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Introduction

A (not so) long time ago in a galaxy (not so) far,
far away....

CRYPTO WARS

Episode 0 and 1
The cryptanalyst strikes back

It is a dark time for cryptography.
Although QUANTUM COMPUTERS
have been deflected,
Imperial troops have driven the
cryptosystems from their
mathematical models
and pursued them across
the galaxy with more attacks.

Evading the dreaded Imperial
MODEL-MISMATCH ATTACKS,
a group of freedom fighters led by
PQCRYPTO has submitted several
post-quantum schemes to the
remote ice world called NIST.

The evil lord Darth Promovendus,
obsessed with finding more secret keys,
has dispatched thousands of
remote SIDE-CHANNEL ATTACKS into
the far reaches of the internet....



2 CONTENTS

This thesis covers several attacks on post-quantum cryptography, the new cryptography
able to resist attacks by large quantum computers. The opening crawl should make clear
that new is not always better.

Although the literal meaning of cryptography is “secret writing”, many cryptographic
applications and protocols go far beyond secretly transforming messages. There are var-
ious security goals that cryptography is able to provide and to achieve these goals, there
are several evaluation criteria. The first building block for cryptography is some computa-
tionally hard mathematical problem, e.g. factoring large numbers or computing discrete
logarithms. For example, these could be used to build so-called trapdoor one-way func-
tions: functions that are easy to compute in the forward direction (e.g. encryption of a
message), but computationally hard to compute in the backward direction unless a cer-
tain secret key is known (e.g. decryption of a ciphertext). In post-quantum cryptography,
we are only interested in mathematical problems that are computationally hard, even for
large quantum computers.

To evaluate the security of public-key cryptographic primitives, some security model
is required to describe the exact setting. This model describes what type of primitive
we are considering: e.g. a public-key encryption scheme or a digital signature scheme.
It also describes the attacker’s capabilities: e.g. we often make the distinction whether
keys are used once or can be reused. Also the attacker’s goal is described in the model:
a signature forgery does not make sense in the analysis of an encryption scheme. The
model also has some level of abstraction: some models are more idealized (e.g. Random
Oracle Models) than other models (e.g. Standard Model). Ultimately such models are
used in provable security: linking the problem of breaking the cryptographic primitive
(i.e. the attacker reaches his goal) to the problem of solving the underlying mathematical
problem. However, there are scenarios where the security model does not cover all cases
that occur in reality: e.g. incorrect usage of the cryptographic primitive by accident. Such
a mismatch between the security model and reality may lead to several attacks that are
not covered by the security model or security proof.

The models in provable security usually do not consider attacks on cryptographic
implementations: this is another separate evaluation category. There are several new at-
tack vectors possible when we move from the mathematics on the white-board to actually
implementing cryptography in practice. What happens when we perform cryptographic
operations on our devices (e.g. laptop, mobile phone, smart-card) having certain physical
properties? Depending on the implementation and the device, these physical properties
can leak certain values during a cryptographic operation, that are supposed to be kept
secret. This opens the door to attacks that do not solve the underlying mathematical prob-
lem, but instead use this additional physical information as a short-cut to find the secret
key. As cryptography is used every day on any device connected to the internet, these
so-called side-channel attacks are very important to take into consideration in practice.

This thesis covers several attacks (and fixes) on post-quantum cryptographic primi-
tives. The knowledge of these attacks might weaken the trust we have in the security
level of the primitive, but can also achieve the opposite. The attacks, together with the
countermeasures, could actually improve the understanding of the primitive and may
thus ultimately lead to improved quality. This thesis is built up of two parts, each part
covering attacks and countermeasures. For each part we will briefly discuss the content
of its chapters.
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Part I: Model-mismatch attacks

The first part of this thesis focuses on model-mismatch attacks: what happens when
(some of) the assumptions made in the security model become invalid? There are several
reasons that such a model mismatch might occur. For example: the concept of quan-
tum computing introduces a whole new computing paradigm, possibly invalidating the
(previous) assumptions on the capabilities of the attacker, that now has a (large enough)
quantum computer. On the other hand, model mismatch might also occur when cryp-
tography is incorrectly used: possibly due to accidental events in applications or simply
because the security model did not match with the cryptographic scheme itself. Part I is
built up as follows:

• Chapter 1 gives an introduction to security models in (post-quantum) cryptography
and poses the research questions that will be answered in Chapters 2, 3, and 4.

• Chapter 2 examines possible fixes to the security model of certain commitment
schemes: the security proofs of these schemes are no longer valid when dealing
with quantum attackers. One way to mitigate this, is showing that hash-functions
have some desired quantum property: the collapsing property. We show that the
sponge construction, which is, among others, the construction behind the standard-
ized hash function SHA3, is collapsing for specific instantiations. This work could
strengthen the belief that the sponge construction is post-quantum secure. The re-
sults of this chapter are based on the paper The post-quantum security of the sponge
construction [CGH+18], which was published at PQCrypto 2018 and is joint work
with Jan Czajkowski, Andreas Hülsing, Christian Schaffner and Dominique Unruh.

• Chapter 3 analyzes (accidental) reuse of a hash-based one-time signature key-pair.
Although the security reductions only guarantee security under single-message at-
tacks, the two-message attacks are in some cases still of exponential complexity,
at least asymptotically. As we show what this actually means for concrete param-
eters, this chapter can provide meaningful insights to standardization bodies like
NIST, that need to analyze the risks associated with these model-mismatch attacks
on hash-based signatures. The results of this chapter are based on the paper “Oops,
I did it again” – Security of One-Time Signatures under Two-Message Attacks [GH17],
which was published at SAC 2017 and is joint work with Andreas Hülsing.

• Chapter 4 examines whether the error-correction codes used in the lattice-based
public-key encryption scheme HILA5 can prevent reaction attacks. There are simi-
lar attacks where the additional attacker capabilities in the IND-CCA model allowed
for breaking a IND-CPA-secure encryption scheme. This chapter can strengthen the
understanding about which applications can handle an IND-CPA-secure encryption
scheme and which require an IND-CCA-secure scheme. The results of this chapter
are based on the paper “HILA5 Pindakaas”: On the CCA security of lattice-based en-
cryption with error correction [BGLP18], which is published at AFRICACRYPT 2018
and is joint work with Daniel J. Bernstein, Tanja Lange and Lorenz Panny.

• Chapter 5 concludes the first part about model-match attacks and summarizes the
answers to the research questions posed in Chapter 1. We pose a list of open prob-
lems that are related to the work covered in Part I.
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Part II: Side-channel attacks

The second part of this thesis covers side-channel attacks. Post-quantum cryptography
introduces new cryptographic primitives, requiring new algorithms and implementations.
It is not straightforward to achieve a secure implementation, but at the same time it is also
not straightforward to perform a side-channel attack. Part II covers several side-channel
analyses of post-quantum cryptographic schemes and is built up as follows:

• Chapter 6 describes preliminaries on lattice-based cryptography and side-channel
attacks, specifically cache attacks and fault attacks. Similar to Part I, we pose several
research questions in this chapter that will be answered in Chapters 7, 8, 9, and 10.

• Chapter 7 is an intermezzo chapter out of the realm of post-quantum cryptogra-
phy. Instead, we look at implementations of RSA where we analyze a common be-
lief: that using the sliding-window method for exponentiation (with implemented
window sizes) does not leak enough bits for a full break. However, when we delve
deeper we find that a lot more information than previously known can be gained for
the left-to-right version. The attack in this chapter should let everyone reconsider
statements about security under side-channel leakage. It also provides motivation
for the necessity to understand side-channel attacks on post-quantum cryptogra-
phy, which is the topic of the remaining chapters of this part. The results of this
chapter are based on the paper Sliding right into disaster – Left-to-right sliding win-
dows leak [BBG+17b], which was published at CHES 2017 and is joint work with
Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Nadia Heninger, Tanja Lange,
Christine van Vredendaal and Yuval Yarom.

• Chapter 8 analyzes possible side-channel attacks that exploit leakage from sam-
plers for the discrete Gaussian distribution. Many lattice-based schemes, including
a promising digital signature scheme called BLISS, use noise sampled from this dis-
tribution. However, as it is not straightforward to sample from this distribution,
it is also not straightforward to (efficiently) protect the implementations against
side-channel attacks. At the same time it is not obvious what exact information can
be gained in a cache attack. This work should help designers (and implementers)
of lattice-based cryptography make well-informed decisions on whether to use the
discrete Gaussian distribution, or use another distribution instead. The results of
this chapter are based on the paper Flush, Gauss, and Reload – A Cache Attack on
the BLISS Lattice-Based Signature Scheme [GHLY16], which was published at CHES
2016 and is joint work with Andreas Hülsing, Tanja Lange and Yuval Yarom.

• Chapter 9 considers attacks on an improved version of BLISS called BLISS-B. De-
spite the known vulnerabilities in BLISS, the improved version seems protected
against side-channel attacks. At the same time, BLISS-B is the only version im-
plemented in e.g. strongSwan, and is thus the only real target to test practical
asynchronous cache-attacks on lattice-based signature schemes. The work in this
chapter shows that cache-attacks are not only possible, but also practical, and are
therefore a real threat that has to be mitigated. The results in this chapter are
based on the paper To BLISS-B or not to be – Attacking strongSwan’s Implementation
of Post-Quantum Signatures [PGY17], which was published at CCS 2017 and is joint
work with Peter Pessl and Yuval Yarom.
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• Chapter 10 investigates the applicability of differential fault attacks on determinis-
tic lattice-based signature schemes. To remove the dependency on well-generated
random numbers, several schemes including Dilithium and qTESLA are determin-
istic. It is already known that differential fault attacks are possible on deterministic
elliptic-curve based signature schemes, but it is unclear whether this is also possible
for lattice-based schemes. This chapter broadens the knowledge on possible attack
vectors on deterministic lattice-based signature schemes, especially when imple-
mented on small devices (e.g. smartcards). The results in this chapter are based
on the paper Differential Fault Attacks on Deterministic Lattice Signatures [GP18],
which was published in TCHES 2018-3 and is joint work with Peter Pessl.

