
1. Introduction
Historically, hydrologists have relied on water-level gauges to estimate river discharge. By indexing in situ 
measurements of discharge to the stage at the gauge, continuously recorded stage measurements can be 
related to discharge through a rating curve, typically to within 4%–12% error compared with an in situ 
measurement (Horner et al., 2018). When extrapolating for low or high flows, however, these rating curve 
uncertainties associated with stage-discharge rating curves can increase up to 200% (Kiang et al., 2018). 
Gauge accuracy comes at a cost: they require substantial human effort to install and maintain and require 
frequent adjustment via new in situ measurements. Moreover, gauges may become damaged over time 
from extreme events (e.g., ice jams). In part due to this high maintenance cost, the number of permanent 
stream gauging stations has decreased since the 1980s across North America (Hannah et al., 2011). Further-
more, for geopolitical reasons, not all gauge data are widely available (Gleason & Hamdan, 2015). Globally, 
these factors contribute to a depreciated and geographically disproportionate gauge network; only 55% of 
all countries have contributed river discharge data to the Global Runoff Data Center (GRDC) since 1984 
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(Fekete et al., 2012). Given these challenges associated with gauges, gauge networks alone are not adequate 
to assess changes in flow over time at the global scale (Biancamaria et al., 2016).

To account for the dearth of in situ data, hydrologists have turned to remote sensing to estimate discharge. 
Because discharge cannot be directly measured from space, researchers rely on observable data such as 
river width, height, surface area, and slope (Alsdorf et al., 2007; Bjerklie et al., 2003, 2005, 2018; Birkinshaw 
et al., 2014; Brakenridge et al., 2007; Dingman & Bjerklie, 2006; Durand et al., 2014, 2010; Feng et al., 2019; 
Gleason & Durand, 2020; Gleason & Smith, 2014; Huang et al., 2018; Kouraev et al., 2004; Pavelsky, 2014; 
Sichangi et al., 2018; Smith, 1997; Smith et al., 1996; Smith & Pavelsky, 2008; Tarpanelli et al., 2015; Van 
Dijk et al., 2016) or combine remotely sensed data with hydrologic models (Brakenridge et al., 2012; Huang 
et al., 2020; Nathanson et al., 2012; Neal et al., 2009; Paris et al., 2016; Sun et al., 2018; Yoon et al., 2012). 
Although these methods have the potential to substantially increase the available discharge record, many 
still depend on gauges for calibration in some capacity and are limited in temporal resolution (Gleason & 
Durand, 2020).

NASA's Surface Water Ocean Topography (SWOT) satellite mission (2022 launch) seeks to measure surface 
water at unprecedented scales using a Ka-band radar interferometer to repeatedly map water surface eleva-
tion (WSE) and inundated areas for rivers greater than 100 m wide (Biancamaria et al., 2016). SWOT will 
measure over 60% of 50,000 km2 river basins, more than twice the number of basins measured by the GRDC 
at 30% (Pavelsky et al., 2014). In anticipation of SWOT, several methods have been developed to estimate 
discharge from its measurements without the use of gauges (Andreadis et al., 2020; Durand et al., 2014; 
Garambois & Monnier, 2015; Gleason & Smith, 2014; Hagemann et al., 2017; Oubanas et al., 2018). Al-
though SWOT has the potential to vastly improve discharge estimation in ungauged basins, it is primarily 
designed for large rivers, and it is not expected to provide data on rivers narrower than 50 m wide (Pavelsky 
et al., 2014). Thus, we must still rely on field techniques to estimate discharge in smaller rivers, tributaries, 
and headwaters. Therefore, there may be synergies in thinking through these field techniques with a decade 
of recent remote sensing work in mind.

To measure river discharge in the field, hydrologists principally rely on current meters and hydroacoustic 
sensors such as an Acoustic Doppler Current Profiler (ADCP) or Acoustic Doppler Velocimeters (ADV; 
Turnipseed & Sauer, 2010). ADCPs and ADVs are widely used and have substantially reduced in situ meas-
urement time needed to accurately measure discharge. The United States Geological Survey (USGS) and 
Environment and Climate Change Canada (ECCC) make tens of thousands of streamflow measurements 
each year, typically to update rating curves at permanent gauging stations, with approximately one meas-
urement per gauge every 5–7 weeks (Turnipseed & Sauer, 2010).

In ungauged rivers, hydrologists use ADCPs and ADVs to provide the discharge measurements needed to 
create temporary gauges (e.g., Shope et al., 2013). Temporary gauges, typically consisting of a pressure trans-
ducer (PT) coupled with a series of discharge measurements, function similarly to permanent gauges but 
are only deployed for a short time to capture extreme discharge events, avoid seasonal disruptions such as 
ice formation, or to accommodate budget, time, or geographic constraints. Temporary gauges are commonly 
deployed by many water agencies and have been studied or used in a myriad of field settings for decades 
(e.g., Chaudhury et al., 1998; Herbert & Thomas, 1992; Laenen & Hansen, 1985; Miller, 1962; Perry, 2012; 
Sandberg & Smith, 1995; Wiele & Torizzo, 2003; Ziegeweid et al., 2015). Like permanent gauges, temporary 
gauges rely on creating a rating curve through pairings of stage and discharge.

Stage variations are measured using a submersible PT fixed at the bottom or side of a river that measures 
overlying water pressure and is either vented directly to the atmosphere or corrected by an above water 
barometric pressure sensor. The difference between air and water pressure yields water depth via the hydro-
static equation, which can be converted to WSE through a GNSS survey (Altenau, Moller et al., 2017). PTs 
are easily deployed, relatively inexpensive, and can be left unattended for months at a time while continu-
ously logging data at a user-defined interval, making them an attractive option for hydrologists. By indexing 
ADCP discharge measurements to stage or WSE, PTs can be used to create a temporary gauge, yielding 
discharge at a high temporal resolution for months at a time depending on the site and application. PTs can 
be telemetered to provide real time monitoring, such as the services provided by the USGS and ECCC, or 
left in situ until they are physically collected to download data. Obtaining a continuous discharge record at 
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high temporal resolution (e.g., 15-min resolution), however, is dependent on the ability and time needed to 
accurately make in situ discharge measurements over a range of flows to adequately build a rating curve. 
If water levels rise or fall outside of the corresponding measured range of in situ discharge measurements, 
extrapolation can lead to substantial errors (Coxon et al., 2015; Sörengård & Baldassarre, 2017).

Although temporary gauges represent a common method of field discharge estimation, there are con-
straints that prevent them from being a viable option for all rivers. Obtaining discharge measurements at 
low and high flows is needed to develop a robust rating curve. This often necessitates multiple revisits over 
weeks or months depending on the variability of the annual flow regime. For example, an arid catchment 
with a spring snowmelt pulse would require visits in the spring high flow and autumn low flow periods. 
The use of ADCPs or ADVs may also require a nearby bridge, hydroboard, tag line, or boat which may not 
be conducive to all field settings. These considerations elongate the time and cost required to create an ac-
curate stage-discharge rating curve for a temporary gauge. Although temporary gauges present a potentially 
accurate means to measure discharge to supplement permanent hydrometric networks, the time needed to 
fully develop the rating curve, the cost and expertize needed to operate them, and the inherent limitations 
of the instruments impede this method from being more broadly applied.

