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Preface 
The work presented in this PhD thesis was carried out at the Department of 
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supervisor. The work was partly funded by the LOTUS – Preparing Sentinel-
3 SAR Altimetry Processing for Ocean and Land project (EU FP7, grant no. 
313238) and the CryoSat-2 Success over Inland Water and Land (CRUCIAL) 
project (ITT ESRIN/AO/1-6827/11/I-NB). 

During the PhD study, four scientific journal papers have been prepared, of 
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CryoSat-2 Altimetry Applications over Rivers and Lakes. Water 9, 211. 
doi:10.3390/w9030211 
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P. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River 
against in situ data and a hydrodynamic model. Manuscript submitted to 
Adv. Water Resour. 

 
III Schneider, R., Godiksen, P.N., Villadsen, H., Madsen, H., Bauer-

Gottwein, P., 2017. Application of CryoSat-2 altimetry data for river 
analysis and modelling. Hydrol. Earth Syst. Sci. 21, 751–764. 
doi:10.5194/hess-21-751-2017 

 
IV Schneider, R., Ridler, M.-E., Godiksen, P.N., Madsen, H., Bauer-

Gottwein, P. A data assimilation system combining CryoSat-2 data and 
hydrodynamic river models. Under revision. J. Hydrol. 

 

 

In this online version of the thesis, papers I-IV are not included but can be 
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In addition, the following publication, not included in this thesis, was also 
concluded during this PhD study: 

Schneider, R., Godiksen, P.N., Ridler, M.-E., Villadsen, H., Madsen, H., 
Bauer-Gottwein, P., 2016. Combining Envisat type and CryoSat-2 altimetry 
to inform hydrodynamic models, in: Ouwehand, L. (Ed.), Proceedings Living 
Planet Symposium 2016, ESA Special Publications. European Space Agency, 
ESA. 

  



 iii  

Acknowledgements 
First of all I would like to thank my supervisor Peter Bauer-Gottwein. You 
have been support and inspiration during the last years with an always open 
door and mind. My co-supervisor Henrik Madsen, you were a very thoughtful 
help throughout my studies. Thank you. 

I am grateful for the cooperation with DHI throughout this PhD project. Be-
sides Henrik Madsen, especially Peter Nygaard Godiksen and Marc-Etienne 
Ridler: Many thanks for a fruitful cooperation and for sticking with me also 
through difficult times while working on the data assimilation framework. 

DHI Italy, the Interregional Agency for the Po River (AIPo) and ICIMOD are 
acknowledged for providing data for the Po and Brahmaputra rivers. Funding 
provided by the LOTUS and CRUCIAL projects is gracefully acknowledged. 

LOTUS involved working together with Per Knudsen, Ole B. Andersen, Ka-
rina Nielsen, and Heidi Villadsen, all from the National Space Institute at 
DTU. Thanks for a very enjoyable collaboration and for helping me under-
standing the technical details of satellite altimetry. Moreover, thanks to the 
other collaborators involved in the two projects from Newcastle University, 
CLS, Toulouse, and Starlab, Barcelona. 

I spent two great months with the Hydrology group of the Research Institute 
for Geo-Hydrological Protection (CNR IRPI) in Perugia, Italy. Thank you 
everybody there, you welcomed me warmly, and special thanks to Angelica 
Tarpanelli. 

Thanks to my colleagues from DTU Environment for making this a great 
place to work. I want to mention the administrative and IT staff, who are ex-
tremely helpful and important for the entire department. You are treasured! 

I sincerely enjoyed working with all of you on the border between hydrology 
and remote sensing. I hope to see you and work with you again in the future! 

To all my friends from DTU and outside of it who made the last three years a 
nice ride… I do not want to list names (and then forget someone). But you 
know who you are: Thank you! And last, but not least: A big thank you to my 
family and Pernille. 

  



 iv  

Summary 
The global coverage of in situ observations of surface water dynamics is 
insufficient to effectively manage water resources. Moreover, the availability 
of these data is decreasing, due to the lack of gauging stations and data 
sharing. Satellite radar altimetry, initially developed to monitor ocean water 
levels, also offers measurements of water levels of rivers and lakes on a 
global scale. Because of the continuous upstart of new missions, and sensor 
and processing innovations, the importance of satellite altimetry data for the 
hydrologic community is increasing. 

CryoSat-2, launched by the European Space Agency (ESA) in 2010, is one of 
the more recent additions to the set of satellite altimeters. It is unique due to 
two characteristics. First, its radar altimetry instrument provides, besides 
conventional observations in Low Resolution mode (LRM), observations in 
Synthetic Aperture Radar (SAR) and Synthetic Aperture Radar 
Interferometric (SARIn) mode. SAR and SARIn have reduced footprint size 
in the along-track direction owing to delay/Doppler processing, potentially 
increasing observation accuracy. Second, CryoSat-2 is placed on a unique 
long-repeat orbit with a cycle of 369 days. This is different from previous and 
current satellite altimetry missions, which are in short-repeat orbits with 
cycles of 10 to 35 days. 

The orbit configuration of CryoSat-2 is a challenge for hydrologic 
applications. Short-repeat missions allow deriving time series at locations 
where the satellite ground track repeatedly intersects with the river – the so-
called virtual stations. Because of the long repeat cycle of CryoSat-2, its 
virtual station time series have a temporal resolution of 369 days, which is 
inadequate for most hydrologic applications. This requires rethinking some 
methods to process such data, distribute them to the hydrologic community 
and combine them with river models. However, the orbit configuration of 
CryoSat-2 also results in a small inter-track distance, providing 
measurements with unprecedented spatial resolution along rivers. These 
points were the main motivation for this PhD study. 

Two case studies were chosen; the Po River in Italy, and the Brahmaputra 
River in South Asia. CryoSat-2 level 2 data, i.e. point observations of surface 
height, were filtered over high resolution river masks derived from Landsat 
imagery. This yielded roughly 340 observations per year over the Po River, 
and roughly 1300 per year over the Brahmaputra River. The CryoSat-2 
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observations were validated against in situ observations along the Po River. 
The average root mean square error (RMSE) between CryoSat-2 and in situ 
observations was found to be 0.38 m, which is comparable to previous 
missions. 

The CryoSat-2 water level observations then were used to parameterize 1-
dimensional (1D) hydrodynamic river models. For the Po River, where 
surveyed cross sections are available, CryoSat-2 was used to calibrate 
channel roughness. The distributed CryoSat-2 data allowed calibrating 
channel roughness with a higher spatial resolution than possible in a 
conventional approach using in situ data. Over the ungauged Brahmaputra 
River, CryoSat-2 data were used to calibrate shapes of synthetic cross 
sections. For the calibrated model, the RMSE between simulated and 
CryoSat-2 observed water levels is 1.24 m. It is assumed to accurately 
reproduce water level-discharge relationships; without relying on river cross 
section information. 

Finally, the potential of CryoSat-2 data for updating hydrodynamic models 
was evaluated based on the Brahmaputra River case study. A flexible Data 
Assimilation (DA) framework was developed, which can assimilate 
observations of river state with any spatio-temporal resolution to a DHI 
MIKE HYDRO River 1D hydrodynamic model. DA can, amongst others, 
improve flood forecasting. Synthetic tests showed a high potential of 
CryoSat-2, improving discharge predictions of the model in terms of 
Continuous Ranked Probability Score (CRPS) by up to 32 %, while real tests 
could improve the CRPS by up to 10 %. Also, synthetic experiments were 
conducted to evaluate the impact of increased observation accuracy and 
different sampling patterns. 

The results from this study highlight the value of CryoSat-2 altimetry data, 
which delivers water level observations with unprecedented spatial resolution 
along rivers. The study presented methods to cope with the distinct spatio-
temporal distribution of the CryoSat-2 data and move beyond the common 
concept of virtual stations. Potentially, this flexibility opens up new 
opportunities for the use of remote sensing data in the hydrologic community. 
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Dansk sammenfatning 
Der findes, på globalt plan, ikke tilstrækkelige observationer af 
overfladevand og deres dynamikker til at kunne forvalte vandressourcerne. 
Samtidig er tilgængeligheden af data faldende, grundet manglende in-situ 
observationer og deling af eksisterende data. Satellitbaseret 
radarhøjdemåling, som oprindelig blev udviklet til at overvåge 
havvandstande, muliggør observationer af vandstande i floder og søer på et 
globalt plan. Da der fortsat igangsættes nye satellitmissioner og udvikles 
sensorer og databehandlingsmetoder er relevansen af satellithøjdemåling for 
det hydrologiske miljø stigende. 

CryoSat-2, som blev opsendt af det europæiske rumagentur (ESA) i 2010, er 
en af de nyere satellithøjdemålere. CryoSat-2 er unikt på to punkter. For det 
første kan højdemåleren, udover den konventionelle Low Resolution mode 
(LRM), opereres i Synthetic Aperture Radar (SAR) og Synthetic Aperture 
Radar Interferometric (SARIn) mode. Her opnås et reduceret footprint i 
”along track” retningen ved hjælp af Doppler processering, som potentielt 
øger observationers nøjagtighed. For det andet bevæger CryoSat-2 sig i et 
kredsløb med en lang cyklus på 369 dage. Kredsløbet er derved forskelligt fra 
andre satellitter, hvis kredsløb har kortere cykler på mellem 10 og 35 dage. 

Det er i særdeleshed kredsløbsmønsteret, der giver en udfordring for 
anvendeligheden af CryoSat-2 data indenfor hydrologi. Kredsløb med kort 
cykler gør det muligt at udlede tidsserier på lokaliteter hvor satellittens 
jordbane krydser en flod gentagne gange (også kaldet virtuelle 
målestationer). På grund af CryoSat-2s lange cyklus har virtuelle 
målestationer en tidsopløsning på 369 dage, som er utilstrækkelig i de fleste 
hydrologiske sammenhænge. Der er derfor brug for nytænkning af 
databehandlingsmetoder for at gøre CryoSat-2 brugbar indenfor hydrologi og 
især til anvendelse i flodmodellering. 

Der er valgt to casestudier: Po floden i Italien og Brahmaputra floden i 
Sydasien. CryoSat-2 level 2 data, det vil sige punktobservationer af 
overfladehøjder, blev filtreret over højopløselige flodmasker fra Landsat-
billeder.  Dette resulterede i omtrent 340 observationer per år for Po floden 
og omtrent 1300 observationer per år for Brahmaputra floden. For Po floden 
blev CryoSat-2 observationerne valideret med in situ observationer. Den 
gennemsnitlige root mean square error (RMSE) mellem CryoSat-2 og in situ 
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observationer var på 0,38 meter, hvilket er sammenligneligt med tidligere 
satellitmissioner. 

CryoSat-2 vandstandsobservationer blev herefter anvendt til at parametrisere 
en éndimensionel (1D) hydrodynamisk flodmodel. For Po floden, hvor 
opmålte tværsnit af flodlejet er tilgængelige, blev CryoSat-2 brugt til at 
kalibrere ruheden af flodlejet. Idet CryoSat-2 data er rumligt fordelt, var det 
muligt at kalibrere modellen med en højere rumlig opløsnings af flodlejets 
ruhed end med traditionelle in situ data. For Brahmaputra floden blev 
CryoSat-2 anvendt til at kalibrere datum og udformningen af syntetiske 
flodlejetværsnit. Med den kalibrerede model opnås en RMSE mellem 
observeret og simuleret CryoSat-2 vandstande på 1,24 meter. Modellen 
reproducerer forholdet mellem afstrømning og vandstand tilfredsstillende; 
uden brug af information om tværsnit af flodlejet. 