• Chapter 11 finally concludes the second part with an overview of the answers to
the research questions, summarizing the most important results and posing several
open questions that are related to the work covered in Part II.





PART I

MODEL-MISMATCH ATTACKS





CHAPTER 1

Security models in post-quantum cryptography

1.1 — Problem description

An important aspect in the evaluation of (post-quantum) cryptography is provable
security. The goal of provable security is to relate the security of a cryptographic system
to the complexity of a solver for some computationally hard mathematical problem. In the
most desirable case (the tight case), we can then say that breaking the scheme is as hard as
solving the underlying mathematical problem. However, such security proofs/reductions
do not say anything about security of cryptographic implementations, e.g. they do not
consider side-channel attacks1: we handle this scenario in Part II of this thesis.

The setting and requirements in provable security is covered by the model: e.g. what
type of scheme are we considering (e.g. digital signatures or encryption) and what type
of adversary are we talking about (i.e. what is the attacker’s goal). There exist several
models in (post-quantum) cryptography. As quantum computing introduces a new com-
puting paradigm, some of these models might have to be reconsidered. On the other
hand, the formal models that are used for analyzing the security of post-quantum cryp-
tography might not cover all cases that could occur in real life scenarios, e.g. in the form
of a mismatch. This requires further analysis of these models in search for consequences
and possible fixes. In Part I of this thesis, we address some of the issues that arise with
(quantum) security models in post-quantum cryptography.

1.2 — Cryptographic security models

The study of (quantum) algorithms for breaking cryptography only gives an upper
bound on the cost of an attack. A far better security guarantee would be a lower bound
on the cost of any (possibly unknown) attack. Let us take the example of a signature
scheme. Ideally, one would like to be able to make a statement such as: “if an attacker A
can efficiently forge signatures of the scheme (for some definition of forgery), thenVA can
efficiently solve some underlying mathematical problem”. We call VA the “reduction”, or
the algorithm that uses the signature forger A as a subroutine. If this reduction is tight
(meaning the complexity of VA is asymptotically identical to the complexity of A), we can
say that the problem of solving the underlying mathematical problem is a lower bound
for the problem of forging signatures. Instead of trying to find issues with the signature
scheme, we can simply concentrate on determining the complexity of the underlying
mathematical problem.

1The area of leakage resilient cryptography does attempt to prove security under some model of side-
channel leakage, but most schemes cannot be proven secure in such models or are not practical to use.
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In order to prove such lower bounds, we have to use some form of abstraction: the
model. The security model describes the setting in which the security proof/reduction
is deemed valid. There are several dimensions in the model that together describe the
exact setting. First, we need to describe the exact functionalities of the cryptographic
primitive: e.g. what functionalities are provided by a digital signature scheme or a public-
key encryption scheme. Then, the adversary model describes the type of adversary we
are considering: classical adversaries (i.e. only having classical computers) or quantum
adversaries (i.e. having access to a large quantum computer).

To make a statement such as the one in the previous paragraph, we also need to define
the attacker’s goal in the model (i.e. what does a forgery mean). In digital signatures, we
often consider the case that an attacker can learn digital signatures for arbitrary messages
of his choice. The number of times he can learn these signatures is bounded by some
number, which is usually related to some security parameter. However, many hash-based
signature schemes are only secure for one single use: i.e. the accompanying reduction is
given for a one-time attack model. In general the attacker’s goal is to construct a valid
signature on a new message that he did not learn yet, i.e. a valid signature forgery. This is
called the EU-CMA setting (we give a more formal definition of this notion in Chapter 3).
Other goals may include for example full key-recovery.

Of course, an attacker model for forgeries does not make sense for public-key encryp-
tion. In encryption there are two main attack models: the IND-CPA and the IND-CCA
setting. In both settings, the attacker can learn ciphertexts for arbitrary messages of his
choice. However, in the IND-CCA setting, the attacker can also learn decryption outputs
corresponding to arbitrary ciphertexts of his choice. The attacker should then choose two
messages (not learned earlier), from which he receives back the corresponding ciphertext
of one of them (chosen at random). The attacker is again able to learn new ciphertexts
(and new decryption outputs in the IND-CCA setting) at this point. The attacker’s goal
is to decide which one of his messages got encrypted and we call the scheme IND-CPA
(or IND-CCA) secure if the advantage of the attacker over picking a message at random
is negligible (and by guessing he has a probability of 1/2 of guessing correct). Note that
any IND-CCA-secure scheme is also IND-CPA secure, but not the other way around. The
most important difference between these two settings in real life is that for an IND-CCA
secure encryption scheme, the (public) key can be cached and reused for multiple en-
cryptions, i.e. the owner of the public key can reuse his keys to receive (and decrypt)
multiple messages. This scenario changes if someone uses an IND-CPA-secure scheme
that is not IND-CCA secure: apparently the scheme cannot handle multiple decryption
queries of arbitrary ciphertexts. However, this becomes a problem (if the keys are cached
and reused) as many applications leak some information about a decryption procedure.
We will show in Chapter 4 that leaking even one bit of information per decryption query
can be devastating for an IND-CPA-secure scheme. One way to securely use an IND-CPA
scheme is to use the keys only once: renew a key pair after every usage (i.e. decryption
of a message). It turns out that this distinction is particularly important in post-quantum
cryptography: most basic public-key encryption schemes are only secure in the IND-CPA
setting (e.g. based on lattices, codes or isogenies) and require additional steps to be
secure in the IND-CCA setting, e.g. by using the FO-transform [FO99].

Last, the security model should also describe the “type” of proof. In the so-called
standard model, we assume some building block has some property P. This can be the
computationally hard mathematical problem, but also any other property. If this property
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P suffices to prove/show the reduction (from breaking P to the security of some scheme),
we have a proof in the standard model. In the next section, we describe the Random
Oracle Model (ROM), which is often used to prove security of a system that uses a hash-
function as a building block. This is a more idealized model than the standard model,
but also turns out to be quite useful in various scenarios.

1.3 — The (quantum) random oracle model

(Cryptographic) hash functions are one of the most basic building blocks in cryptogra-
phy. They are virtually used everywhere: as cryptographically secure checksums to verify
integrity of software or data packages, as building blocks in security protocols, including
TLS, SSH, IPSEC, as part of any efficient variable-input-length signature scheme, in trans-
formations for CCA-secure encryption (i.e. the FO-transform [FO99]), and many more.
This automatically means that the accompanying security model and proof/reduction has
to accommodate the hash function. It depends on the setting which property of the hash-
function is required, but a cryptographic hash function H : {0, 1}∗ → {0, 1}n is a function
that should have all of the following properties:

• Collision resistance: given the function H, it is computationally infeasible to find
two inputs x 6= y with H(x) = H(y).

• Preimage resistance: given the function H and a target y, it is computationally
infeasible to find any input x with H(x) = y.

• Second preimage resistance: given the function H and an input x, it is computa-
tionally infeasible to find another input y such that H(x) = H(y).

• Pseudo-randomness: given the functionH, for any input x the outputH(x) seems to
be chosen at random from the output space if x is unknown (i.e. is unpredictable).

A perfect random function has all the above properties, so ideally we would like a cryp-
tographic hash function to behave like a random function. However, since real hash
functions have a compact description, they will never be perfectly random: if it would be
perfectly random, the function description would be of exponential size and computing
any output would take exponential time. Despite this, in some security proofs/reductions
a hash-function is used to deterministically compute random numbers (e.g. to generate an
arbitrary number of random bits from a secret seed). We can abstract away this predica-
ment in a more idealized model: the “Random Oracle Model (ROM)” [BR93]. In this
model, we assume there exists a perfectly random functionO : {0, 1}∗ → {0, 1}n called the
Random Oracle, which is publicly available and can be queried efficiently (i.e. although
the function is perfectly random, storage/computation costs are neglected). Given any
input x, a deterministic output y = O(x) is returned by the oracle, sampled uniform
at random from the output space. We can attempt to prove the security of any scheme
that uses cryptographic hash functions in the ROM: we simply replace the hash function
by the random oracle. In this case, a security reduction can give lower bounds on the
number of queries an attacker (both A or VA from the previous section) has to perform
to the random oracle in order to show the reduction: this defines the query complexity.
However, when the mentioned scheme is used in real-life, the random oracle is replaced
by a (cryptographically secure) hash function again, as random oracles do not exist in
real life. This means the proofs in the ROM only give heuristic security arguments: they
cannot prove the security of the scheme that is used in real life, but do allow to verify if
the construction is solid.
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Quantum computing We call the ROM the classical setting, as the attacker only has
classical access to the random oracle. Despite the fact that quantum cryptanalysis only
mildly affects the security of hash functions, any construction in the ROM instantiates the
random oracle with a cryptographic hash function in real life. But this instantiation would
enable a quantum attacker to evaluate the hash function on quantum states, i.e. qubits
in superposition. In particular, one superposition query could evaluate the hash function
on all its inputs: this is not captured in the definition of the query complexity. To capture
this issue, the random oracle needs to be replaced by a quantum-accessible oracle: the
Quantum Random Oracle Model (QROM) [BDF+11] (we give a more formal definition
in Chapter 2). This model seems to be the appropriate model for analyzing security in
the so-called post-quantum setting. In this case, an attacker can query the random oracle
O with qubits: i.e. on input |x〉 |y〉, the oracle returns |x〉 |y⊕O(x)〉 (we also give more
background on quantum computing in Chapter 2). This means any security proof in the
ROM needs to be replaced by a new security proof in the QROM, which turns out to be
significantly harder.