As a means to overcome the limitations associated with temporary discharge gauges, we introduce a novel 
method of field discharge estimation that can be robustly applied to any river location with in situ access. 
The only in situ data needed for this method are arrays of PTs, and hence, we refer to this method as the 
Discharge via Arrays of Pressure Transducers method, or DAPT. We combine PT data with globally avail-
able digital elevation models (DEMs) and a discharge algorithm developed for remote sensing to provide 
streamflow estimates. Here, we describe DAPT and address the following three questions: (Q1) How robust 
is DAPT to changes in input data and model parameters?; (Q2) How does DAPT compare to a temporary 
gauge?; and (Q3) How well can DAPT reproduce in situ discharge measurements in a realistic field setting?

To answer Q1, we explicitly validate our method in gauged rivers and test its sensitivity to all physical 
and algorithmic parameters. For Q2, we compare DAPT to temporary gauges built from the same PT and 
discharge data within the same gauged rivers used for Q1. Lastly, for Q3, we present a case study of this 
method in a remote setting over two years of fieldwork in a poorly gauged site: only 4 of 11 demonstration 
river reaches have hydrologically relevant permanent gauge information. We find that DAPT is robust when 
discharge is well constrained and can perform similarly to a temporary gauge, and recommend it as an ef-
fective means to estimate discharge without needing to fully develop a rating curve.

2. Experimental Setup
2.1. Experimental Design

To answer our science questions, we designed a series of sensitivity tests followed by a case study (Figure 1). 
To address Q1 and Q2 we installed dense arrays of PTs on five permanently gauged rivers during open-wa-
ter periods spanning 2014 to 2017 in the context of SWOT cal/val development, hereafter referred to as the 
TOWNS data set (Tanana, Olentangy, Willamette, North Saskatchewan, Sacramento, described in detail 
in Section 2.2). DAPT combines the PT data with globally available DEMs and a recent SWOT discharge 
algorithm, Bayesian-AMHG-Manning (BAM, Section  2.3), to estimate discharge. To collect data for our 
case study and address Q3, we deployed PT arrays (2018–2019) in nine rivers in a remote deltaic setting (the 
Peace-Athabasca Delta or PAD, Canada). We collected extensive in situ ADCP discharge measurements for 
validation in these ungauged rivers. Further details for the sensitivity tests and case study are described 
below.

2.1.1. Q1: How Robust is DAPT to Changes in Input Data and Model Parameters?

To examine the robustness of DAPT using the TOWNS data set, we evaluated the method across five sen-
sitivity tests split into two categories: PT sensitivity and BAM sensitivity (Figure 1). For each test we varied 
nCk combinations of the chosen sensitivity, where n is the total possible inputs to the test and k represents 
the number of inputs that vary. To reduce the number of overall model runs, we randomly sampled 10 com-
binations if nCk was greater than 10. In the first three tests, we varied the number of PTs (Test 1), spacing 
between PTs (Test 2), and temporal resolution of PTs (Test 3). In some cases, PTs were installed strategically 
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to capture hydraulic features, and thus we iterated over all PTs to account for the nonrandom installation 
in Test 2.

For the BAM sensitivity in Test 4 we used a stationary permanent gauge installed by either USGS or ECCC 
to calibrate each BAM parameter, and then artificially degraded parameters to examine model robustness. 
We used a leave-one-out construction to hold all model parameters except one at their true value. To sam-
ple a range of parameter values, we used distributions based on the input data described in Section 3. In 
Test 5, we iteratively added one gauge-derived discharge estimate at a time to the discharge prior (Qprior) to 
ascertain the added benefit of each additional discharge estimate, and refer to this sensitivity as numQprior.

2.1.2. Q2: How Does DAPT Compare to a Temporary Gauge?

To address Q2, we compared discharge estimates from DAPT to the discharge estimated from a temporary 
gauge created by pairing our PTs with a timeseries of discharge from a nearby permanent gauge for rivers in 
the TOWNS data set. Thus, for every PT we installed, we made a unique rating curve, and this PT and rating 
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Figure 1. Our experiment design treats the first two science questions as sensitivity tests in gauged rivers, and the 
third question as a case study in a remote setting. We run five different sensitivity tests for Q1, with the corresponding 
number of model runs displayed on the right. Q2 compares the added benefit of discharge measurements to both 
DAPT and the standard approach of a temporary gauge. Lastly, we compare the DAPT method with in situ discharge 
measurements in poorly gauged rivers to answer Q3. DAPT, discharge via arrays of pressure transducers.
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curve together define a “temporary gauge.” Since DAPT inherently relies on multiple PTs, we compared the 
ensemble of rating curve discharge estimates to DAPT for a fairer comparison. We repeated the discharge 
sensitivity test (Test 5) to understand the sensitivity of both DAPT and the temporary gauge ensemble to the 
size and variability of Qprior.

We note here that we rely on discharge from a permanent gauge rather than ADCP or ADV measurements 
to train and test our methods. By definition, this gauged discharge has a strong correlation with our WSE 
measurements, thus this comparison favors a temporary gauge in the gauged set of rivers. An alternative ap-
proach would use archived discharge measurements to develop rating curves, but there were not sufficient 
archival USGS or ECCC discharge measurements at similar water levels to our PT installations for a mean-
ingful comparison, with a maximum of 10 measurements per river reach over a 10-year period reported in 
the USGS/ECCC archives.

2.1.3. Q3: How Well Can DAPT Reproduce In Situ Discharge Measurements in a Realistic Field 
Setting?

Following these sensitivity tests, we present a case study in a poorly gauged set of rivers in the Peace-Ath-
abasca Delta (PAD) to answer Q3. This setting (Section 2.2) is ideally suited to DAPT given its complexity, 
remoteness, size, and number of channels in close proximity. Although the PAD is gauged for flows entering 
and exiting the delta, water level stations within the connected channel-lake system operated by ECCC do 
not commonly provide discharge. We made discharge measurements with an ADCP for validation and to 
constrain the DAPT parameters in conjunction with sensitivity results learned from the TOWNS tests. We 
again compare DAPT with a temporary gauge, repeating Q2 sensitivity tests for DAPT and a temporary 
gauge using the same PT and ADCP data. There are no gauges used to train either DAPT or temporary 
gauges in the PAD, and unlike the TOWNS data set, we assumed no other prior knowledge of discharge in 
the PAD.

2.2. Study Areas

In total, we tested DAPT on 18 reaches of 14 different rivers using dense arrays of PTs, installed from 2013 
to 2019. We utilized data from two different settings: a five-river data set where temporary PT arrays were 
installed near USGS and ECCC gauges (TOWNS), and a nine-river field experiment in a remote sub-Arctic 
environment (PAD) without permanent discharge gauges. The TOWNS data include the following rivers: 
Tanana (AK), Olentangy (OH), Willamette (OR), North Saskatchewan (Canada), and the Sacramento (CA) 
(Figure 2). These rivers allow us to test the sensitivity of the method with full knowledge of discharge. In 
total, we completed 4,954 model runs across all five rivers at a daily resolution, a number that represents 
the sum of the tests outlined in Figure 1. Following these sensitivities, we explicitly compare DAPT with a 
temporary gauge using discharge derived from a permanent gauge (Q2).

