session with a moving average using different window 

lengths. As the data was highly unbalanced, the Synthetic Minority Over-sampling 

Technique (SMOTE) [241] and Adaptive Synthetic Sampling Approach (ADASYN) 

[242] were applied to increase the number of data points for more stable and 

generalized learning. To be able to distinguish non-linear and inter-feature 

correlations and to increase linear and non-linear separability of the sleep states, 

feature transformation was applied to elevate the feature space to a higher dimension. 
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A second-order polynomial feature transformation and radial basis function kernel 

(RBF) were used with gamma grid search between 0.001 and 10 to transform the 

selected features. The polynomial function for feature x results in a new feature set: 

x, x²,x*y, y, y², …, x*n, n, n². The polynomial feature transformation is used to 

generate a new feature space including feature interactions. For the selected features, 

the quadratic and mixed features were kept. The additional created features n and n² 

were removed as only the transformation of the selected feature x is of interest. The 

not intended feature transformation n and n² in the new feature space of x could lead 

to overfitting and redundant information, which can result in decreasing classification 

performance. If n or n² is generating valuable information, n should be selected 

separately for transformation. Then also n*x should be removed as it is already 

included in the transformed feature space of x.  

Further, the input parameters were averaged with a moving window. The size of the 

moving window was chosen between 0 and 50 30s epochs to incorporate short and 

long-term averaging factors.  

The data was separated into training, validation, and test sets, split by patients to be 

used later in a leave one patient out cross-validation (LOOCV). The validation set is 

used during the training phase to update the parameters. The test set is kept aside to 

perform an unbiased test on never seen data after the training is finalized. As the data 

set is small, a classic data splitting based on a fraction into training, validation and test 

set could not be performed as it would have introduced bias and lead to overfitting 

on the classifier side. To avoid bias and overfitting, it was chosen to split the data 

between patients to assure that the validation and especially testing set represents 

unseen information. In the next step, a classifier is empirically chosen for each class-

set. The classifier is fed with its parameters and preprocessed data. Following, the 

performance is validated with LOOCV, and the classifier parameters and 

preprocessing are adapted to optimize the classification performance. 
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4.3.8 Selection path strategy  

As only a small group of patients was available with an unbalanced state distribution, 

a selection path model for each state was implemented. The goal is to increase the 

multiclass classification performance by separating the classification in smaller sub-

classification problems, which can be optimized with the use of a wrapper, including 

data preprocessing, different classifiers, feature selection, and parameter tuning. Also, 

by creating those intermediate classifications, it can be determined which factors 

influence the classification of a particular state. The final target is a full class 

classification. Using intermediate steps until full class classification, the classification 

was separated into smaller groups of classes to identify the classification performance 

for individual state groups: AS-QS, AS-QS-IS, AS-QS-CTW. The classification of 

each state-group focuses on a sub-state-group composed of one minority state (QS, 

IS, CTW) and the majority state AS, e.g., AS-QS out of AS-QS-IS. Within the 

wrapper, the chosen classifier, feature selection, and parameters were individually 

optimized for each of the sub-state-groups. Each sub-state-group classification results 

in a prediction. Later, the wrapper merges the sub-state-predictions under a ruleset to 

a final prediction per state-group as wrapper output (Figure 29). The ruleset is such 

constructed that if AS, as the majority state, is below a minimum probability 

threshold, the state with the highest probability among the minority states is chosen. 

This ruleset is performed for each class-set probability output, which is optimized for 

a specific minority state. The minimum probability threshold is determined via a grid 

search. The class-set optimization uses the F1 score on the validation sets. The 

implemented probability cut off for AS is used to limit the influence of the majority 

class AS. Finally, the class-set optimized predictions are merged. Upper and lower 

probability ruling thresholds decide which sleep state is chosen for the final class 

prediction per epoch. The whole process is assessed by evaluating the final sleep state 

identifications from the test set against the annotations using the Kappa score (κ) 

[232]. 
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Figure 29 Overview of the multi-classifier approach. In the first step, parameters for each class 
are selected separately which are then fed to a chosen classifier. The classifier predictions for 
each state are merged into a single prediction using the state probability for each epoch. The 
merging uses a ruleset using the probabilities per class-set to decide on the final state 
prediction. The outcome are joint state/label predictions. 
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4.3.9 Classification  

Five different classifiers from the Python scikit-learn library [212] are used for the 

wrapper to choose, which are decision tree (DT), RBF kernel support vector machine 

(SVM), random forest (RF), extra tree random forest (ERF) and gradient boosting 

(GB) [243], [244]. The classifiers’ input parameters are specific for different kinds of 

classifiers. The adapted input parameters for the tree learners DT, RF, ERF were the 

number of trees, the measure of branch splitting quality, the depth of the tree, the 

minimum amount of samples representing a leaf node, and the minimal number of 

samples allowing for a split. Also, the GB tree can be run with logistic regression or 

AdaBoosting loss function. Another parameter is the learning rate (also shrinkage or 

eta), which corrects for prediction errors from the existing trees by weighting each 

tree contribution. The SVM needs the misclassification penalty parameter C and the 

hyperparameter gamma, which is determining the influence of the support vector on 

the class decision. Both parameters were found with a pre-grid search, including all 

features, to find the overall optimal values. As a starting point, the values 3 for C and 

3.8 for gamma were used as good balance between speed and accuracy without losing 

generalization properties. 

4.3.10 Feature selection and parameter determination 

To choose the right feature set and classifier parameters for each separate sleep state 

classification, an adapted greedy-bi-directional (backward and forward) search was 

implemented. In the first step, all features are fed into the system without any 

dimension expansion (by feature transformation). After classification on the 

validation set, the feature importance is determined in the first validation run, and the 

best features are boosted with dimension expansion and/or the worst features can be 

removed. The classification performance is determined, and the feature 

transformation and/or the feature removal extended or reversed. The process is 

repeated until the performance on the validation set does not increase any further in  
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Figure 30 The flow diagram shows how the Features are selected. At start all features are used 
without dimension expansion like n order polynomial or the Radian Bases function. After 
classification with a chosen classifier, the most important featured are transformed to increase 
their class distinction. The least important features can be dropped. A best first greedy approach 
was used to adapt the parameters with the chosen features. The parameters can be found in Table 
14. This is continued until the performance does not increase anymore. 
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the third decimal place. As the combinations of different parameters, classifiers, and 

chosen/ boosted features are extraordinary, this selection was not executed via an 

automated exhaustive grid search but partially manually with experimental alteration 

of feature selection and best first greedy search for parameter optimization. An 

overview of the adapted parameters can be found in Table 14. A simplified overview 

of the whole process can be seen in Figure 30. 

4.4 Results 

4.4.1 R peak coverage comparison for ECG and cECG 

The R-peak intervals for the normalized ECG and cECG signals were determined 

per session, and the cross-correlation was calculated to see how well both signals align 

with their reference counterpart. The overall mean correlation per patient using the 

R-peak detector by Wijshoff et al. is 0.63 ± 0.04. The method of Rooijakkers et al. 

shows a slightly increased correlation of 0.692 ± 0.22 between the cECG and ECG 

R peaks. The discrepancy between the R-peaks detected from cECG, and the ECG 

mainly comes from the different impact of noise on the signal. Noise removal 

treatment did not enable reliable R peak detection and was therefore left out to avoid 

the creation of false signal episodes regarding R peak detection. Episodes, where the 

preterm infant was lying still and covering the electrodes, generate good ECG signals 

for peak detection (Figure 31). 

For other episodes, the signals were corrupted with noise similar to the ECG in 

composition but without actual R-peaks (Figure 32), creating partly false R-peak 

detections. Nevertheless, using one or the other R-peak methods does not show any 

significant impact on sleep staging performance. To create consistency with Chapter 

3, the R-peak method of Wijshoff et al. was used in this work. 
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4.4.2 Feature importance 

The 34 features have different importance regarding the different state classification 

and for the used signal type of ECG or cECG. Limiting the input on the most 

important features can reduce overfitting, by reducing decisions based on noise, and 

increase accuracy by removing misleading data. The feature importance is determined 

 
Figure 31 ECG and capacitive ECG (cECG) simultaneously recorded. The ECG signal is more distinct 
but the cECG shows good potential for R-peak detection. For a more discriminable display of 
signals, the cECG is plotted with an amplitude offset. 

 
Figure 32 This image shows a cECG signal which can easily be mistaken by the R-peak detector 
for a signal with QRS complexes modulated with noise. The R- peak detection is not working 
properly on such epochs resulting in decreased correlation between ECG and cECG HRV signals. 
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using the Random-Forest feature importance function. In Figure 33 and Figure 34, 

the feature importance for each sub-classification used for classification, including all 

states, are displayed. The features are displayed before feature transformation to 

recognize which main feature types are of key importance. To identify which feature 

types are important for ECG and which for cECG, the overall important features per 

signal are listed below. Overall important features are features exceeding for at least 

two subsets the threshold of 3.4% from the total distributed importance, which sums 

up to a total of 1. The threshold was found by a sweep analysis resulting in the highest 

performance based on the ECG features. These features are listed in Table 13 per 

used state-groups and signal type. Here, only the last state-group AS-QS-CTW-IS 

corresponds to the displayed Figure 33 and Figure 34. 

 

 
Figure 33 Feature importance for each class-set sorted after AS-QS most important features 
using the cECG signal. This figure represents the feature importance for classifying between AS, 
QS, CT/W and IS (state-group). Each of these feature sets was used to classify specifically 
focused on one class-set to later merge the predictions. The threshold determines which 
features are deemed as important. For the overall importance per state-group, features that 
exceeds the threshold for at least two sets are chosen. 
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Table 13  Overview of most relevant features for classification per state-group. 

State-group Signal  Features 

AS-QS 

ECG 

 

LF, SDANN, LZNN 

cECG 

 

LL, aLL, SDANN, LZECG, SDLL, SEAUC, 
LZNN 

AS-QS-CTW 

ECG 

 

BpE, LZNN, SDANN, HF, pHF1, LF, 
SDLL, SDNN  

cECG 

 

SDLL, SDaLL, LL, ZECG, aLL 

AS-QS-IS 

  

ECG 

 

SDANN, BpE, LF, totpower, pHF2, 
pHF2norm 

cECG 
 

SDLL, LZECG, LL, SDaLL, aLL, LZNN, 
SEAUC 

AS-QS-CTW-IS 
ECG 

 

LZNN, BpE, LF, pHF1 

cECG 

 

SDLL, LZNN, SDaLL, aLL, SEAUC  

 

 
Figure 34 Feature importance for each class-set sorted after AS-QS most important features 
using the classic ECG signals. Framework same as in Figure 33. 
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4.4.3 Parameter selection 

The used parameter values varied for each task. Depending on the state 

combination, bi- or multi-state classification, and the used dataset, the performance 

changed based on the used parameter combination. The used parameter ranges can 

be found in Table 14. Feature groups were left out in the averaging step or polynomial 

transformation. Also, not all features were always used (See Table 15). 

The parameters are presented in ranges as presenting all combinations in detail 

would exceed the purpose of this Chapter and would not benefit the reader as the 

specific parameter values are tied to the here used datasets.  

Table 14 Parameter overview. 

Parameter ranges used in different combinations per task. The parameters were adapted in the 
process shown in Figure 30. 

Parameter Range 

Length of the moving window for 
averaging  

None – 60 epochs on 
selected features 

Estimators/Trees 80-500 

Min. sample leave 2-5 

Split criterion Gini or Entropy 

Probability Threshold for the 
majority class 

0.65-0.9 

Polynomial transformation See Table 15 

Used features See Table 15 

 

4.4.4 Capacitive vs. classic three lead ECG 

To identify the sleep states in a genuinely unobtrusive manner, a cECG system was 

used to capture the ECG and HRV. Looking at AS and QS only, the analysis resulted 

in a κ of 0.42 ± 0.26; 0.49 (mean κ ± std; cumulative pooled κ) for the ECG and a κ 

of 0.56 ± 0.20; 0.51 for the cECG. The performance changed when more sleep states 
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were added to the classification task. A performance overview of the following κ 

values can be found in Figure 35 and Table 15.  

Next, the CTW states are added to the classification task. Due to the low amount 

of wake but the similar physiological state (being awake, increased heart rate, increased 

number of noise), both states are merged. Adding CTW to be differentiated from AS 

and QS, the performance for both signal types, ECG and cECG, reduces. The 

classification using the ECG signal leads to a performance of κ 0.30 ± 0.12; 0.32. 