In the ROM, it is often trivial to quantify the amount of information an attacker obtains
with each query. For example, if an attacker wants to find a collision, he needs to keep
querying the oracle in order to find a collision. This means that most proofs consist of sim-
ple counting arguments to show lower bounds on the query complexity. In the quantum
setting however, an attacker can query the oracle on a superposition over all messages.
In the collision example, this would mean the attacker immediately gains (several) col-
lisions as part of the superposition output. Luckily, to actually retrieve a collision from
this superposition state is still non-trivial. In fact, also in the quantum setting there exist
examples where it is possible to find lower bounds for quantum algorithms, bounding
the amount of information the attacker obtains with each oracle query. The most notable
example of this is Grover’s algorithm [Gro96], which is proven to be optimal: the upper
bound matches the lower bound.

Not only do the security proofs (in the standard or random oracle model) turn out
to be harder if an attacker has quantum access, in some cases they actually turn out
to be impossible. In previous work, Unruh [Unr16b] showed that the security model
for some commitment schemes did not capture the intuition of what it means to be a
secure commitment scheme when an attacker has quantum-access to the random oracle.
He furthermore showed how to adapt/fix this: i.e. change the security requirements
and attacker capabilities of the model. A new notion for hash functions was introduced:
collapsing hash functions. The collapsing definition is a purely quantum definition (i.e. it
does not exist in the classical setting) and can be viewed as a strengthening of collision-
resistance. In other words, in the quantum setting, the security requirements were not
strong enough and had to be strengthened.

1.4 — Challenges and research questions

In Part I of the thesis, we will look at several research questions related to mismatch
of (quantum) models and reality in post-quantum cryptography. We will now present the
research questions that will be answered in this part, accompanying the following two
chapters.
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Q1: Is the sponge construction (and thus a hash function like SHA3) collapsing?

In light of recent results by Unruh [Unr16b], it is desirable to find hash functions that are
collapsing. Unruh [Unr16b] also showed that the random oracle is collapsing. However,
this has little relevance for real world hash functions. A practical hash function is typically
constructed by iteratively applying some elementary building block in order to hash large
messages. So even if we are willing to model the elementary building block as a ran-
dom oracle, the overall hash function construction should arguably not be modeled as a
random oracle. For hash functions based on the Merkle-Damgård construction, it was al-
ready shown [Unr16a] that if the elementary building block (the compressing function)
is a random oracle, the resulting hash function is collapsing. However, the SHA3 con-
struction is based on the sponge construction, which leaves us with the question whether
we can prove that the sponge construction is collapsing? This would actually prevent the
model-mismatch attacks by quantum attackers and is the focus of Chapter 2.

Q2: What can we say about the security of hash-based one-time signatures, when a
user accidentally signs twice?

One-time signatures (OTS) are called one-time, because the accompanying reductions
only guarantee security under single-message attacks. However, this does not imply that
efficient attacks are possible under two-message attacks. Especially in the context of
hash-based OTS, this leads to the question if accidental reuse of a one-time key pair leads
to immediate loss of security or to graceful degradation? In Chapter 3, we investigate
this question for three prominent hash-based OTS: Lamport’s scheme, its optimized vari-
ant, and WOTS. This model mismatch is analyzed in various scenarios, i.e. for different
attacker goals and capabilities.

Q3: Can error-correcting codes prevent the reaction attack?

Many lattice-based encryption schemes (as well as many other post-quantum encryption
schemes) are probabilistic: there is a chance that correctly constructed ciphertexts are de-
crypted incorrectly. This opens the door to so-called reaction attacks and emphasizes the
importance of the security claims/models accompanying the encryption scheme. More
specifically, such probabilistic schemes usually only guarantee security in the IND-CPA
setting. An idea to prevent such reaction attacks is to add an error-correcting code to the
encryption scheme: this should lower the probability of failures drastically. This is used
in HILA5 [Saa17a], a scheme submitted to the NIST competition as an IND-CCA-secure
scheme. Does error-correction eliminate the event of decryption errors and thereby pre-
vent the model mismatch via reaction attacks? We investigate this possibility in Chapter 4.





CHAPTER 2

Post-quantum sponges

2.1 — Overview

Context. For modern hash functions like SHA2 or SHA3 there exist proofs that show se-
curity properties of the hash function, assuming that an internal building block of the
construction has a certain property. For example, the SHA3 hash function is an instantia-
tion of the sponge construction [BDPV07]. For sponge functions it was shown [BDPV07]
that if the internally used permutation (or function) behaves like a random permutation
(or function), then the sponge function achieves one of the strongest security properties
possible: indifferentiability from a random oracle. This property guarantees that there do
not exist any attacks that perform better than generic attacks against SHA3 as long as the
permutation used in SHA3 behaves like a random permutation. Sadly, the security reduc-
tion for sponge functions does not carry over to the quantum setting, as the arguments
are query-based and do not work against a quantum adversary A. Such an adversary
can use a quantum circuit implementing SHA3 and can thereby query the function in
superposition. In particular, A could execute SHA3 on the uniform superposition over
all messages of a certain length, possibly helping A to distinguish SHA3 from a random
oracle. This leaves us with no security argument for SHA3 besides the absence of attacks
which is an unfortunate situation.

One of the most important properties of a hash function H is collision-resistance.
Intuitively, collision-resistance guarantees, in some sense, that given H(x) the value x is
effectively determined. Of course, information-theoretically, x is not determined, but in
many situations, we can treat the preimage x as unique, because we will see another value
with the same hash with negligible probability. For example, collision-resistant hashes
can be used to extend the message space of signature schemes (by signing the hash of
the message), or to create commitment schemes (e.g., sending H(x‖r) for random r,
commits the sender to x; the sender cannot change his mind about x because he cannot
find another preimage).

In the post-quantum setting,1 however, it was shown by Unruh [Unr16b] that colli-
sion-resistance is weaker than expected: for example, the commitment scheme sketched
in the previous paragraph is not binding. In fact, the attack is much stronger: it is possible
for an attacker to send a hash value h, then to be given a value x, and then to send a
random value r such that h = H(x‖r), thus opening the commitment to any desired

1We mean a situation in which the protocols and primitives that are studied run on a conventional computer,
but the attacker can perform quantum computations, see Section 1.3.
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value – even if H is collision-resistant against quantum adversaries.2 This contradicts the
intuitive requirement that H(x) determines x.

Fortunately, Unruh [Unr16b] also presented a strengthened security definition for
post-quantum secure hash functions: collapsing hash functions. Roughly speaking, a
hash function is collapsing if, given a superposition of valuesm, measuringH(m) has the
same effect as measuringm (at least from the point of view of a computationally limited
observer: we give a formal definition in Section 2.2). Collapsing hash functions serve
as a drop-in replacement for collision-resistant ones in the post-quantum setting: Unruh
showed that several natural classical commitment schemes (namely the scheme sketched
above, and the statistically-hiding schemes from [HM96]) become post-quantum secure
when using a collapsing hash function instead of a collision-resistant one. The collapsing
property also directly implies collision-resistance.

In light of these results, it is desirable to find hash functions that are collapsing. Unruh
[Unr16b] showed that the random oracle is collapsing. (That is, a hash function H(x) :=
O(x) is collapsing when O is a random oracle.) However, this has little relevance for
real-world hash functions: A practical hash function is typically constructed by iteratively
applying some elementary building block (e.g., a “compression function”) in order to hash
large messages. So even if we are willing to model the elementary building block as a
random oracle, the overall hash function construction should arguably not be modeled
as a random oracle.3

For hash functions based on the Merkle-Damgård (MD) construction (such as SHA2
[Nat15]), Unruh [Unr16a] showed: If the compression function is collapsing, so is the
hash function resulting from the MD construction. In particular, if we model the com-
pression function as a random oracle (as is commonly done in the analysis of practical
hash functions), we have that a hash function based on the MD construction is collapsing
(and thus suitable for use in a post-quantum setting).

However, not all hash functions are constructed using MD. Another popular con-
struction is the sponge construction [BDPV07], underlying for example the current in-
ternational hash function standard SHA3 [NIS14], but also other hash functions such as
Quark [AHMN10], Photon [GPP11], Spongent [BKL+13], and Gluon [BDM+12]. The
sponge construction builds a hash function H from a block function4 f. In the classical
setting, we know that the sponge construction is collision-resistant if the block function f
is modeled as a random oracle, or a random permutation, or an invertible random permu-
tation [BDPA08]. In particular, it was shown that the sponge construction is indifferen-
tiable from a random oracle in the classical setting. Together with the fact that the random
oracle is collision-resistant, collision-resistance of the sponge construction follows. How-
ever, their proof (i.e. the proof in [BDPA08]) does not carry over to the post-quantum
setting: their proof relies on the fact that queries performed by the adversary to the block
function are classical (i.e., not in superposition between different values). As first argued

2More precisely, [Unr16b] shows that relative to certain oracles, a collision-resistant hash function exists
that allows such attacks. In particular, this means that there cannot be a relativizing proof that the commitment
scheme is binding assuming a collision-resistant hash function.