We used the PAD rivers as a case study to validate DAPT in a remote, poorly gauged discharge environ-
ment. The PAD is North America's largest inland delta characterized as a hydrodynamic floodplain area 
sensitive to climate variability and development in upstream areas (e.g., hydroelectric dams and mining). 
Thus, changes in inflows and wetland-lake storage are simultaneously vital and difficult to monitor (Peters 
et al., 2006; Prowse & Conly, 2000; Toth et al., 2006).

Table 1 displays the mean discharge, mean width, strength of the rating curve, sampling period, number 
of loggers, temporal resolution, the closest USGS or ECCC gauging station, number of validation discharge 
measurements, and DEM and DEM resolution for all sites. The Sacramento River was split into three reach-
es to account for differences in PT installation time. In the PAD, the Athabasca and Rochers rivers were split 
into two separate reaches to account for the presence of tributaries. Here we explicitly define the length of 
our river reach as the distance between the first and last PT.
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2.3. Data

2.3.1. Water Surface Elevation

Each of our 14 sites contains arrays of 5–35 PTs spaced between 100 m and 25 km apart depending on the 
river. In the Tanana river, Solinst Levelogger Jr PTs were deployed in the river bed secured to either cinder 
blocks or dumbbells and used nearby barologgers for atmospheric pressure corrections (Altenau, Moller 
et al., 2017). Stage measurements were converted to WSE using an optical auto-level survey to measure the 
height difference between the water surface and GNSS surveyed benchmarks. These GNSS measurements 
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Figure 2. Panel A displays both the TOWNS and PAD locations. The PAD is displayed in further detail in Panel (b) Nearby USGS and ECCC gauge stations 
are shown as yellow stars, while ADCP discharge measurement locations are shown in cyan lines and PT locations as red circles. Each site is scaled differently, 
with lengths shown on the side of each cutout. Panel C displays a visual schematic of data sources (black), BAM inputs (red), and validation data (blue). PTs are 
installed in the riverbed (shown in gray). Barologgers are either attached to trees along the shore (as pictured), or rebar on the riverbank. Discharge validation 
comes from either a gauging station (TOWNS), or boat-based ADCP measurements (PAD). ADCP, acoustic doppler current profiler; ECCC, Environment and 
Climate Change Canada; PAD, Peace-Athabasca Delta; USGS, United States geological survey.
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were processed using Natural Resources Canada's Canadian Geodetic Survey Precise Point Positioning 
(PPP) tool. For the Olentangy, the same Solinst Levelogger Jr PTs were deployed attached via cinder blocks 
near barologgers, and a Leica Viva GS15 RTK GPS rover was used to convert stage to WSE (Tuozzolo, Lind 
et al., 2019). In the North Saskatchewan, Willamette, and three Sacramento reaches, ONSET U20 PTs were 
deployed alongside barologgers within open-ended PVC tubes for protection, and similarly surveyed in with 
RTK GPS (Minear & Wright, 2016; Tuozzolo, Langhorst et al., 2019). To stabilize the PTs in place, a 1 m 
long by 0.012 m diameter rebar metal stake was driven into the riverbed, leaving 0.20 m above to attach the 
PT with plastic zip ties. A visualization of the installation is outlined in Figure 2. This particular PT setup 
differs from a standard gauge in that real-time monitoring is not available, as providing telemetry for PTs is 
prohibitively expensive while decreasing physical robustness. Instead, data were downloaded at the end of 
the field campaign upon PT removal.

In the PAD, we deployed transducers in two separate field seasons. We deployed 44 Solinst Levelogger 
Junior Edge PTs in 2018 attached via cinder blocks and coupled these with a total of 352 ADCP discharge 
measurements collected across six larger rivers. In 2019, the field team returned to focus on smaller tribu-
taries: deploying 20 transducers and collecting 83 ADCP discharge measurements across three more rivers. 
Barometric transducers were installed every 10 km via zip ties within a tree, roughly 2 m above the water 
surface. Each approximate transducer location was identified with a Garmin eTrex 20x GPS, and the WSE 
was determined through mooring a boat over the transducer for two minutes and measuring the offset from 
the boat-based GNSS unit to the water level. GNSS measurements were made with a Septentrio PolaRX5 
receiver logging at 1 Hz with a Septentrio PolaNt-x MF antenna mounted on a 2 m pole mounted to the 
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River
Mean discharge 

(m3/s)
Mean 

width (m)
Rating curve 
corr. coef. r Dates (MM/DD/YY)

PT 
count

Rec. Int. 
(min)

Nearby 
gauge ID

Discharge 
count DEM

DEM 
res. (m)

Tanana 691 653 0.99 5/20/15–6/19/15 12 2 15515500 3,056 ArcticDEM 2

Olentangy 3 48 0.89 12/4/14–12/17/14 20 15 03226800 925 NED 10

Willamette 198 139 0.59 3/14/15–5/3/15 21 14 14166000 4,988 NED 10

N. Saskatchewan 306 309 0.86 6/28/17–8/10/17 9 5 05GG001 42 CDEM 30

Sacramento R1 147 136 0.99 3/5/15–3/18/15 10 15 11389500 1,232 NED 10

Sacramento R2 122 92 0.93 3/17/15–5/12/15 6 15 11389500 5,349 NED 10

Sacramento R3 128 199 0.88 3/23/15–5/27/15 19 15 11389500 6,678 NED 10

Athabasca R1 841 225 0.27 8/7/18–10/1/18 2 5 07DD001 4 CDEM 30

Athabasca R2 876 225 0.48 8/7/18–10/1/18 3 5 07DD001 42 CDEM 30

Coupe 91 93 −0.27 8/8/18–9/29/18 5 5 – 63 CDEM 30

Embarras 140 77 0.47 7/12/19–8/18/19 2 15 – 12 CDEM 30

Fletcher 153 85 0.09 8/7/18–9/30/18 3 5 – 52 CDEM 30

Limon 39 36 0.32 7/13/19–8/18/19 4 15 – 9 CDEM 30

Mamawi 110 61 −0.04 8/7/18–9/30/18 4 5 07KF015 20 CDEM 30

Quatre Fourches 346 111 −0.60 8/6/18–9/30/18 6 5 – 158 CDEM 30

Richardson 15 39 0.40 7/13/19–8/18/19 5 15 07DD002 26 CDEM 30

Rochers R1 1,890 277 −0.24 8/6/18–9/30/18 2 5 – 18 CDEM 30

Rochers R2 1,649 277 0.12 8/6/18–9/30/18 3 5 – 27 CDEM 30

Notes: Mean discharge and mean (river) width represent the mean values over the time period of this study (shown in the dates column). Rating curve 
correlation coefficient r corresponds to the correlation between logged WSE and discharge for each of the rivers, highlighting the relatively weak correlation 
in the PAD data set compared to the TOWNS data set. PT count refers to the number of pressure transducers in each reach and Rec. Int. refers to measurement 
frequency (minutes). Discharge count gives the number of permanent gauge (TOWNS) or ADCP (PAD) discharges available for training/validation. DEM refers 
to the digital elevation model used to estimate river width and slope further described in Section 3.4, with the corresponding resolutions to the right. ADCP, 
acoustic doppler current profiler; CDEM, Canadian digital elevation model; DEM, digital elevation models; NED, National Elevation Dataset; PAD, Peace-
Athabasca Delta; WSE, water surface elevation.