Endeligt blev potentialet for anvendelse af CryoSat-2 data til at opdatere 
hydrodynamiske modeller undersøgt med Brahmaputra floden som eksempel. 
En fleksibel data assimilering (DA) opsætning blev udviklet til at kunne 
assimilere data med enhver tids- og rumligopløsning med en DHI MIKE 
HYDRO River 1D hydrodynamisk model. DA har potentiale til at forbedre 
forvarslinger om oversvømmelser. Syntetiske forsøg viste et højt potentiale 
ved at forbedre modellerede afstrøms-prædiktioner, udtrykt ved en forbedring 
af Continuous Ranked Probability Score (CRPS) med op til 32 procent. 
Forsøg med faktiske data viste en tilsvarende forbedring på 10 procent. 
Derudover blev det undersøgt i hvilket omfang DA ydeevne påvirkes af øget 
observationsnøjagtighed og varierende observationsmønstre. 

Resultaterne fra dette arbejde fremhæver værdien af CryoSat-2 
vandstandsmålinger, som tilvejebringer observationer af vandstand i floder 
med hidtil uset høj rumlig opløsning. Arbejdet præsenterer metoder til at 
håndtere den særegne tidslige og rumlige opløsning af CryoSat-2 data og 
anvender succesfyldt data hinsides de konventionelle virtuelle målestationer. 
Denne fleksibilitet åbner for nye muligheder for anvendelse af telemåling i 
hydrologi, som hidtil ikke har været muligt. 
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1 Introduction 
Surface waters are a source of drinking water for many people globally. Ad-
ditionally, rivers, lakes, reservoirs, wetlands etc. serve agricultural and indus-
trial water uses, including electricity generated by hydropower. However, the 
same water bodies commonly also pose a risk to the people inhabiting their 
banks through flooding (Loucks and van Beek, 2005). These issues, like 
flood hazards and sufficient supply of clean water, are further exacerbated by 
population growth and climate change (Arnell and Gosling, 2016; 
Vörösmarty et al., 2000). Besides the direct links to the anthroposphere, riv-
ers, lakes and wetlands also support diverse ecosystems. 

To describe, monitor, and model water systems, knowledge of quantity and 
dynamics of surface water flows and storage is needed. Essential parameters 
in this context are, for example, surface water area and surface water eleva-
tion, and their variability in space and time. On the global scale, the spatial 
coverage of in situ observations is generally considered insufficient (World 
Water Assessment Programme, 2009). Nonetheless, the availability of in situ 
stage data of rivers is decreasing across the globe (Calmant and Seyler, 
2006). Reasons for this are the lack of gauging stations, and also political de-
cisions to not share data (Brakenridge et al., 2012). Surface water extent and 
elevation can be remotely sensed with generally increasing accuracy and spa-
tio-temporal resolution. Other variables of the hydrologic cycle can also be 
remotely sensed, e.g. precipitation, temperature, evapotranspiration, total wa-
ter storage, snow cover, or soil moisture. All these observations aid process 
understanding, monitoring, or inform hydrological models. They are needed 
to answer questions concerning the global water and energy cycles, observe 
flow hydraulics and solve issues of water resource management (Alsdorf et 
al., 2007). Lettenmaier et al. (2015) provide an overview of current applica-
tions and limitations of such observations. Despite the emergence of new 
technologies such as Unmanned Aerial Vehicles and trends such as miniatur-
ization of sensors (McCabe et al., 2017), satellite missions of agencies such 
as NASA and ESA remain central to global Earth observation. 

Observations of water levels can be obtained from satellite radar altimeters. 
A radar altimeter measures the surface elevation by sending out a microwave 
pulse and recording its echo. Most of these missions were initially developed 
to monitor water levels in oceans. However, they also proved useful over in-
land water bodies (Alsdorf et al., 2007; Berry and Benveniste, 2010; Calmant 
et al., 2009). They provide the potential for global water level measurements, 
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and supplement or replace in situ observations. Such measurements are used 
today to monitor river and lake water levels and storage, aid discharge esti-
mation in rivers, and to inform and update river models (Calmant et al., 
2009), despite limitations owing to observation uncertainty, spatio-temporal 
resolution and target size.  

Most current and past satellite altimetry missions have orbit configurations 
with short repeat cycles between 10 and 35 days. This allows deriving time 
series of water level observations with said temporal resolution at so-called 
virtual stations where the ground track intersects with the water body 
(Rosmorduc et al., 2011). The spacing between the ground tracks is between 
80 and 315 km at the equator. 

The ESA mission CryoSat-2, launched in 2010 with the primary objective to 
observe ice shields and sea ice, has an unconventional orbit configuration 
with a long repeat cycle of 369 days (European Space Agency and Mullard 
Space Science Laboratory, 2012; Wingham et al., 2006). The resulting drift-
ing ground track pattern poses challenges to data users from the hydrologic 
community: Many of the developed methods for processing satellite radar 
altimetry and providing it to the hydrologic community, as well as its combi-
nation with hydrologic models were tailored to orbit configurations with 
short repeat cycles and the virtual station time series. It is not possible to di-
rectly derive meaningful water level time series at virtual stations from Cry-
oSat-2. 

This PhD study focused on the evaluation of CryoSat-2 altimetry data over 
rivers, and their usefulness to inform and update large-scale hydrodynamic 
river models. Special attention was given to the challenges and advantages 
that arise from the unique orbit configuration of CryoSat-2. The main objec-
tives of the research were: 

 Evaluation of multi-mode CryoSat-2 altimetry data over rivers (Paper II) 

 Exploiting the unique spatio-temporal sampling pattern of CryoSat-2 for 
the parameterization of hydrodynamic river models (Paper II and Paper III) 

 Development of a flexible data assimilation framework that allows updat-
ing hydrodynamic river models with CryoSat-2 data, and data with any 
spatio-temporal distribution (Paper IV) 

Paper I reviews the use of CryoSat-2 altimetry data over rivers and lakes, and 
puts CryoSat-2 and its unique orbit configuration into perspective with other 
satellite altimetry missions. 
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This synopsis summarizes the work conducted during the PhD study. A brief 
introduction to satellite altimetry is given in section 2. An overview of the 
CryoSat-2 mission and its particularities which are a focus of this study are 
presented in section 3. Based on this, section 4 provides the general context 
of the research and its objectives. Section 5 briefly introduces the two case 
studies. Sections 6 to 8 present the main methods and findings from this 
study, divided into the three main objectives. Finally, sections 9 and 10 close 
with concluding remarks and future perspectives of the research conducted. 
The four papers that were written as part of this PhD study and are referenced 
throughout the thesis can be found in the appendix. 
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2 Principles of satellite radar altimetry 
Satellite radar altimeters are used to observe surface heights from space, for 
example of oceans, ice, and inland water. A radar altimeter emits a short ra-
dar pulse at nadir direction and records its echo reflected from the surface of 
the Earth. Knowing the travel time of the echo it is possible to calculate the 
range, i.e. the distance between satellite and surface (Figure 1) using the 
speed of the signal. Theoretically, electromagnetic waves propagate at the 
speed of light, but the atmosphere slows down the signal slightly. Atmospher-
ic propagation corrections are applied to account for this. Knowing the pre-
cise position and orientation of the satellite, the surface height above a refer-
ence ellipsoid and finally a geoid can be determined. Besides this, geophysi-
cal corrections have to be applied to account for ocean and solid Earth tides 
and effects of variable load on the surface. 

 

 
Figure 1. The principle of satellite radar altimetry. From Rosmorduc et al. (2011). 
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A crucial step in determining surface height from a radar altimeter is the in-
terpretation of the echo. The intensity of the echo of each pulse is recorded 
over time. To reduce noise, it is common to average the signal over a series 
of pulses, which are sent out with high pulse repetition frequency (in the 
range of kHz). The resulting signal is referred to as waveform, or as level 1b 
data. In the waveform, the leading edge has to be found. The leading edge is 
assumed to represent the reflection from the surface of interest. Usually, 
tracking of the leading edge is performed continuously on board of the altim-
eter. This is necessary to keep the narrow so-called range window where the 
altimeter is sensitive to the signal in the correct time period. For more precise 
determination of the surface elevation, a sophisticated analysis of the wave-
form is performed on ground. This process is called retracking and ultimately 
outputs observed surface heights, which are referred to as level 2 data. Level 
2 data come in the form of point data along the nadir of the satellite, with the 
coordinates, a time stamp, the observed surface height and often more 
metadata. 

Over homogenous surfaces such as the open ocean or large lakes, the wave-
forms expose a well behaved “ocean-like” shape. This allows matching simu-
lated waveforms from physical models to the observed ones and obtaining 
very precise estimates of water surface elevation with accuracies in the range 
of few centimetres. Over more heterogeneous surfaces, such as most inland 
water targets, the waveforms have less regular and predictable shapes. This is 
related to, amongst others, the footprint sizes of conventional radar altimeter 
instruments, which are roughly circular with a diameter in the range of a few 
kilometres. Consequently, waveforms over small inland water bodies are con-
taminated by the surrounding land surfaces. Retracking over inland waters 
often is performed by empirical retrackers. Because the water surface fre-
quently represents the brightest target for the radar altimeter within the foot-
print (Berry et al., 2005), water bodies smaller than the footprint still can be 
observed. 

For a general introduction to satellite radar altimetry and its monitoring ap-
plications the reader is referred to Chelton et al., 2001 or Rosmorduc et al., 
2011. Calmant et al., 2016 provide a similar introduction focussed on inland 
water bodies. 

  



6 

3 CryoSat-2 mission overview 
The European Space Agency (ESA) CryoSat-2 satellite was launched in April 
2010. Its main objectives are the monitoring of sea ice and terrestrial ice 
sheets. Like many other satellite altimetry missions it, however, also proved 
useful over inland water bodies (Paper I). The CryoSat-2 mission is unique 
due to two features, which are among the main motivations to study it in the 
framework of this PhD project. 

First, the altimeter instrument on CryoSat-2, called SIRAL (Synthetic Aper-
ture Interferometric Radar Altimeter) is operated in three distinct modes: 
Low Resolution (LRM), Synthetic Aperture Radar (SAR), and Synthetic Ap-
erture Radar Interferometric (SARIn) mode; the latter two being novel and 
unique to CryoSat-21. LRM operates like a conventional, pulse-limited radar 
altimeter in a similar manner as for example the RA-2 instrument on Envisat 
with a roughly circular footprint. In case of CryoSat-2 the footprint diameter 
is about 1.65 km over smooth surfaces and considerably larger over rough 
surfaces. An increase of footprint size with surface roughness is a general 
characteristic of radar altimeters (Chelton et al., 2001). For SAR and SARIn, 
delay/Doppler processing (first suggested by Raney, 1998) increases the 
along-track resolution to approximately 300 m. SARIn mode additionally 
employs a second antenna which allows determining the off-nadir location of 
the dominant echo within the footprint. 

Basically, SAR mode is applied over areas with sea ice and some coastal 
zones. SARIn mode is applied over the topographic ice sheet margins and 
glaciers, and also over some river systems. LRM data are available every-
where else. The mask determining the global distribution of the three modes 
(Figure 2) was adapted repeatedly during the CryoSat-2 mission. 

 

                                              
1Sentinel-3A (launched in 2016), Sentinel-3B (launch planned for 2018), and Jason-CS/Sentinel 6 
(launch planned for 2020) also carry radar altimeters capable of operating in LRM and SAR mode, 
but not in SARIn. 
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Figure 2. CryoSat-2 mode mask v3.9 (available at https://earth.esa.int/web/guest/-
/geographical-mode-mask-7107). Green: SAR mode. Purple: SARIn mode. All remaining 
areas: LRM mode. 
 