3For example, hash functions using the Merkle-Damgård construction are not well modeled as a random
oracle. If we use MAC(k,m) :=H(k‖m) as a message authentication code (MAC) with key k, we have that
MAC is secure (unforgeable) when H is a random oracle, but easily broken when H is a hash function built
using the Merkle-Damgård construction because of length-extension attacks.

4It is not called a compression function, since the domain and range of f are identical.
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in [BDF+11], random oracles and related objects should be modeled as functions that
can be queried in superposition of different inputs. (Namely, with a real hash function,
an adversary can use a quantum circuit implementing SHA3 and can thereby query the
function in superposition. The adversary could evaluate the sponge on the uniform su-
perposition over all messages of a certain length, possibly helping him to, e.g., find a
collision.) Thus, it leaves us with the question whether the sponge construction (and
thus hash functions like SHA3) is collapsing.

Summary. In this chapter we tackle the question whether the sponge construction is
collapsing in the post-quantum setting. We show that:

• If the block function f is a random function or a random one-way permutation, then
the projections of f on its inner and outer part are collapsing.

• If the inner part of the block function f is collapsing, then a step function that we
define (used later in the proof) is collapsing.

• If the outer and inner part of the block function f are collapsing, and furthermore
the inner part is zero-preimage resistant, then the sponge construction is collapsing.

• Several corollaries are implied, regarding the collision resistance, preimage resis-
tance and second preimage resistance of the sponge construction.

It should be stressed that we do not show that the sponge construction is collapsing (or
even collision-resistant) if the block function f is an efficiently invertible random permuta-
tion. In this case, it is trivial to find zero-preimages by applying the inverse permutation
to 0. This means that the present result cannot be directly used to show the security
of, say, SHA3, because SHA3 uses an efficiently invertible permutation as block function.
Our results apply to hash functions where the block function is not (efficiently) invertible,
e.g., Gluon [BDM+12]. But we believe that these results are also a first step towards un-
derstanding the sponge construction for invertible block functions, and towards showing
the post-quantum security of SHA3.

Merger of two papers. Concurrent to the work that this chapter is based on (namely
[CGHS17]), there was another publication [Unr17] on the same subject. After the de-
cision to merge the two works, many changes were applied that improved readability
and even some results. Despite of this, the chapter is still largely based on the work
from [CGHS17], as the author of this thesis had a lot more influence on that work. In
Section 2.5 we compare the main differences between this chapter and the published,
merged version.

Organization. In Section 2.2, we give the necessary background on quantum computing,
the definition of collapsing and introduce the sponge construction. In Section 2.3, we
begin with proving several Lemmas and preconditions, that we will later use in the full
proof. In Section 2.4 we give the full proof for the collapsing property for the sponge con-
struction. Finally, we compare the results in this chapter with the results of the published
version in Section 2.5.

2.2 — Preliminaries

In this section we briefly introduce quantum computing as needed for this chapter. We
revisit terminology and notations of sponge constructions, which are used throughout this
chapter. Next we recall the definition of collapsing and two related results.
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Basic notations. We say that ε = ε(n) is negligible if, for all polynomials p(n), ε(n) <

1/p(n) for large enough n. With x $← X, we denote sampling an element x uniformly at
random from set X. With 0m we denote the all zero bitstring of length m.

Quantum computing. We assume the reader is familiar with the usual notations in quan-
tum computation, but we give a very short introduction here. A quantum system A is a
complex Hilbert space H, together with an inner product 〈·|·〉.The state of a quantum
system is given by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). A joint system of H1 and H2

is denoted by H = H1 ⊗H2, with elements |ψ〉 = |ψ1〉 |ψ2〉 for |ψ1〉 ∈ H1, |ψ2〉 ∈ H2.
A unitary transformation U over a d-dimensional Hilbert space H is a d × d matrix U
such that UU† = Id, where U† represents the conjugate transpose. In this thesis, we
assume quantum-accessible oracles, i.e., we will implement an oracle O : X → Y by a
unitary transformation O such that: O |x,y〉 = |x,y+ O(x)〉, where + : Y × Y → Y is
some group operation on Y and in this chapter this is simply the XOR operation ⊕. Any
quantum algorithm making q queries can then be written as a combined transformation
UqOq . . . U1O1U0 for unitaries Ui applied between queries and oracle queries Oi.

For a quantum register M we denote by m ← Mcomp(M) the measurement of M in
the computational basis with outcome m. For a function f, we denote by Mf(M) the
projective measurement of register M with projectors Py =

∑
m:f(m)=y |m〉〈m|. In other

words, applying y←Mf(M) causes M to collapse to a superposition of values m which
all map to the same image y under f. We will recall some notations and a definition
from [Zha12]. Given two sets X and Y, define YX as the set of functions f : X → Y. If
a function f maps X to Y × Z, we can think of f as two functions: one that maps X to Y
and one that maps X to Z. We will define quantum indistinguishability from random in
the following sense for function families F.

Definition 2.1 (Quantum-Indistinguishability). We call a family of functions F ⊆ YX

quantum-indistinguishable from random if no efficient quantum adversary A making quan-
tum queries can distinguish between a function drawn at random from F and a truly random
function. That is, for every security parameter n and quantum adversary A, there exists a
negligible function ε = ε(n) such that:

AdvQI
YX

(F;A) := | P
f

$←F

[Af(1n) = 1] − P
O

$←YX
[AO(1n) = 1]| < ε

We call AdvQI the quantum-oracle-distinguishing advantage.

The sponge construction. The concept of the cryptographic sponge construction was
introduced in [BDPV07]. A sponge is a function S[f, pad, r] : {0, 1}∗ → {0, 1}∞ that uses
a length-preserving transformation (a function or a permutation) f (also called internal
function in this chapter), a sponge-compliant padding rule pad (defined below) and a
parameter r called the bitrate. Padding is a procedure used to prepare input in a form
suitable for the sponge construction. It increases the length of the input message M so
that the length of M‖pad[r](|M|) is a multiple of r.

Definition 2.2. A padding rule is sponge-compliant if it never results in the empty string
and if it satisfies the following criterion:

∀n > 0 ∀M, M ′ ∈ {0, 1}∗ : M 6= M ′ ⇒ M‖pad[r](|M|) 6= M ′‖pad[r](|M ′|)‖0nr.
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⊕
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m3 H1 H2 H3

...

Absorb Squeeze

Figure 2.1: Sponge construction with three block input m1||m2||m3 and three block output H1||H2||H3.
The application of the padding function is not shown. We call the output of the sponge construction Z =
S[f, pad, r](m1||m2||m3, `) if it outputs the first ` bits returned from the squeeze phase.

An example of such padding rule is pad10∗, which appends a single bit 1 followed by
the minimum number of bits 0 in order to get a multiple of r. A finite length output can
be obtained by truncating the theoretically infinite output to its first ` bits.

The transformation f operates on r+ c bits, which we call the state. We call the first
r bits of the state the outer part and the last c bits the inner part. One of the security
parameters of the sponge construction is this inner part c of the state, which is hidden
from the attacker. The size of this inner part c is called the capacity. For a state s ∈
{0, 1}r+c, we denote its outer part with an overline and the inner part with a hat: s = (s, ŝ)
with s ∈ {0, 1}r and ŝ ∈ {0, 1}c.

First, the state is initialized to zero. The input message is padded using pad and cut
into r-bit blocks. Then the sponge construction proceeds in two phases. In the absorbing
phase, the first r bits of the state (the outer part) are XORed with the r-bit message blocks,
interleaved with applications of transformation f. When all message blocks are processed,
the sponge construction switches to the squeezing phase. In this phase, the outer part of
the state is iteratively returned as output blocks, again, interleaved with applications of
f. The number of iterations is determined by the requested number of output bits `. In
particular, this means for ` 6 r that no additional applications of f are needed after the
absorbing phase. For any message M ∈ {0, 1}∗, we denote the ` bit truncated output of
the sponge construction by Z = S[f, pad, r](M, `). A graphical description is shown in
Figure 2.1.

In the following we will assume oracle access to the sponge, i.e. queries of (poten-
tially a) superposition of messages |m, `〉 to the sponge construction S[f, pad, r]. It is
important to specify the cost of each query. Different queries may not always be equally
costly, since there might be both varying length input and varying length output. The
cost of applying S is the number of evaluations of the internal function f. So evaluating

S[f, pad10∗, r](M, `) costs
⌈
|M|+1
r

⌉
+
⌈
`
r

⌉
queries. This varies slightly if a different padding

rule is used.

Collapsing hash functions. At EUROCRYPT 2016 [Unr16b], Unruh introduced the no-
tion of collapsing. This is a purely quantum notion, which is defined for a function H as
follows:

Definition 2.3. [Unr16b, Definition 23] For a function H and algorithms A,B, consider
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the following games:

Game1 :(S,M,h)← A(1n), m←Mcomp(M),b← B(1n,S,M)

Game2 :(S,M,h)← A(1n), b← B(1n,S,M)

Here, S and M are quantum registers and Mcomp(M) is a measurement of M in the com-
putational basis. We call an adversary (A,B) valid if P[H(m) = h] = 1 when we run
(S,M,h)← A(1n) and measure M in the computational basis as m.