Using the cECG signal, the performance resulted in κ of 0.44 ± 0.21; 0.41. Trying to 

differentiate between AS, QS, and IS based on the ECG signal, a performance of κ 

0.23 ± 0.15; 0.29 was achieved. Using the cECG signal here, the performance reached 

κ 0.36 ± 0.12; 0.34.  

 

 

 
Figure 35 Classification performance for the ECG and the cECG for each class-set with mean κ ± std 
and cumulative pooled κ. Also displayed is the performance using the reduced set, were two 
outlying patients were excluded. The results from the reduced sets are labelled with the extension 
red. 
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Table 15  
Mean kappa performance and used Features per dataset and per class-set. Feature index used as 
in Table 12. Features in bold were transformed.  

Task Signal Selected features Performance [κ] 

AS |QS ECG 0,..,5,7,11,..,16,18, 
19,21,..,25,30,32,33 

0.42 ± 0.26 

 cECG 0,..,5,7,11,12,14,17, 
19,20,22,24,..,29,32 

 

0.56 ± 0.20 

AS | QS | IS ECG  0,..,21,22,23,24,..,33 0.23 ± 0.15; 

 cECG 1,2,3,6,7,10,..,19, 
21,..,29,32,33 

 

0.36 ± 0.12 

AS | QS | CTW ECG 0,..,10,12,13..,18,21, 
23,..,26,30,..31,32,33 

0.30 ± 0.12 

 cECG 0,1,2,5,..,9,11..,18, 
20,..,29,32,33 

 

0.44 ± 0.21 

AS | QS | IS | CTW ECG 0,4,..,29,32 0.30 ± 0.18 

 cECG 1,2,4,5,6,7,10,11,12,14,15,..
,18,..,27,28,29,32 

0.34 ± 0.17 

 

When differentiating between all states, using the ECG a performance of κ 

0.30 ± 0.18; 0.23 was achieved. Using the cECG, the performance reached κ 

0.34 ± 0.17; 0.33. Each classification used different input parameter values found via 

grid search and manual extraction. As those parameters are specific for the here 

presented data, it was chosen not to present the single parameter values. The general 

concept, use of the parameters, and selection method were described before. 

To determine the maximum performance, two main outliers were dropped. The two 

outliers were the patient's lowest in age and weight. Both patients were ventilated with 

continuous positive airway pressure (CPAP). For the ECG signal, dropping the 
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outliers did not bring any improvements except that the standard derivation stabilized 

on a lower value for the Kappa per patient. When dropping two outliers for the 

cECG, increased performance could be measured. The mean increase was κ of +0.04 

for the mean Kappa performance and κ of +0.07 for the cumulative performance 

measure. Reaching κ 0.59 ± 0.16; 0.59 for AS and QS classification, κ of 

0.49 ± 0.19; 0.49 for AS, QS, and CTW classification, κ 0.38 ± 0.16; 0.36 for AS, QS, 

IS classification and κ of 0.39 ± 0.14; 0.42 for all state classification. 

The feature sets used for the different class-set can be seen in Table 15. Those 

feature sets were used for all patient data and reduced dataset with excluded outliers. 

4.5 Discussion 

4.5.1 Annotations 

The ground truth annotations were also based on ECG signals, but mainly video 

observations were used for the manual sleep state annotations. Thereby, features were 

included in the annotations which are not captured by the ECG and subsequent 

cannot be analyzed, creating a general difference between the ground truth and the 

ECG/HRV approach. Unfortunately, the videos were not always of high quality 

regarding patient visibility. In few cases, the movements and breathing could only be 

seen passively through a moving blanket, and the annotators had to rely solely on the 

vital signs, knowledge of the sleep cycle, and their experience with the patient. 

Therefore, some annotations might be slightly distorted compared to the actual state. 

This circumstance is only noted for completion, as in our appraisal this slight 

distortion does not majorly affect the classification performance. 

Additionally, in the annotations, sections were found with very unlikely sleep state 

sequences. This led us to believe that the ground truth is, to some extent, not 

representing the actual situation and possibly leading to a minor decreased 

performance of the classifier.  
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4.5.2 Features 

By identifying the features that are most important for the classification, the 

standard time domain and frequency domain features are prevailing when using the 

ECG data. Low- and high-frequency features are prominent in almost all state-group 

combinations. Low frequencies are associated with baroreflex activities, and the high 

frequencies link to the parasympathetic system and respiratory activities. In contrast, 

the dominant cECG features represent more the general signal structure and account 

for noise and movement artifacts. We believe that this is due to the cECG being more 

sensitive to movements and therefore picking up the difference between small jitters 

and no movement expressive for AS and QS. CTW is mainly represented by 

movement artifacts and external noise from nurse handling, making this state more 

susceptive for noise/movement based features. 

It is known that respiration is a distinct indicator of sleep states. The respiratory 

sinus arrhythmia, known in adults, is not pronounced in preterm infants. Therefore, 

breathing might only be picked up through breathing motion artifacts rather than 

modulated ECG signals as in adults [245]. High-frequency features, which are linked 

to breathing activities, are seen as essential features with the ECG while in the cECG, 

the motion features dominate as they possibly resemble breathing stronger than the 

HRV frequencies. That breathing is picked up by the cECG system is quite likely as 

it is highly sensitive to movement artifacts.  

From the literature, we assumed that pDEC and SDDEC would have more impact 

on the classification, specifically for discriminating CWT [208]. Nevertheless, as their 

impact increases mainly in stressful periods, they are possibly distorted by the noise, 

which naturally appears during stressful periods (e.g., caretaking). Possibly, they will 

be more prominent in the ECG when more data is available, and distinct deceleration 

patterns can emerge.  
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4.5.3 Classifiers 

Trying different classifiers, the RF came out on top each time. Classifier benchmarks 

appear to be not representative in this case due to the low numbers of analyzed 

patients. However, we will attempt to discuss the probable causes of RF being 

superior in this case. In Chapter 3, we used the RBF kernel SVM successfully. As 

SVM, in general, performs very well on binary class problems, it was here confronted 

with multiclass classification where RF generally is suited better. SVM is known to be 

particularly good at dealing with outliers. As the data had two patients who were 

considered as outliers, SVM would be expected to perform better in this case. 

Nevertheless, RF can also handle outliers and in addition, tends to generalize better, 

creating a more stable model due to the randomization of data samples, especially on 

non-sparse data. Important is also that the RF needs much less parameter tuning than 

a kernel SVM. With the here chosen approach, many parameters fed into the system, 

which increased the calculation time. Hence, a more exhaustive parameter search for 

the SVM was not feasible, which possibly lead to suboptimal parameter settings and 

ergo performance.   

The same arguments hold for the RF versus the GB tree classifier, which needs well-

tuned parameters to outperform an RF approach. Choosing the RF decreases the 

chance of overfitting due to the parameter tuning to the dataset at hand. In contrast 

to an RF classifier, a GB tree learner aims to reduce the bias introduced by the use of 

shallow trees. For the RF, the bias is as high as the bias of the single sample trees and 

cannot be reduced. As our train and test sets are created based on patients, the bias is 

already significantly reduced, limiting the impact of the GB approach. Another benefit 

of using RF rather than SVM and GB is the robustness of RF against overfitting [246] 

by the random selection process. Overfitting can further be reduced by limiting the 

tree depth using min sample leaf and min sample split, which are adding more 

regularization.  
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The ERF performs similarly to the RF classifier. The waiving of bagging increases 

the performance of ERF over RF for large datasets. Nevertheless, here, the RF still 

outperformed the ERF slightly. For larger datasets, we would recommend looking 

further into ERF also because of the reduced calculation time compared to RF.  

4.5.4 Classifications 

Coming back to the classification results per state and the underlying rationale, the 

central sleep states AS and QS are mostly defined by the para/-sympathetic nervous 

system activities and its response to external triggers. When adding CTW or IS, the 

differentiation becomes more difficult, especially with such a small amount of training 

data. It can be seen in the confusion matrices that IS is falsely classified mostly as AS 

and some QS but least as CTW. Logically, those misclassifications rise from the IS 

definition as an in-between state. IS carries elements of all states and is not well 

defined regarding vital sign and observation boundaries. CWT is mainly misclassified 

as state QS or state IS. Those misclassifications seem to break ranks as it is expected 

that via the movement elements CWT would mainly be misclassified as AS. This is 

due to several reasons.   

First, CWT has the least training data, which results in decreased pattern recognition. 

Additionally, caretaking induces hugely varying patterns making it more difficult to 

train and re-identify on specific patterns. In the videos, it could be identified that 

between handling episodes during caretaking, the patient would show no signs of 

movement, possibly leading to a false classification as QS. Last, misclassification is 

linked to the way the predicted labels were joined under probability threshold rules. 

AS and QS state predictions are determined to focus on the minority class. Next, IS 

and CTW are joined under probability ruling, which can lead to those 

misclassifications. The miss-prediction of states in both steps means that there might 

be further room for optimization by adjusting the probability thresholds even further 

while they are already tuned in a fine balance accepting this tradeoff.  
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As the dataset is limited in the amount of data available for training, we removed 

two outliers to determine the performance on a somewhat regular patient group, even 

though regular is a rather inept term regarding preterm infants. We noticed that 

removing those outliers actually only impacted with the cECG. While investigating 

this matter, it was confirmed that the video quality was decent, and therefore, the 

video annotations could not pose the core problem. Most prominent is the fact that 

the two preterm infants with a poor performance were both 27 weeks GA in contrast 

to the others with 29 weeks GA and older. One of the two patients also had a very 

low birth weight of 755 g leading probably to very unstable general conditions. Also, 

the preterm infants with poor performance, which were partly excluded, had CPAP 

devices in use. This could indicate that the use of CPAP obscured the SNS control of 

the breathing. As the effect through the included outliers could only be seen in the 

cECG and not the classic ECG, sleep state alteration through CPAP can most likely 

be suspended. It seems more likely that the CPAP masks the actual breathing pattern, 

substantiating, again, the importance of breathing pattern analysis for sleep staging.  

With this small amount of data, the results cannot generally speak for preterm infant 

sleep classification but can draw a picture of the possibilities using the cECG and 

shows the impact of different factors on the classification such as ECG-features 

resembling breathing rhythm. We assume that using sole ECG signals will be on par 

with cECG when more data is available. Additional data will produce a more stable 

model for classification. The use of a min sample leave value of below 10 shows that this 

model is slightly tailored to this particular dataset. This does not lead to overfitting, 

but having little training data single epoch outlier has a more dominant impact on the 

classification performance. 

Furthermore, throughout this analysis, we included and excluded a variety of 

parameters impacting the classification performance. This manually back- and 

forward approach is predestinated for missing the superior classification paths by the 

wide range of tuning factors. Therefore, this approach would be better suited for a 

deep learning strategy, where complex and nonlinear cross dependencies are all taken 
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into account. Ansari et al. [247] showed the successful classification of QS in preterm 

infants using deep learning algorithms based on EEG signals. Unfortunately, for this 

preliminary study with limited data points, a deep learning strategy was outside the 

possible. In the next chapter, we will look into deep learning methods based on a 

larger dataset. 

In Summary, the bi-state classification is possible, especially for the majority classes 

AS and QS, which are the most important classes for an automated neural maturation 

monitoring. All state classification is, at this point, not feasible. More data is needed 

for a stable all-state classification. All state classification would be necessary for a 

holistic view of the patient's sleep and improved predictions of sleep cycles. 

4.6 Conclusion 

It was shown that cECG signals can be used for preterm infant sleep staging, 

separating AS and QS in an acceptable manner. However, analysis of all states, 

including IS, caretaking, and wake becomes challenging. Movement alone is a strong 

indicator/separator for preterm infant sleep states. Incorporating features reflecting 

movement may help to detect sleep-associated respiratory activities, as there exists a 

strong connection between breathing patterns and preterm infant sleep states. As this 

study included only a small number of patients, further investigations for more 

generalized and improved ECG based sleep staging algorithms should be started. 

AS multistate classification was not favorable due to the high dimensionality and 

complexity of the problem, we suggested looking into possibly better-suited deep 

learning approaches. In the following chapter, we examine different artificial neural 

network architectures and approaches for preterm infant sleep staging. 
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5 Deep learning approach for sleep state 

classification in preterm infants  

This chapter is adapted from Jan Werth, Mustafa Radha, Peter Andriessen, Ronald M. Aarts, Xi 
Long. Deep learning approach for ECG-based automatic sleep state classification in preterm infants. 
Biomedical Signal Processing & Control; 56:101663, February 2020 © Elsevier 
 

5.1 Abstract 

Preterm infant neural development is related to the distribution of their sleep states. 