 

 
Figure 3. Ground tracks from different satellite altimetry missions over the Brahmaputra 
River. The repeat cycle is 35 days for Envisat/SARAL/ERS-2, 10 days for Jason-1/2/3, 27 
days for Sentinel-3A/B, and 369 days for CryoSat-2. The two dots are Envisat and Jason-2 
example virtual stations. Their observed water levels in 2009 are shown in the inlet; data 
from DAHITI (Schwatke et al., 2015). 
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Second is the long-repeat orbit of CryoSat-2 with a full repeat cycle of 369 
days (and 30 day subcycles), which maybe has the biggest impact on its ap-
plication over inland water bodies. All previous radar altimetry missions have 
been on short-repeat orbits with repeat cycles between 10 and 35 days (Table 
1). At intersections of the ground track with a water body like the Brahmapu-
tra River shown in Figure 3, this allows deriving water level time series at 
virtual stations. The concept of virtual stations simplifies processing of the 
altimetry data and their combination with models as will be further detailed 
in the following section. For CryoSat-2, adaptation of some common methods 
for working with satellite altimetry over rivers is needed. The orbit configura-
tion of CryoSat-2, however, also leads to a small inter-track distance, which 
can be seen as one of its main advantages over previous missions. This is one 
of the main themes of this PhD study. 

Further information about the CryoSat-2 mission is presented in Paper I. De-
tails are described by Wingham et al. (2006) or can be found in the CryoSat 
Product Handbook (European Space Agency and Mullard Space Science 
Laboratory, 2012).  
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4 Satellite altimetry over inland waters 
4.1 Availability for hydrologic applications 

Table 1 lists past, current and planned satellite altimetry missions with rele-
vance for inland waters and some of their key characteristics. 

 

Table 1. Overview of past, current, and planned satellite altimetry missions with relevance 
for inland waters (adapted from Paper I). 

Satellite Altimeter  
instrument 

Mission  
period 

Repeat  
cycle [d] 

Equatorial 
inter-track 
distance 

[km] 

TOPEX/Poseidon TOPEX/Poseidon 1992 – 2005 10 315 

ERS-2 RA 1995 – 2011 35 80 

Jason-1 Poseidon-2 2001 – 2013 10 315 

Envisat RA-2 2002 – 2012 35 80 

ICESat* GLAS 2003 – 2010 91 30 

OSTM/Jason-2 Poseidon-3 2008 – present 10 315 

CryoSat-2 SIRAL 2010 – present 369 7.5 

SARAL AltiKa 2013 – present 35 80 

Jason-3 Poseidon-3B 2016 – present 10 315 

Sentinel-3A SRAL 2016 – present 27 104 

Sentinel-3B SRAL launch planned 2018 27 104 

ICESat-2* ATLAS/MABEL launch planned 2018 91 30 

Jason-CS/Sentinel-6 Poseidon-4 launch planned 2020 10 315 

SWOT** KaRIn launch planned 2021 21  

*ICESat and ICESat-2 use a lidar altimeter instrument instead of radar altimeters like the other 
listed missions. ICESat-2 will use a multi-beam setup, effectively reducing the inter-track dis-
tance (Markus et al., 2017) 
**SWOT with the KaRIn instrument is a radar interferometer instead of nadir altimeters as on 
the other listed missions: it delivers surface elevation imaging of 93 % of the surface of the 
Earth between 78ºS and 78ºN (Biancamaria et al., 2016) 

 

Hydrologists rarely perform the altimetry raw data processing and retracking 
themselves. They rely on the availability of level 2 or level 3 data, i.e. ob-
served surface heights or aggregated time series of those. The data can be 
obtained for example directly from the agencies, in the case of CryoSat-2 
from ESA (https://earth.esa.int/web/guest/-/how-to-access-cryosat-data-
6842). Their level 2 products, however, often are not optimized for the use 
over inland water bodies, because the main purpose of the missions is the ob-
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servation of sea surface heights or ice. Hence, there exist several databases 
providing level 3 data specifically over inland water bodies, applying tailored 
processing: 

 DAHITI (http://dahiti.dgfi.tum.de/en/) providing virtual station time series 
from multiple missions over many large rivers and some lakes 

 HydroWeb (http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/), 
similar to DAHITI 

 River and Lake (http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main) 
also similar to the above, but discontinued in 2014 

 HydroSat (http://hydrosat.gis.uni-stuttgart.de/php/index.php) providing 
water level time series from satellite altimetry over some rivers along with 
other remotely sensed or derived variables (such as surface water extent, 
discharge) 

And two databases providing water levels over lakes only: 

 AltWater (http://altwater.dtu.space/) providing water level time series 
from CryoSat-2 over a series of lakes 

 G-REALM 
(https://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/) provid-
ing water level time series from multiple missions over lakes and reser-
voirs 

Many of the processing methods for inland water satellite altimetry have been 
tailored to virtual station time series: HydroWeb, for example, uses rectangu-
lar masks at the locations of the virtual stations to filter data (Rosmorduc, 
2016), and not continuous river masks as would be needed for CryoSat-2 with 
its drifting ground track. DAHITI applies a river mask via a latitude threshold 
(as ground tracks generally run in a predominantly northerly-southerly direc-
tion). Also, the mentioned sources provide their river data in form of virtual 
station time series; the distribution format would have to be adapted for Cry-
oSat-2. These challenges are the likely reasons why CryoSat-2 data is missing 
in most of the databases listed above. 

Accuracy of water level observations is in the range of few centimetres for 
lakes and in the range of few decimetres for rivers (an overview of selected 
altimetry studies with validation results is provided by Villadsen et al., 2016 
or O’Loughlin et al., 2016). Accuracy depends – besides differences between 
missions and differences between retracking algorithms – on the size of the 
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water target. The current minimum river width for radar altimetry observa-
tions is one hundred to a few hundred metres (Biancamaria et al., 2017; 
Maillard et al., 2015). Also the surrounding topography has an influence: In 
steep terrain, an altimeter may struggle to keep its narrow range window 
where it is sensitive to observations close to ground level (Dehecq et al., 
2013). This is the case if the altimeter is, like on CryoSat-2, operating a 
closed-loop control to adapt the position of the range window using on-board 
tracking instead of an open-loop control where the range window follows a 
predefined digital elevation model (DEM). 

4.2 Monitoring of rivers and lakes 
Satellite altimetry datasets can be used to monitor water levels in rivers and 
lakes. This is especially attractive over regions that are sparsely monitored on 
the ground. Monitoring of lake levels, and sometimes the related water stor-
age, is widespread (e.g. Baup et al., 2014; Gao, 2015; Tourian et al., 2015), 
also using data from CryoSat-2 (e.g. Jiang et al., 2017; Kleinherenbrink et al., 
2015; Song et al., 2015). 

The focus of this study is the use of satellite radar altimetry over rivers, 
where monitoring mainly is performed over large rivers: The Amazon Basin 
is a popular target, where for example Santos da Silva et al. (2010) derived 
water levels from Envisat and ERS-2 with an accuracy of approximately 
40 cm compared to in situ water level data. Over the largely ungauged Congo 
Basin, Envisat altimetry data were used to characterise the water level varia-
tions in nine hydrologically similar subcatchments (Becker et al., 2014). A 
combination of Envisat altimetry data, a global inundation extent product, 
and GRACE gravimetry for total water storage was used over the water-
stressed Ganges-Brahmaputra Basin to estimate surface water storage and 
subsurface storage variations (Papa et al., 2015). These are just few examples 
of many; other studies include Frappart et al. (2006) or Hall et al. (2012) over 
the Amazon River, Jarihani et al. (2013) over different Australian water bod-
ies, or Lee et al. (2015) over the Congo Basin.  

The application of CryoSat-2 altimetry over rivers is still limited, most likely 
due to the mentioned challenges arising from its drifting ground track pattern. 

4.3 Merging and densification of altimetry data 
The typical spatio-temporal resolution of single mission altimetry data along 
river networks is poor when directly used for flood forecasting or similar 
purposes. In an effort to resolve this, methods to merge data from multiple 
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missions along river networks have been developed, which use distant obser-
vations to create data with higher temporal resolution than originally availa-
ble from the satellite instruments. Tourian et al. (2016) combined data from 
multiple short-repeat missions. Their method transfers altimetry measure-
ments along the river network accounting for travel time using a quantile ap-
proach, which exploits the existence of virtual station time series. Thus, it is 
not straight-forward to integrate CryoSat-2 with its drifting ground track into 
their method. 

There also exist methods for spatio-temporal interpolation along river net-
works. In theory such methods could provide water level (or derived dis-
charge) along a river network continuously in time and space; something that 
usually is derived from a hydrologic model, and not observations only. Mean-
ingful interpolation of point-based observations has to take into account the 
changing variability of water levels along the river network in space and 
time, i.e. some variants of spatio-temporal kriging are applied (e.g. Skøien 
and Blöschl (2007)). In the context of river altimetry, Boergens et al. (2016) 
used a spatio-temporal kriging approach to link multi-mission virtual station 
data along the Mekong River. Their covariance model, which describes the 
variability of water levels in time and space, requires observations in the 
form of virtual station data, which makes it unsuitable for the distributed 
CryoSat-2 data. A more flexible river kriging method was developed by 
Paiva et al. (2015), in preparation for data from the upcoming Surface Water 
and Ocean Topography (SWOT) mission. 

Over rivers, observed water levels are often used to derive further variables 
of interest, such as river discharge or hydraulic parameters of the river chan-
nel. Also, the observations can inform river models or update them with the 
aim of improving model forecasts of discharge, water level, and water extent 
(sections 4.4 through 4.6). 

4.4 Deriving discharge from altimetry data 
Estimation of river discharge from satellite altimetry is usually performed in 
combination with auxiliary data such as remotely sensed water extent or in 
situ water level-discharge relationships. Birkinshaw et al. (2014) used a com-
bination of water level and slope from ERS-2 and Envisat altimetry and river 
width from Landsat imagery as input to an empirical equation to estimate dis-
charge (Bjerklie et al., 2003). Their derived daily discharge shows a good 
Nash-Sutcliffe efficiency (NSE) of 0.86 to 0.90 compared to in situ meas-
urements. Using Envisat altimetry data combined with MODIS near-infrared 
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(NIR) imagery as a proxy for river flow velocity, Tarpanelli et al. (2015) es-
timated discharge with a root mean square error (RMSE) of about 37 % over 
the Po River, Italy. A similar approach, using MODIS NIR imagery to esti-
mate river widths over eight major river basins was used by Sichangi et al. 
(2016). They also provide an overview of studies estimating river discharge 
from different remote sensing data, some without altimetry data. Trying to 
handle the poor temporal resolution of satellite altimetry for discharge esti-
mates, Tourian et al. (2017) used multi-mission altimetry from Envisat, 
SARAL/AltiKa and Jason-2 over the Niger Basin. After densifying the altim-
etry data as mentioned in the previous section (Tourian et al., 2016), a sto-
chastic model was used to estimate discharge from the available water levels. 

4.5 Parameterization of rivers and river models 
Despite their limited spatio-temporal resolution and accuracy, water levels 
from satellite altimeters have been used successfully for the hydraulic charac-
terization of rivers and the parameterization of river models. For example, 
Envisat virtual station altimetry data have been used to calibrate parameters 
of a hydrologic model of a subcatchment of the Amazon River (Getirana, 
2010). TOPEX/Poseidon data aided the parameterization of cross section 
depth and channel roughness of a 1D-2D model of the ungauged Ob River in 
Siberia (Biancamaria et al., 2009). Similarly, Domeneghetti et al. (2014) 
evaluated the usefulness of ERS-2 and Envisat data over a model of the Po 
River to calibrate channel roughness. A hydrologic model was calibrated with 
the help of TOPEX/Poseidon altimetry data over the Mississippi River (Sun 
et al., 2012). 