A function H is collapsing iff for any valid quantum-polynomial-time adversary (A,B),
the difference AdvcollH (A,B) := |P[b = 1 : Game1] − P[b = 1 : Game2]| is negligible. We
call AdvcollH the collapsing advantage of H.

Informally, the collapsing definition means the following. Any adversary in the no-
tion of collapsing runs in two phases, given by algorithms (A,B). A valid algorithm A

outputs a register of messages M = |φ〉 = ∑m αm |m〉 and a classical output h, such
that H(m) = h for all m in register M. It also outputs an additional quantum register
S (that may contain anything) that can potentially be used by algorithm B. Now there
are two possibilities before B receives the registers (S,M). In Game2, there is no mea-
surement on register M, so B receives M = |φ〉 =∑m αm |m〉 as in the output of A. In
Game1 however, register M is measured before B receives it, so in this case B receives
M = |m〉 with probability |αm|

2. Algorithm B is also allowed to do anything, including
the measurement of registerM. We call function H collapsing if no adversary (A,B) can
distinguish between these two games, i.e. can tell whether the measurement on register
M happened or not.

Two related results from [Unr16b], which we use are:

Theorem 2.4. [Unr16b, Theorem 38] Let Y be finite, X ⊆ {0, 1}∗ (finite or infinite) and

let q be the numbers of (quantum) queries any attacker makes. Then H $← YX is collapsing
with advantage O(

√
q3/|Y|).

Lemma 2.5. [Unr16b, Lemma 25] A collapsing function is collision resistant.

Proof sketch: A tight reduction is given in [Unr16b]. The basic idea is to use two
colliding messages (m,m ′) with H(m) = H(m ′) = h, and initialize register M with
|ψm,m′〉 = 1√

2
(|m〉 + |m ′〉). Algorithm B is able to detect a measurement of register

M with non-negligible probability, using the projective measurement |ψm,m′〉 〈ψm,m′ |.
Details are given in the original paper.

In another recent paper by Unruh [Unr16a], it is proven that the Merkle-Dåmgard con-
struction is collapsing when the compression function is. From this result and Lemma 2.5,
it follows that the Merkle-Dåmgard construction is collision resistant in the post-quantum
setting.

2.3 — The post-quantum security of sponges

In this section, we provide necessary prerequisites for the main proof that the sponge
construction is collapsing. We also show sample consequences of the theorems, before
we show the main proof in the next section.
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Collapsing internal functions. The sponge construction uses an internal function f :
{0, 1}r+c → {0, 1}r+c, which is either a random function fR or a random permutation
fπ. Since the function maps values in X = {0, 1}r+c into two spaces Y0 = {0, 1}r and
Y1 = {0, 1}c with |X| = |Y0| · |Y1|, we can think of this function as two functions f0 and f1,
mapping X to Y0 and Y1, respectively. In the following, let Pi(f(x)) be the projection of
f(x) onto Yi (this means Pi(f(x)) = fi(x)) for i ∈ {0, 1}.

Lemma 2.6. Let F ⊆ (Y0 × Y1)
X be a family of quantum-indistinguishable functions, i.e.,

for any efficient quantum adversary A and security parameter n, there exists a negligible
function ε = ε(n) with

AdvQI
(Y0×Y1)X

(F;A) := | P
f

$←F

[Af(1n) = 1] − P
O

$←(Y0×Y1)X
[AO(1n) = 1]| < ε

Let Fi
def
= {Pi(f)|f ∈ F}, i.e., the family of the projections of all elements of F onto Yi, for

i ∈ {0, 1}. Then for all efficient quantum adversaries Ai and all i ∈ {0, 1}:

AdvQI
YXi

(F;Ai) := | P
fi

$←Fi

[Afii (1n) = 1] − P
O

$←YXi
[AO
i (1

n) = 1]| < ε

Proof. Suppose there exists an adversary Ai such that AdvQI
YXi

(F;Ai) = µ > ε for arbi-

trary but fixed i ∈ {0, 1}. We will now construct an oracle machine VAi to distinguish

f
$← Fi from a random function with AdvQI

(Y0×Y1)X
(F;VAi) > ε.

The oracle machine VAi is given black box access to O, which is either randomly
drawn from F or YX, and distinguishes the two cases as follows:

1. Construct function g : X→ Yi by g(x) = Pi(O(x)).
2. Run Ai with function g, and output whatever Ai outputs.

When VAi is given access to an element of F, Ai will be given access to g ∈ Fi. When

VAi is given a random O
$← YX, Ai will be given g = Pi(O) which is randomly dis-

tributed in YXi . Hence, the advantage of VAi will be exactly µ. Consequently, we got
AdvQI

(Y0×Y1)X
(F;VAi) = µ > ε as claimed.

Let FR ⊂ (Y0 × Y1)
X denote the family of random functions and let Fπ ⊂ (Y0 × Y1)

X

denote the family of random permutations. When a random function fR is used as the
internal function, we have that AdvQI

(Y0×Y1)X
(FR;A) = 0 for any quantum adversary A,

since the output distributions for these functions are the same. This means that also for
fR0 and fR1 as defined above we have AdvQI

YXi
(FR;Ai) = 0 for any quantum adversary Ai.

In the case that the internal function is a random permutation fπ ∈ Fπ, it is shown
in [Zha15, Section 3.1] that the distinguishing advantage between a random permuta-
tion and a random function is AdvQI

(Y0×Y1)X
(Fπ;A) 6 ε with ε ∈ O(q3/|X|) for any A

making q quantum queries. Using Lemma 2.6 we also have that the parts fπ0 , fπ1 have
AdvQI

YXi
(Fπ;Ai) = ε with ε ∈ O(q3/|X|) for any Ai making q quantum queries and

i ∈ {0, 1}.
In [Unr16b], it was shown that a random oracle O : {0, 1}∗ → Y is collapsing with

advantage AdvcollO (A,B) = |P[Game1 : b = 1] − P[Game2 : b = 1]| 6 δ with δ ∈
O(
√
q3/|Y|), where the adversary (A,B) makes at most q queries. From this result, the

following lemma follows immediately:
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Lemma 2.7. Let f : X → Y0 × Y1 either be a random function or a random permutation
with |X| = |Y0| · |Y1|. Let fi : X → Yi be given by Pi(f(x)), where Pi is the projection onto
Yi, for i ∈ {0, 1}. Then fi is collapsing for i ∈ {0, 1} with advantage O(

√
q3/|Yi|) for any

adversary (A,B) making at most q queries.

Proof. In the following, let (A,B) be any adversary making at most q queries. From the
fact that random oracles are collapsing (Theorem 2.4) and Lemma 2.6, it follows straight-
forwardly that random functions fR0 , fR1 are collapsing with advantage AdvcollfRi

(A,B) =

|P[b = 1 : Game1] − P[b = 1 : Game2]| 6 δRi with δRi ∈ O(
√
q3/|Yi|) for i ∈ {0, 1}.

The random permutations fπ0 , fπ1 are indistinguishable from random functions with ad-
vantage ε ∈ O(q3/|X|), so we have collapsing advantage Advcollfπ (A,B) 6 δRi + ε =: δπi
with δπi ∈ O(

√
q3/|Yi|) as well.

Note that, as |Yi| 6 |Y|, the collapsing advantage is higher for these projections, but
that would also be the case for the success probability of finding collisions.

Collapsing step function. For the proof of Theorem 2.13 given below, we show that the
sponge construction is collapsing by using a hybrid argument. Each step in the hybrid
argument exploits the fact that the projections of the internal function on the inner and
outer state used in the sponge are collapsing. However, for the flow of the proof it is
easier to look at a different function, which we call stepf. To make this more formal: for
f(x) = (f(x), f̂(x)), we define stepf(x,y) := f(x) ⊕ (y||0c) = (f(x) ⊕ y, f̂(x)). In the
proof below, we only use the second way of writing stepf(x,y), since this underlines the
fact that we have two functions f(x) and f̂(x). The next lemma shows that stepf(x,y) is
collapsing if f̂(x) is collapsing.

Lemma 2.8. Let X = Y × Ŷ, f : X→ X be given by two functions f(x) = (f(x), f̂(x)), with
f : X → Y, and f̂ : X → Ŷ. Define stepf : X × Y → X as stepf(x,y) := f(x) ⊕ (y||0c) =
(f(x)⊕ y, f̂(x)). Then if f̂ is collapsing with advantage ε, then also stepf is collapsing with
advantage ε.

Proof. Let (A,B) be a valid quantum-polynomial-time adversary for the collapsing games
for function stepf with advantage Advcollstepf

(A,B) = µ > ε. We now construct a quantum-

polynomial-time oracle machine (VA,WB) for function f̂ that has collapsing advantage
Advcoll

f̂
(VA,WB) = µ.

Let VA be the following quantum algorithm: it runs (S∗,M∗,h∗)← A(1n) to obtain
quantum registers, such that B can distinguish between the collapsing games for stepf
with advantage µ > ε. In particular,M∗ is a quantum register consisting of two registers
M∗ = (X∗, Y∗) which contain superpositions of basis states |x,y〉 that fulfill stepf(x,y) =
h∗. Denoting h∗ = h||ĥ, VA outputs (S,M,h) with S = (S∗, Y∗,h∗),M = X∗ and h = ĥ.
In other words, algorithm VA simply rearranges the registers from A. The algorithm WB

retrieves (S,M,h) and simply reverses the rearrangement from VA: it sets M∗ to be
(X∗, Y∗) and sends (S∗,M∗) to B. WB will output whatever B outputs.