The distribution changes throughout development. Automated sleep state monitoring 

can become a powerful aid for development monitoring in preterm infants. Three 

datasets, including 34 preterm infants and a total of 18018 30s, manually annotated, 

sleep intervals (sleep-epochs) were analyzed in this study. The annotation of sleep 

states includes active sleep, quiet sleep, intermediate sleep, wake, and caretaking. Four 

different recurrent neural network architectures were compared for two-state, three-

state, and all-state analysis. A sequential network was used to compare long- and 

short-term memory and gated recurrent unit models. Other network architectures 

were based on the popular ResNet and ResNext architectures utilizing residual 

connection for more depth. The most essential sleep states, active and quiet sleep, 

could be separated with a kappa of 0.43 ± 0.08. Quiet versus caretaking and wake 

showed a kappa of 0.44 ± 0.01. The three-state classifications of active versus quiet 

versus intermediate sleep resulted in a kappa of 0.35 ± 0.07 and active versus quiet 

versus wake and caretaking resulted in a kappa of 0.33 ± 0.04. The all-state 

classification was underperforming, probably due to difficulties in separating subtle 

differences between all states and a lack of sufficient training data for the minority 

classes. 
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5.2 Introduction 

Preterm infant sleep shows several distinct sleep states. They are defined mainly as 

AS, QS, and wake. In very preterm infants, sleep states may be rudimentary and show 

transitionary shifts from one to the other, often with patterns of both AS and QS, 

defined as intermediate or undetermined (IS) states [183]. AS is often compared to 

the adult REM sleep states because it shows similar increased neural activity [45], [52], 

[55], nevertheless, the role of preterm infant sleep states seems to be different. It is 

assumed that the sleep, the sleep states and the sleep cycles of the fetus, preterm and 

term infants all play an essential role in the sensory and cortical development [180], 

[181], [248]. Initially, AS is providing stimulation to the newborn brain in a sensory-

reduced environment triggering the development of brain regions with reduced 

sensory input [55]. Furthermore, during AS, the development, integration, and 

alignment of specific neural tasks/regions into the cortex structure is taking place. 

During QS, it is reasonably assumed that developmental errors are corrected, and 

reorganizations are conducted with the use of increased brain plasticity. During QS, 

the parasympathetic nerve activity is dominant, blood pressure and heart rate are 

lowered and, therefore, often seen as the resting and re-energizing state [66], [248].  

AS sleep is dominating the sleep cycle of preterm infants with about 80% of the 

total sleep time at early gestational birth. QS is seen as the minority state, with about 

18% of the total sleep time. The distribution changes in the course of development 

with decreased AS and increased QS [39], [40], [43]. The states can be observed by 

differences in many electrophysiological signals, such as vital signs (e.g., heart rate and 

respiratory rate), movement, and EEG activity. During active sleep, increased cardio-

respiratory activity and increased motor activity with sporadic eye movements can be 

observed. During QS, all cardio-respiratory activities are lowered in amplitude and 

dynamic range [43], [46], [183].  

From our experience, at present, manual, sporadic sleep annotation is still the 

clinical standard for sleep classification and analysis. Continuous and automated 
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monitoring of sleep in newborns may provide clinical decision support by optimizing 

the workflow of the caretakers, avoiding disruption of AS/QS and, most importantly, 

to better safeguard the preterm infant´s developmental process. To provide such a 

monitoring system in a NICU setting, no additional sensor(s) should be introduced. 

Therefore, the system should concentrate on already existing, continuously monitored 

parameters such as ECG. To date, the most successful approaches regarding preterm 

infant sleep monitoring are using EEG signal analysis [101], [247]. Unfortunately, 

EEG and even the reduced Amplitude integrated electroencephalography (aEEG) 

have to introduce additional sensors to the routinely used monitoring solutions, such 

as ECG, to enable sleep monitoring. As the preterm infant skin is highly sensitive 

with only three layers thick epidermis and almost no outer protective skin layer [107], 

[108], [183], additional electrodes should be avoided and EEG/aEEG is not used for 

a regular and continuous solution at this point. To overcome these limitations 

motivated us to investigate ECG regarding preterm infant sleep monitoring. Further 

motivation for the use of ECG as a signal modality is the fact that ECG can also be 

obtained unobtrusively, with, e.g., capacitive ECG [249], and could thereby be utilized 

for a future non-contact sleep monitoring solution. 

5.3 Related work 

Machine learning opens up the possibility of creating an automated algorithm based 

only on ECG. In the adult sleep research, machine learning algorithms have already 

been successfully used [194], [195]. Radha et al. [250] compared several machine 

learning methods such as random forest and ensemble SVM to show promising real-

time EEG sleep analysis. Further, full PSG analysis [68], [251], and unobtrusive 

actigraphy methods [252] were investigated for adult sleep state separation.  

Sleep analysis for preterm infants is more difficult as the states are less 

distinguishable. Nevertheless, machine learning for automated EEG [101] analysis, 

ECG for sleep vs. wake [189], and HRV for sleep states analysis [229] have been 
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investigated, demonstrating the potential of machine learning for preterm infant sleep 

state classification.  

A step further in the automated analysis is the use of artificial neural networks 

(ANN), and respectively, deep learning [253]. The advantage of ANNs over more 

traditional machine learning is that ANNs can learn richer representations and model 

complex non-linear relationships. This is of specific importance when dealing with 

human data as there appear many nonlinear and complex relationships between the 

in- and output. In addition, ANNs are easy to change in their architecture to adapt to 

the complexity level of the problem at hand. Also, ANNs are non-parametric models 

that have the advantage over parametric models that any given input distribution can 

be learned without prior knowledge. This comes especially in handy when multi-

source input features are used with unknown or different distributions. Furthermore, 

convolution derived features could, in theory, be superior in separating sleep stages 

than handcrafted features based on ad-hoc decisions such as thresholds, filter cutoffs, 

or similar approaches. The latest development in ANN originated specific units for 

time series analysis in recurrent neural networks (RNN) [253], the long short-term 

memory (LSTM) [254], and gated recurrent unit (GRU) [255]. Those are specifically 

designed to find patterns in time, such as sleep architecture, to generate improved 

performance. As the development focuses currently on ANNs, more groundbreaking 

renovations, also benefitting sleep analysis, might be expected in the future. The 

application of ANNs to the topic of sleep classification is on the rise. In 2017, Bishwal 

et al. [256] presented the annotation tool SLEEPNET using a large dataset to train a 

deep RNN reaching human-level annotation performance. During the same period, 

Chambon et al. [257] published the implementation of an algorithm that is 

independent of crafted features using convolution in combination with spatial 

filtering for classification. A similar approach was chosen by Supratak et al. [258] using 

an ensemble of convolutional neural networks (CNN) and RNN networks to be able 

to classify sleep from raw EEG data. At the beginning of 2018, Olesen et al. [259] 

presented an approach with an adapted model using transfer learning from the 
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ResNet50 architecture. In the following, Sano et al. [260] used long- and short-term 

memory (LSTM) classifier to identify wake versus sleep from multimodal data. One 

of the most recent publications on the topic from Radha et al. [261] used LSTM 

classifier to classify sleep from HRV features, overcoming the temporal limits of non-

temporal models. Also, they used transfer-learning to enable the utilization of other 

signals (here photoplethysmography) with the same trained model enabling different 

application areas.  

Sleep classification in adults is well handled with deep learning, less studied in 

preterm infants. So far, Ansari et al. [247] are the first to implement a CNN network 

for preterm infant EEG signals successfully. This chapter tries to investigate the 

possibility of using an RNN approach for the more difficult preterm infant sleep 

classification. We hypothesize that with deep learning algorithms which incorporate 

time-domain analysis, such as with RNN architectures, preterm infant sleep states can 

be classified in an acceptable accuracy only based on ECG features. We predicate this 

hypothesis on the base that ANN networks are distinguished on analyzing highly 

complex systems which are influenced and dependent on multi-system factor 

interrelations. And preterm infant sleep is such a multi-factor influenced system. 

Generally, ANNs should outperform classic machine learning methods; however, 

based on limited data in this study, we believe that our ANN approach will perform 

equally to previous machine learning methods but having overall greater potential.  

5.4 Methods 

5.4.1 Population 

Datasets from three retrospective studies were combined. These datasets comprise 

the data used in chapters 3 and 4 (with one new patient) and an additional unseen 

dataset of 17 patients. The dataset recordings have a timespan of several years in-

between them. The infants were admitted to the NICU of the neonatal department 

at the Máxima Medical Center Veldhoven, The Netherlands. Ethical approval was 
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given by the medical ethical committee of the hospital, and written consent was given 

by the patients’ parents. In those three retrospective studies, 34 (8, 9, 17) stable 

preterm infants were analyzed during 39 sessions. The preterm infants were born with 

a mean gestational age (GA) of 29 ± 2.1 weeks. They were studied at a mean 

postmenstrual age (PMA) of 33 ± 2.0 weeks. The patients had a mean birth weight of 

1338 ± 473 g. More details can be found in Table 16.  

Table 16 Patients weight, gestational age [GA], and postmenstrual age [PMA]. 

Patient Weight [g] GA [wk, d] PMA [wk, d] 

1 1845 31; 5 33; 6 

2 2265 33; 6 34; 6 

3 1740 28; 6 34; 6 

4 1235 30; 1 31; 2 

5 1700 32; 6 33; 5 

6 1290 28; 6 29; 3 

7 1460 25; 4 31; 5 

8 1615 29; 6 32; 0 

9 1606 30; 3 31; 2 

10 2410 33; 6 34; 3 

11 1160 27; 3 29; 0 

12 1845 31; 5 34; 6 

13 1420 29; 2 30; 4 

14 1110 27; 0 29; 1 

15 755 33; 2 34; 5 

16 2080 27; 3 35; 6 

17 2180 29; 6 31; 3 

18 1180 29; 6 34; 3 

19 1290 29; 1 32; 0 

20 1020 29; 1 35; 1 

21 610 29; 2 34; 0 

22 1210 27; 5 32; 6 

23 1250 26; 4 32; 5 

24 1070 26; 6 33; 7 

25 1880 30; 3 33; 1 

26 1130 28; 6 33; 0 

27 1050 28; 4 35; 1 
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28 1170 27; 3 34; 0 

29 890 31; 4 33; 5 

30 920 30; 3 33; 2 

31 1050 28; 4 31; 0 

32 600 27; 6 33; 1 

33 790 29; 6 35; 0 

34 680 26; 2 28; 1 

 

5.4.2 Data recordings  

Vital signs recordings for all studies were performed with a Philips patient monitor 

(Intellivue MX 800, Germany) at a sampling frequency of 500 Hz (n=32) or 250 Hz 

(n=2). The 250 Hz data were cubic interpolated to meet the 500 Hz. The vital sign 

signals consist of EEG, ECG, cECG, PPG, and EOG recordings. For all datasets 

combined, only ECG was consistently recorded. For this chapter, only the ECG 

signals were used. The signals were recorded in all studies with three-lead ECG using 

standard adhesive ECG patches. 

Each preterm infant was also video-recorded. Videos were recorded either of the 

face or the total body view. The used cameras were standard, consumer-grade, 

greyscale devices.  

5.4.3 Annotations 

Per dataset, two trained observers annotated the data based on 30s intervals (sleep-

epochs) adhering the Prechtl system [197]. The observers used a reference ECG and 

respiration time series and video information for annotation. Vocalization, which is 

part of the Prechtl system, could not be used due to the lack of audio recordings. 

They annotated the following states: AS, QS, IS, wake, caretaking, and unknown 

(unable to annotate). The more specific states from Prechtl active wake and quiet 

wake were merged into wake due to lack of data. The total duration of annotated data 

was 167 h (20021 30s intervals) with a mean duration per patient of 4.28 ± 1.5 h 
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(513 ± 179 30s intervals). The overall distribution of state was: AS: 51.45%, QS: 

12.7%, IS: 16.5%, wake: 6.6%, caretaking: 2.2% and unknown: 10.5%. Subtracting the 

unknown epochs, a total amount of around 18018 30s intervals were left for analysis. 

The detailed distribution of all trials can be found in Table 17. The median inter-rater 

variability lay at 0.8 ± 0.1 for AS and 0.6 ± 0.1 for QS. The overall median inter-rater 

variability was 0.7 ± 0.1. 

Table 17 State distribution per dataset in percent. 