A notable exception to the use of virtual station altimetry is the use of ICESat 
altimetry. ICESat carries a lidar altimeter (Schutz et al., 2005), and its inland 
water data has been made available by O’Loughlin et al. (2016). With a re-
peat cycle of 91 days, it has an orbit configuration in between the short-repeat 
missions with virtual station data and the long-repeat mission CryoSat-2 with 
its drifting ground track. It features a relatively small inter-track distance 
which was used by O’Loughlin et al. (2013) to derive water level profiles 
along the Congo River during different flow regimes and other hydraulic pa-
rameters such as the length of backwater effects. The potential of water level 
observations with high spatial resolution is also pointed out by Garambois et 
al. (2016): If a river flows along the satellite ground track, any mission can 
observe river water level profiles. They exploit this over a tributary of the 
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Amazon River with Envisat, and derive various hydraulic characteristics of 
the river. 

Generally, the hydrologic community has high expectations for the upcoming 
SWOT mission to be launched in 2021. The main innovation of SWOT is that 
it will deliver surface elevation information along two 50 km wide swaths, 
instead of point observations along nadir only. Moreover, it will simultane-
ously deliver observations of water level slope and water extent. There is a 
large number of studies that estimate river discharge (Durand et al., 2014; 
Gleason and Smith, 2014, etc.; an overview is provided by Biancamaria et al., 
2016), or derive hydraulic parameters of rivers (Garambois and Monnier, 
2015; Mersel et al., 2013) based on synthetic SWOT data. 

The higher spatial resolution of CryoSat-2 altimetry data along rivers is ex-
ploited for model parameterization in both Paper II and Paper III, showing 
that even for a well monitored river CryoSat-2 can deliver additional infor-
mation. 

4.6 Updating of river models 
Finally, remote sensing data can also be used to directly update states or pa-
rameters of hydraulic or hydrologic models. This is referred to as data assimi-
lation (DA). Different parts of hydrologic-hydraulic models are updated using 
various remotely sensed information. For example, observations of soil mois-
ture have been used successfully to update hydrologic models. Also, observa-
tions of flood extent, total water storage, snow coverage, or land surface tem-
perature can be used to improve predictions from hydrologic or land surface 
models. Liu et al. (2012) provide an overview. 

In the context of satellite altimetry data, DA was performed extensively with 
the above mentioned synthetic SWOT data (an overview is provided by 
Biancamaria et al., 2016). There also have been several studies working with 
real data from past and current altimetry missions, and their virtual station 
time series. Michailovsky et al. (2013) assimilated Envisat altimetry data to a 
model of the Brahmaputra River, updating the state of the Muskingum rout-
ing scheme. Similarly, Envisat altimetry data were used to update a 1D hy-
drodynamic model of the Amazon river basin (Paiva et al., 2013). Jason-2 
altimetry data are used in an operational system to improve flood forecasting 
in the Ganges-Brahmaputra-Meghna Delta in Bangladesh (Hossain et al., 
2014). 
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Common to the mentioned studies using data from past and current altimetry 
missions is that they, in one way or the other, are limited to be used with al-
timetry data in the form of virtual station altimetry. So far, no assimilation 
studies have been performed with distributed data like provided by CryoSat-2 
(only synthetic studies with SWOT data have been performed). This will be 
further discussed in section 8: as part of this PhD study, a DA framework was 
developed and tested with CryoSat-2 data (Paper IV). 
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5 Case studies 
Figure 4 shows the two case studies used in this PhD study, the Po River in 
Italy, and the Brahmaputra River in South Asia. 

 

 
Figure 4. The Po River and Brahmaputra River case studies. The available CryoSat-2 data 
are displayed, after filtering over river masks and outlier removal. 

 

0 100 20050 km

0 250 500125 km

In situ stations

Tide station

CryoSat-2 LRM, SAR, SARIn

River basins with main rivers

Po River

Brahmaputra River

Crem
on

a

Assam valley



17 

The 652 km long Po River in Northern Italy drains a catchment area of about 
71 000 km2. The average discharge close to its outlet is 1470 m3 s-1 and it ex-
hibits two high-flow periods: one in spring and one in autumn (Montanari, 
2012). It is mostly a single-channel river with river widths reaching up to 
about 500 m. The Po River is well monitored; hence it was used to evaluate 
the observation uncertainty of CryoSat-2 water level observations against in 
situ data from 18 stations along the river. Channel roughness calibration was 
performed in a 1D hydrodynamic model of the Po River (both Paper II). 

Data availability for the Brahmaputra River, on the other hand, is limited. 
The Brahmaputra River flows from the Tibetan plateau in China through the 
Himalayan mountain range into India, and finally merges in Bangladesh into 
the Ganges-Brahmaputra-Meghna Delta. Its catchment size is approximately 
580 000 km2 and the main river has a length of around 3000 km. After it 
leaves the Himalayas, the river flows through the Assam valley in India as a 
multi-channelled braided river. Here, the total width of the river bed can 
reach more than 10 km, with single channels of up to 1 km. Average dis-
charge is close to 20 000 m3 s-1, with a distinct flood season in summer due to 
snowmelt (early summer) and monsoon rain (late summer) (Jain et al., 2007). 
The river is monitored by India and China; however, most hydrologic data are 
unavailable to the public. This is particularly relevant for Bangladesh which 
is regularly hit by severe floods (Biancamaria et al., 2011b) and could benefit 
from additional information about its state. CryoSat-2 data were used to esti-
mate cross section shapes in a 1D hydrodynamic model (Paper III), and final-
ly to update the states of a river model via assimilating the altimetry data 
along the Assam valley (Paper IV). 
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6 Processing and validation of CryoSat-2 
altimetry data over rivers 
6.1 CryoSat-2 altimetry data 

CryoSat-2 level 2 altimetry data were used in this study. The data were pro-
vided by the National Space Institute, Technical University of Denmark 
(DTU Space). They are based on the ESA level 1b 20 Hz product, and re-
tracked using an empirical Narrow Primary Peak Retracker (NPPR) (Jain et 
al., 2015). This is assumed to be the best suited retracker for rivers, according 
to an analysis by Villadsen et al. (2016). 

Over the Po River, CryoSat-2 data were evaluated from the beginning of the 
mission in 2010 until 2016. In the Brahmaputra River case study, data from 
2010 until 2013 (for cross section calibration, section 7.3) or 2015 (for DA, 
section 8) were used. 

6.2 River masking and processing 
The data were delivered in form of point data, and had to be filtered for ob-
servations over the water surface of interest. Classification of water returns 
and land surface returns based directly on the altimetry data itself is difficult. 
Typically, a water mask is used to filter the relevant data points. 

For this PhD study river masks with a resolution of 30 metres were produced. 
These binary river masks were based on Landsat 7 and Landsat 8 Normalized 
Difference Vegetation Index (NDVI) derived from optical and NIR imagery. 
NDVI, or the similar Normalized Difference Water Index (NDWI) have re-
peatedly been used to delineate water surfaces (Birkinshaw et al., 2014; 
Michailovsky et al., 2012; Neal et al., 2012; O’Loughlin et al., 2013). For this 
case, all pixels with a NDVI value of 0 or less were considered water surface. 
The Brahmaputra River in the downstream Assam valley is a dynamic braid-
ed river, experiencing relevant changes to water extent during the flow sea-
sons and to river channel location. Consequently, one individual river mask 
was constructed for each year. Each mask is a conservative estimate of water 
extent, i.e. representing low-flow conditions. Cloud cover limits the availabil-
ity of optical imagery over the Brahmaputra River, and prohibits derivation 
of river masks at higher temporal resolution. The Po River and the upstream 
parts of the Brahmaputra River are less dynamic; static masks were used 
here. The water level observations were projected onto the respective river 
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lines. The masking process is illustrated in Figure 5, for an example over the 
Brahmaputra River. 

 

 
Figure 5. Detail of the Brahmaputra River showing the Landsat river mask and CryoSat-2 
observations for the year 2013, including the mapping to the river line. This method was 
applied for both the Brahmaputra and the Po River. From Paper III. 

 

Lastly, outliers were filtered: A very rough filtering was performed by defin-
ing a maximum threshold for the difference between the observed water lev-
els and the respective surface heights of a DEM such as the data from the 
Shuttle Radar Topography Mission (SRTM), as done in Paper III over the 
Brahmaputra River. The threshold value was set to 20 metres. Another ap-
proach is to define a threshold deviation from a fitted mean water level along 
the river, as done in Paper II over the Po River. This threshold value was set 
to 5 metres, in accordance with the maximum amplitude observed at in situ 
gauging stations. 

Figure 6 displays the masked CryoSat-2 water level observations along the 
two rivers. For the Po River, it can be seen that the CryoSat-2 observations 
nicely follow the observed water levels at in situ stations, which are dis-
played with their 90 % quantiles. The step around river km 370 is related to a 
dam at Isola Serafini. A detailed evaluation of the accuracy of CryoSat-2 fol-
lows in section 6.3. 
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Figure 6. CryoSat-2 data over the Po (top) and Brahmaputra (bottom) rivers. The inlet for 
the Brahmaputra River shows the downstream Assam valley. 

 

For the Brahmaputra River, two regions have to be distinguished: The up-
stream region, where the river is relatively narrow and partly flowing through 
steep valleys, and the downstream region starting at around river km 2100 
which is referred to as Assam valley (indicated in Figure 4). In the upstream 
region, a large number of extreme outliers exist in the CryoSat-2 data. Most 
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likely, these outliers originate from the open-loop control of the range win-
dow on CryoSat-2, which fails to follow rough topography like it is found in 
the Himalayan mountains (Dehecq et al., 2013). This indicates that a closed-
loop control, using a DEM stored on board of the altimeter to adapt the range 
window, could significantly increase performance over inland waters in chal-
lenging topography. Still, more than 80 % of the CryoSat-2 observations re-
main after the applied outlier filtering (Table 2). For the downstream Assam 
valley (inlet in Figure 6) almost no outliers exist. The sampling of CryoSat-2 
along the river (for example around river km 2200 and km 2700) exhibits 
some seasonal pattern. Discharge in the Brahmaputra River has a clear sea-
sonal pattern, with a flood peak in summer. Dependent on the orientation of 
the river, CryoSat-2 with its repeat cycle of 369 days (approximately one 
year) will sample certain stretches of the river predominantly at certain times 
of the year. This has to be considered when deriving river water level profiles 
from the data. 

 

Table 2. Number of CryoSat-2 observations for the two case studies. Brahmaputra river 
km 2100-2800 refers to the Assam valley which is focus of the cross section calibration 
and DA. Po river km 225-660 refers to the downstream part, which is focus of the in situ 
validation of the CryoSat-2 data. Data for the Brahmaputra River from 2010 to February 
2015 (extended compared to Paper III), for the Po River from 2010 to 2016. 

 observations, 
total outliers observations, 

outlier filtered 
river transects, 
outlier filtered 

Brahmaputra  
km 0-2100 2371 387* 

(16.3 %) 1984 624 

Brahmaputra  
km 2100-2800 4453 3 

(0.1 %) 4450 705 

Po  
km 0-225 390 42 

(10.8 %) 348 149 

Po  
km 225-660 1912 43 

(2.2 %) 1869 655 

*another 935 observations exist where the retracking failed to deliver a surface height 

 

The width of the river is reflected in the number of individual observations 
per river transect (“transect” refers to a single crossing of the river by the sat-
ellite ground track). For the downstream part of the Po River, there are on 
average only 2.9 individual observations per transect. For the wider Brahma-
putra River in the downstream Assam valley, there are on average 6.2 obser-
vations per transect. This allows some along-track evaluation of single tran-
sects. 
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6.3 Validation of CryoSat-2 against in situ data 
So far, evaluation of CryoSat-2 altimetry data over rivers has been limited 
(Paper I). The few available studies (Bercher et al., 2013; Villadsen et al., 
2015, 2016) validated CryoSat-2 data against single in situ station data or 
altimetry data from other missions. The results indicate that CryoSat-2 per-
forms similar or slightly better than previous altimeters, i.e. errors over rivers 
of 0.5 metres or less can be expected. The Po River was chosen as for the val-
idation, as it (i) is covered by all three operational modes of CryoSat-2 
(LRM, SAR, SARIn), (ii) has a dense network of in situ gauging stations, and 
(iii) is a relatively narrow river, ensuring transferability of the results to many 
other rivers. 