We need to show two things now: (VA,WB) is a valid adversary for the collapsing
games of f̂ and Advcoll

f̂
(VA,WB) = µ. Validity of (VA,WB) follows from validity of
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(A,B), because register M (which contains X∗) must yield messages x for which f̂(x) =
ĥ = h. Otherwise, (A,B) was invalid.

For the collapsing advantage of (VA,WB), we note that in Game1, registerM will be
measured and thereby collapses to a single x such that f̂(x) = ĥ. However, the crucial
point is that also y = f(x) ⊕ h collapses, since by measuring x, the part f(x) cannot be
in a superposition anymore and h was already classical. In Game2, no such measure-
ment occurs on register M, so x is left untouched and hence (possibly) in superposition.
Therefore, the collapsing advantage of (VA,WB) for f̂ is equal to the one of (A,B) for
stepf.

Note that the above Lemma does not hold for f(x) instead of f̂(x). To be a valid
adversary, VA has to construct a register M and a register c, where register M contains
messages x such that f(x) = h with probability 1. However, from adversary A it receives
messages |x,y〉 from register M∗ = (X∗, Y∗), such that f(x) ⊕ y = h. In particular,
this could mean that |x,y〉 is in a superposition satisfying f(x) = h ⊕ y. If |x,y〉 is in
a superposition, then possibly f(x) is also in a superposition of states. But VA should
give a fixed outcome h (with probability 1) for f(x). The only possible way is to measure
register Y∗, but this measurement (possibly) violates any collapsing advantage of (A,B)
for stepf. Hence, it is not possible to construct a valid adversary (VA,WB) for f(x), that
communicates with (A,B).

Collapsing sponges. Recall that a sponge is denoted by S[f, pad, r](M, `) with capacity
c, where f : {0, 1}r+c → {0, 1}r+c is the internal permutation (or function), pad is the
sponge-compliant padding rule, r is the bitrate, M ∈ {0, 1}∗ is the message and ` is the
fixed output length. For simplicity we take ` = r in Theorem 2.13. We handle cases ` < r
and ` > r separately, afterwards. This simplified sponge construction will be denoted by
Sf and is defined as follows:

Definition 2.9. We define the internal iteration function of the sponge as If : ({0, 1}r)∗ →
({0, 1}r+c), with message length divisible by r, If(λ) := 0r+c for the empty word λ, and
If(m||m ′) := f(If(m) ⊕ (m ′||0c)), for m ′ ∈ {0, 1}r. The simplified sponge function is
then defined by Sf : ({0, 1}r)∗ → ({0, 1}r), with Sf(m) = If(m), where If(m) denotes the
outer part of If(m). We assume m = pad(M) is the output of a sponge-compliant padding
function.

We omit the term "simplified" below. Our notation and proof technique follows Un-
ruh’s proof [Unr16a, Section 4] for the collapsing property of the Merkle-Damgård (MD)
construction. However, the proof for the sponge construction turns out to be more com-
plicated. The main reason being the necessity to consider the two parts of f: both f(x)
and f̂(x) need to be collapsing. There are two reasons for this. First, the output does
not allow to compute the full final state of the function: only the outer part of the final
state is given as output of the sponge. The second reason is that in contrast to MD, in a
sponge, message blocks are not used as direct input to the internal function f. Instead,
these message blocks are XORed with the outer part, which makes it more difficult to
analyze. This even requires a second property of f, which is naturally fulfilled by random
functions (or permutations):
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Definition 2.10. A family of functions F = {f : Xn → {0, 1}n} is zero-preimage resistant if
for any efficient quantum adversary A there exists a negligible ε(n) such that

SuccQzpreA (F) := P
[
f

$← F, x← Af(1n) : f(x) = 0
]
< ε(n).

In the definition, we are giving the adversary quantum-oracle access to f as we are
concerned with zero-preimage resistance of perfectly random functions. In a definition
for efficient function families (i.e., with polynomial-size descriptions), A would just be
given a description of f.

Lemma 2.11. Given a security parameter n ∈ N, r, c ∈ poly(n), the success probability
of any q-query quantum adversary against the zero-preimage resistance of the family of
random functions F = {f : {0, 1}r+c → {0, 1}c} is upper bounded by

SuccQzpreA (F) 6 O(q2/2c) .

We omit a detailed proof of Lemma 2.11 as it can be obtained by following the proof
for quantum preimage resistance of random functions in [HRS16].

We need this property later in the proof, because using a f̂-preimage of zero, one can
easily construct a collision for the sponge: given an input x ∈ {0, 1}r such that ̂f(x||0c) =
0c, a collision of the sponge is given by two messages m1 = (x||y⊕ x ′) and m2 = x ′ for
any random x ′ ∈ {0, 1}r and y = f(x). Note that the above construction does not give a
collision for the internal function f, but it does give a collision for Sf.

We will also make use of the following technical lemma:

Lemma 2.12. Let ρ be a quantum state (density operator of trace 1). Let M be a projective
measurement consisting of projectors P1, . . . ,Pn. Assume that applyingM to ρ gives outcome
1 with probability > 1 − ε.

Let ρ ′ be the result of applying M to ρ (and discarding the result).
Then the trace distance between ρ and ρ ′ is 6

√
ε. (I.e., no algorithm can distinguish

those states better than with probability
√
ε.)

Proof. Without loss of generality, we can assume that ρ is a pure state ρ = |Ψ〉 〈Ψ|. (The
general case of the lemma is then obtained by considering a purification |Ψ〉 〈Ψ| of the
mixed state ρ.)

Then ρ ′ =
∑
i Pi |Ψ〉 〈Ψ|Pi. Let F denote the fidelity and let TD denote the trace

distance. By [NC10, (9.60)], we have F(|Ψ〉 〈Ψ| , ρ ′) =
√
〈Ψ| ρ ′ |Ψ〉. Thus,

F(ρ, ρ ′)2 = 〈Ψ| ρ ′ |Ψ〉 =
∑
i

〈Ψ|Pi |Ψ〉 〈Ψ|Pi |Ψ〉 =
∑
i

| 〈Ψ|Pi |Ψ〉 |2 > | 〈Ψ|P1 |Ψ〉 |2

> 1 − ε.

Thus
TD(ρ, ρ ′) 6∗

√
1 − F(ρ, ρ ′)2 6

√
1 − (1 − ε) =

√
ε.

Here (∗) uses [NC10, (9.101)].
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In the following we only assume padded messages, i.e. the padded message space
P ⊂ ({0, 1}r)∗ is consisting of r-bit block messages. As the padded message space P is the
output of a sponge-compliant padding, it cannot contain the empty word. For a multi-
block message m ∈ ({0, 1}r)∗, let from now on |m| denote the number of r-bit blocks in
m (so the bit-length of m is r|m|), overloading notation.

Theorem 2.13. Let P ⊂ ({0, 1}r)∗ be the set of padded messages for some sponge-compliant
padding with padded messages m ∈ P such that T > |m| > 2 for some upper bound T , that
is defined as the maximum length of the messages used by the adversary. Let the internal
function of the sponge f : {0, 1}r+c → {0, 1}r+c be f(x) = (f(x), f̂(x)) where both outer
part f(x) : {0, 1}r+c → {0, 1}r and inner part f̂(x) : {0, 1}r+c → {0, 1}c are collapsing with
advantages ε, ε̂ respectively, and let furthermore f̂ be zero-preimage resistant with advantage
εz and let the output length of Sf be fixed to ` = r bits.Then Sf is collapsing on P with
advantage

AdvcollSf
= ε+ (T − 1)(

√
εz + ε̂).

Proof sketch: We have to show that if an adversary (A,B) outputs classical h = Sf(m),
we can measure register M without the adversary noticing. We show this developing
hybrids that successively measure more and more of the message registerM. Afterwards
we upper bound the advantage of (A,B) in the collapsing game by upper bounding the
success probability of (A,B) in distinguishing any two consecutive hybrids.

The output of the sponge is simply the outer part of If(m). Hence, we can upper
bound the advantage of detecting the measurement of the last state of the sponge using
the collapsing property of f. For all the remaining hybrids, we can upper bound the
distinguishing advantage using the collapsing property of stepf and the zero-preimage
resistance of f̂. The intuition is that a successful distinguisher either uses a superposition
of messages where the i-th blocks of some of the messages are different (and this would
allow to break the collapsing property of stepf) or of some messages of length i and some
other messages that are longer, but which agree on the first i blocks (and this would allow
to extract a zero-preimage of f̂).

We delay the full proof to Section 2.4 and first give implications of the proof. In
the following we use Theorem 2.13 to derive proofs for the desired properties of hash
functions. But first we still have to show that S[f, pad, r](M, `) is also collapsing for r 6= `.

Theorem 2.14. Let S[f, pad, r](M, `) be a sponge construction with capacity c and internal
function f having the desired properties as described in Theorem 2.13. Then, the collapsing
advantage of any valid, efficient quantum adversary (A,B) against S, making no more than
q queries, is upper bounded by AdvcollS (A,B) ∈ O(

√
q3 ·max(2−`, 2−r, 2−c)).