States Dataset 1 [%] Dataset 2 [%] Dataset 3 [%] 

Unknown 1,6 37,9 0,0 

AS 65,4 47,7 46,0 

QS 7,5 6,7 18,9 

Wake 2,0 1,6 11,9 

CT 8,4 0,0 0,0 

IS 15,1 6,0 23,3 

 

As preterm infants are mostly awake during caretaking periods, generating very 

similar signal structures, the labels caretaking and wake were merged under the label 

caretaking + wake (CTW) to equalize for the low amount of data from each state. 

5.4.4 ECG R-peak detection  

The R-peak detection algorithm of Wijshoff et al. [200] was used to determine the 

NN intervals and the resulting HRV signal. To determine the steepest ascent and 

descent of the QR and RS slopes, they calculated the first derivative of the ECG 

signal. Then the peaks in the QRS complex were detected with a variable threshold. 

By interpolation around the detected peaks, they verified that the position of the peak 

is at the real max. This sub-peak detection assured that there is no shift from the real 

peak due to off sampling. 
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5.4.5 Features 

For each dataset, 47 features from HRV, ECG, and patient information were 

created. The features were calculated based on 30s intervals. The HRV features 

include the time, frequency, and nonlinear domain. The ECG features were calculated 

in the time and nonlinear domain, while the ECG derived respiration (EDR) features 

were calculated in the frequency and nonlinear domain. For HRV and EDR the 

signals are fundamentally non-equidistant in time. The Lomb-Scargle algorithm [203] 

was used to generate the frequency spectrum as resampling for classic Fourier 

transformation would have introduced extra parameters.  

Table 18 Overview of the used ECG and HRV features for classification. 

NR Feature [unit] Description 

0 BpE Beats per Epoch / mean Beats per Epoch 

1,2 LL, aLL [mV] Line Length / mean Line Length 

3-6 NNx [count] The number of pairs of successive R-R intervals that 
differ by more than 10, 20, 30 or 50 ms of a defined 
window length. 

7-10 pNNx [%] The proportion of NNx divided by the total number 
of R-R intervals of a defined window length. 

11 RMSSD [ms] Root mean square of successive differences between 
adjacent R-R intervals of a defined window length. 

12 SDALL [mV] Standard derivation of averaged line length 

13 SDANN [ms] Standard Deviation of averaged NN intervals 

14 SDLL [ms] Standard derivation of line length 

15 SDNN [ms] The standard deviation of normal to normal R-R 
intervals of a defined window length. 

16 HF [ms2] The power of the high-frequency band between 
0.15-0.4 Hz of defined window size. 

17 HFnorm [%] HF power in normalized units HF/(Total Power-VLF) x 
100 

18 LF [ms2] The power of the low-frequency band between 0.04-
0.15 Hz of defined window size. 

19 LFnorm [%] LF power in normalized units LF/(Total Power-VLF) x 
100  

20 LF/HF [n.u.] Ratio LF/HF 
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21 pHF1 [ms2] The power of the high-frequency band between 0.4-
0.7 Hz 

22 pHF1norm [%] pHF1 power in normalized units pHF1/(Total Power-
VLF) x 100 

23 TotPow [ms2] Total power or variance of NN intervals of defined 
window size. 

24 pHF2 [ms2] The power of the high-frequency band between 0.7-
1.5 Hz 

25 pHF2norm [%] pHF2 power in normalized units pHF2/(Total Power-
VLF) x 100 

26 VLF [ms2] The power of the very-low-frequency band between 
0.003-0.04 Hz of defined window size. 

27,28 SE, QSE [n.u.] Sample entropy / Quadratic sample entropy 

29 SEAUC [n.u.] Sample entropy area under the curve 

30 pDEC [%] The percentage of HR decelerations 

31 SDDec [ms] Magnitude of HR deceleration 

32,33 LZNN [n.u.],  
LZECG [n.u.] 

Lempel-Ziv complexity measure on HRV and ECG 

34 HF_R The power of the high-frequency band of the 
respiration signal between 0.48-1.1 Hz of defined 
window size. 

35 HFnorm_R HF respiration power in normalized units. 
HF/(TotPow_R-LF_R) x 100 of the respiration. 

36 MF_R The power of the medium frequency band of the 
respiration signal between 0.56-0.84 Hz of defined 
window size. 

37 MFnorm_R MF power in normalized units of the respiration. 
MLF_R/(TotPow_R-LF_R) x 100 

38 LF_R The power of the low-frequency band of the 
respiration signal between 0.56-0.3 Hz of defined 
window size. 

39 LFnorm_R LF power in normalized units of the respiration. 
LF_R/(TotPow_R) x 100. 

40 LF_R/HF_R The ratio between the low and high respiration 
spectrum. LF_R/HF_R 

41 MF_R/HF_R The ratio between medium and high respiration 
spectrum. MF_R/HF_R 

42 TotPow_R The total power of the respiration frequency 
spectrum.  

43 Age difference Difference between age at birth and age at 
measurement. 

44 Birthweight Weight at the time of birth 



5.4 - Methods 

 

144 

 

45 GA Gestational age. Age at birth calculated from the last 
gestation. 

46 PCA Conceptional age. Age at time of measurement 

 

As the RSA and cardiorespiratory coupling is not very pronounced in preterm infant 

and can only be seen in more mature infants [97], [207], Joshi et al. [262] confirmed 

very recently that coupling between heart rate decelerations and accelerations exist in 

preterm infants but not vice versa. They assume that RSA in preterm infants is not 

present, mainly due to insufficient breathing depth. The respiration can consequently 

not be determined from the RSA but rather via superimposed chest movement on 

the ECG signal. Therefore, the EDR signal was calculated using the ECG envelope. 

In the frequency domain, the frequency band was limited to max 1.1 Hz (66 breaths 

per minute ) and min 0.3 Hz (18 breaths per minute), which is described in the 

literature as the min and max respiration rates of preterm infants [263]. 

The frequency bands were then separated into high (1.1 - 0.84 Hz), medium 

(0.84 - 0.56 Hz), and low (0.56 – 0.3 Hz) bands. 

From the patient information data, gestational age (GA), age at measurement (PCA), 

and birth weight (BW) were taken. To gain the time span between birth and data 

recording, PCA and GA were subtracted from each other. All this information was 

combined into a stability score. This score would indicate either an unstable, medium, 

or a stable patient condition.  

All features are listed in Table 18. The normalized features with mean zero and 

standard derivation of one were combined into 3D tensors, which were fed as input 

into the deep learning models.  

5.4.6 Preprocessing for deep learning 

For the classification of the preterm infant sleep states, the neural network API 

Keras [264] was used with TensorFlow [265] backend. For sleep state classification, 

time series analysis was used. Therefore, the input was cast in the form of a 3D time 
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series tensor [samples, time step, features]. After testing, the time step was chosen as 

the total length of one recording session with the batch size set to 1. Thereby, long 

and short-term patterns can be recognized. To achieve uniform length, the tensors 

were padded to the length of the most extended session. Later, a masking layer and 

sample weight distribution of zero for the padded values was used to prohibit the 

padded values to influence the learning process. The data was separated into train and 

validations sets to exclude significant bias. The data was split per patient to reduce the 

bias for the train and validation process further. The split per patients was set to 70% 

training data and 30% validation data (ceiled). A 3-fold cross-validation process was 

used to ensure the proper generalization of the model.  

As we have a majority (AS) and minority classes (QS, IS, CW), a class weight has to 

be calculated to balance this unequal class distribution. The sample weight was 

calculated depending on the sleep state and normalized to the majority class. Sample 

weight was used instead of class weight as class weight is converted to sample weights 

on the Keras backend. Using sample_weight_mode temporal, sample weight fulfills the 

class weight task and can as well be used for masking-padded-values with a sample 

weight of 0. So far, this can only be used for smaller datasets as sample_weight_mode 

does not work currently for the function fit-generator.  

5.4.7 Classification models  

Four different model types were compared: a deep residual model, a wide residual 

model, a wide residual model using transfer learning from sequential models, and the 

sequential models as standalone architectures. 

The base residual architecture itself was adapted from the residual architectures 

ResNet [266] and ResNext [267]. Both approaches tackle the problem that an increase 

of model depth creates a sudden and rapid decrease of accuracy, which is not caused 

by overfitting but rather shattered gradients [268]. The shattered gradient appears in 

none residual networks with large depth like white noise. Both networks combine 
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multiple sequential models to one larger model. The sequential models thereby fit a 

residual map, which is easier to optimize than a larger model. The connections 

between the sequential models are ensured with skip layers performing identity 

mapping and feeding the output of a sequential model block into the next block (see 

Figure 36 and Figure 37). This process enables large networks with rather low 

complexity. As preterm infant sleep is a highly complex problem due to the many in- 

and exogenous influences on the sleep and ANS, residual architecture approaches 

might be able to constitute and handle this complexity. The ResNet and ResNext 

architectures were both developed for image classification and object detection. 

Therefore, they are using mainly rectified linear unit (ReLu) activated CNN layers 

coupled with dropout and pooling layers. For this chapter, the CNN and pooling 

layers were replaced with recurrent layers to capture patterns and connections in time 

series data rather than in image data.  

Both approaches are similar in the core residual idea and compare equal to each 

other in object classification tasks with a slight advantage in floating-point operations 

per second (FLOPS), speed, and error rate of the ResNext over the ResNet 

architecture. As it cannot be directly deducted how the architectures would compare 

in a time series analysis task and in this specific setting, a comparison is appropriate. 

Deep residual model: the deep residual network is made of an initiation block 

followed by five residual blocks of five connected GRU layers (Figure 37). Each 

connected block ends with a dropout [269] and a dense layer. The architecture is 

finished with a softmax activated dense layer. The initiation block consists of first a 

masking layer, which is needed as the data is padded. The masking layer is followed 

by a 1/2 dropout layer connected to a dense layer, which, both combined, function 

as a feature selection phase. This combination first randomly reduces the input nodes, 

trailed by reducing the dimensional space, forcing the focus on the most 

distinguishing input information. This acts as the replacement for the pooling layer 

used in the classic ResNet and ResNext architectures for reduction. The last layer of 
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the initiation is a batch normalization to avoid vanishing/exploding gradients by the 

scale of backpropagated weights. 

 

 

Figure 36 Exemplary Wide residual model structure. 

Wide residual model with Initiation block of masking layer, dropout layer, and following dense 
layer. Afterward, the architecture is split into three paths, where each path consists of 
connected bi-directional gated recurrent unit layers which are later concatenated again. The 
layers are connected with feed forward and skip connections to help simplifying the network 
optimization. Each path uses different hidden units to incorporate more and less complex 
relations. 
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Figure 37 Residual block of deep model. 

An exemplary block from the deep residual model. Here gated recurrent units and 
bidirectional gated recurrent unit layers alternate each other with increasing hidden units 
(neurons). Thereby, the hidden units increase from 32 to 256 covering simpler to more 
complex feature-state connections. The block is bypassed with a skip connection. 
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Wide residual model: the wide residual model (Figure 36) uses three parallel paths 

preluded by an initiation block. The initiation block is of the same structure as in the 

deep residual model. The parallel paths are each made of blocks from bi-directional 

GRU layers. Each GRU layer uses dropout and recurrent dropout to minimize 

overfitting. As direct regularization of the L2-norm, a kernel constraint is used over 

all axes. Direct kernel constraints work well in combination with dropout [269]. Each 

path has two of the described blocks which are connected via skip layers in the same 

way as with the deep model. All parallel paths are concatenated at the end leading to 

a dense layer with softmax activation to achieve final state predictions.  

Wide residual model with transfer learning: transfer learning uses pre-learned 

information, resembled in the weights which are fixed in a model architecture. The 

fixed weights add to the training process without being changed during the training. 

Thereby, pre-learned information can be used to reduce the overall learning 

computation effort or improve the learning process by adding specific information. 

In image classification or object recognition, transfer learning is used to fix earlier 

learned universal information of shapes in images, e.g., general shapes in a face such 

as lines and edges. Top (later) layers then learn more complex compositions of such 

general shapes for a specific set of images, e.g., the composition of chimpanzee faces. 