Hourly water level observations from 18 gauging stations along the Po River 
(Figure 4) are available from the Interregional Agency for the Po River 
(AIPo). To allow direct comparison of absolute water levels, all elevations 
were converted to a common height reference, the local Italian geoid ITAL-
GEO 2005 (Barzaghi et al., 2007). A systematic bias in water level observa-
tions from altimetry missions commonly exists. This bias was estimated by 
comparing the CryoSat-2 observations over sea against a tide gauge, indicat-
ed in Figure 4. Finally, the CryoSat-2 observations along the river were com-
pared to the closest in situ station. The elevation values of the CryoSat-2 ob-
servations were transferred by correcting for estimated river slope. For details 
please refer to Paper II. 

Table 3 presents the results of the in situ validation, for all CryoSat-2 obser-
vations within 3 km of in situ stations. The 3 km-window was found to offer a 
good trade-off between the number of observations evaluated and additional 
error introduced from the slope correction: For the 12 downstream stations, 
increasing the window size to 5 km allows the evaluation of 478 observations 
with a RMSE of 0.44 m, and a window size of 10 km evaluates 916 observa-
tions with a RMSE of 0.60 m, compared to 266 observations with a RMSE of 
0.38 m for the 3 km window. The performance along the six upstream stations 
(grey in Figure 4 and Table 3) is considerably worse than for the twelve 
downstream stations. Reasons for this are the river width, decreasing from 
250 to 350 m along the downstream stations to 75 m for the upstream sta-
tions. Also, the upstream part of the Po River is steeper, which leads to high-
er errors from the slope correction. 
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Table 3. Results of validation of CryoSat-2 data against in situ stations, within 3 km of 
each station. The 6 upstream stations are greyed out due to bad performance. Data from 
2010 to 2016. Detailed results can be found in Paper II. 

 12 downstream stations 6 upstream stations 

 all LRM SAR SARIn all LRM SAR SARIn 

no. of obs. 266 91 135 40 78 37 12 29 

RMSE [m] 0.38 0.34 0.40 0.37 1.36 1.46 0.90 1.32 

ME [m] -0.16 -0.06 -0.20 -0.25 -0.57 -0.56 -0.30 -0.65 

 

The results, with an average RMSE of 0.38 m along the downstream stations, 
are encouraging. Probably a better bias estimate could further improve the 
results as a consistently negative ME is observed. Still, CryoSat-2 observa-
tions errors are within ranges reported in literature for other missions, often 
evaluated over rivers wider than the Po River, and calculated not for absolute 
water levels, but for water level anomalies: Over rivers such as the Amazon, 
Mekong, or Zambezi, validation studies found errors between approximately 
10 cm and 1 m compared to in situ data (Villadsen et al., 2016). Over the mo-
re narrow Garonne River, Biancamaria et al. (2017) found a RMSE between 
approximately 0.2 m and 0.7 m for river widths of around 200 m. For Cry-
oSat-2 over the Po River, all three modes seem to be performing equally well. 
This indicates that for application over rivers, the advanced altimeter modes 
SAR and SARIn are not superior, and allows global use of CryoSat-2 data.
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7 Use of CryoSat-2 to parameterize 
hydrodynamic river models 

The potential of CryoSat-2 altimetry data to parameterize hydrodynamic river 
models was evaluated using a 1D hydrodynamic river model for each case 
study. The high spatial resolution of CryoSat-2 altimetry data proved to be 
particularly useful. Two fundamentally different cases are considered: The Po 
River as a gauged river, where detailed data of cross section geometry and 
the like are available, and the Brahmaputra River as an ungauged or poorly 
gauged basin, where none of these data are available. For the gauged Po Riv-
er, channel roughness was calibrated (section 7.2), allowing a finer spatial 
resolution than possible with in situ data. For the ungauged Brahmaputra 
River, cross section shapes were calibrated (section 7.3), so that the model 
accurately reproduces water level-discharge relationships. An overview of the 
two calibrations detailed in the following is given in Figure 7 and Table 4. 
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Figure 7. Calibration of hydrodynamic river models using CryoSat-2 data, for gauged 
(top) and ungauged (bottom) rivers. 

 

Table 4. Overview of the two cases for hydrodynamic model calibration using CryoSat-2 
data. 

 Gauged river  Ungauged river 

Model setup Dense network of surveyed 
cross sections 

 Conceptual cross sections (tri-
angular) at defined interval 

Calibration 
parameters 

Channel roughness, with differ-
ent spatial resolution 

 Cross section shapes (i.e. an-
gles) and datums along river 

network 

Calibration 
objective 

minimize RMSE between simulated water levels  
and CryoSat-2 observations 

Calibration 
constraints 

optional: smoothness constraint, 
upper and lower limits 

 optional: smoothness constraint, 
continuously decreasing cross 

section datums, upper and lower 
limits 

Used optimiza-
tion algorithm 

Non-linear least squares solver 
(MATLAB lsqnonlin) 

 Non-linear least squares solver 
or genetic algorithm (MATLAB 

lsqnonlin or ga) 

 

+ +

+

+
+

+

+

+

+

+

Datum

Angle

Ungauged river
(bathymetry etc. not available etc.)

Calibrate shape (e.g. datum and 
angle) of conceptional cross sections

+ +

+

+
+

+

+

+

+

+

Calibrate channel roughness, 
variable along river

Gauged river
(bathymetry etc. available)

+   CryoSat-2 altimetry
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7.1 MIKE HYDRO River hydrodynamic model 
There exist numerous possibilities to model river flow: from simple routing 
schemes such as the Muskingum or Muskingum-Cunge schemes, to various 
1D or 2D hydrodynamic models. Also, different versions of coupled 1D-2D 
models exist. Simple, but computationally less expensive models omit, for 
example, backwater effects, which are important for low-gradient rivers such 
as the Brahmaputra. On the other hand, the most advanced 2D or 1D-2D 
models are computationally expensive, which usually limits their large-scale 
applications to deterministic simulations (Biancamaria et al., 2009, 2011a; 
Schumann et al., 2013). 

For the two case studies, a DHI MIKE HYDRO River (DHI, 2015, previously 
referred to as MIKE 11) 1D hydrodynamic model was set up. This was con-
sidered a reasonable trade-off between computational efficiency and realistic 
flow routing. Such a 1D hydrodynamic model offers the possibility to per-
form a large number of model runs, which is relevant for calibrating the mod-
el (section 7) and for DA applications based on ensemble filters (section 8) or 
other probabilistic analysis. The hydrodynamic model in MIKE HYDRO 
River uses a 1D dynamic wave routing based on the Saint-Venant equations 
for unsteady flow (Havnø et al., 1995). Its governing equations are solved by 
a 6-point implicit finite difference scheme (Abbott and Ionescu, 1967) on a 
staggered grid of alternating Q and h points as displayed in Figure 8: dis-
charge is calculated at Q points, water level is calculated at h points. h points 
are placed at cross sections and, at large cross section distances, also in be-
tween. 

 

 
Figure 8. Sketch of the computational grid of MIHE HYDRO River. Defined cross 
sections at the first and last h point. Interpolated cross sections at h points in between not 
displayed. 
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For the Po River the focus was on the river routing. The hydrodynamic model 
of the downstream part of the Po River was set up using surveyed cross sec-
tions. The model was forced by observed discharge at the upstream boundary 
Cremona and by observed discharge from the tributaries. Simulation results 
can be evaluated at eight in situ stations along the river (all indicated in Fig-
ure 9). 

 

 
Figure 9. Sketch of the MIKE HYDRO River hydrodynamic river model of the Po River, 
including the tributaries that are part of the discharge forcing. The partitioning into five 
subreaches for the roughness calibration is colour coded. From Paper II. 

 

For the mostly ungauged Brahmaputra River, however, a hydrologic-
hydrodynamic basin model was set up (Figure 10). This model encompasses 
the entire basin down to Bahadurabad station close to the confluence of the 
Brahmaputra with the Ganges River and is almost exclusively based on re-
mote sensing data. The hydrologic part consists of 33 subcatchments; each of 
them modelled as a lumped, conceptual NAM rainfall-runoff model (Nielsen 
and Hansen, 1973). Precipitation, temperature and evaporation forcing is de-
rived from the TRMM v7 3B42 (Tropical Rainfall Measurement Mission 
Project (TRMM), 2011) and ERA-Interim products (Berrisford et al., 2011; 
Dee et al., 2011). Calibration of the rainfall-runoff models had to be per-
formed based on a very limited number of stations observing subcatchment 
discharge, and was done in conjunction with a model of the neighbouring 
Ganges Basin. More details can be found in Paper III. The simulated runoff 
then forces the hydrodynamic model of the river network. Delineation of the 
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subcatchments and river network was based on the SRTM DEM. Evaluation 
of the total basin outflow was performed at Bahadurabad station where in situ 
water level and discharge are available. 

 

 
Figure 10. Overview of the MIKE HYDRO River hydrologic-hydrodynamic model of the 
Brahmaputra Basin, including the CryoSat-2 data used in the cross section calibration. 

 

7.2 Channel roughness calibration in gauged 
rivers 

For a hydrodynamic river model with surveyed cross sections which is forced 
by observed discharge, the remaining uncertainty (disregarding conceptual 
model uncertainty) is essentially due to the channel roughness. River channel 
roughness cannot be observed directly. Even though remote sensing data are 
used to aid estimation of channel roughness (Bates et al., 2014), it is com-
monly treated as a calibration parameter (Morvan et al., 2008). The matter is 
complicated by the fact that model channel roughness not only accounts for 
the roughness of the surface as such, but incorporates other river characteris-
tics such as channel curvature (Chow, 1959; James, 1994). This is especially 
valid for 1D or coupled 1D-2D river models that do not incorporate river 
bends in the model structure. River channel roughness varies along the river 
and across the river cross section (floodplains usually have higher roughness 
than the constantly submerged parts of the channel, etc.). The ability to re-
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solve this variability in calibration, however, is limited by the spatial distri-
bution of observation data used in the calibration (for example Hostache et 
al., 2010; Pappenberger et al., 2005). Conventionally, roughness is calibrated 
to a homogenous value along the entire river or in relatively long subreaches. 
This applies to the Po River, too, where water level data are available from a 
relatively dense network of in situ stations with a spacing of 15 to 50 km. 

Two subdivisions of the Po River were investigated in this study. The first, 
conventional subdivision in five subreaches is shown in Figure 9. It was sug-
gested for the Po River similarly by Zannoni, 2010 and adopted before for 
hydraulic model calibration (Castellarin et al., 2011; Domeneghetti et al., 
2014). The channel roughness for the five subreaches was calibrated to min-
imize the RMSE between observed and simulated water levels 

 2
,

1
1 ,( )obs i sim i

n
n i

OV h h   (1) 

CryoSat-2 data are distributed continuously along the river, which makes it 
possible to parameterize channel roughness variably along the river model 
(Figure 7 top): channel roughness was defined in 10 km long sections. This 
second investigated subdivision gave a total of 29 sections with individual 
roughness instead of the five subreaches. To avoid model overfit with such a 
large number of parameters, a smoothness constraint was included in the ob-
jective value OV for the calibration alongside with RMSE between observed 
and simulated water levels 
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2
1

1
, 1

2
,( ) ( )n m

obs i sim in m i ii iOV h h f r r   (2) 

where there exist n observations and m roughness sections, and hobs and hsim 
refer to observed and simulated water levels, respectively. r are the roughness 
values as Manning’s M [m1/3 s-1]. The entire second term, which has to be 
weighted by a factor f, considers the differences between neighbouring 
roughness values. I.e. highly variable roughness patterns will be penalized in 
the calibration. 