Proof. In the following, let (A,B) be any adversary making at most q queries. We have
handled the case where ` = r in Theorem 2.13. By plugging values ε ∈ O(

√
q3/2r)

and ε̂ ∈ O(
√
q3/2c) for the collapsing of f, f̂ respectively (using Lemma 2.7), and εz ∈

O(q2/2c) (using Lemma 2.11) into the bound of Theorem 2.13, we derive at a collapsing
advantage of O(

√
q3/2r +

√
q3/2c +

√
q2/2c) = O(

√
q3/2r +

√
q3/2c) for a sponge

construction S[f, pad, r](M, r) with capacity c. We denote Z = S[f, pad, r](M, `) to be the
output of the sponge construction with ` > r. Since the ` > r output bits are truncated
after the squeezing phase, we have that the first r output bits of Z are equal to Sf(m)
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where m = pad(M) (see Figure 2.1). Thus, we can simply ignore the remaining ` − r
output bits: recall that in the collapsing notion the output register h is classical, hence
when h is shorter the collapsing advantage should grow. Using the same arguments as in
Theorem 2.13 we obtain the bound O(

√
q3/2r +

√
q3/2c).

When ` < r, we only have a difference with the proof of Theorem 2.13 in the first
step of the hybrid argument. Defining f` : {0, 1}r+c → {0, 1}` by f`(x) = P`(f(x)), where
P` is the projection onto the first ` bits, we can apply Lemma 2.7 to get a collapsing
advantage of ε` := Advcoll

f`
(A,B) = O(

√
q3/2`) for f`. The remaining part of the

proof of Theorem 2.13 remains the same, but in the final result changing ε to ε`. This
means the collapsing advantage in this case will be upper-bounded by AdvcollS (A,B) ∈
O(
√
q3/2` +

√
q3/2c).

Lastly, note that in Lemma 4 we required |m| > 2, but we drop this restriction here.
The collapsing case for |m| = 1 is trivial, as it follows from the collapsing property of f
and Sf(m) = f(m||0) where Sf is defined as in Theorem 2.13.

Putting things together we get the result in the corollary.

We are now ready to prove the following corollaries:

Corollary 2.15. Let Sponge[f, pad, r](M, `) be a sponge construction with capacity c and
internal function f having the desired properties as described in Theorem 2.13. Any quantum
collision finder A making at most q queries, has a success probability of at most
O(
√
q3 ·max(2−`, 2−r, 2−c)).

Proof. The proof follows immediately from Theorem 2.14 and the tight reduction of col-
lision resistance to collapsing(Lemma 2.5).

Given Corollary 2.15, we immediately obtain the following corollary on quantum
second-preimage resistance.

Corollary 2.16. Let S[f, pad, r](M, `) be a sponge construction with capacity c and inter-
nal function f having the desired properties as described in Theorem 2.13. Any quantum
second-preimage finder A making at most q queries, has a success probability of at most
O(
√
q3 ·max(2−`, 2−r, 2−c)).

The corollary follows from Corollary 2.15 as any second-preimage finder A can be
used as collision finder. The reduction just runs A on a random domain element x and
returns x together with A’s output.

With slightly more effort, we also obtain the following corollary on quantum preimage
resistance.

Corollary 2.17. Let S[f, pad, r](M, `) be a sponge construction with capacity c and internal
function f having the desired properties as described in Theorem 2.13. If |m| > 2 for all
m ∈ M, then any quantum preimage finder A making at most q queries, has a success
probability of at most O(

√
q3 ·max(2−`, 2−r, 2−c)).

The corollary follows from Corollary 2.15 as any preimage finder A can be used as
collision finder. The reduction takes a random domain element x, runs A on Sf(x) and
returns x together with A’s output. A sponge function compresses inputs of length up to
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T · r bits to an intermediate state of r+ c bits. For all practical parameters, T · r� (r+ c)
and a sponge is classically indistinguishable from a random function. Hence, every image
has an exponential number of preimages. Therefore, the probability that A returns x is
negligible.

On invertible permutations Note that Theorem 2.13 tells us that the sponge construction
is collapsing if the internal function f is a random function. Furthermore, recall from the
beginning of this section that a quantum computer, making at most q queries, successfully
distinguishes a random function from a random permutation with probability O(q3/|X|),
where in the case for the internal function we have |X| = 2r+c. In other words, one could
hope to use Theorem 2.13 with the internal block function being a random permutation,
as the random function versus random permutation distinguishing advantage is lower
than the collapsing advantage. However, this only works if the internal function f is
a random permutation that is not efficiently invertible. If f is a permutation that we can
efficiently invert, the theorem does not tell us anything. More specifically, if f is a random
permutation, and the adversary has access to f, f−1, then Theorem 2.13 does not apply.

In fact, if f is efficiently invertible, we cannot apply our main result Theorem 2.13 at
all: In that case f̂(x) is not zero-preimage-resistant (to find a zero-preimage, we simply
invoke f−1(y||0c) for an arbitrary y ∈ {0, 1}r).

And f̂(x) is also not collapsing: We get a collision of f̂(x) by computing x := f−1(y||z)

and x ′ := f−1(y ′||z) for arbitrary y,y ′, z with y 6= y ′. So f̂(x) is not collision-resistant,
hence not collapsing so neither is the step function. Similarly, f(x) is not collapsing, either.

So, none of the preconditions of Theorem 2.13 are satisfied, and we cannot derive
that the sponge construction is collapsing (for efficiently invertible f).

That does not mean that the sponge construction is not collapsing in that setting:
at least it is not obvious how one would use f−1 to break the collapsing property. For
example, if we try to find a two-block collision (m1||m2,m ′1||m

′
2) for S, then we need

that f(m1||0c) ⊕ m2||0c = f(m ′1||0
c) ⊕ m ′2||0c. It remains unclear how can we solve

this equation by using f−1. For other kinds of collisions that we could think of, we fail
similarly.

2.4 — Sponges are collapsing

Here we will formally prove Theorem 2.13, using a hybrid argument.

Theorem 2.13. Let P ⊂ ({0, 1}r)∗ be the set of padded messages for some sponge-compliant
padding with padded messages m ∈ P such that T > |m| > 2 for some upper bound T , that
is defined as the maximum length of the messages used by the adversary. Let the internal
function of the sponge f : {0, 1}r+c → {0, 1}r+c be f(x) = (f(x), f̂(x)) where both outer
part f(x) : {0, 1}r+c → {0, 1}r and inner part f̂(x) : {0, 1}r+c → {0, 1}c are collapsing with
advantages ε, ε̂ respectively, and let furthermore f̂ be zero-preimage resistant with advantage
εz and let the output length of Sf be fixed to ` = r bits.Then Sf is collapsing on P with
advantage

AdvcollSf
= ε+ (T − 1)(

√
εz + ε̂).

Proof. Assume a quantum adversary (A,B) that is valid on P for the sponge function Sf.
Let Game1 and Game2 be the collapsing games from Definition 2.3 for adversary (A,B).
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m<−3 m≥−3

Figure 2.2: Example of 10-block message m, showing the meaning of m<−3 and m>−3

Let

ε := AdvcollSf
(A,B) =

∣∣P[b = 1 : Game1] − P[b = 1 : Game2]
∣∣.

In the following we upper bound ε by bounding the success probability in several hybrid
games. Each hybrid game represents a partial measurement of the message register. We
find the bound for ε by bounding the success probability for distinguishing two consecu-
tive hybrid games.

Recall that |m| denotes the number of r-bit blocks in m. We will index the r-bit blocks
by mi with 1 6 i 6 |m|. Furthermore, let m−i denote the i-th block from the end (so
m−1 is the last message block). Let m>−i denote all the blocks in m starting from m−i

(so m>−i consists of the last i blocks of m). Let m<−i denote the blocks before m−i and
let m>−i denote the blocks after m−i. This means m = m<−i||m>−i for i 6 |m|. See
Figure 2.2 for an example, showing the meaning of these terms.

Let T be a (polynomial) upper bound on the number of blocks for |m| (so |m| 6 T).
For functions partiali and inputi defined below, we need access to the message length |m|

to determine the output. Notice that the functions are purely classical, hence we can use
the length of the messages that are given as input to the functions and behave accord-
ingly to this length. A quantum computer running these functions on qubits, possibly in
superposition, will not change this functionality. Note that it can have a superposition of
messages with different lengths.

We first define the partiali function below: this function basically takes a snapshot of
the processing of m in the sponge. For i = −1, all message blocks have been processed
and the output of partiali (the first entry) is the output of Sf (and recall this is fixed to
` = r bits). For 0 6 i < |m|, the first entry of partiali is the exact input to the (m− i)’th
application of the internal function f. The second entry of partiali is the message block
that will be XORed with the output of the (m− i)’th application of the internal function f.
Hence, this is nothing (i.e. ⊥) when i 6 0 or i > |m| and is the next message block to be
processed by If otherwise, i.e. m−i for 0 < i < |m|. The third entry of partiali contains
all message blocks to be processed by the sponge, except for the next block that will be
XORed with the output of the (m − i)’th application of the internal function f (as this is
the second entry of partiali). Hence, this will be ⊥ for i 6 1 and m>−i for i > |m|. Note
that partiali(m) always contains enough information to compute If(m) and therefore also
Sf(m). Recall that If(λ) = 0r+c for the empty world λ, hence If(m−|m|) = If(λ) = 0r+c.

To move from partial0 to partial−1 requires to apply f to the first element of partial0,
and the output will be the first element of partial−1 which is the output of the sponge
Sf when the output length is fixed to ` = r bits. To move from partiali+1 to partiali for
0 6 i < |m| requires applying stepf to the first element of partiali+1 and rearranging the
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second and last elements of partiali+1 into the correct elements for partiali (i.e. partiali+1
has all necessary information to construct partiali).