Here the same wide residual model architecture was used, but additional paths were 

added. The loaded weights of the pre-trained models were fixed into those additional 

paths Figure 38. The pre-trained models were trained on bi-class problems, always 

training two classes versus each other, learning the specific differences between only 

those classes. In the concatenation step, they are then used for decision-making. To 

avoid any bias, the bi-models are trained separately only on a fragment of the data, 

which is later not used for further training. 
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Sequential models: the sequential models, which are also used for pre-training, 

have an initial masking, dropout, and dense layer, which is followed by four 

bidirectional GRU layers. The models are closed with another dropout layer and a 

dense, softmax activated layer. The hidden Units for the dense and GRU layers were 

set to 32. All other parameters followed the main transfer learning model. The model 

architecture was compared in performance and speed to the same architecture using 

bidirectional LSTM layers.  

5.4.8 Model parameters 

The wide and deep residual model, use a range of hidden units for the GRU layers 

to learn and model a wider range of complex non-linear relationships in the input data 

 

Figure 38 Architecture of the residual model utilizing transfer learning. 

The input block and the Residual block are the same as in Figure 36. Also, pre-learned blocks 
of sequential architectures are added parallel and fixed until a various point. All weights are 
concatenated and added into a dense layer with softmax activation.  
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stream. The wide network uses a different hidden unit for each path ranging from 4 

to 128 hidden units. The deep architecture increases the hidden units with each block 

from 32 to 256. The hidden units of the Dense Layers were set differently to 

accommodate the previously mentioned feature selection. The values ranged from 16 

as roughly 1/3 of the input feature dimension and a power of 2, to a max of 47 

representing the full input feature dimension. 

To further handle the data imbalance, the earlier mentioned class weights were used 

in a weighted categorical cross-entropy loss function to increase the misclassification 

gravity for minority misclassification. Therefore, the normalized weights multiplied 

with the loss function where ll(s) is the a priori likelihood of s in the training data. 

 𝐿(𝑠)𝑤 = 𝐿(𝑠) ∙ (1 − ||(𝑠)).  

The Sigmoid function was selected as the activation function for each residual 

GRU/LSTM block. In the ResNet, and following residual architectures, ReLu 

function is used as the activation function. Using the ReLu activation function is very 

difficult and not advised with GRU/LSTM as it diverges, but mostly not necessary, 

as the gating scheme of the GRU/LSTM itself deals with the vanishing gradients. 

Therefore, the Sigmoid activation, which is optimally designed for the GRU/LSTM 

structure, can be used. 

For the optimization algorithm, the Adaptive Moment Estimation (Adam) 

optimizer [270] was chosen as Adam shows to be generally very effective while also 

removing the manual setting of the learning rate and learning rate decay. The Adam 

also was tested against other optimization algorithms where it stood out superior.  

As already mentioned, the timestep (or lookback) was set to the longest recording 

session and the batch size to 1.  

To avoid overfitting, dropout, L1, and L2 regularizers were applied. The maximum 

dropout value was 0.6 before the results dropped off out of proportion. Combinations 

of L1 and L2 regularizations were implemented as kernel and activity regularizers in 
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different places. L1 was implemented mainly as an additional feature selection in the 

first dense layer with a value between 0.0001 and 0.001. The L2 norm was used mainly 

on each LSTM/GRU layer. The L2 norm for direct kernel constraint was set to 0.3 

on each layer. 

5.5 Results 

Here, three different types of classifications are presented. The two-state 

classification, which is a classification between two states. The three-state 

classification, which tries to separate three states against each other such as AS, QS, 

and IS. And all-state classification, which tries to separate all states from each other.  

The two-state classification with a sequential architecture shows promising results 

for using GRU and LSTM layers. Both show similar mean results with a difference in 

performance of 0.01 ± 0.02. Due to slight faster training with the use of GRU layers, 

all results are presented using GRU layers. The most robust performance is reached 

with the majority states AS and QS with a mean kappa over the folds ranging from 

0.43 ± 0.07 to 0.40 ± 0.06 (Figure 39) and between QS and CTW with a mean kappa 

of 0.44 ± 0.01. 

Then the combinations AS-IS and IS-CTW show similar results with 0.33 ± 0.03 

and 0.32 ± 0.03. AS-CTW and QS-IS classification have the lowest performance of 

0.28 ± 0.005 and 0.25 ± 0.03 (Table 19). Where Kappa score is defined as slight within 

0 – 0.20, fair between 0.21 – 0.40, moderate with 0.41 – 0.60, substantial between 

0.61 – 0.80, and as perfect within 0.81 – 1 [232].  

The classification of three states shows results ( 

Table 20) between two- and all state classifications (compare Table 21). The 

majority classes AS and QS were compared with the minority classes IS and CTW. 

The mean performances in Table 20 indicate that the Majority classes are better 

differentiable together with IS resulting in a mean kappa of 0.35 ± 0.07 rather than 
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with CTW with a mean kappa of 0.33 ± 0.04. Both deep and wide residual models 

show similar results for all state classification with a mean kappa of 0.30 ± 0.06 and 

0.25 ± 0.02 (Table 21). Same as with the sequential model, the majority states AS and 

QS are separated best, followed by QS and CTW using wide and deep residual models. 

The overall performance is lower than for bi-class classification. The use of transfer 

learning did not improve the performance even though the pertained models showed 

decent results. In contrary, it showed the lowest overall performance with a mean 

kappa of 0.13 ± 0.02 (Table 21) even though the performance of the pre-learned 

models were acceptable (see Table 22). 

  

 

Figure 39 Mean kappa and loss of active versus quiet sleep classification over epochs. Kappa 
and weighted categorical cross entropy loss over epochs using a sequential architecture. Initial 
dropout is 0.2, and dropout/recurrent dropout per bidirectional gated recurrent unit layer is 
0.5. Kernel constraint per layer is set with max norm 0.3. Hidden units of 32 is used per layer.  
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Table 19 Mean performance for bi-state classification using different model architectures.  

The Kappa value of two-state classifications of different model types. The residual models used a 
kernel L2 regularization of 0.01 and an activity L2 regularization of 0.001. Initial dropout is 0.2, and 
dropout/recurrent dropout per bidirectional gated recurrent units layer is 0.5. Kernel constraint per 
layer is set with max norm 0.3. Hidden units of 32 are used per layer. The sequential model used 
four long short-term memory or gated recurrent units bi-directional layers with sigmoid activation, 
Adam optimizer, and weighted categorical cross-entropy loss function. The Kernel constraint was 
set to 3. 50% Initial and Recurrent dropout was used with both 0.5. Initial and Recurrent dropout 
was used. L2 activity and kernel regularization were set to 0.01 and 0.001 per layer.  
 

State pairs 
Residual Wide 

(κ ±std) 

Residual deep 

(κ ±std) 

Sequential 

(κ ±std) 

AS-QS 0.37 ± 0.07 0.38 ± 0.04 0.43 ± 0.08 

AS-IS 0.31 ± 0.03 0.30 ±0.03 0.33 ± 0.03 

AS-CTW 0.26 ± 0.005 0.25 ±0.01 0.25 ± 0.03 

QS-IS 0.28 ± 0.03 0.27 ±0.007 0.28 ± 0.005 

QS-CTW 0.39 ± 0.005 0.40 ±0.001 0.44 ± 0.01 

IS-CTW 0.30 ± 0.04 0.29 ±0.03 0.32 ± 0.03 

 

 

Table 20 Mean kappa performance of sequential models for three state analysis. 

Mean performance of three-state classification using a sigmoid activated model with four bi-
directional gated recurrent units layers, Adam optimizer, weighted categorical cross-entropy loss 
function. The Kernel constraint was set to 3. 50 %. Initial and Recurrent dropout was used with 0.6 
and 0.5. L2 kernel regularization per layer was set to 0.01.  
 

State pairs Kappa 

AS-QS-IS 0.35 ± 0.07 

AS-QS-CTW 0.33 ± 0.04 
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Table 21 Kappa performance on all state classification for different models. Mean kappa 
performance over different models using the same parameters as described in the other tables. 
 

Model Kappa 

Deep Residual 0.30 ± 0.06 

Wide Residual 0.25 ± 0.02 

Sequential 0.25 ± 0.05 

Wide Residual 

 using Transfer learning 

0.13 ± 0.02 

 

 

Table 22 Kappa performance of sequential model architectures used for transfer learning. Kappa 
results without cross-validation using the same parameters as the sequential model in Table 19, 
utilizing bidirectional gated recurrent unit layers.   
 

State pairs Kappa 

AS-QS 0.51 

AS-IS 0.36 

AS-CTW 0.27 

QS-IS 0.29 

QS-CTW 0.55 

IS-CTW 0.38 
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5.6 Discussion 

5.6.1 Features and patient demographics 

The feature set was partly used in Chapters 3 and 4. It was reused and adapted as it 

showed a good representation of the underlying processes of preterm infant sleep. 

Movement features were included as movement is generally a strong differentiator 

between sleep, wake, and caretaking. For future research, improved measurement 

techniques for movement detection, as presented by Joshi et al. [271], or enhanced 

extraction methods for ECG would probably improve classification further. 

Additionally, patient information features were added to the set as it was noticed in 

previous tests that outlying values of patients can seriously influence the performance 

of classification. Such values are, in general, not random but often occur at very 

young, immature preterm infants and/or with low birth weight. Also, it makes a 

difference in the development at which age a preterm infant was born and at which 

timespan after birth the data were recorded. If the measurement takes place at the 

same time with different GA at birth (or vice versa), the development state and 

consequently the feature appearance can look sufficiently different to influence the 

learning. The same holds for the birthweight. A heavier baby tends to be more stable. 

As the values of age, age difference, and weight are almost continuous data, they were 

categorized into a stability score between 1 and 3. With a significantly larger dataset, 

either the values can be used directly, or a finer grid can be used to categorize the 

preterm infants. Further, if sleep cycles are to be measured, we would recommend 

splitting the patient groups at the age of 38 weeks GA increasing stability of training, 

as the not fully developed CNS as the circadian oscillator will probably lead to more 

erratic sleep cycles in preterm infants younger than 38 weeks GA. In Chapter 4, it was 

noticed that the use of respiration devices influence the classification performance. 

Unfortunately, it was not possible to gather this information for all patients.  
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5.6.2 Parameter choices 

To avoid overfitting, various settings were applied with dropout, recurrent dropout, 

L1, and L2 norm for activity (Ar) and kernel (Kr) regulation. Dropout and activity 

regularization had the most effect on overfitting. Different combinations of these 

regularizations were useful in reducing overfitting. Here only two are mentioned as 

examples. Either using overall lower dropout (e.g., 0.3) in combination with a stiffer 

Kr and Ar L2 norm (e.g., 0.01) without any other regularization in the initiation block 

helped fighting overfitting. Another variant is to use an L1 norm as kernel 

regularization in the first dense Layer to help with feature selection in the initiation 

block in combination with an overall dropout/recurrent dropout of 0.5-0.6 but no 

other Kr or Ar in the following layers. Choosing too high values for the dropout 

and/or regularization would lead to a drastic reduction in overall performance on the 

validation data. There were plenty of combinations that all resulted in reducing 

overfitting. Nevertheless, further investigation and proper comparison will go beyond 

the scope of this chapter, as overfitting was not the primary problem in this analysis.  

The lookback was chosen as the total duration of one session for the LSTM/GRU 

as long-term sleep cycles can influence the overall learning process. As LSTMs/ 

GRUs can only learn the variations in time on the information of one batch, long-

term patterns such as total sleep cycles or specific sleeping patterns need at least 

30 min of data up to 70 min [53]. In regular cases, sleep states changes follow the 

pattern wake-AS-QS-AS-wake with IS patterns in between. Irregular patterns are, for 

example, wake-QS-(AS)-wake. This pattern is called a stress sleep pattern, showing 

signs of the preterm infant’s immediate need for rest. With more of such recorded 

patterns outside the norm, future research could try to detect anomalies in sleep cycle 

patterns to inform the responsible caretakers. Either regular or irregular cycle patterns 

cannot be learned with batches of insufficient length below at least one sleep cycle.  
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5.6.3 Classification performance  

The classification between the majority classes AS and QS shows moderate 

performance with kappa 0.43 ± 0.07 and generally promising results. For a clinical 

monitoring device, this would not be an acceptable performance, but these results 

should be seen as proof of concept for an unobtrusive automated monitoring system. 

Especially with the earlier described benefits of ANNs, these results are a foundation 

that has a high chance of increasing in performance, stability, and generalization with 

an increasing amount of accessible data. To put the result in context, it has to be beard 

in mind that the general interrater variability is relatively low in that specific 

population. In early studies about the reliability of polysomnography in term infants, 

the kappa score reached 0.68 [272]. For adults, the mean kappa score after the 

Rechtschaffen & Kales standard also reaches 0.68 and following the AASM standard 

0.76 [273]. There is no overview accessible for preterm infants, but it is very likely to 

be lower than for term infants. 