Both river subdivisions were calibrated against (i) in situ water level data on-
ly, (ii) CryoSat-2 data only, and (iii) a combination of in situ and CryoSat-2 
data. Details can be found in Paper II. The main results are summarized in 
Table 5: CryoSat-2 data proved to be well suited to calibrate the channel 
roughness in the conventional setup with five subreaches. Calibration against 
CryoSat-2 data (row 3) instead of in situ data (row 1) lead only to a minor 
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deterioration of the performance against in situ data. In general, introducing 
variable channel roughness lead to a better model fit. Table 5 also presents 
the average width of the confidence intervals (CI) of the fitted Manning’s M 
parameters. The CI can be derived from the solution of the non-linear least 
squares solver and indicate how well the data can define the model parame-
ters. Using in situ data only in the calibration can hardly define the roughness 
in 10 km sections. CryoSat-2 data, however, can better define the variable 
roughness. 

 

Table 5. Results of the channel roughness calibration of the Po River model together with 
their calibrated parameter confidence intervals (CI). High and medium smoothness weight 
refer to different factors f in equation (2). S1 to S3 refer to Figure 11. 

setup calibrated 
against 

RMSE in situ 
[m] 

RMSE CS-2 [m] avg. width of 
Manning’s M 

95 % CI [m1/3 s-1] 

5 subreaches 

in situ  S1 0.289 0.643 0.2 

in situ and CS-2 0.291 0.639 0.5 

CS-2 0.310 0.634 4.1 

10 km sections, 
medium smooth-
ness weight 

in situ 0.260 0.610 37.8 

in situ and CS-2 0.262 0.573 1.5 

CS-2  S2 0.311 0.563 13.8 

10 km sections, 
high smoothness 
weight 

in situ 0.269 0.616 21.1 

in situ and CS-2 0.267 0.595 0.8 

CS-2  S3 0.282 0.583 7.4 

 

Figure 11 presents the calibrated Manning’s M values along the river for 
three calibration setups: S1 refers to the model with five subreaches, calibrat-
ed against in situ data. S2 and S3 both have variable channel roughness and 
are calibrated against CryoSat-2 data, but differ in the weighting factor f ap-
plied to the smoothness constraint in equation (2). A higher weight on the 
smoothness constraint leads to less variable channel roughness, but better 
defined parameters. The distribution of the variable channel roughness from 
S2 and S3 roughly follows the values obtained with the five subreaches mod-
el S1. As discussed in the beginning of the section, the channel roughness 
also accounts for river curvature etc. River curvature can be expressed as sin-
uosity, where the minimum value of 1 stands for a straight river, and higher 
values for a more and more curved river (for details please refer to Paper II). 
It could be shown that there is a slight correlation between river sinuosity and 
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the variable channel roughness with a coefficient of correlation R2 of up to 
0.25. 

 

 
Figure 11. Roughness from calibrations setups S1 to S3 (compare Table 5). The calibrated 
variable roughness values are displayed together with their 95 % CI. River sinuosity on the 
right y-axis. Location of in situ stations indicated on x-axis. Adapted from Paper II. 

 

Despite (i) the availability of surveyed cross sections and other in situ data, 
(ii) the lower temporal resolution of CryoSat-2 observations, and (iii) their 
higher observation error compared to in situ observations, CryoSat-2 still 
provides additional information for the parameterization of the Po River 
model. This is thanks to the unique spatio-temporal distribution of CryoSat-2 
data which means that observations exist basically all along the river, instead 
of at in situ stations or virtual stations from conventional satellite altimetry. 
In a very similar case study, Domeneghetti et al. (2014) calibrated channel 
roughness in a model of the Po River using virtual station data from ERS-2 
and Envisat. They concluded that “satellite data do not seem yet capable of 
completely substituting in-situ observations”. The work presented here can be 
seen as moving a step closer to overcoming this. 

7.3 Cross section calibration in poorly gauged 
rivers 

For a poorly gauged river precise river bathymetry information is not availa-
ble. Cross section shapes for large-scale hydrodynamic models can, for ex-
ample, be derived from globally available DEMs such as SRTM, which prob-
ably still is the most commonly used (Domeneghetti, 2016; Md Ali et al., 
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2015; Pramanik et al., 2010; Yan et al., 2013). However, those DEMs do not 
provide information about the submerged part of the river cross section, 
which leads to various estimation methods applied in the above mentioned 
studies. Relative and absolute surface height errors of SRTM data are consid-
erable with up to 10 m. Also, SRTM data include vegetation heights. Yan et 
al. (2015) review the challenges of using global DEMs in the context of flood 
modelling. 

This study suggests an alternative to parameterizing cross sections shapes in 
rivers lacking bathymetry information: The distributed water level observa-
tions from CryoSat-2 were used to calibrate shape and datum of synthetic 
cross sections. Triangular cross sections were placed at regular intervals (in-
dicated in Figure 10). Two parameters for each cross section, the datum and 
the opening angle of the triangular shape (Figure 7), were calibrated by fit-
ting the simulated water levels to CryoSat-2 water level observations. Initial-
ly, as reported in Paper III, the calibration of cross section angles and cross 
section datums was separated into a two-step iterative process. This included 
the use of Envisat virtual station water level observations for the calibration 
of the cross section angles. CryoSat-2 data were only used to calibrate the 
cross section datums. Later, however, it could be shown that CryoSat-2 data 
alone are sufficient to calibrate both cross section datums and angles simulta-
neously: the simulated water levels were fitted to the CryoSat-2 observations 
using a non-linear least squares solver, instead of the genetic algorithm used 
in Paper III. Figure 12 displays the results. An average RMSE between Cry-
oSat-2 observed water levels and simulated water levels of 1.24 m was 
achieved with the calibrated model. The remaining error is considerable, 
however, a part of this error must be attributed to the errors in the runoff 
forcing of the model, and not to the cross section parameterization. The actu-
al water level-discharge relationship may be modelled with higher accuracy. 
Even though the representation of the river geometry is not realistic, it is as-
sumed that the derived cross section shapes have some physical meaning. For 
example the narrowing of the river around river km 2600 in the calibrated 
cross sections can also be observed in reality, as shown in Figure 13. 
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Figure 12. Results of the synthetic cross section calibration along the Assam valley. The 
90 % quantiles of the best fit simulated water levels are displayed together with the Cry-
oSat-2 observations and the calibrated cross section datums and angles. 

 

 
Figure 13. Simulated river widths after calibration of the triangular cross sections, for the 
10 % and 90 % water level quantiles and the mean. River km labelled on the cross sections. 

 

It is assumed that after the calibration the model accurately represents abso-
lute water level dynamics along the entire river. Generally, this cannot be 
achieved easily in ungauged basins. It is, however, prerequisite to compare 
simulated water levels to distributed observations of water level, such as from 
CryoSat-2. To avoid having to work with absolute water levels, some prior 
studies integrating satellite altimetry data with models of ungauged rivers 
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have relied on using water level amplitudes or applied bias correction at each 
virtual station (Hossain et al., 2014; Michailovsky et al., 2013; Paiva et al., 
2013). This is not possible with CryoSat-2 data. Hence, the cross section cal-
ibration is a preparatory task for the DA experiments that are outlined in the 
following sections. 

  



35 

8 Use of CryoSat-2 data to update 
hydrodynamic river models 
8.1 Data Assimilation 

Data assimilation (DA) refers to the merging of model simulations with in-
formation from model-independent observations. Examples of applications of 
DA in hydrology have been briefly discussed in section 4.6. In this case, DA 
was used to update water levels in a hydrodynamic river model using satellite 
altimetry observations from, for example, CryoSat-2. Generically, such a 
model can be expressed as 

 1( )t t t tx M x w   (3) 

where tx  is the state vector constituting the state of the modelled system. It is 
propagated from time t 1 to t by the model operator (or simply: the model) 

tM . The model operator includes parameter values, forcing, and similar data 
defining the model setup. All model errors are summarized in the term tw . 
The state vector is related to the observations ty  via the observation operator 

tH  

 t t t ty H x v   (4) 

where tv  represents the observation uncertainty. Usually, DA is applied to 
update models sequentially. Each time an observation becomes available, the 
model is updated considering the observation. This step is called analysis: 

 ( ( ))a
t t t t

f f
t tx x K y H x   (5) 

f
tx  is the model forecast, i.e. the state vector propagated from previous time 

steps by the model. a
tx  is the updated state vector, resulting from the analy-

sis. In the same step, the covariance matrix between the forecasted model 
states f

tP  is updated 

 f fa
t t t t tP P K H P   (6) 

The gain operator tK  weights between model forecast and observation de-
pendent on the related uncertainties and correlations between state variables, 
and is defined as 

 1[ ]f T T
t t t t

f
tt tK P H H P H R   (7) 
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where tR  is the covariance matrix of the observation errors. Given that both 
model and observation uncertainty are described adequately, the combination 
of these two sources of information in the DA analysis reduces the prediction 
uncertainty of the model. 

Often, DA algorithms are based on the Kalman Filter (KF) (Jazwinski, 1970; 
Maybeck, 1979). The original implementations of the KF require explicit 
formulations of the covariance matrix of the model state and its propagation 
through time. This limits its use to linear models of relatively low order. The 
extended KF allows to slightly extend the applicability, as for example done 
by Michailovsky et al. (2013) for a Muskingum routing scheme. Many hydro-
logic models are too complex to allow explicit formulations of equations (5) 
to (7) etc. (Reichle et al., 2002). They, however, can be updated using en-
semble based methods such as the Ensemble Kalman Filter (EnKF) (Evensen, 
1994, 2003). EnKF and related methods are popular for a wide range of hy-
drologic applications (Liu et al., 2012). Ensemble based KF represent the 
state space by an ensemble of models. From this ensemble, the model state 
covariance matrix P  is estimated via 

 1 1
1 11

( )( )T T
i i

m
m mi

P X x X x AA   (8) 

where 1[ ,..., ]mX X X  represents the ensemble of model state vectors, with 
size m  and the ensemble mean 1

1 i
m

m i
x X . 1[ ,..., ]mA A A  are the ensemble 

anomalies. 

For this study, the Ensemble Transform Kalman Filter (ETKF) was used. It 
was originally suggested by Bishop et al. (2001) and used in an implementa-
tion based on Sakov and Oke (2008). One advantage of the ETKF over the 
EnKF is that it does not require perturbation of the assimilated observations 
as it updates the ensemble anomalies explicitly 

 a fA A T   (9) 

with  
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where T  is referred to as the ensemble transform matrix and U  is an arbitrary 
orthonormal matrix. This theoretically leads to better filter results. For details 
of the ETKF please refer to Sakov and Oke (2008) and Hunt et al. (2007). 
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8.2 DHI MIKE HYDRO River Data Assimilation 
framework 

For the DA experiments the DHI Data Assimilation Framework was used. It 
is coded in .NET/C#. The DA framework initially had been developed in con-
junction with the catchment modelling toolkit MIKE SHE (Ridler et al., 
2014), and then adapted to work with the river modelling software MIKE 
HYDRO River. During this PhD study, it has been debugged, modified and 
tested, mainly based on the Brahmaputra River model. Figure 14 provides a 
conceptual overview. 

 

 
Figure 14. Sketch of the DHI MIKE HYDRO River data assimilation framework. From 
Paper IV. 