Table 1 
Study Area Description
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back of the boat and processed with CSRS PPP. Expected error associated with the WSE profiles for each of 
the rivers combines uncertainty from GPS surveys, PTs, and barologgers, and is estimated at 10 cm or less.

2.3.2. Discharge Validation Data

In the TOWNS data set, we relied on permanent gauging stations maintained by either the USGS or ECCC 
for discharge validation. Each of these stations was within 50 km of the nearest PT and contained discharge 
data at 15-min intervals for the time period the PTs were deployed (Table 1). We assumed that the river 
reaches are mass-conserved based on the similarity in PT data and distance between transducers, and thus 
have the same discharge throughout our reaches. We are aware that in the Tanana and Olentangy rivers 
ungauged tributaries impact this assumption, but previous investigation on these reaches has asserted that 
these tributaries contribute an estimated maximum mass imbalance of 14% (Altenau, Bates et al., 2017; 
Tuozzolo, Lind et al., 2019; Tuozzolo, Langhorst et al., 2019).

In the PAD, we relied on SonTek RiverSurveyor M9 ADCP discharge measurements for validation in most 
cases, as there are very few gauges available. The instrument was mounted to the side of a motorboat and 
used to estimate discharge via two orthogonal transects at a given location throughout the river reaches 
surveyed in the PAD. We processed the data using SonTek's RiverSurveyorLive software, and only included 
measurements that met the following criteria: (1) total discharge between right and left transects agreed 
within 5%, (2) at least 70% of the wetted width was measured by the ADCP, (3) the ratio of average boat 
speed to average water speed was less than 1.5, (4) the battery voltage of the ADCP was sufficiently high (at 
least 12 V), (5) measurements made at the river edge were sufficiently dense (have at least 10 edge samples 
that have at least 2 cells of depth), (6) the track and depth reference were high quality (all samples in the 
transect have a track reference code in SonTek's system), (7) river velocity vectors appear perpendicular 
to boat motion, do not cross each other, and do not move upstream, (8) the ADCP beams were working 
correctly (i.e., there were no beam separation errors), and (9) the channel width, channel area, and average 
velocity are consistent with other profiles at the same location and same time, where applicable. Discharge 
measurements were made within 2 km of transducer locations, and along the reach where possible over the 
course of several days.

In total, we made 352 ADCP discharge measurements over 11 reaches while traveling over 2,000 river km 
in the PAD. Despite this large effort, this is not a traditional discharge monitoring effort for the purposes of 
establishing a temporary gauge. This study prioritized rapidly deploying pressure transducers over a large 
area instead of spending time collecting repeated ADCP data at a few locations. For instance, we made doz-
ens of ADCP measurements in a single day or over two days for most reaches, thus capturing very little flow 
variability. We aimed to estimate discharge from PTs without having to fully develop rating curves, and thus 
wanted to test the effectiveness of relying on dense PT data with only a few ADCP measurements as input 
for BAM. Therefore, we constrain our primary temporary gauge/DAPT comparison to the TOWNS data set 
where our in situ measurements span a wider range of days and flow levels. We do, however, provide the 
corresponding temporary gauge performance in the PAD.

2.3.3. Digital Elevation Models

This study used different digital elevation models (DEMs) depending on availability. In the Olentangy, 
Sacramento, and Willamette, we used the USGS 3D Elevation Program at ⅓ arc second (∼10 m) resolu-
tion referenced in the North American Vertical Datum of 1988 (NAVD88) and published in 2013 (https://
www.usgs.gov/core-science-systems/ngp/3dep). In the Tanana, as it is within the Arctic circle, we relied on 
Arctic DEM at a 2 m resolution referenced to the WG84 ellipsoid and updated in September 2018 (Porter 
et al., 2018). Lastly, in the North Saskatchewan and PAD, we used the Canadian Digital Elevation model 
(CDEM) at 30 m resolution, updated in 2011 (https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-
951a-45d1d2051333), and referenced in the Canadian Geodetic Vertical Datum of 1928 (CGVD28). These 
DEMs were used to estimate river width (TOWNS) and slope (Sections 4.2.1 and 4.2.2) alongside manually 
digitized river centerlines. Although higher resolution Lidar DEMs exist for several of these rivers, we relied 
here on regionally available DEMs to provide results from standardized and widely available inputs and 
provide a sense of the adaptability of this method in different environments.
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3. Methods
3.1. Discharge Algorithm for the TOWNS Tests

To estimate discharge from these unique datasets we used the Bayesian-AMHG-Manning (BAM) algorithm 
(Hagemann et al., 2017). BAM estimates discharge given anticipated SWOT river measurements of width, 
height, and slope, and is one of several SWOT-related discharge algorithms (Andreadis et al., 2020; Durand 
et al., 2014; Garambois & Monnier, 2015; Gleason & Smith, 2014; Oubanas et al., 2018). Specifically, BAM is 
a Mass conserved Flow Law Inversion algorithm (Gleason et al., 2017). BAM uses two different flow laws to 
estimate discharge: AMHG (Gleason & Smith, 2014), which relies on width only, and Manning's equation, 
which relies on river width, slope, and cross-sectional area. In this study, we make use of the multitude of 
inputs available from the PT data. River widths are estimated through a coarse DEM and are not sensitive 
to small changes in WSE (Section 3.2), so using the less width-dependent Manning's equation allows for 
more variation in input data compared to AMHG. At a multi-reach scale, Manning's equation is presented 
in Equation 1 following Durand et al. (2014), where i and t represent cross sections and time, respectively, 
Q is the discharge (m3/s), n is the Manning roughness coefficient, A0 is the unobserved cross-sectional area 
(m2), dA is the observed change in cross sectional area (m2), W is the width (m), and S is the slope (m/m):

   
5/3 2/3 1/2

0
1

t it itit
Q A dA W S

n
 (1)

3.2. Discharge Algorithm Inputs

To estimate discharge, BAM requires measurements of widths, slopes, partial flow areas, and “prior” es-
timates of unobserved quantities. These Bayesian “priors” are probability distributions that specify the a 
priori uncertainty about unknown parameters described in Section 4.2.4. The rest of this section describes 
how we derived BAM inputs from our field PT installations, visualized in Figure 2.

