136 research outputs found

    Remote Sensing of River Discharge: A Review and a Framing for the Discipline

    Get PDF
    Remote sensing of river discharge (RSQ) is a burgeoning field rife with innovation. This innovation has resulted in a highly non-cohesive subfield of hydrology advancing at a rapid pace, and as a result misconceptions, mis-citations, and confusion are apparent among authors, readers, editors, and reviewers. While the intellectually diverse subfield of RSQ practitioners can parse this confusion, the broader hydrology community views RSQ as a monolith and such confusion can be damaging. RSQ has not been comprehensively summarized over the past decade, and we believe that a summary of the recent literature has a potential to provide clarity to practitioners and general hydrologists alike. Therefore, we here summarize a broad swath of the literature, and find after our reading that the most appropriate way to summarize this literature is first by application area (into methods appropriate for gauged, semi-gauged, regionally gauged, politically ungauged, and totally ungauged basins) and next by methodology. We do not find categorizing by sensor useful, and everything from un-crewed aerial vehicles (UAVs) to satellites are considered here. Perhaps the most cogent theme to emerge from our reading is the need for context. All RSQ is employed in the service of furthering hydrologic understanding, and we argue that nearly all RSQ is useful in this pursuit provided it is properly contextualized. We argue that if authors place each new work into the correct application context, much confusion can be avoided, and we suggest a framework for such context here. Specifically, we define which RSQ techniques are and are not appropriate for ungauged basins, and further define what it means to be ‘ungauged’ in the context of RSQ. We also include political and economic realities of RSQ, as the objective of the field is sometimes to provide data purposefully cloistered by specific political decisions. This framing can enable RSQ to respond to hydrology at large with confidence and cohesion even in the face of methodological and application diversity evident within the literature. Finally, we embrace the intellectual diversity of RSQ and suggest the field is best served by a continuation of methodological proliferation rather than by a move toward orthodoxy and standardization

    Flow duration curves from surface reflectance in the near infrared band

    Get PDF
    Flow duration curve (FDC) is a cumulative frequency curve that shows the percent of time a specific discharge has been equaled or exceeded during a particular period of time at a given river location, providing a comprehensive description of the hydrological regime of a catchment. Thus, relying on historical streamflow records, FDCs are typically constrained to gauged and updated ground stations. Earth Observations can support our monitoring capability and be considered as a valuable and additional source for the observation of the Earth’s physical parameters. Here, we investigated the potential of the surface reflectance in the Near Infrared (NIR) band of the MODIS 500 m and eight-day product, in providing reliable FDCs along the Mississippi River. Results highlight the capability of NIR bands to estimate the FDCs, enabling a realistic reconstruction of the flow regimes at different locations. Apart from a few exceptions, the relative Root Mean Square Error, rRMSE, of the discharge value in validation period ranges from 27–58% with higher error experienced for extremely high flows (low duration), mainly due to the limit of the sensor to penetrate the clouds during the flood events. Due to the spatial resolution of the satellite product higher errors are found at the stations where the river is narrow. In general, good performances are obtained for medium flows, encouraging the use of the satellite for the water resources management at ungauged river sites

    Application of CryoSat-2 altimetry data for river analysis and modelling

    Get PDF
    Availability of in situ river monitoring data, especially of data shared across boundaries, is decreasing, despite growing challenges for water resource management across the entire globe. This is especially valid for the case study of this work, the Brahmaputra Basin in South Asia. Commonly, satellite altimeters are used in various ways to provide information about such river basins. Most missions provide virtual station time series of water levels at locations where their repeat orbits cross rivers. CryoSat-2 is equipped with a new type of altimeter, providing estimates of the actual ground location seen in the reflected signal. It also uses a drifting orbit, challenging conventional ways of processing altimetry data to river water levels and their incorporation in hydrologic–hydrodynamic models. However, CryoSat-2 altimetry data provides an unprecedentedly high spatial resolution. This paper suggests a procedure to (i) filter CryoSat-2 observations over rivers to extract water-level profiles along the river, and (ii) use this information in combination with a hydrologic–hydrodynamic model to fit the simulated water levels with an accuracy that cannot be reached using information from globally available digital elevation models (DEMs) such as from the Shuttle Radar Topography Mission (SRTM) only. The filtering was done based on dynamic river masks extracted from Landsat imagery, providing spatial and temporal resolutions high enough to map the braided river channels and their dynamic morphology. This allowed extraction of river water levels over previously unmonitored narrow stretches of the river. In the Assam Valley section of the Brahmaputra River, CryoSat-2 data and Envisat virtual station data were combined to calibrate cross sections in a 1-D hydrodynamic model of the river. The hydrologic–hydrodynamic model setup and calibration are almost exclusively based on openly available remote sensing data and other global data sources, ensuring transferability of the developed methods. They provide an opportunity to achieve forecasts of both discharge and water levels in a poorly gauged river system