It is difficult to directly compare the here presented result to recent results from 

other groups as they are mostly based on EEG analysis, which is optimal for sleep 

state analysis as they directly represent the state of the autonomous nervous system. 

Koolen et al. [101] presented good results in 2017 using a support vector machine on 

EEG signals with 85% accuracy for AS and QS separation. Latest results using EEG 

signals were presented by Ansari et al. [247] using a CNN to classify QS and NonQS 

with a ROC-AUC of 0.92. Also, Dereymaeker et al. [102] were able to detect QS with 

an AUC of 0.97 based on EEG. The most similar approach from Isler et al. [191] 

used only respiration signals for successful classification of AS and QS with an 

agreement of 78% to 90% for AS and QS separation. In a previous publication of our 

group [229] AS and QS were separated with a ROC of 0.87 based only on ECG 

features. As more states were included for separation, performance decreased. 

Fraiwan et al. [190] tried to separate AS, QS, and wake with a performance of 63 % 

to 75 % using also EEG analysis. Also, it has to be kept in mind that the here used 
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kappa performance takes into account the unequal distributed states with increased 

expected accuracy. Using only the accuracy measure would be biased towards the 

majority class. ROC-AUC could have been used to describe the performance of the 

trained ANNs, but as we have a multi-classification problem, ROC determination for 

the ANNs is more difficult as more than one output node threshold has to be varied, 

generating a multi-parameter problem. This could be handled by creating ROC curves 

for each individual class-pair. A better approach is to scale the bias weights of the first 

hidden layer note as proposed by Woods et al. [274]. However, when using a ROC-

AUC analyses the number of data points per class should be roughly equal, which was 

not the case here. Precision-Recall analysis [275] is a suitable alternative in this case, 

but none of the compared studies used precision and recall, which has let us to choose 

the Kappa statistic.  

Summarizing the results and methods used for sleep classification, Ansari et al. [247] 

can be considered the current state of the art for preterm infant sleep state analysis as 

they are using the latest analysis methods on EEG signals, which are the standard 

signals for sleep analysis, and achieved very high classification results for QS and 

nonQS states. Both of which are important for neural development monitoring.  

Our moderate performance on AS and QS classification is also promising as the 

state distribution of AS and QS is one of the primary indicators for neural 

development in early preterm infants. The bi-state classification for AS and QS can 

be utilized for neural development indication and clinical decision support. As the 

minority states naturally occur less, they are of lesser importance to the course of 

development in the early stages of preterm infancy. In term infants, wake versus sleep 

becomes more important, but at that point, wake also has a more significant presence, 

which can be utilized for training. 

Compared to the current state of the art by Ansari et al., our method still lags in 

performance for QS and nonQS (AS) classification. However, it has to be kept in 

mind that ROC-AUC performance measure can be overestimating due to imbalanced 
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data for the majority and minority classes, which is incorporated in the here used 

kappa score. Again, a direct comparison is not in order as the methods are based on 

different physiological signals and follow a different goal. We believe that Ansari aims 

to classify QS and nonQS states in preterm infants with the highest possible 

performance and therefore chose the most promising and sleep-related physiologic 

signal to analyze. This thesis, on the other hand, tries to classify preterm infant sleep 

states with a novel approach specifically based only on ECG derived features to 

ensure a more accessible and constant sleep monitoring. To emphasize our 

motivation again, the downside with using EEG for sleep analysis is the use of 

auxiliary sensors in addition to conventional monitoring sensors, which should be 

kept to a minimum as the preterm infant skin is highly sensitive. ECG, on the other 

hand, is a standard measurement in the NICU; therefore, this system is easily 

implementable in the current clinical practice. As the ECG signal is less interlocked 

with sleep compared to EEG, it is consequential that the results will fall behind, 

especially as this is the first ANN approach of this signal modality and patient group 

to date.   

Nevertheless, it is insightful to look at the publication from Ansari et al. as they also 

used an ANN approach and outperformed all former attempts on EEG based QS 

and nonQS sleep state classifications. This indicates that ANN approaches for 

preterm infant sleep classification are capable of outperforming traditional signal 

analysis and standard machine learning algorithms in general. Translating this to ECG 

signal analysis, we believe that with further tuning and additional data, also ECG 

based analysis with ANNs can reach outstanding performance levels. To our 

knowledge, this is the first approach to use an ANN approach in combination with 

ECG derived features for preterm infant sleep analysis. With further research, it is 

reasonable to believe that ECG based sleep analysis will become on par with human 

annotators and maybe EEG analysis. 

The overall low performance on all state classification has to be explained by two 

rationals — first, the general difficulty in separating human physiological events that 
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often show only a nuance of difference between its states, especially in preterm 

infants. This manifests in the existence of the sleep state IS, which, by definition, is a 

mix of the main sleep states AS, QS, and wake. IS incorporates patterns of all those 

sleep states, making it very difficult to pinpoint the beginning and the end of 

neighboring states. Over the course of development, IS occurs less frequent, leaving 

a clearer picture of sleep state boundaries. This can also be seen in the generally low 

interrater variability, showing that trained observers have difficulties in uniformly 

identifying the sleep states. Some annotators had years of experience, having seen 

plenty of training data. The other core problem in preterm infants is the immaturity 

of the autonomic nervous system. This immaturity of the regulatory mechanisms 

leads to instability in regulation and control of ex- and internal stimuli. In preterm 

infants, those instabilities result in common heart rate decelerations that are not 

connected with an autonomous response to such as sleep state changes [208]. 

Nevertheless, they can easily be misinterpreted as such. The combination of those 

often only nuanced differences between autonomous states and the general instability 

in preterm infants inducing non-state-related heart rate changes makes the 

classification of preterm infant sleep a difficult task.  

The second rationale is the low amount of data, especially for the minority classes. 

Preterm infants sleep around 70% in 24 h [39]. Therefore, the wake state is naturally 

underrepresented, and caretaking also takes only a portion of the day. Interestingly, 

QS is as well underrepresented among the three datasets but shows enough difference 

to AS to be sufficiently distinguishable. Generally, CTW shows differences in the 

patterns to the QS and IS states resulting in a heightened performance for QS - CTW 

and IS - CTW classification despite the lack of data. The activity in both AS and CTW, 

and thereby signal similarity, makes it harder to classify, resulting in the lowest 

performance. Another influence could be wrong annotations, as during CTW the 

preterm infant moves similarly to AS. If the eyes are not open or caretaking cannot 

be directly observed in the video frame, CTW could be mistaken for AS. Furthermore, 

AS – IS is better separable than QS – IS, which could be due to the reduced breathing 
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and movement during IS. This reduction results in similar patterns for IS and QS, 

making the correct classification more difficult. Same as before, another reason could 

be the manual annotation. As changes to the heart rate variability indicating a state 

change without visible clues like twitches, eye movements, or rapidly changing 

breathing, IS could be easily mistaken for the onset or continuation of QS. 

ECG-based sleep state classification is far less studied compared to EEG. Most of 

the cardiorespiratory based work in preterm infants considered AS/QS or wake/sleep 

states, as all state classification is a challenging matter. To our knowledge, all state 

classification has not been investigated regarding classification, despite in our group. 

Reliable all state classification in preterm infants have yet to be presented. 

The tri-state classification is expected to show slightly lower performance than the 

bi-state counterparts. Here, the more difficult states, IS and CTW, reduce the 

combined performance. The slightly higher performance between AS - QS - IS, 

despite IS being a more difficult state to differentiate, has to be explained with a higher 

amount of training data. Despite the lack of data, AS - QS - CTW classification shows 

only slightly reduced performance as noise, instability, and increased movement 

dominate the ECG patterns and create a clearer differentiation.  

The performances on all state classifications using the residual approach are 

underwhelming. Nevertheless, the use of a simpler, sequential model also did not 

generate reasonable results. Here again, the data to train on, especially for the minority 

classes, was considerably small with very early, unstable, and fragile patients. 

However, due to higher performance on the majority classes AS and QS, general 

different feature modalities between the single states, and the very high difference in 

the amount of data between majority and minority classes shows that the problematic 

performance is directly linked to the data amount and not fundamental problems with 

the used model architectures. This generally indicates again that the correct track is to 

utilize deep learning for preterm infant sleep classification as deep learning has mostly 

a higher performance potential than machine learning with increasing data size, as 



5.6 - Discussion 

 

163 

 

explained before. Generally, all-state classification is not of main importance for early 

preterm infant development monitoring but is vital for a holistic view on the patient's 

sleep rhythm and possible predictions of sleep patterns. 

To summarize, the separation of AS and QS show the general potential of using 

deep learning for sleep classification based only on ECG derived features, as stated in 

the research hypothesis. Similar results for the main sleep states were achieved 

compared to classic machine learning approaches [229], [249] Nevertheless, for a 

complete picture and overall sleep monitoring, a wider study is necessary to gain a 

stable model including training on extreme outliers. 

5.6.4 Model architectures 

Recently, GRU networks were found to have similar performance as LSTM 

networks. The GRU network uses less computational power than the LSTM network, 

as it generates fewer parameters. Nevertheless, both units perform almost equally, and 

one cannot be generally favored over the other. We tested architectures with both 

units and found that in our case both, LSTMs and GRUs layer use, performed equally. 

Due to lower calculation time, GRU layers were used further on.  

The wide and deep residual model architectures show similar results (Table 21). The 

total amount of layers after the initiation block is similar to ten layers in the deep 

model and 12 for the wide model. Both architectures consider low and high 

complexity relations between the features and sleep states with increasing hidden 

units. In the ResNext model approach, the idea was also to introduce cardinality, an 

increase of parallel structures per residual block. At this point, we only used a 

cardinality of one as the model architecture could not be enhanced further due to 

overfitting spiraling out of hand. A deep model with 25 GRU layers after the initiation 

block was run with massive overfitting problems. Compared to a model with 4 GRU 

layers after the initiation block, the residual structured models showed weaker 

performance (Table 19). The overall disappointing results of the residual architectures 
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show that probably they overreach with the complexity of the analysis on that task at 

hand. The complexity cannot be put to use, as too few training examples for the more 

complex feature conjunctions are available. Additionally, the increased complexity 

tends to lead to overfitting due to training onto complex appearing noise structures. 

Regularization and dropout have to be set in place that can lead to a performance 

restriction. A solution to finding the right model architecture might be an evolutionary 

approach for architecture search. Generally, using this novel combination of a 

ResNet/ResNext architecture with GRU layers and corresponding activation is 

promising and might be wide-ranging and valuable in highly complex time series 

analysis, such as adult sleep analysis, where vastly more data is available.  

Transfer learning did not result in an acceptable performance and did not improve 

the performance as hoped. Probably this is connected with the fact that the saved 

weights from the pre-trained models were taken from a single fold. Even though they 

showed reasonable results (Table 22), they lacked generalization on the validation 

data. Secondly, the data was further reduced by splitting the data pool for pre-training 

and later transfer learning for bias control. 

5.6.5 Strength and limitations 

It is a challenge to gather sufficient data in very preterm infants in the high-risk 

NICU environment. With a mean age of 29 ± 4.6 weeks GA, the study group is very 

realistic and generalizable for a NICU population. Human annotators performed the 

annotation of the dataset with a moderate interrater-variability. This may limit the 

performance of an automated system from the very beginning.   

On the other hand, the trained model incorporates the different experiences and 

knowledge of different annotators creating a more stable, integral, and reliable model 

again. Interesting would be a wide range of annotators and annotation styles in future 

research, backed with sufficient data, to incorporate the derivations of different 

annotation techniques in the model. Due to this limited amount of data, the ANN 

approach could not develop its full potential; nevertheless, compared to the general 
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low interrater variability in this patient group, the results are acceptable. As said, the 

general strength of this approach is the potential to enhance its performance with 

increasing data. 

Further, we believe that we have not yet found the features which describe the 

preterm infant sleep states in full detail representing their complexity. As novel feature 

extraction methods, such as using a CNN based on spectrogram, were used 

successfully in different ECG based applications (e.g., atrial fibrillation [276], [277] or 

arrhythmia detection [278]), those methods used for a better representation of the 

ECG signals, and a better way of extracting richer features from the ECG signals 

merits investigation.  

5.6.6 Future perspectives 

As the main reason for the low performance of the all-state classification can be 

linked with the low amount of data, considering the vast difference in preterm infant 

stability and development, we suggest that more preterm infant data has to be 

gathered to surmount the threshold where data size becomes not the primary 

influence on performance. Following, the gross amount of needed data is estimated. 