 

The main advantages of the used DA framework are that it is fully coupled 
with MIKE HYDRO River via a framework interface, allowing computation-
ally efficient updates of the model. Furthermore, it integrates all DA related 
tasks, such as the creation of the model ensemble, the observation mapping, 
or the state updating. It provides a number of generic assimilation filters, 
procedures for localization, methods to describe model and observation noise, 
observation mapping, etc. The different options are defined in an ASCII for-
mat configuration file. A more detailed description of the general capabilities 
of the DA framework can be found in Paper IV. The specific DA setup used 

Model
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in this study in combination with the Brahmaputra River case study is de-
scribed in the following section. 

8.3 DA case study: Brahmaputra River 
First, one has to decide which part of the state vector is to be updated. In 
principle, all h and Q points in the model (see Figure 8) should be updated. 
However, with the given numerical scheme, an update of h implicitly also 
leads to an update of Q (Madsen and Skotner, 2005). In synthetic experiments 
it could be shown that there is no significant difference between updating h 
only or h and Q. Therefore, the state vector was populated only by the water 
heights in the h points. 

Another crucial aspect of DA is the appropriate representation of model un-
certainty. In ensemble based KF methods, the model uncertainty is represent-
ed by the model ensemble which commonly is created by perturbing relevant 
forcings or parameters. For large-scale hydrodynamic models of poorly 
gauged rivers as in this case, the main source of model error is considered to 
originate from simulated runoff, which is largely driven by climate forcing. 
The most sensitive forcing of hydrologic models is precipitation (Sorooshian 
et al., 2009). Hence, for DA applications either the climate forcing of the hy-
drologic models (Biancamaria et al., 2011a; Paiva et al., 2013), or the runoff 
generated by those models (Andreadis et al., 2007; Michailovsky et al., 2013) 
can be perturbed to obtain a representation of model error. For the Brahmapu-
tra River case, the runoff generated in the subcatchments was perturbed. The 
perturbations are expected to be correlated temporally and spatially. This was 
achieved by applying an additive, spatially correlated first-order autoregres-
sive (AR(1)) perturbation error: 

 1

2 2

(1 )

( )

)(0, (1 )

p u t

t t t

t a

f f e

e e L   (11) 

where pf  and uf  are the vectors of the perturbed and unperturbed runoff forc-
ings from all subcatchments, respectively. te  is the vector of additive pertur-
bations,  the AR(1) parameter, and t  a vector of white Gaussian noise. a  is 
a factor to scale the Gaussian noise. L  is the Cholesky decomposition  (Kay, 
1988, chap. 6) of the correlation matrix Cof the subcatchment forcings. Spe-
cific values for a  and  were estimated based on evaluation of the in situ 
discharge residuals at Bahadurabad station. 
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Due to limited ensemble size, models are prone to exhibit spurious correla-
tions in the derived model state covariance matrix P  (equation (8)). This 
leads to erroneous updates. To avoid such issues, the update can be limited to 
affect only parts of the model, usually closest to the current observation. This 
is referred to as localization (Evensen, 2009, chap. 15) and was implemented 
for the ETKF as described by Sakov and Bertino (2011). 

The time step of hydrodynamic models is small compared to the dynamics of 
river flow. In this case the numerical scheme was solved at 5-minute inter-
vals. It is reasonable to assume that a water level observation delivers infor-
mation about a longer time frame than a single simulation time step. This was 
accounted for by applying the updates over the time frame of a so-called vir-
tual window. 

For further details of the applied DA approach the reader is referred to Paper 
IV. Table 6 provides an overview of the specific parameters used for the 
Brahmaputra River case. 

 

Table 6. Overview of Brahmaputra River model DA parameters. Symbols refer to equation 
(11). Details are reported in the supplementary material of Paper IV. 

Parameter Value Remarks 

Amplitude of relative 
perturbation error a   

0.3 Derived from ensemble coverage of discharge at 
Bahadurabad station in open loop experiments. 

AR(1) factor of relative 
perturbation error   

0.96 Equal to temporal correlation of relative dis-
charge error at Bahadurabad station. 

Spatial correlation C   0.76 (mean) Equal to spatial correlation of simulated sub-
catchment runoffs. 

Localization size 200 km around 
observation 

Largest value possible without experiencing un-
reasonable updates causing the model to crash. 
Entire river model is ~1200 km long. 

Virtual window 120 minutes Derived from simulated water level dynamics, to 
keep errors from assumption of constant ob-
served water levels negligible. Simulation time 
step is 5 minutes. 

Ensemble size 80 Value chosen based on evaluation of perfor-
mance of synthetic DA experiments with chang-
ing ensemble size, and considering its trade-off 
with computational effort. 

 

Due to the river width, each transect of the river by CryoSat-2 delivers sever-
al individual observations (Figure 5). These observations occur at the exact 
same point in time and, consequently, represent the same water level. They 
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were not used individually, but grouped and averaged to update the model. In 
case of a (near-) perpendicular transect of the river this grouping is straight-
forward. In cases where the ground tracks of CryoSat-2 and the river are 
more aligned, however, the observations from a single transect can extend 
over a considerable distance along the river (e.g. in the north eastern corner 
of Figure 5). Where the observations extend over more than a threshold dis-
tance (3 km in the case of the DA experiments), the observations were 
grouped into a number of clusters based on their location along the river line 
using k-means clustering. Assuming that individual observations of each 
group should have recorded the same water height, their spread can be used 
as an estimate of observation uncertainty. The averaged observations then 
were assimilated to the model. Furthermore, additional outlier filtering was 
applied at this step: The CryoSat-2 observations were compared to the simu-
lated water levels, and considered outliers if they were deviating by more 
than a certain threshold value. Outlier filtering can be necessary because the 
numerical scheme of the hydrodynamic model is sensitive to abrupt, extreme 
water level changes. Assimilating observations differing greatly from the 
simulated water levels can cause model instabilities. In total, 4467 individual 
CryoSat-2 observations were used in the DA experiments (excluding 86 out-
liers deviating more than 3 metres from simulated water levels). These 4467 
observations were clustered into 973 groups. Details can be found in Paper 
IV, and are discussed briefly in section 8.5. 

All DA experiments reported in the following two sections were evaluated in 
terms of discharge at the outlet of the Brahmaputra River model, Baha-
durabad station. This is the only station along the Brahmaputra River for 
which in situ observations are available. The model period is from 2010 to 
February 2015. The ensemble predictions were evaluated in terms of cover-
age and sharpness. Coverage describes the share of observations that fall into 
the range of the predictions (in this  case defined by their 90 % CI, i.e. ex-
pected coverage is 0.9), and the sharpness is the width of this range. Further-
more, the continuous ranked probability score (CRPS) (Gneiting et al., 2005), 
a popular verification tool for probabilistic forecasts, was used. The CRPS 
combines coverage and sharpness in one indicator; its optimal value is zero. 
Also the Nash-Sutcliffe model efficiency coefficient (NSE) was used. It re-
fers to deterministic forecasts and was calculated for the ensemble mean. The 
optimal value is 1. Open loop model performance serves as a benchmark. An 
open loop run is a run of the same model ensemble with the same description 
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of model uncertainty as used in the DA experiments, but without assimilating 
any data. 

8.4 Data Assimilation experiments with synthetic 
data 

Initially, synthetic DA experiments were conducted with the Brahmaputra 
model. This was done in hidden truth experiments: First, the forcing of the 
hydrodynamic model was randomly perturbed (as in equation (11)). From the 
simulated water levels of the perturbed hidden truth run, synthetic water level 
observations were extracted. Noise was added to account for observation un-
certainty. Finally, the synthetic observations were assimilated to the original 
non-perturbed model. Then, the performance of the DA can be evaluated in 
comparison to the hidden truth run. Such controlled experiments allow for 
evaluation of the performance of DA and general capability of the DA 
framework in absence of any uncertainties or model flaws, as all uncertainties 
are controlled. Also, it allows testing the influence of different sampling pat-
terns, observation uncertainties, or DA parameters, such as for example the 
optimal ensemble size. 

The following synthetic observations were considered: 

 Synthetic observations with spatio-temporal sampling pattern identical to 
the original CryoSat-2 observations over the Brahmaputra River; with dif-
ferent observation uncertainties. 

 Synthetic observations with the CryoSat-2 sampling pattern, however as-
suming reversed flow direction of the Brahmaputra River. 

 Synthetic observations with sampling pattern of the Sentinel-3A and Sen-
tinel-3B missions 

Corresponding to the real DA experiments, results were evaluated at Baha-
durabad station. Results for two different hidden truth runs (HT 1 and HT 2) 
are summarized in Table 7. The two hidden truth runs deviate from the origi-
nal model by different amount, as can be seen in their open loop performanc-
es: The open loop run has a higher CRPS compared to HT 1 than HT 2, which 
means that HT 1 deviates more from the original model than HT 2. An open 
loop run in comparison with HT 2 is displayed in Figure 15. 
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Table 7. Results from synthetic DA experiments, in terms of discharge at Bahadurabad 
station. Average of 4 runs in each row. Error refers to the standard deviation of the zero 
mean Gaussian observation error. The last column provides the CRPS improvement of the 
DA run compared to the respective open loop run. 

  NSE  
[-] 

sharp-
ness 

 [m3 s-1] 

cover-
age  
[-] 

CRPS  
[m3 s-1] 

CRPS 
change

[%] 

HT 
1 

open loop 0.753 15611 0.773 3793 - 

DA, error 0.2 m 0.885 9439 0.651 2565 32 

DA, error 0.4 m 0.869 9688 0.673 2722 28 

DA, error 0.2 m, west-east flow 0.913 8153 0.782 1996 47 

DA, error 0.4 m, west-east flow 0.909 8728 0.781 2082 45 

HT 
2 

open loop* 0.848 15611 0.839 3305 - 

DA, error 0.05 m 0.912 9672 0.858 2190 34 

DA, error 0.1 m 0.907 9574 0.844 2279 31 

DA, error 0.2 m* 0.909 9256 0.821 2265 31 

DA, error 0.4 m 0.896 9733 0.811 2445 26 

DA, error 1.0 m 0.901 9259 0.693 2544 23 

DA, error 0.2 m, west-east flow 0.911 8267 0.812 2137 35 

DA, error 0.4 m, west-east flow 0.911 8683 0.808 2192 34 

DA, Sentinel-3A, error 0.4 m 0.882 7888 0.746 2388 28 

DA, Sentinel-3A and B, error 0.4 m 0.899 6693 0.661 2182 34 

* example runs shown in Figure 15 and Figure 16 

 

An observation error of 0.2 or 0.4 m is considered realistic for current satel-
lite altimetry observations. A run assimilating synthetic observations with an 
error of 0.2 m is displayed in Figure 16. Assimilation of synthetic CryoSat-2 
observations with such observation errors improves the model predictions at 
the outlet in terms of CRPS by 32 % or 28 % for HT 1, and 31 % or 26 % for 
HT 2. The observation uncertainties then were further varied for HT 2. Ap-
parently, the value of assimilating CryoSat-2 altimetry data cannot be in-
creased beyond a certain level by reducing the (theoretic) observation error: 
For HT 2, no large improvement in DA performance can be seen when reduc-
ing observation uncertainty from 0.2 m to 0.1 m and 0.05 m. On the other 
hand, assimilating observations with an error as high as 1.0 m still improves 
the model. The observation error, of course, has to be seen in relation to the 
river water level amplitudes, which are large along the Brahmaputra River 
with up to 10 m. 
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Figure 15. Result of the open loop run in terms of discharge at Bahadurabad station. Com-
pared to HT 2. 