3.2.1. Width

Width is easily estimated from remote sensing, and previous studies have relied on satellite imagery (e.g., 
Feng et al., 2019), topography photogrammetrically extracted from high-resolution aerial imagery (King 
et al., 2018), datasets such as Global River Widths from Landsat (GRWL; Allen & Pavelsky, 2018), or DEMs 
such as MERIT Hydro (Yamazaki et al., 2019). However, these methods require continuous remote sensing 
to estimate width at the time of a PT record, which was not available for this study. Here we estimated width 
by generating a cross sectional elevation profile from a DEM orthogonal to a manually digitized centerline 
of the reach. Elevations at the water surface for these DEMs are smoothed, making them visually distin-
guishable from surrounding land. At each PT location, we manually identified the left and right banks, 
linearly interpolated a smooth slope for each to eliminate the “steps” in the DEM, and intersected the WSE 
with these smooth banks to estimate width.

For the Olentangy, we were able to validate these width estimates with widths from a rangefinder and found 
the estimates to be comparable (within ± 5 m on average; Tuozzolo, Lind et al., 2019). For the remaining 
TOWNS data set, we validated our width estimates with the GRWL data set and found general agreement 
with an average discrepancy of 22%. This width estimation method works well for when the water surface 
is close to or above the water surface of the DEM, however, when PTs record WSE below the DEM, we must 
rely on extrapolation. To extrapolate width from a DEM, several nonlinear methods have been suggested 
and successfully employed (Mersel et al., 2013; Schaperow et al., 2019), but here we rely on linear interpola-
tion given the coarseness of the DEM resolutions: these sophisticated methods are inappropriate given our 
relatively small amount of data.

3.2.2. Slope

To estimate river slope, we calculated water surface slope at each PT location by differential leveling of 
sequential PTs. We used this particular method of obtaining slope to capture temporal variations in slope 
over time, as opposed to assuming a constant slope through measuring the instantaneous slope given by the 
DEM, which is temporally invariant and may not be accurate to the river conditions for this study period.
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3.2.3. Partial Area

Partial area, referred to here as dA, is defined as the change in the cross-sectional area with respect to time. 
A0 can be conceptualized as the median cross-sectional area typically observed at minimum flows and is 
treated as a prior instead of direct input, as we do not have bathymetric data on each river. Separating the 
area into dA and A0 in Equation 1 allows for an estimate of area without bathymetric or low-flow observa-
tions. In this case, we calculated dA as the Riemann sum approximation of the integral of width times the 
change in river height.

3.2.4. Priors

BAM uses several priors to specify the a priori uncertainty in unobserved parameters. The term “prior” is 
inherited from Bayesian statistics. Essentially, any knowledge we had previously about any relevant param-
eter from any source is a “prior,” where Bayesian priors are defined as a mean value and uncertainty. Priors 
include discharge (Qprior), Manning's roughness coefficient n, and the median low flow area for each cross 
section (A0). BAM has default values for each of these parameters based on the hydroSWOT database (Cano-
va et al., 2016). Both DAPT and a temporary gauge require a discharge prior, which can come from field data 
(as in this study) or modeled estimates. Therefore, in situ discharge from an ADCP, discharge from a previ-
ous gauge, or discharge from a model could all be considered priors. For a temporary gauge, this discharge 
prior is used directly to calibrate a rating curve, and for BAM this discharge prior forms part of a likelihood 
function. In BAM, the output discharge estimate, or “posterior,” is generated at the timestep of the water 
surface elevation data, providing a continuous discharge record. Table 2 describes which parameters we 
adapted in this study to fit to the TOWNS data set.

BAM uses truncated distributions for priors. We constrained Qprior to the gauge distribution, limited Man-
ning's n to physically realistic values at each cross section within the reach following Chow (1959) and a 
margin of error, and constrained A0 to Manning's equation via inverting area based on observed width, 
slope, discharge, and our constraints on n. σQ, or the standard deviation of discharge, unlike the other 
standard deviations presented in Table 2, encompasses both the expected variability in discharge in time 
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Prior description Symbol Minimum True Maximum Related priors

Discharge (Q) Qprior

log Q̂
log σQ

min(Qobs)
log [Qo̅bs–4σQobs]
0.1 log[σQobs]

Qobs

log[median(Qobs)]
log[σQobs]

max(Qobs)
log[Qo̅bs + 4σQobs]
10 log[σQobs]

log 0A

Manning's n
(n)

log n̂
log σn

log (0.02)
0.028

log (0.035)
1.413

log (0.15)
2.80

log 0A
log σA0

Invariant area
(A0)

log 0A [min(n)×min(Qobs)
× min(Wobs)2/3

× max(Sobs)−1/2]3/5

(0.035× Qo̅bs× Wobs
2/3× 


Sobs

−1/2)3/5
[max(n) ×
max(Qobs) ×
max(Wobs)2/3 ×
min(Sobs)−1/2]3/5

log Q̂
log n̂

log σA0 0.1 log σdAobs log σdAobs 10 log σdAobs

Input errors σSerr [m/m]
σdAerr [m2]
σWerr[m]

0.01* S obs

3
3

0.1* S obs

30
30

S obs

300
300

Bounds bounds Mean(prior) +/−
0.1σ

Observed bounds Mean(prior) +/−
3σ

log Q
A0

log n̂

Notes: Discharge, Manning's n, invariant area, and width are all truncated priors, with upper and lower bounds and 
sample means and standard deviations given by   ̂and σ. Each of these priors can vary within the specified distributions, 
which are further truncated based on the “bounds” parameter. In total, we directly varied these 11 parameters for each 
river, which were used to set 15 of 28 total BAM priors. The remaining 13 priors are left at the default BAM value, as 
they are not directly related to river characteristics or influenced by PTs.

Table 2 
BAM Prior Descriptions
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and the error in the prior center, Q̂. Together, Q̂  and σQ make up the distribution of Qprior. Additionally, we 
also constrained the range of upper and lower bounds for each parameter (bounds) using physically real-
istic values shown in Table 2, and based expected measurement errors in input data on the resolution of 
the input data. Constraining these parameters allowed us to test the sensitivity of the model based on these 
physical controls.

3.3. Temporary Gauge Comparison

For the temporary gauges, we used PT water levels and gauge discharge estimates to create rating curves. 
We treated each PT as its own temporary gauging station and developed a rating curve to estimate discharge 
over the validation deployment period, then summarized the ensemble of temporary gauges to compare to 
DAPT. In order to determine the sensitivity of a temporary gauge to the number of available discharges, we 
subsampled the available discharge and built separate rating curves for each subsample. To build the rating 
curve, we assumed a power-law relationship between WSE and discharge, as presented in Equation 2 where 
Qt and Ht represent discharge and WSE at time t, and C0, e, and B are coefficients:

   
B

Qt Co Ht e (2)

This method follows common field practice of relying on power-law rating curves to estimate discharge (Ash-
more & Sauks, 2006; Dymond & Christian, 1982; Gleason & Smith, 2014; Herschy, 1993; Leon et al., 2006; 
Rantz, 1982; Smith et al., 1996; Smith & Pavelsky, 2008; World Meteorological Organization, 2010).