    CryoSat-2 satellite radar altimetry for river analysis and modelling

    Get PDF

    SATELLITE REMOTE SENSING AND HYDROLOGIC MODELING FOR FLOOD MONITORING IN DATA POOR ENVIRONMENTS

    Get PDF
    Study of hydroclimatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data combined with the recently available satellite remote sensing data, the hydroclimatology of Nzoia basin, one of the contributing sub-catchments of Lake Victoria in the East African highlands is analyzed. The basin, with a semi-arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the primary cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990s have had high peak discharges despite having relatively less annual rain.The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE) of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6) is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to early June.The spatially distributed model inputs, states, and outputs, were found to be useful for understanding the hydrologic behavior at the catchment scale. The monthly peak runoff is observed in the months of April, May and November. The analysis revealed a linear relationship between rainfall and runoff for both wet and dry seasons. Satellite precipitation forcing data showed the potential to be used not only for the investigation of water balance but also for addressing issues pertaining to sustainability of the resources at the catchment scale.Implementation of a flood prediction system can potentially help mitigate flood induced hazards. Such a system typically requires implementation and calibration of a hydrologic model using in-situ observations (e.g. rain gauges and stream gauges). Recently, satellite remote sensing data has emerged as a viable alternative or supplement to the in-situ observations due to its availability over vast ungauged regions. The focus of this study is to integrate the best available satellite products within a semi-distributed hydrologic model to characterize the spatial extent of flooding over sparsely-gauged or ungauged basins. A satellite remote sensing based approach is proposed to calibrate a hydrologic model, simulate the spatial extent of flooding, and evaluate the probability of detecting inundated areas. A raster-based semi-distributed hydrologic model, CREST, is implemented for the Nzoia basin, a sub-basin of Lake Victoria in Africa. MODIS Terra and ASTER-based raster flood inundation maps were produced over the region and used to benchmark the hydrologic model simulations of inundated areas. The analysis showed the value of integrating satellite data such as precipitation, land cover type, topography and other data products along with space based flood inundation extents as inputs for the hydrologic model. It is concluded that the quantification of flooding spatial extent through optical sensors can help to evaluate hydrologic models and hence potentially improve hydrologic prediction and flood management strategies in ungauged catchments

    Amazon hydrology from space : scientific advances and future challenges

    Get PDF
    As the largest river basin on Earth, the Amazon is of major importance to the world's climate and water resources. Over the past decades, advances in satellite-based remote sensing (RS) have brought our understanding of its terrestrial water cycle and the associated hydrological processes to a new era. Here, we review major studies and the various techniques using satellite RS in the Amazon. We show how RS played a major role in supporting new research and key findings regarding the Amazon water cycle, and how the region became a laboratory for groundbreaking investigations of new satellite retrievals and analyses. At the basin-scale, the understanding of several hydrological processes was only possible with the advent of RS observations, such as the characterization of "rainfall hotspots" in the Andes-Amazon transition, evapotranspiration rates, and variations of surface waters and groundwater storage. These results strongly contribute to the recent advances of hydrological models and to our new understanding of the Amazon water budget and aquatic environments. In the context of upcoming hydrology-oriented satellite missions, which will offer the opportunity for new synergies and new observations with finer space-time resolution, this review aims to guide future research agenda toward integrated monitoring and understanding of the Amazon water from space. Integrated multidisciplinary studies, fostered by international collaborations, set up future directions to tackle the great challenges the Amazon is currently facing, from climate change to increased anthropogenic pressure