 
Figure 16. Result of the assimilation of synthetic CryoSat-2 observations from HT 2 with 
0.2 m observation uncertainty, in terms of discharge at Bahadurabad station 

 

Another aspect, that in this setup has a larger impact than the observation er-
ror, is the sampling pattern. This is illustrated in Figure 17: CryoSat-2, due to 
its orbit configuration with 30-day subcycles will cross the approximately 
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800 km long stretch of the Brahmaputra River on average daily during an ap-
proximately 12-day window. For the following approximately 18 days of its 
subcycle, no observations are available. Sentinel-3A, as an example of a 
short-repeat mission, exhibits a more regular sampling pattern with maximum 
gaps of 3.5 days between observations. These smaller gaps likely explain the 
superior performance of the Sentinel-3A data over the CryoSat-2 data, even 
though Sentinel-3A provides slightly fewer observations than CryoSat-2 (754 
compared to 973 during the study period). Combining the sister missions 
Sentinel-3A and Sentinel-3B roughly doubles the number of available obser-
vations, further increasing data value. Also the direction of river flow in rela-
tion to ground track drift was investigated. The Brahmaputra River in the As-
sam valley flows from (north-) east to (south-) west (upwards along the y-
axis in Figure 17), with flood wave travel speeds of 1 to 2.5 m s-1. The ground 
track drift of CryoSat-2 has the same general direction, with a “travel speed” 
along the Brahmaputra River of roughly 0.7 m s-1. Synthetic experiments al-
low setups where the flow direction of the river is changed to the opposite of 
the ground track drift. As can be seen in Table 7, this increases the data value 
of the assimilated CryoSat-2 observations. An explanation for this behaviour 
is that a flood wave traveling in the same direction as the ground track drift is 
more likely to be missed in the periods without observations than a flood 
wave travelling in the opposite direction of the ground track drift. 

 

 
Figure 17. Sampling pattern of CryoSat-2 and Sentinel-3A along the Brahmaputra River in 
the Assam valley. For CryoSat-2 river transects with actually available observations are 
displayed; for Sentinel-3A all theoretical river transects are displayed. In reality, the 
number of observation from Sentinel-3A could be smaller. 
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8.5 Data Assimilation experiments with real data 
DA experiments were also conducted with real CryoSat-2 observations. The 
model was evaluated against in situ discharge at Bahadurabad station, which 
was available during the high-flow seasons only. Table 8 summarizes some 
results. 

 

Table 8. Results from DA experiments with real CryoSat-2 data, in terms of discharge at 
Bahadurabad station. Average of 4 runs in each row. The last column provides the CRPS 
improvement of the DA run compared to the open loop run. 

 NSE  
[-] 

sharp-
ness 

 [m3 s-1] 

cover-
age  
[-] 

CRPS  
[m3 s-1] 

CRPS 
change

[%] 

open loop 0.839 15264 0.926 3332 - 

DA, cluster obs. unc. (mean 0.31 m) 0.839 11405 0.834 3244 3 

DA, cluster obs. unc. scaled by 0.5 0.842 10741 0.784 3245 3 

DA, obs. unc. 0.3 m* 0.871 9156 0.723 2997 10 

DA, obs. unc. 0.15 m 0.874 8655 0.698 3021 9 

* example run shown in Figure 18 

 

The model uncertainty spread was well captured, as can be seen in the cover-
age of the open loop run which is close to the expected 90 %. DA runs were 
performed with the observation uncertainty derived from the actual spread of 
water level observations in the cluster groups. On average, their error was 
0.31 m. This, however, did not lead to good assimilation results, which indi-
cates that the spread of the individual observations is not a good indicator of 
observation uncertainty. Further DA runs with fixed observation uncertainty 
were performed, which showed improvements in terms of CRPS of up to 
10 %. An example run with an observation uncertainty of 0.3 m is shown in 
Figure 18. Generally (also for the synthetic experiments), it can be seen that 
the assimilation decreases the coverage. The loss of coverage is, however, 
overcompensated by an increase in sharpness, leading to a better total model 
fit in terms of CRPS. Also the ensemble mean NSE is improving. 
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Figure 18. Results of a DA run with real CryoSat-2 data in terms of discharge at Baha-
durabad station. Note that in situ data are only available during the high-flow seasons. 

 

Improvements in terms of CRPS of up to 10 % obtained by assimilating real 
CryoSat-2 data have been considerably smaller than those obtained by as-
similating synthetic CryoSat-2 data with up to 32 % in realistic scenarios. In 
principle, synthetic experiments are always expected to perform better, be-
cause all uncertainties are controlled. In the real case, these uncertainties 
have to be estimated. Observation uncertainty is unknown, as the CryoSat-2 
data cannot be directly evaluated over the Brahmaputra River. The model un-
certainty in the real case was assumed to originate from runoff forcing only. 
Even though the general model spread is realistic, the forcing error was mod-
elled with Gaussian distributions, which may be unrealistic. A considerable 
amount of model uncertainty can be related to other parts of the model than 
its forcing, but for example uncertainties in the representation of the river 
bed, which for the Brahmaputra River is dynamic. This adds uncertainty to 
the simulated water level-discharge relationships. The water level-discharge 
relationships are a crucial part of this model setup, where observations of wa-
ter level are assimilated, and results finally are evaluated in terms of dis-
charge. Moreover, the in situ discharge values used as a benchmark are de-
rived from rating curves, which inherently also bears uncertainty. 
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The improvements that could be obtained by assimilating real data are none-
theless in the range of what was obtained in similar previous studies. 
Michailovsky et al. (2013) improved the Interval Skill Score by around 5 % 
by assimilating Envisat altimetry data to a Muskingum routing scheme of the 
Brahmaputra River. Assimilating Envisat data to a model of the Amazon Riv-
er, Paiva et al., (2013) improved the RMSE of discharge by up to 15 %. 
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9 Conclusions  
The goal of this study was to evaluate CryoSat-2 satellite altimetry data over 
rivers, and evaluate their value in the parameterization and updating of hy-
drodynamic river models. CryoSat-2 has a unique orbit configuration, provid-
ing data with unprecedented spatial resolution along rivers. This could be 
shown to deliver added value even over dense in situ data. The work was 
based on two case studies, the well monitored Po River and the ungauged 
Brahmaputra River. 

Level 2 CryoSat-2 altimetry data were filtered over river masks derived from 
Landsat imagery. Where necessary, the river masks were adapted yearly to 
reflect changes in the course of the river. Water level observations could be 
derived down to river widths around 100 m. Data availability was limited 
along the upstream Brahmaputra River, owing to rugged terrain in combina-
tion with the closed-loop control of the altimeter on CryoSat-2. 

Water level observations from all three operation modes of CryoSat-2 were 
validated against in situ data over the Po River. The average RMSE between 
in situ and CryoSat-2 water level observations was found to be 0.38 m, well 
in the range of previous studies, especially over a narrow river like the Po. 
Performance did not differ substantially between the operation modes, which 
indicates good usability of CryoSat-2 data over many rivers globally. 

For a hydrodynamic model of the Po River, CryoSat-2 was shown to be able 
to replace in situ data for channel roughness calibration. CryoSat-2 even al-
lows for channel roughness calibration with higher spatial resolution than 
possible with the (already dense) network of in situ stations. Along the 
Brahmaputra River, CryoSat-2 data were used to calibrate the datums and 
shapes of synthetic cross sections. The calibrated model is assumed to accu-
rately reproduce water level-discharge relationships. This is a prerequisite for 
the assimilation of distributed altimetry observations such as from CryoSat-2. 

The DA framework integrated with the modelling software MIKE HYDRO 
River allows updating of river models with data with any kind of spatio-
temporal distribution. This was demonstrated over the hydrodynamic model 
of the Brahmaputra River, assimilating CryoSat-2 data and other synthetic 
data. In synthetic experiments, the DA framework was used to investigate the 
effects of different observation sampling patterns and observation errors. It 
was shown that a regular temporal observation interval is beneficial. Synthet-
ic data with the sampling pattern of CryoSat-2 improved discharge simula-
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tions of the model in terms of CRPS by up to 32 %, while real data yielded 
improvements of up to 10 %. Part of the lower performance of the real data 
may be explained by issues with the cross section calibration. 

This study can be seen as an effort to promote the to-date limited use of Cry-
oSat-2 altimetry with its unique spatio-temporal sampling pattern in hydrolo-
gy and to promote a move beyond the concept of virtual station altimetry in 
hydrology. Many of the current methods are in one way or the other limited 
to or at least optimized for data in the form of virtual station time series. New 
flexible methods of altimetry data processing, data distribution, and integra-
tion into river models that can be used with data with any kind of spatio-
temporal distribution are needed. 
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10 Limitations and perspectives 
There are a number of limitations to the presented methods, and ideas for fu-
ture research and applications that arose during the work. 

 Optical imagery for river masking is limited by cloud cover. In the As-
sam valley, it was only possible to derive one low-flow river mask per 
year, despite the 16-day return period of Landsat. Especially during the 
high-flow period, observations may have been missed. SAR imagery is an 
alternative which is not limited by cloud cover. Since the launch of the 
Sentinel-1A and -1B satellites in 2014 and 2016 it is freely available on 
global scale. Also, during the last years new global water mask services 
based on analysis of Landsat imagery became available, for example the 
Global Surface Water Explorer (Pekel et al., 2016), which promises to 
make full historic data of surface water extent available soon. 

 Alternatively, discrimination between water and land returns could take 
place earlier in the data processing, i.e. during retracking (level 1b data). 
New research suggests that returns over rivers and land can be distin-
guished by waveform classification (Boergens et al., 2017b). This may 
address issues of the masking used in this work, for example the inherent 
inaccuracies of the ground location of altimetry data due to footprint size. 

 The calibrated synthetic, triangular cross sections have, as mentioned, 
limited relation to the real river geometry. The method could be extended 
to other representations of cross section shape, for example freely varying 
between triangular and rectangular shape as suggested by Neal et al. 
(2015). Furthermore, river width information could be incorporated. 

 The developed DA framework leaves room for further experiments. For 
example, assimilation of multi-mission datasets appears promising due to 
the large influence of sampling frequency on DA results. This could result 
in improved operational flood forecasting systems. Another aspect is the 
short memory of the states of the hydrodynamic model. Instead of updat-
ing only the hydrodynamic model, also the hydrologic model can be in-
cluded in the update. The states of the rainfall-runoff models have a long-
er memory. For their updating other remote sensing data such as soil 
moisture could be used, which can address some of the uncertainty of pre-
cipitation forcing (Brocca et al., 2012, 2014). 

 Synthetic DA experiments that can be conducted with the DA framework 
can aid the design of future altimetry missions. During this study, the 
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importance of sampling pattern and frequency was evaluated as well as 
the importance of observation error. 

 A more flexible view of satellite altimetry data in the hydrologic 
community, i.e. not limited to virtual station data, does not only enable 
the addition of CryoSat-2 into existing databases and frameworks. It eases 
for example the use of data from short-repeat missions on specific begin-
ning- or end-of-mission orbits (for example Envisat from 2010 to 2012), 
or the use of multi-mission altimetry. A change or an extension of com-
mon forms of distribution of altimetry data to the inland water community 
may be needed, for example to (filtered) level 2 data instead of aggregated 
level 3 data at virtual stations as it is more common today. In combination 
with innovative applications, such as CryoSat-2 data replacing in situ data 
in the calibration of the Po River model, use of satellite altimetry data can 
be extended, also in more engineering contexts. 

 Development of more flexible data distribution and methods for combin-
ing altimetry data with river models has to be seen as a preparation for 
the upcoming SWOT mission. SWOT, planned to be launched in 2021, 
will provide fields of water heights along two 50 km-wide swaths instead 
of point observations. 

 Finally, the combined efforts of hydrologists and remote sensing special-
ists in this field must lead to the development of an operational, global 
hydrological model, similar to what already exists for the oceans with 
MyOcean. This combines a model of river flow with remote sensing in-
formation. The model will be informed continuously by assimilating mul-
ti-mission altimetry observations and/or similar observations of, for ex-
ample, water extent. Such a global hydrological model is of interest for 
climate change modelling, water resource management, etc. 
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