3.4. PAD Case Study

Similar to the TOWNS data set, we used BAM to estimate discharge within the PAD, but key differences 
were that we did not have gauge records for calibration and that available DEMs have lower resolution. In 
the TOWNS data set, validation discharge was derived from a permanent gauge rating curve. As a result, 
the relationship between our logged predictor (WSE) and logged output (discharge) is strong with a mean 
R2 value of 0.79, while in the PAD the correlation is weaker, with a mean R2 value of 0.25. These differences 
motivate the need to treat and validate TOWNS and PAD sites separately, and we proceed to describe these 
departures below. Although BAM relies on Manning's equation (i.e., not a rating curve) to estimate dis-
charge, the input is still driven by observations of WSE.

To obtain input data in the PAD, we used the PT arrays described in Table 1 to calculate the change in river 
height, and we relied on a manually digitized centerline and a DEM to estimate distance along the river 
between transducers, shown in Figure 3. Unlike the TOWNS data, we held widths constant as determined 
at the time of installation using a rangefinder instead of relying on the CDEM, thus our widths do not vary 
with time. This departure from the TOWNS methodology was due to the deltaic landscape characterized by 
low gradients for which a coarse DEM is unable to delineate water-land separations and thus does not yield 
accurate river widths.

Instead of using a gauge to constrain priors in the PAD, we instead relied on ADCP measurements, and we 
also used the results from the TOWNS data set to better constrain priors by applying the optimal TOWNS 
parameters in Table 2 in cases where our PAD measurements cannot provide them a priori. However, with-
out a gauge or high frequency ADCP measurements to provide Qprior, our prior constraint estimates were 
suboptimal. In an attempt to overcome underestimating the sensitive σQ prior, we set this value to be greater 
than or equal to the average of normalized σQ for the TOWNS data set, as TOWNS sensitivity results indicate 
that larger σQ improves BAM estimation. In addition to estimating discharge for the validation time period 
(i.e., times when ADCP measurements were made) for DAPT, we also estimated discharge for the entire 
time period for which the PTs were installed, ranging from a few weeks to a few months depending on the 
river, as shown in Table 1. For this longer time period, we compared flow dynamics with nearby gauges that 
are not mass conserved with our reaches, but likely emulate similar patterns.
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3.5. Validation

We relied on a combination of two error metrics to validate all hydrographs. Nash Sutcliffe Efficiency (NSE) 
compares model performance to the mean of observations and is optimal at a value of 1. Kling Gupta Ef-
ficiency (KGE) is a metric that combines correlation coefficient, bias ratio, and variability ratio and is also 
optimal at 1. These are both standard skill metrics widely used in hydrology.

4. Results
4.1. Q1: How Robust is DAPT to Changes in Input Data and Model Parameters?

In each TOWNS river, DAPT closely matches the observed daily discharge within a relatively narrow varia-
bility range as displayed by the small shaded interquartile region (IQR; Figure 4). In general, DAPT tends to 
capture mean flow, but there are some exceptions in the Olentangy and Willamette, where it underestimates 
peak flows within the interquartile range of the sensitivities. Under optimal parameter settings, DAPT cap-
tures flows at all ranges, with a mean NSE across all rivers of 0.92. When taking into account all 4,954 sen-
sitivity tests, the average NSE across rivers falls to 0.79. Overall, these results confirm the ability of DAPT to 
closely replicate the discharge record across all tests in the TOWNS data set with the aid of a nearby gauge 
to optimize model parameters and discharge inputs.

Our TOWNS sensitivity analyses focused on the effect of PT resolution and model parameters to constrain 
BAM. As a reminder, these sensitivity tests modulate the parameters, inputs, and priors that control DAPT 
by varying them across ranges of plausible values. Differences across these tests are relatively small (Fig-
ure 5), highlighting the overall robustness of this method under these ideal conditions. As corroborated 
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Figure 3. Depicted on the left for the DAPT method is the workflow to obtain BAM inputs (width, slope, and partial 
area) from data sources (WSE, DEM, and location of the river centerline). The change in height (dH) immediately 
follows from WSE and represents the change in elevation between river locations. BAM uses these inputs alongside 
prior estimates needed to solve Manning's equation (Equation 1) to estimate discharge. On the right, a temporary 
gauge relies on WSE measurements tied to discharge measurements to create a rating curve to estimate discharge 
(Equation 2). BAM, Bayesian-AMHG-Manning; DAPT, discharge via arrays of pressure transducers; DEM, digital 
elevation models; WSE, water surface elevation.
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by the hydrographs in Figure 4, DAPT performance is on average quite skillful, with many of the violin 
plots concentrated near optimal values of 1 in Figure 5. The most sensitive parameter is the sample size of 
observed discharge measurements used to constitute the prior for discharge (numQprior), indicating that a 
larger sample size to estimate Qprior is crucial to effectively reproduce discharge (Figure 5).

The relative insensitivity of the remaining parameters and PT resolutions is encouraging; if discharge is ad-
equately constrained, a solid understanding of the remaining priors or a certain threshold of PT resolution 
is less important. For example, the difference between 2 and 20 PTs is insignificant compared to the differ-
ence between 2 and 20 discharge measurements included in Qprior. This finding implies that with a good 
prior understanding of discharge, DAPT can reproduce discharge at high temporal resolution by relying on 
only a few PTs.

The results of changing PT spatial and temporal resolution (Figure 5, Panel A) are less sensitive than chang-
es in BAM parameters and discharge (Panel B), particularly with regards to outliers, but noteworthy nev-
ertheless in the implications for method design. The violin plots in Figure 5 are mirrored pdfs, such that 
the thicker the shaded area, the more common the value. The long tails of the plots thus correspond to 
infrequent values. A sensitive test would have a violin plot of uniform thickness extending over a wide 
range, whereas an insensitive plot would have a single “bulb” around a narrow range of values. We thus 
interrogate these plots by examining the width of the range of values over which the violin plots show the 
highest concentrations of values KGE and NSE show similar patterns with a higher concentration of sen-
sitivity tests toward the optimal end, and longer, thinner tails toward the worse metrics, with NSE showing 
more favorable results. Aggregating to a daily timestep, altering the spacing between PTs, or decreasing the 
number of PTs all have negligible effects (Figure 5).

The number of samples in the discharge prior (numQprior), on the other hand, is sensitive, implying that 
subsampling just part of Qprior can significantly degrade model performance. This implication is realized in 
Panels D–F in Figure 6, where mischaracterizing Qprior or relying on only a few discharge samples substan-
tially worsens results. We find that increasing the number of discharge estimates in Qprior and increasing 
the variability of those estimates improves overall performance of DAPT. In cases with substantial “breaks” 
in observed WSE, it is important that Qprior is sampled from each side of the break (e.g., the Olentangy). 
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Figure 4. TOWNS hydrographs of all seven reaches. BAM is represented by the blue lines and shaded areas, whereas the gauge is shown in black circles. 
The solid line represents the median discharge across all 4,954 sensitivity tests over the given time period, and the shaded region represents the first and third 
quartile of all sensitivity tests described in Figure 1 (number of PTs, spacing of PTs, BAM parameters, and observed discharge). NSE values correspond to the 
best-performing test for each river. BAM, Bayesian-AMHG-Manning; NSE, Nash Sutcliffe Efficiency.
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Interestingly, as the number of PTs increases, model performance slightly decreases, since more PTs incor-
porate more variance within channel geometry and the assumption of mass conservation becomes less sta-
ble. This may be slightly counterintuitive, as readers may expect more data to produce better results. How-
ever, these results indicate that these extra data confound the Bayesian likelihood rather than improve it.