The assumption is that the classification performance would be similar for the data 

poorest state if such a state would have the same amount of data as now the data 

richest state. With wake as the data poorest state having 6.6 % (not considering 

caretaking as it results from external influence) and AS as the data richest state now 

with 52.41 %, the needed amount would be seven times higher as here present. This 

results in roughly 200 preterm infants with the same mean recorded time of 4 h. 

Alternatively, 50 patients with 24 h recordings, which would be more optimal 

regarding full sleep cycle analysis. As ANN performance is not linked linear to the 

data amount of a single state, it can be assumed that less data is sufficient. 

Even though the transfer learning approach did not show the intended results, we 

suggest that term infant data instead of rare preterm infant data is used for pre-training 
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as signal patterns and sleep architecture are still very similar to preterm infants and 

much more data is available for this patient group.  

Another approach could be to look at unsupervised learning for preterm infant sleep 

staging. So far, we rely on human annotations, which are in itself not perfect and show 

large interrater variability. The general shift of data patterns from unsupervised 

learning could indicate brain development in the same way as classified state 

distributions from supervised learning. Unsupervised learning would demand even 

more data but will reduce the necessity of manual annotation. Not annotated, preterm 

infant sleep data is already freely available, for example, from the CHIME study [279]. 

5.7 Conclusions 

Active and quiet sleep can be moderately separated using a deep learning approach 

solely using ECG derived features. Nevertheless, all state classification is, so far, not 

possible and is hindered mostly by limited preterm infant training data as well as 

training data of very young and unstable patients. There is a level of data that has to 

be reached so that the data amount is not the significant factor for performance. For 

highly complex time series analysis, backed up with sufficient data, an RNN-ResNet 

architecture with sigmoid activation can be chosen for a deep network approach, 

avoiding the problem of shattered gradients. 

After diving into unobtrusive signal modalities and classification methods, we now 

want to take another look at the entire concept and finish with the conclusion of our 

research in the final chapter. 
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6 Conclusions and future perspective 

In the here presented thesis, we looked into different signal modalities and methods 

to classify preterm infant sleep. We focused on the use of ECG even though 

alternative unobtrusive methods are available for automated preterm infant sleep 

classification. To name only two, camera-based solution or motion detection solution 

could be considered if we are looking at the development of ANNs in the domain of 

image recognition. The ANN techniques will develop further and will likely 

outperform human classifiers in the near future. However, the primary motive why 

we chose ECG as the base for our research was the widespread availability of ECGs 

in the NICU. This availability reduces the need to implement new signal acquisition 

systems into the NICU. In particular, a low-level solution is preferable in low-income 

countries, where camera systems might not be as available as in high-income 

countries. Developing an algorithm that needs only basic signal inputs to operate 

enables a majority of NICUs, independent of their technical status, to utilize sleep 

and development monitoring.  

6.1 Sleep state classification 

In the thesis presented here, we demonstrate that preterm infant sleep can be 

separated automatically with the use of different approaches. Notably, the most 

prominent sleep states AS and QS can be separated rather well with a high AUC of 

0.87 ± 0.42 using and nonlinear Kernel SVM. The high standard derivation results 

from two outlying patients in the early threshold segment. The curve overall has a 

standard curvature and does not artificially increase the AUC by spikes or outliers. 

Using a random forest approach, AS and QS classification performance reaches 

Kappa of 0.42 ± 0.26. Using capacitive ECG, the performance reached a Kappa of 

0.59 ± 0.16. This result is comparable to the nonlinear SVM performance. With a 

sequential RNN model Kappa of 0.43 ± 0.08 was achieved, which compares to the 

random forest ECG results. Adding the CTW or IS states to the task, reduced the 
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performance in most cases. CTW reduces the performance thereby less than adding 

IS by losing around 0.1 and 0.2 Kappa values respectively. All-state classification also 

reduced the performance to Kappa values between 0.3 and 0.38, leaving all-state 

classification not suitable for clinical use in the near future. AS and QS classification 

performance is also not yet sufficient for clinical use, but we are convinced that with 

further research and relatively little effort a clinical solution is within reach. 

In chapter 3, linear features were derived from the HRV in the time and frequency 

domain. Only one ECG feature was used in the form of beats per epochs. Those basic 

features were used in combination with a nonlinear kernel SVM classifier. Using the 

SVM was successful but needed a considerable amount of fine-tuning and manual 

parameter choice. We attempted to limit the manual choices by using a greedy forward 

search to find the best feature combination. Given that over one million combinations 

are possible out of all 20 used features, manual trial and error were impossible. 

Unfortunately, this method is very unlikely to find the optimal combination as already 

the starting point can be ill-chosen. The forward search resulted in a five-set feature 

combination, including time (NN20, SDNN, and pNN20), frequency (total power), 

and ECG features leading to the best performance. In Chapters 4 and 4.3.8, more 

features were added to determine unsteady signals indicating movements, jerks, and 

jitters, or generally active states. When we included those additional features, we 

obtained better representation than before, as can be seen in Figure 35. The better 

representation may also be related to the use of a different data set. However, as the 

subsequent features with slightly lower representation from the feature ranking were 

again the same linear features, we can assume that the improvement with the added 

features holds true. The results themselves cannot be directly compared due to 

different learning approaches, distribution of states, different amounts of training and 

testing data, and different annotators presenting different base conditions. In 

Chapters 3 and 4, using linear SVMs did not succeed, and instead nonlinear kernel 

SVMs were used before the RF classifier outperformed the SVM approach. This result 

confirmed once more the difficulty of preterm infant sleep state separation. The 
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premature autonomous nervous system shows only a slight difference between the 

states leading to vague state borders and making a clear separation difficult. A very 

good combination of right features, parameters, and machine learning algorithms to 

discriminate those vague state borders is difficult to find. The sleep states are 

influenced by a variety of interconnected systems, as outlined in Chapter 1.6.3. Those 

interconnections are partly represented though highly complex and nonlinear 

combinations of the features used in our approach, reflecting the influence of preterm 

infant sleep on the ANS. This description of the problem calls for ANNs due to their 

ability to find nonlinear and highly complex dependencies in the input data. In small 

data sets, the use of classic machine learning solutions is generally advisable, as 

presented in Chapters 3 and 4. Very likely, they can outperform ANNs at small 

amounts of structured input data. This general assumption is confirmed when we 

compare the results of Chapters 3, 4, and 5, where none of the RNN models 

outperform the classic approaches. However, we must remember that the underlying 

problem and difficulty in distinguishing the sleep states remain the same with a 

growing amount of available data. What changes is the opportunity to train on an 

increasing amount of examples. Thus, the ANNs are in clear advantage over classic 

machine learning algorithms. ANNs are hardly limited in the dimensionality to 

describe a given problem compared to classic machine learning approaches. With 

such a divergent problem as preterm infant sleep, high dimensionality is needed to 

describe the problem in full.   

In this thesis, we have laid the ground for the use of ANNs in the problem of preterm 

infant sleep and achieved similar performance to traditional machine learning. As 

soon as more data become available, the models can be retrained, resulting in 

increased performance. As described in Chapter 5.6.6, about fifty 24 h recordings 

should yield very good performance for an all-state classification. An additional 

benefit of ANNs is the easy implementation of pre-learned models to boost the base 

knowledge of the ANN on which specific learned information can significantly 

increase performance. As in Chapter 5.6.6, we suggest utilizing more easily available 
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term infant sleep data to pre-learn models. ANNs are often praised for the reduced 

need for feature engineering, as feature engineering requires domain knowledge, 

knowledge on signal processing, and time. These requirements are only true for 

CNNs and not for RNNs, as used in this thesis. As we are positive that not all 

autonomous relations and effects are represented in the features presented here, we 

also suggest to further examine feature extraction using a CNN network. Moreover, 

the visual description of the ECG patterns is under-represented in our feature set. 

The measures of complexity can also be considered a pattern description. For future 

approaches, we highly recommend adding CNN feature extraction in addition to 

features built on domain knowledge. In Chapter 5, we present several deep learning 

architectures. None of them prevails over the others by far. For the selection of the 

chosen architectures, the optimal architecture might not have been found yet. The 

developed automatic machine learning algorithms (autoML), such as AutoKeras [280] 

and AdaNet [281], can help create network architectures with reduced computational 

costs to find optimized network architectures for a given problem. AutoML has 

proven to be very effective on known, public datasets such as CIFAR-10 [282], 

MNIST [283], and FASHION [284]. Future research should investigate autoML 

approaches to optimize the data structures on preterm infant sleep. Further, we have 

described the highly complex interactions of the cardio-respiratory system in chapter 

1.6.4; using many of the measurable responses for multi-modality ANN input could 

describe the sleep states in more holistic and robust way than only focusing on HRV. 

Using multiple input modalities will also allow including information about the sleep 

states that are not existent in the ECG signal and therefore cannot be retrieved with 

the most complex model architectures. However, unobtrusiveness should be kept in 

mind.  

To summarize the sleep classification, we are confident that, based on the results 

presented in this thesis, a continuous AS-QS monitoring system might be established 

in the NICU after further investigation and improvements. Unfortunately, no full 

state monitoring system can be implemented at this point. Substantial research effort 
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has to be made into all state classification before a monitoring system becomes 

realistic in a clinical setting. The focus should thereby be put on the IS state 

classification, as IS classification performed poorest with all compared methods. Our 

presented results are an advanced starting ground and booster for further advances in 

preterm infant sleep research.  

6.2 Unobtrusive sleep state monitoring 

First, we demonstrated the possibility of classifying AS and QS using different 

classification methods with the use of classic ECG signal recording. Second, we 

determined that real unobtrusive signals from a capacitive ECG are feasible for sleep 

state classification. With capacitive ECG signal recordings, we verified that the same 

classification results can be achieved as with a traditional ECG arrangement, referring 

to the human annotations. The capacitive ECG signal was more prone to noise-

induced by movement as the capacitive elements are sensitive to area, distance, and 

dielectric changes. Nevertheless, the increased noise did not harm the classification 

performance, as this type of noise itself is information. Noise represents an active or 

passive movement. The amount of movement can be related to AS, wake, or 

caretaking. On the other hand, electronic or electromagnetic noise such as thermal, 

or 1/f noise have the known impacts on the recorded signals and analysis. The used 

capacitive electrodes were implemented in a NICU mattress fulfilling all clinical 

standards and having no influence on the preterm infants whatsoever.  

The mattress itself is not of specific material regarding industry standards and 

production. It has to match to hygienic clinical standards, which include withstanding 

alcohol cleaning solutions. The mattress cover should be skin-friendly as the preterm 

infant skin is extraordinarily fragile. Preterm infants generally sweat for 

thermoregulatory purposes even though the efficiency on thermoregulation is poor 

[285]. Before 36 weeks GA, preterm infants do not initially sweat but build up the 

ability to sweat within typically 13 days after birth. The intensity of sweating and 



6.3 - Patient group 

 

172 

 

initiation as a response to increased temperature depend on age. The younger the age, 

the higher the threshold to initialize sweating. Subsequently, a mattress is not required 

to absorb large amounts of sweat in a temperature-controlled incubator. When 

replaced or cleaned regularly, bacterial cultivation in the mattress cover is 

inconsequential.  

The ECG signal composition, with the rules described in Chapter 4, and 

preprocessing of the signal can be hardcoded into the mattress hardware to enable 

simple connections to preset systems for ECG sleep state classification.  

In summary, the combination of a successfully trained deep learning model and 

capacitive electrodes for ECG can yield an unobtrusive monitoring system that can 

realistically be deployed for preterm infant sleep analysis. 

6.3 Patient group  

In this thesis, three different patient groups were presented. The age ranged from 

very early to late preterm infants (see Figure 40). Most preterm infants were born at 

a very low gestational age, with the majority below 30 weeks GA. Measurements had 

to be made at 1 or 2 weeks after birth to ensure the stability of the patients. In some 

of the very early preterm infants, the measurements had to be postponed up to 8 

weeks before stability was reached (see Figure 41). Stability is also related to weight. 

Following the WHO’s definition [1], all of the preterm infants analyzed in this thesis 

are small for their GA with the maximum at 2500 g (see Figure 42 ). The majority is 

actually of very low or extremely low birth weight with less than 1500 and 1000 g, 

respectively. 

Age at the time of recording is not the only point of interest for sleep classification. 

