280 research outputs found

    Attacking post-quantum cryptography

    Get PDF

    The Parallel One-way Hash Function Based on Chebyshev-Halley Methods with Variable Parameter

    Get PDF
    In this paper a parallel Hash algorithm construction based on the Chebyshev Halley methods with variable parameters is proposed and analyzed. The two core characteristics of the recommended algorithm are parallel processing mode and chaotic behaviors. Moreover in this paper, an algorithm for one way hash function construction based on chaos theory is introduced. The proposed algorithm contains variable parameters dynamically obtained from the position index of the corresponding message blocks. Theoretical analysis and computer simulation indicate that the algorithm can assure all performance requirements of hash function in an efficient and flexible style and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication

    Attacking post-quantum cryptography

    Get PDF

    Short Solutions to Nonlinear Systems of Equations

    Get PDF
    This paper presents a new hard problem for use in cryptography, called Short Solutions to Nonlinear Equations (SSNE). This problem generalizes the Multivariate Quadratic (MQ) problem by requiring the solution be short; as well as the Short Integer Solutions (SIS) problem by requiring the underlying system of equations be nonlinear. The joint requirement causes common solving strategies such as lattice reduction or Gröbner basis algorithms to fail, and as a result SSNE admits shorter representations of equally hard problems. We show that SSNE can be used as the basis for a provably secure hash function. Despite failing to find public key cryptosystems relying on SSNE, we remain hopeful about that possibility

    Analysis and Design Security Primitives Based on Chaotic Systems for eCommerce

    Get PDF
    Security is considered the most important requirement for the success of electronic commerce, which is built based on the security of hash functions, encryption algorithms and pseudorandom number generators. Chaotic systems and security algorithms have similar properties including sensitivity to any change or changes in the initial parameters, unpredictability, deterministic nature and random-like behaviour. Several security algorithms based on chaotic systems have been proposed; unfortunately some of them were found to be insecure and/or slow. In view of this, designing new secure and fast security algorithms based on chaotic systems which guarantee integrity, authentication and confidentiality is essential for electronic commerce development. In this thesis, we comprehensively explore the analysis and design of security primitives based on chaotic systems for electronic commerce: hash functions, encryption algorithms and pseudorandom number generators. Novel hash functions, encryption algorithms and pseudorandom number generators based on chaotic systems for electronic commerce are proposed. The securities of the proposed algorithms are analyzed based on some well-know statistical tests in this filed. In addition, a new one-dimensional triangle-chaotic map (TCM) with perfect chaotic behaviour is presented. We have compared the proposed chaos-based hash functions, block cipher and pseudorandom number generator with well-know algorithms. The comparison results show that the proposed algorithms are better than some other existing algorithms. Several analyses and computer simulations are performed on the proposed algorithms to verify their characteristics, confirming that these proposed algorithms satisfy the characteristics and conditions of security algorithms. The proposed algorithms in this thesis are high-potential for adoption in e-commerce applications and protocols

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Efficient numerical methods for the simulation of particulate and liquid-solid flows

    Get PDF
    In this work a set of efficient numerical methods for the simulation of particulate flows and virtual prototyping applications are proposed. These methods are implemented as modular components in the FEATFLOW software package which is used as the fluid flow solver. In direct particulate flow simulations the calculation of the hydrodynamic forces acting on the particles is of central importance. For this task acceleration techniques are proposed based on hierarchical spatial partitioning. For arbitrary shaped particles the usage of distance maps to rapidly process the needed geometric information is employed and analyzed. In case of collisions between the particles it is shown how these same structures can be used to efficiently handle the collision broad phase and narrow phase. The computation of collision forces in the proposed particulate flow solving scheme can be handled by several collision models. The used models are based on a constrained-based formulation which leads to a linear complementarity problem (LCP). Another approach is added into the particulate flow solver that is based on the discrete element method (DEM). This approach is suited very well to an Implementation on graphic processing units (GPU) as the particles can be handled independently and thus excellent use of the massive parallel computing capabilities of the GPU can be made. In order to extend the DEM to handle non-spherical particles or rigid bodies, an inner sphere representation of such shapes is used. Furthermore, a mesh adaptation technique to increase the numerical efficiency of the CFD-simulations is shown which is based on Laplacian smoothing with special weights. The proposed techniques are validated in various benchmark configurations or comparisons to experimental data
    corecore