HARLAN ET AL.

10.1029/2020WR028714

14 of 22

Figure 5. TOWNS sensitivity broken down by each sensitivity category (PT resolutions in Panel A and BAM parameters in Panel B). Each violin plot 
summarizes these tests across all rivers. Model performance is measured through Nash Sutcliffe Efficiency (NSE), and Kling Gupta Efficiency (KGE), both 
considered optimal at 1. Results are truncated at 0.5 for viewing purposes, and number of data points not shown are counted in the parentheses following each 
test. Results that are more sensitive have uniform distributions, while concentrated distributions are less sensitive: the “bulb” in the violin plot indicates a more 
common value. BAM, Bayesian-AMHG-Manning.
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4.2. Q2: How Does DAPT Compare to a Temporary Gauge?

To compare DAPT with a temporary gauge, we used the USGS gauge record as Qprior for both DAPT and 
a temporary gauge. We then conducted a sensitivity analysis (Test 5; Figure 6 Panel F) to the number and 
variability of discharge estimates in this prior data set. To compare these results, we compare the error met-
rics for both methods over the validation period. Figure 7 Panel A shows 72% of DAPT estimates are within 
0.10 NSE of a temporary gauge ensemble. Figure 7 Panels B–G combine the results of discharge sensitivity 
shown earlier in Figure 6. In the Tanana and Sacramento R3 both methods perform similarly, whereas in 
the Olentangy and Sacramento R2 DAPT outperforms a temporary gauge. In the Olentangy in particular, 
the temporary gauge performance is unstable largely arising from discharge samples that omit a single 
peak flow in the data record, with a median NSE of 0.87 including the peak flow and median NSE of −9.3 
omitting the peak flow. In comparison, DAPT is relatively robust with identical medians of 0.77 for samples 
with and without the peak flow. Finally, in the Willamette, North Saskatchewan, and Sacramento R1, the 
temporary gauge outperforms DAPT.

4.3. Q3: How Well Can DAPT Reproduce In Situ Discharge Measurements in a Realistic Field 
Setting?

To address Q3, we validated DAPT with in situ ADCP-based discharge measurements in the PAD. Here we 
validated on two fronts: quantitatively across the validation period (the time period ADCP measurements 
were taken), and qualitatively across the entire PT deployment period for each reach using nearby perma-
nent ECCC gauges for comparison. Over the validation time period, DAPT closely approximates the ADCP 
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Figure 6. TOWNS sensitivities for the PT sensitivity (Panels A–C), and discharge parameters in BAM sensitivity (Panels D–G). The x-axis represents the value 
of each prior tested, and the y-axis is model performance measured by NSE, considered optimal at 1. PT resolution in general is relatively insensitive. Panel 
D shows that either over or underestimating discharge substantially degrades model performance, while Panel E (truncated), shows that underestimating 
discharge standard deviation has a negative effect. Panels F and G are truncated to highlight differences between rivers, and performance generally increases as 
the number of samples within the discharge count (Panel F) and variability (measured by coefficient of variation CV) of the discharge count increase (Panel G). 
BAM, Bayesian-AMHG-Manning; NSE, Nash Sutcliffe Efficiency.
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time series and is relatively robust to the number of ADCP measurements used to constrain this method, 
as the IQR across all samples of ADCP measurements closely matches the observed record (Figure 8). The 
temporary gauge, in comparison, is not adequately trained as the water levels remain relatively static over 
this time period (Figure 8). As such, the temporary gauge fails to capture either high or low flows. Since 
the power-law relationship between water surface elevation and discharge is not fully developed or appro-
priate in this case, more prior discharge data would be needed to improve the temporary gauge. Therefore, 
the DAPT method is better suited for and designed for this context: many rivers and limited field time and 
budget.

The validation time period during which ADCP measurements were made represents a short and misrep-
resentative span of the entire PT deployment period, as shown in Figure 9. Thus, we must also look at dis-
charge estimation over the entire deployment time to further understand this comparison. Figure 9 shows 
hydrographs for each of the 11 reaches within the nine PAD rivers across the entire time period for which 
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Figure 7. TOWNS comparison between DAPT and a temporary gauge. Panel A displays the difference for all rivers in NSE between the temporary gauge and 
DAPT in a cumulative density function, hence positive values show that DAPT outperforms the temporary gauge. 72% of the comparisons are between ± 0.1 
NSE, indicating that DAPT and the temporary gauges are largely equivalent in this ideal setting. Panels B–H show NSE as a function of the number of discharge 
measurements for each river individually. DAPT, discharge via arrays of pressure transducers; NSE, Nash Sutcliffe Efficiency.
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the PTs were installed. As DAPT discharge bounds are constrained by ADCP measurements, DAPT tends to 
estimate discharge within the range of observed ADCP values throughout the entire time series producing 
relatively stagnant hydrographs, while nearby gauges show more dynamism over this period. DAPT dynam-
ics do track nearby gauges, but this qualitative assessment can only state as much.

5. Discussion
In essence, we have taken a method designed to retrieve discharge from global satellite data and reimagined 
it for in situ field campaigns. Our results indicate that DAPT is a viable discharge estimation option, as it 
closely replicates gauge discharge under optimal conditions (Figure 4) and performs adequately in remote 
settings. As expected, overall performance was closely tied to the ability to correctly calculate BAM model 
parameters, notably Qprior. In the TOWNS case where gauges were used to constrain BAM, all rivers, in-
cluding very large, braided rivers such as the Tanana as well as leveed rivers such as the three Sacramento 
reaches displayed robust results, and these results were relatively insensitive to changes in PT resolution. 
This signifies the universality of this method, and implies that when well calibrated, DAPT can reproduce 
discharge in a variety of field settings.

In our comparison with a temporary gauge in TOWNS, we found that both methods perform similarly. 
However, we note that this comparison favors a temporary gauge from the outset, as the gauge record is 
derived from a rating curve and presents a best-case scenario for a temporary gauge. In a true field setting, 
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Figure 8. Hydrographs of the validation period. The x-axes represent the nth ADCP measurement, as the time between samples varies for each measurement 
and river. Blue lines represent the median hydrograph for the DAPT method, with shaded regions representing the IQR across the sensitivity to the number of 
ADCP measurements used to constrain each method. Temporary gauge estimates are displayed in red and are developed across a range of identical samples 
to the DAPT method from identical PT and ADCP data. ADCP, acoustic doppler current profiler; DAPT, discharge via arrays of pressure transducers; IQR, 
interquartile region.
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in situ discharge measurements may present weaker relationships with stage or contain additional errors or 
uncertainty, such as those seen in the PAD ADCP data. When only a few measurements are included with 
low sample variance, the DAPT method tends to perform better than a temporary gauge, and DAPT is less 
dependent on the quality of discharge priors. The robustness of DAPT implies that this method could esti-
mate discharge with fewer in situ measurements over a less dynamic range. Therefore, if time and budget 
only allow only a few ADCP measurements, then DAPT could be applied to several rivers over a wide area 
in a shorter time than would be needed to fully develop rating curves. Thus, we feel this method could be a 
good alternative or supplement to the traditional approach of installing a temporary gauge when developing 
a rating curve is infeasible, especially in remote sites.