Preterm infants develop differently depending on the age at birth. As explained in the 

introduction, the earlier the preterm infant is born, the more comorbidities and 

general lower health conditions are to be expected. This expectation is also related to 
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sleep staging because comorbidities, such as lung diseases, affect the vital sign 

parameters, which are used for classification. More cases that are unusual reduce the 

performance of the classifier, especially when only small datasets are at hand. In a 

large dataset, where sufficient “regular” cases are available, many outliers are 

welcomed as the trained classifier tends to generalize better. Generalization on 

outliers is especially important in the patient group of preterm infants as this patient 

group is predisposed for special cases and outliers. Interestingly, even though we 

consider our dataset as small, the results were similar between the different datasets, 

showing the good generalizability of the trained models. Alternatively, as mainly AS 

and QS were separated well, AS and QS are defined prominently despite the stability 

and overall health status of the patients. Which effect is more prominent should be 

further investigated. 

 

Figure 40 Number of patients sorted by gestational and conceptional age.  
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Figure 41 Difference between the time of birth and the time of recording in weeks. 

 

 

Figure 42 Weight at birth of patient group presented in this thesis. 
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6.4 Annotations 

The datasets were all annotated by different annotators. For the datasets used mainly 

in Chapters 3 and 4, the annotators were trained by the same instructor who also was 

involved in the annotation oversight. They modified the behavioral annotation style 

of Prechtl [197] and adapted it to preterm infants. They watched mainly videos of the 

preterm infants, identifying subtle movements, changes in breathing, and the cycle of 

states. Moreover, the provided ECG signals were partly considered. Otte et al. [231] 

demonstrated that the annotations are on par with the gold standard when used on 

term infant sleep classifications. The publication is in progress at this point and should 

soon be announced on Researchgate (researchgate.net/profile/RA_Otte). For 

Chapter 4, the overall training time of the annotators was shorter than for Chapter 3. 

Whether this difference resulted in any major discrepancy between annotation 

qualities cannot be said as many other factors, such as quality of the data, the accuracy 

of the annotator, the provided working environment, the provided annotation 

tools/software, and others, come to play when comparing the quality of annotations. 

In general, no major difference regarding discrepancies in annotation decisions, 

training quality, annotator focus, general understanding of sleep state signs, and other 

indications of quality were observed. In all annotations, rare sleep cycles were 

annotated; in particular, “stress sleep,” where QS follows directly after a wake period. 

As we had no direct insight into the annotation process, we could not determine 

whether this appeared more often than assumed or false annotations occurred in one 

or the other case. In both cases, these scenarios could lead to reducing the 

classification performance in chapter 5 when the LSTM trained on more often 

occurring outliers of long-term patterns. The SVM and random forest algorithms in 

Chapters 3 and 4 are not affected as long-term dependencies are not learned. In the 

second case, the sleep state was wrongly annotated regarding the underlying 

information in the vital signs, thereby falsely training the classifier and leading to 

reduced performance. With increasing data, the impact of those cases reduces. 
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6.5 The beneficiary of sleep monitoring 

Information is the key to success. We argue that anyone who can derive information 

from continuous monitoring is the beneficiary of such a system. More specifically, 

pediatricians and nursing staff would derive the main, enabling benefit from such a 

system. However, a good pediatrician or nurse can most likely determine the 

developmental status of a baby by other parameters such as movement, response to 

stimuli, increase in size and weight, reduction of respiratory problems, vital sign 

stabilization, overall strength, and other indications. This might challenge the 

advantage of the technique described in the thesis. We observed nurses trained in the 

“newborn individualized developmental care and assessment program” (NIDCAP). 

Those nurses would sit next to a preterm infant and record its behavior on a prepared 

form to establish the state of the preterm infants’ neuro and motor development. 

They would continuously fill in a prepared form throughout several hours. This 

procedure was considered by the NIDCAP nurses to be a very exerting process. This 

process gathers information on one particular preterm infant, at one particular point 

in time, and at the same time requiring the attention of one NIDCAP nurse for several 

hours. Replacing all of the mentioned observation skills by an automated system will 

not be realizable in the near future, but providing the caretakers with additional 

information of parameters, which are difficult to visualize, such as sleep state cycles 

and sleep state distribution are realistic goals. Adding this information automatically 

to the patient information will add tremendous aid to the daily routine of the 

caretakers. Long term ambitions should aspire to free up clinical staff by 

implementing a fully autonomous monitoring system. This will not replace clinical 

experts, but rather shift their valuable time to more pressing tasks and primary duties: 

the care of their patients.  

Another interesting approach is the use of an automated monitoring system not only 

for the caretakers but also for steering other processes automatically in the NICU. 

Very interesting could be central apnea prevention. Internal temperature control due 
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to the process of controlling total body heat loss leads to instabilities and central 

apneas in sleeping preterm infants [286]. In general, central apnea is more frequent 

during AS [287]–[289]. An automatic adaption of the incubator temperature to the 

sleep states may reduce the control mechanisms, which try to reduce total body heat 

loss and consequentially central apnea.  

More application might be to adapt the patient room lighting based on the sleep state. 

Furthermore, the alarms can be silenced at the bedside during QS. The nasogastric 

tube for feeding can be blocked during specific sleep states to avoid temperature 

drops and instability of the preterm infant. Alarms can be automatically turned off 

and also not be stored in the data warehouse during caretaking procedures as alarms 

are likely provoked due to the procedure. False alarm statistics due to caretaking can 

be reduced this way.  

An alternative question is whether automated sleep monitoring can comfort parents 

in the first days after release from the hospital to home. In several discussions with 

parents and caretakers, most of the parents we encountered felt insecure and unfit to 

take over the full care for their preterm infant child during the first weeks at home. 

They reported that the insecurity was mainly due to an often harsh cut from a fully 

monitored environment with trained staff to an unmonitored home environment. 

Parents have an increased risk of postpartum depression, posttraumatic stress 

disorder (PTSD), and anxiety disorder after discharge from the NICU [5], [290], [291]. 

New concepts, regarding family inclusion are launched like the mentioned M-NICU 

[6] with the mother having her bed next to the incubator and being an active caregiver, 

and NIPU [5] which similarly centers the care not mainly around the preterm infant 

but around the family as a whole with additional mental health support and post-

discharge support. An important part of the new concepts is the inter-professional 

collaboration with families involving them in the care plan and mentor them to 

establish knowledgeable caretakers [5], [292]. This mentoring should achieve parental 

decision-making, taking responsibility and achieving a realistic and informed view of 

the preterm infant’s health condition. Mentored parents might have a lower risk of 
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PTSD by reducing the feeling of helplessness [293]. Part of these novel approaches 

could be an automated sleep monitoring system. As sleep is a major part of the 

preterm infant’s early part of life, mentoring parents on their infant's sleep patterns 

and sleep cycles during their hospital stay, reinforced by an automated monitoring 

system, would help them understand their child further on a core level. This 

understanding can be taken home as one of the first parenting skills, strengthening 

the parents on their journey and easing the hospital to home transition.  

As mentioned at the beginning of this chapter, we believe that an automated system 

can be implemented with camera solutions and latest ANNs, which then can be 

transferred into the home environment using existing camera/video solutions. If 

needed, video monitoring can extend hospital monitoring on a lower level into the 

home environment until monitoring is deemed unnecessary. From a clinical 

perspective, home monitoring may indicate ill development at home and potentially 

reduce critical re-admissions to the hospital by early recognition.  

In discussing this hospital to home process, one question was prominent. Would 

any monitoring solution not hinder the natural adaption process of the parents to 

their child? Would the constant monitoring not delay them from relying on their 

parental instincts and the knowledge they gathered during the hospital stay? Would 

such a monitoring system not be more of a burden than an aid? We cannot answer 

this question in its entity as it might vary from parent to parent based on different 

personalities, cultural, and/or knowledge backgrounds. However, we believe that with 

the mentioned novel concepts, parents will become experts themselves using the 

monitoring rather as insurance than being fully depending on them. Informed and 

trained parents will not be hindered to adapt to their infant, as the hospital to home 

transition will not be an abrupt change in knowledge by missing experts, but only a 

change in location.   

In general, the questions about home monitoring and hospital to home experience 

may yield different answers for different cultures with varying beliefs and traditions. 

This is meant with the clear distinction between stereotypeization and generalization. 
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At this point, we will not dive into depth about cultural differences on the view of 

home monitoring, but instead raise another critical question for the last part of this 

thesis. Do we need such elaborate monitoring solutions when the majority of preterm 

infants are born in low-income countries where that research has probably limited 

effects due to cost barriers?  

Moreover, despite our effort to enable a low-income appropriate solution by 

focusing on an ECG solution, the answer would be yes. History has shown that 

inventions, innovations, and processes are trickling down from high-profit solutions 

to general, widespread use. An example close to the subject of this thesis would be 

the use of incubators for preterm babies and the formation of NICUs. The first 

incubator used on preterm infants was set up in 1903 by Martin Arthur Couney, and 

they were introduced in Europe at around 1933 [294]. From 1950 onwards, hospitals 

started to adopt special units for preterm infants, which evolved into today’s highly 

specialized NICUs. After NICUs were established in the high-income countries, the 

knowledge was exported to developing and low-income countries. To date, NICUs 

are being deployed in rural areas all over the world, often by western health 

organizations. Whether the deployment of NICUs by external organizations is the 

best way to establish long-lasting positive effects in low-income countries is another 

interesting question, which would extend this thesis disproportional and will be left 

undiscussed. Another example of technology transfer from high- to low-income 

countries is the smartphone. Smartphones were limited in early 2000 to a specific user 

group in high-income countries. To date, low-income countries, such as in Africa, 

have a very high mobile penetration rate, which is also changing the health care sector 

and enables the use of mobile telecommunication to raise health awareness and 

provide telehealth to reduce neonatal transports in rural areas [295]. Smartphone 

sensor and computation power can be used for health care in rural areas such as the 

smartphone stethoscope Steth IO [296], or as ultrasound monitors in combination 

with a smartphone-compatible ultrasound head [297]. Finally, countless health apps 

can be used worldwide, benefitting personal health. With the rise of deep learning and 
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specialized hardware acceleration for AI, such as the Google tensor processing unit 

[298], with the next smartphone generation, we will see an increase in smartphone 

apps implementing AI to analyze and monitor patients.  

Despite these practical applications for low-income regions, research should not 

have the limitations to be bound to direct use cases or benefits. This statement is also 

true for the application-oriented field of engineering. The path of research results 

might not always be foreseeable. Whenever we encounter a research topic or project 

that is based on fastidious conditions and with a limited focus, we should see it as a 

sign of peace. There might not be another time where “useless” projects can be 

realized. In blessed times and conditions, we have the responsibility to tackle those 

questions despite a direct or even indirect benefit.  

Unnecessary research is a token of peace! 
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“De keisnijding” by Jheronimus Bosch  

ca. 1494; Oil on Oak. Museo Nacional del Prado. 

De keisnijding, the extraction of the stone of madness, or the cure of folly are different 

names for the painting by Jheronimus (or later Hieronymus) Bosch, showing a doctor 

performing a maniacal practice of removing part of the brain to cure the patient's 

madness. The procedure is observed by a priest and nun, symbolizing knowledge at 

the time of Bosch. The closed book on the head of a nun and the inverted funnel on 

the head of a doctor symbolize that their knowledge is meaningless when combined 

with absurdity and that the art of healing is quackery.  

I chose this painting for the thesis book cover, as I see some resemblance and 

connections with my Ph.D. At first, Hieronymus Bosch is one of my favorite painters, 

who happened to be born in the Netherlands, where my Ph.D. took place. S-

Hertogenbosch, his place of birth is even quite close to Eindhoven. During my Ph.D. 

his 500 birthday was celebrated in 2016. However, I also see a resemblance to the 

here presented work, as I tried to gain knowledge of the preterm infant brain and 

development with comparably rudimentary methods of ECG analysis compared to 

CT scans, EEG analysis, and other more elaborate methods. However, my hope was 

to deliver an instrument for the physicians and caretakers that they might gain inside 

to the preterm infant brain without using manual or obtrusive methods like most of 

the more elaborate methods; rendering antiquated manual and “opening the skull” 

methods obsolete. Further, the idea of development monitoring aims towards curing 

or preventing madness at an early stage, resembling the extraction of the stone of 

madness, turning this ancient superstition into reality. Lastly, it could also be 

interpreted that I needed to cure my own folly with gaining knowledge during my 

Ph.D. and preventing myself from madness by finalizing this thesis. 

https://nl.wikipedia.org/wiki/Jheronimus_Bosch
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