    Application of CryoSat-2 altimetry data for river analysis and modelling

    Get PDF

    Application of open-access and 3rd party geospatial technology for integrated flood risk management in data sparse regions of developing countries

    Get PDF
    Floods are one of the most devastating disasters known to man, caused by both natural and anthropogenic factors. The trend of flood events is continuously rising, increasing the exposure of the vulnerable populace in both developed and especially developing regions. Floods occur unexpectedly in some circumstances with little or no warning, and in other cases, aggravate rapidly, thereby leaving little time to plan, respond and recover. As such, hydrological data is needed before, during and after the flooding to ensure effective and integrated flood management. Though hydrological data collection in developed countries has been somewhat well established over long periods, the situation is different in the developing world. Developing regions are plagued with challenges that include inadequate ground monitoring networks attributed to deteriorating infrastructure, organizational deficiencies, lack of technical capacity, location inaccessibility and the huge financial implication of data collection at local and transboundary scales. These limitations, therefore, result in flawed flood management decisions and aggravate exposure of the most vulnerable people. Nigeria, the case study for this thesis, experienced unprecedented flooding in 2012 that led to the displacement of 3,871,53 persons, destruction of infrastructure, disruption of socio-economic activities valued at 16.9 billion US Dollars (1.4% GDP) and sadly the loss of 363 lives. This flood event revealed the weakness in the nation’s flood management system, which has been linked to poor data availability. This flood event motivated this study, which aims to assess these data gaps and explore alternative data sources and approaches, with the hope of improving flood management and decision making upon recurrence. This study adopts an integrated approach that applies open-access geospatial technology to curb data and financial limitations that hinder effective flood management in developing regions, to enhance disaster preparedness, response and recovery where resources are limited. To estimate flood magnitudes and return periods needed for planning purposes, the gaps in hydrological data that contribute to poor estimates and consequently ineffective flood management decisions for the Niger-South River Basin of Nigeria were filled using Radar Altimetry (RA) and Multiple Imputation (MI) approaches. This reduced uncertainty associated with missing data, especially at locations where virtual altimetry stations exist. This study revealed that the size and consistency of the gap within hydrological time series significantly influences the imputation approach to be adopted. Flood estimates derived from data filled using both RA and MI approaches were similar for consecutive gaps (1-3 years) in the time series, while wide (inconsecutive) gaps (> 3 years) caused by gauging station discontinuity and damage benefited the most from the RA infilling approach. The 2012 flood event was also quantified as a 1-in-100year flood, suggesting that if flood management measures had been implemented based on this information, the impact of that event would have been considerably mitigated. Other than gaps within hydrological time series, in other cases hydrological data could be totally unavailable or limited in duration to enable satisfactory estimation of flood magnitudes and return periods, due to finance and logistical limitations in several developing and remote regions. In such cases, Regional Flood Frequency Analysis (RFFA) is recommended, to collate and leverage data from gauging stations in proximity to the area of interest. In this study, RFFA was implemented using the open-access International Centre for Integrated Water Resources Management–Regional Analysis of Frequency Tool (ICI-RAFT), which enables the inclusion of climate variability effect into flood frequency estimation at locations where the assumption of hydrological stationarity is not viable. The Madden-Julian Oscillation was identified as the dominant flood influencing climate mechanism, with its effect increasing with return period. Similar to other studies, climate variability inclusive regional flood estimates were less than those derived from direct techniques at various locations, and higher in others. Also, the maximum historical flood experienced in the region was less than the 1-in-100-year flood event recommended for flood management. The 2012 flood in the Niger-South river basin of Nigeria was recreated in the CAESAR-LISFLOOD hydrodynamic model, combining open-access and third-party Digital Elevation Model (DEM), altimetry, bathymetry, aerial photo and hydrological data. The model was calibrated/validated in three sub-domains against in situ water level, overflight photos, Synthetic Aperture Radar (SAR) (TerraSAR-X, Radarsat2, CosmoSkyMed) and optical (MODIS) satellite images where available, to access model performance for a range of geomorphological and data variability. Improved data availability within constricted river channel areas resulted in better inundation extent and water level reconstruction, with the F-statistic reducing from 0.808 to 0.187 downstream into the vegetation dominating delta where data unavailability is pronounced. Overflight photos helped improve the model to reality capture ratio in the vegetation dominated delta and highlighted the deficiencies in SAR data for delineating flooding in the delta. Furthermore, the 2012 flood was within the confine of a 1-in-100-year flood for the sub-domain with maximum data availability, suggesting that in retrospect the 2012 flood event could have been managed effectively if flood management plans were implemented based on a 1-in-100-year flood. During flooding, fast-paced response is required. However, logistical challenges can hinder access to remote areas to collect the necessary data needed to inform real-time decisions. Thus, this adopts an integrated approach that combines crowd-sourcing and MODIS flood maps for near-real-time monitoring during the peak flood season of 2015. The results highlighted the merits and demerits of both approaches, and demonstrate the need for an integrated approach that leverages the strength of both methods to enhance flood capture at macro and micro scales. Crowd-sourcing also provided an option for demographic and risk perception data collection, which was evaluated against a government risk perception map and revealed the weaknesses in the government flood models caused by sparse/coarse data application and model uncertainty. The C4.5 decision tree algorithm was applied to integrate multiple open-access geospatial data to improve SAR image flood detection efficiency and the outputs were further applied in flood model validation. This approach resulted in F-Statistic improvement from 0.187 to 0.365 and reduced the CAESAR-LISFLOOD model overall bias from 3.432 to 0.699. Coarse data resolution, vegetation density, obsolete/non-existent river bathymetry, wetlands, ponds, uncontrolled dredging and illegal sand mining, were identified as the factors that contribute to flood model and map uncertainties in the delta region, hence the low accuracy depicted, despite the improvements that were achieved. Managing floods requires the coordination of efforts before, during and after flooding to ensure optimal mitigation in the event of an occurrence. In this study, and integrated flood modelling and mapping approach is undertaken, combining multiple open-access data using freely available tools to curb the effects of data and resources deficiency on hydrological, hydrodynamic and inundation mapping processes and outcomes in developing countries. This approach if adopted and implemented on a large-scale would improve flood preparedness, response and recovery in data sparse regions and ensure floods are managed sustainably with limited resources

    Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets

    Get PDF
    In order to cope with the steady decline of the number of in situ gauges worldwide, there is a growing need for alternative methods to estimate runoff. We present an Ensemble Kalman Filter based approach that allows us to conclude on runoff for poorly or irregularly gauged basins. The approach focuses on the application of publicly available global hydrometeorological data sets for precipitation (GPCC, GPCP, CRU, UDEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA interim, GLDAS), and water storage changes (GRACE, WGHM, GLDAS, MERRA LAND). Furthermore, runoff data from the GRDC and satellite altimetry derived estimates are used. We follow a least squares prediction that exploits the joint temporal and spatial auto- and cross-covariance structures of precipitation, evapotranspiration, water storage changes and runoff. We further consider time-dependent uncertainty estimates derived from all data sets. Our in-depth analysis comprises of 29 large river basins of different climate regions, with which runoff is predicted for a subset of 16 basins. Six configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard (soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions to observed monthly runoff shows correlations larger than 0.5, percentage biases lower than ± 20%, and NSE-values larger than 0.5. A modified NSE-metric, stressing the difference to the mean annual cycle, shows an improvement of runoff predictions for 14 of the 16 basins. The proposed method is able to provide runoff estimates for nearly 100 poorly gauged basins covering an area of more than 11,500,000 km2 with a freshwater discharge, in volume, of more than 125,000 m3/s

    Flood modeling and prediction using Earth Observation data

    Get PDF
    The ability to map floods from satellites has been known for over 40 years. Early images of floods were rather difficult to obtain, and flood mapping from satellites was thus rather opportunistic and limited to only a few case studies. However, over the last decade, with a proliferation of open-access EO data, there has been much progress in the development of Earth Observation products and services tailored to various end-user needs, as well as its integration with flood modeling and prediction efforts. This article provides an overview of the use of satellite remote sensing of floods and outlines recent advances in its application for flood mapping, monitoring and its integration with flood models. Strengths and limita- tions are discussed throughput, and the article concludes by looking at new developments
    • …
    corecore