Our PAD case study represents one of these sites, where developing a full rating curve at each river was 
impractical for the magnitude of rivers covered in a month(s) long period. In the PAD, the DAPT method 
is able to accurately reproduce an ADCP discharge record, particularly for when a high number of ADCP 
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Figure 9. PAD 2018 and 2019 hydrographs for each of the nine rivers and 11 reaches over the entire time period of PT deployment. The DAPT method is 
shown in blue with a solid line representing the median hydrograph across the sensitivity to the number of ADCP measurements (black) used, with the IQR 
shown shaded. Note that the nearby gauges (gray, dashed) are not mass conserved and highlight only temporal trends, not accuracy of the methods, and serve 
as qualitative validation. ADCP, acoustic doppler current profiler; DAPT, discharge via arrays of pressure transducers; IQR, interquartile region; PAD, Peace-
Athabasca Delta.
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measurements were used. Although this “perfect” discharge case in and of itself might seem trivial in that 
the output is simply reproducing the input data, we note the temporary gauge could not match this perfor-
mance (Figure 8). This highlights an additional strength of DAPT in that it is not tightly bound to a singular 
mathematical relationship (i.e., the power law in a gauge) but has additional flexibility that allows it to rep-
licate discharge where traditional flow laws and rating curves cannot (Table 1, Figure 8). This performance 
in the PAD has one exception in the Richardson, where the DAPT method fails to fully capture the observed 
record, potentially due to the size of the river, which compromised the quality of the ADCP data as the boat 
was not able to complete a full transect at low enough speed, and compromised prior assumptions within 
BAM, which was not trained on small rivers.

Comparing time and effort, the DAPT method can be employed in a substantially shorter time than a tem-
porary gauge, allowing more rivers to be monitored in a field season. We argue it would not have been pos-
sible to build a quality temporary gauge in all 11 reaches in the two summer-only field seasons we visited 
the PAD, and that DAPT was the most viable and accurate path toward improved hydrologic understanding 
of the PAD. Because the PAD case study was specifically designed to mimic a realistic remote field setting 
for which a temporary gauge may not be suitable to begin with, obtaining a longer ADCP record would have 
either resulted in a substantially longer field campaign or only focusing on one river instead of 11 reaches. 
Indeed, adequate data collection for a temporary gauge was never achieved in this case study across our 11 
reaches.

To better parse the difference between a temporary gauge and DAPT, future studies could rely on a more 
thorough ADCP time series to build more comparable temporary gauges, which would further delineate 
challenges observed in these two datasets, such as those related to the gauge records, ADCPs, temporal dis-
charge resolution, and PAD-specific limitations. However, obtaining such a record would obviate the need 
for the DAPT method as a temporary gauge would fit the data well at that point. Further, this substantial 
effort would likely only re-verify the TOWNS results presented here. Our case study (two summer field 
campaigns to a remote sub-Arctic delta) represents conditions frequently experienced by hydrologists and 
is a realistic marker of perhaps the best way to collect a temporary discharge record over a large area in a 
short time.

Another path forward includes a further look into the ability of DAPT to estimate discharge without any 
ADCP measurements or a gauge. We did not explicitly explore the case where a global model is used as 
Qprior, which would eliminate the need for an ADCP or gauge altogether. The PAD is poorly represented 
in globally available hydrology models, as its complex deltaic channels and occasionally reversing flow 
direction require a hydraulic sophistication (see Peters et  al.,  2006; Pietroniro et  al.,  2000) not typically 
available from “off the shelf” model output. We are confident that DAPT would work well for the PAD in 
the absence of any ADCP work if a model could give an accurate estimate of Qprior (following the TOWNS 
results and Hagemann et al., 2017), but in this case ADCP measurements were needed for both DAPT and 
the temporary gauge.

Other areas of improvement include exploring higher resolution DEMs, such as UAV-based or Lidar DEMs, 
which would allow for more accurate and contemporaneous width and slope extraction. Higher-resolu-
tion DEMs would also allow for better width extraction methods, including nonlinear interpolation fol-
lowing Mersel et al. (2013) and Schaperow et al. (2019). If high-resolution bathymetry were obtained (e.g., 
through a UAV, or aerial imagery during low-flow conditions, or ADCP bathymetry), then following King 
et al. (2018) it would be possible to pair PTs with hydraulic modeling to estimate discharge. Additionally, in-
corporating ADCP bathymetry into the parameters would allow for more accurate width and area estimates 
that vary temporally, and would likely improve AMHG estimates, which rely on variations in width alone.

Looking toward the overall utility of this method, both the TOWNS tests and PAD case study indicate that 
estimating discharge with the DAPT method can be a precise and efficient means of field discharge estima-
tion. Even in the PAD where parameters were sub-optimally fit, DAPT definitively replicated an ADCP for 
the validation period while highlighting its main strengths: accurate in situ discharge estimation with little 
to no discharge measurements in a region or time frame that is not conducive to relying on or installing a 
temporary or permanent gauge.
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6. Conclusion
We introduced a novel in situ method to estimate discharge in poorly gauged basins using arrays of pressure 
transducers (DAPT). Through five sensitivity tests, we validated and assessed the robustness of DAPT in 
five gauged rivers and in a realistic field setting. We found that DAPT performs similarly to a temporary 
gauge and can reproduce ADCP discharge data in a complex boreal river delta over two years of dedicated 
field experiments, given a threshold of at least 3–5 initial discharge estimates. We recommend the DAPT 
method for rivers or studies in which obtaining a long-term ADCP record or installing a gauge is infeasible, 
as the method is relatively robust to imperfect discharge priors. We note that this non-traditional method 
for small field rivers was spurred by developments in global remote sensing and hydrology via the SWOT 
satellite mission and suggest that future work that translates remote sensing paradigms for field study may 
be fruitful.

Data Availability Statement
Upon acceptance, Water surface elevation data, ADCP data and code to run the model and reproduce our 
figures can be found at http://doi.org/10.5281/zenodo.4569176. All other data required to reproduce this 
study are freely available online. Digital elevation models can be downloaded at (https://www.usgs.gov/
core-science-systems/ngp/tnm-delivery/) for the contiguous United States, (https://www.pgc.umn.edu/
data/arcticdem/) within the Arctic, and (https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-
45d1d2051333) within Canada. Discharge data can be downloaded at USGS for the United States (https://
waterdata.usgs.gov/nwis) and here for Canada: (https://wateroffice.ec.gc.ca/).
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