Hence, for a message m and −1 6 i 6 T , we define:

partiali(m) :=


(Sf(m),⊥,⊥) (if i = −1)

(If(m<−1)⊕ (m−1||0c),⊥,⊥) (if i = 0)

(If(m<−(i+1))⊕ (m−(i+1)||0c), m−i, m>−i) (if 0 < i < |m|)

(⊥,⊥, m) (if |m| 6 i)

We need one more function inputi(m), which is basically the first two elements of
partiali, and thus contains the necessary information to compute the first element in
partiali−1 for 0 6 i 6 |m|:

inputi(m) :=


(If(m<−1)⊕ (m−1||0c),⊥) (if i = 0)

(If(m<−(i+1))⊕ (m−(i+1)||0c), m−i) (if 0 < i < |m|)

(⊥,⊥) (if |m| 6 i)

The idea is that inputi(m) will be used as input to collapsing functions (in particular f
and stepf, where stepf as defined in Lemma 2.8), which will then allow us to (basically)
map the elements in partiali(m) to the elements in partiali+1(m). Note also that the first
entry of both partiali and inputi is not the state after an application of internal function
f, but rather the state XORed with message block mi. Hence, this is the state before an
application of f (or rather the input to f or the first entry of the input to stepf as we will
see later).

We will now make this formal by deriving the following facts for inputi and partiali
from their definition:

Fact 1. input|m|−1(m) = (m1||0c, m2)

From If(m<−|m|) = If(λ) = 0c, the fact follows straightforward. What this Fact will
mean to our proof, is that in the (|m| − 1)’th hybrid argument (defined below), we will
measure the last two message blocks at the same time.

We denote the output entries of partiali by partiali(m) = (xi,yi, zi), where xi ∈
{0, 1}r+c, yi ∈ {0, 1}r and zi ⊆ m is a set of message blocks. We explicitly write ⊥ for
the entry if applicable by definition of partiali, inputi (and also use ⊥ when zi = ∅).

Fact 2. Let partial−1(m) = (x−1,⊥,⊥) and partial0(m) = (x0,⊥,⊥). Then
f(input0(m)) = f(x0) = Sf(m) = x−1

Note that we slightly abused notation here, as we ignored the second element ⊥
of input0(m), i.e., f (and below also f) only acts on the first element of input0(m). By
definition of partial−1, m must be a message such that the output of the sponge is Sf(m) =
x−1. Also, input0(m) ∈ {0, 1}r+c must be such that f(input0(m)) = If(m). But this
means that if we would apply f to input0(m), we get the sponge outcome: f(input0(m)) =
x−1 = Sf(m). Lastly, as also mentioned above, we defined input0(m) in such a way that
input0(m) = x0.

Using stepf(x,y) := f(x) ⊕ (y||0c) = (f(x) ⊕ y, f̂(x)) as defined in Lemma 2.8, we
now have the following facts for partiali.
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Fact 3. For 0 6 i < |m|− 1, let partiali(m) = (xi,yi, zi). Then
stepf(inputi+1(m)) = stepf(xi+1,yi+1) = xi

Since 1 6 i+ 1 < |m|, we have

stepf(inputi+1(m)) = stepf(If(m<−(i+2))⊕ (m−(i+2)||0
c), m−(i+1))

= stepf(xi+1,yi+1)

= f
(
If(m<−(i+2))⊕ (m−(i+2)||0

c)
)
⊕ (m−(i+1)||0

c)

= If(m<−(i+1))⊕ (m−(i+1)||0
c) = xi

Fact 4. From (partiali(m), inputi+1(m)), one can compute partiali+1(m) and vice versa.

Note that element zi is part of the elements in zi+1 and element yi+1 combined
with the elements in zi equals the elements in zi+1. Hence, the missing element for
partiali is contained in inputi+1(m). This means that applying Mpartiali and Minputi+1

to
message register M has the same effect as applying Mpartiali+1

: they both measure the
same elements.

So basically, the function partial interpolates between knowledge of only Sf(m) (case
i = −1), and full knowledge of m (case i = T − 1).

Recall that (A,B) is any adversary for the collapsing games of Sf, i.e.

AdvcollSf
(A,B) =

∣∣P[b = 1 : Game1] − P[b = 1 : Game2]
∣∣.

We define the following hybrid games, for i = −1, . . . , T − 1:

Hybi :(S,M,h)← A(1n) (2.1)

(xi,yi, zi)←Mpartiali(M) (2.2)

b← B(S,M) (2.3)

Here, Mpartiali is Mf with f(m) = partiali(m), as defined in Section 2.2. We make
explicit that the hybrid games are defined for adversary (A,B), by denoting this with
HybA,B

i . By construction of function partiali, we have

P[b = 1 : HybA,B
−1 ] = P[b = 1 : Game2]

since in HybA,B
−1 , the measurement (x−1,⊥,⊥) ← Mpartial−1

(M) does not have any in-
fluence: in this case, x−1 has a determined outcome, namely x−1 = Sf(m) = h for all
m ∈M.

We also have
P[b = 1 : HybA,B

T−1] = P[b = 1 : Game1]

since (m1||0c, m2, m>2) ← MpartialT−1
(M) fully measures register M in the computa-

tional basis5, which would also be the case in Game1. So this means

ε =
∣∣P[b = 1 : HybA,B

T−1] − P[b = 1 : HybA,B
−1 ]

∣∣ (2.4)

5This is the measurement outcome for messages of length T , for shorter messages the whole measured
message is in the last register or last two registers.
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A standard hybrid argument shows that we can now bound ε by bounding the success
probability of (A,B) in distinguishing any two consecutive hybrids. Towards bound-
ing these distinguishing advantages, we now define oracle machines (VA

i ,WB) for i =
−1, . . . , T − 1 that use (A,B)’s distinguishing advantage to either win some collapsing
game or find a preimage of zero. Let the output of A be given by (SA,MA, cA) (i.e. these
are valid quantum registers for the collapsing game for Sf) and let the output bit of B be
bB.

Let Uinputi refer to the unitary transformation |x〉 |y〉 → |x〉 |y⊕ inputi(x)〉. We define
the oracle machines (VA

i ,WB) for i = −1, . . . , T −1 in Algorithm 2.1 and Algorithm 2.2.

Algorithm 2.1 Algorithm VA
i with −1 6 i 6 T − 1

Input: Security parameter n, index −1 6 i 6 T − 1.
Output: Valid quantum registers (S,M,h) or zero-preimage xzpre.

1: (SA,MA,hA)← A(1n)
2: (xi,yi, zi)←Mpartiali(MA)
3: If xi = ⊥, abort
4: If x̂i = 0c:
5: (xi+1,yi+1)←Minputi+1

(MA)
6: If xi+1 = ⊥, abort
7: Else output xzpre := xi+1

8: Initialize M with |0r+c〉|0r〉
9: Apply Uinputi+1

to MA,M.
10: Set h := xi
11: Let S = {SA,MA,h = xi, i}
12: Return (S,M,h)

Algorithm 2.2 Algorithm WB

Input: Security parameter n, quantum registers (S,M)
Output: Bit b.

1: Unpack S, giving SA,MA,h = xi, i
2: Apply Uinputi+1

to MA,M
3: Run bB ← B(SA,MA)
4: Return bB.

Notice that adversary (VA
i ,WB), conditioned on x̂i 6= 0c and xi 6=⊥, outputs quan-

tum registers (S,M,h). Register S contains among other SA (which is possibly needed
by B) plus some additional helper-information for WB. Message register M is either

measured (as in GameV
A
i ,WB

1 ) or not (as in GameV
A
i ,WB

2 ). Finally, register h is a fixed
classical output value of some function. The claims below contain proofs for the validity
of the quantum registers (S,M,h).

We now have the following claims for adversary (VA
i ,WB). We begin with showing

that the advantage of (A,B) in distinguishing Hyb−1 from Hyb0 is bounded by the col-
lapsing advantage of any efficient quantum adversary against f̄. This is done in the first
four claims using the properties of (VA

−1,WB).
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Claim 1. (VA
−1,WB) is a valid adversary for f if (A,B) is a valid adversary for Sf.

We show this claim: after the measurement (x−1,⊥,⊥) ← Mpartial−1
(MA), we have

that MA contains a superposition of messages |m〉 with partial−1(m) = (x−1,⊥,⊥).
So by Fact 2, MA contains a superposition of messages |m〉 such that f(input0(m)) =
x−1 = hA = Sf(m) as A is valid adversary for Sf. Now algorithm VA

−1 initializesM with
|0r+c〉|0r〉 and applies Uinput0

to MA,M (this means ignoring the second entry of input0
which is ⊥ here). Thus after that, M is in a superposition of messages |m〉 such that
f(m) = x−1 = hA =: h. Concluding, (VA

−1,WB) is a valid adversary for f with output
registers (S,M,h).

Let GameV
A
−1,WB

1 denote Game1 (i.e. with measurement) from Definition 2.3, but

with adversary (VA
−1,WB) and function f, analogous for GameV

A
−1,WB

2 (i.e. without mea-
surement).

Claim 2. P[b = 1 : GameV
A
−1,WB

2 ] = P[b = 1 : HybA,B
−1 ].

We show this claim: in GameV
A
i ,WB

2 no measurement occurs between the invocation
of Uinput0

by VA
−1 and the invocation of Uinput0

by WB.Thus, these two invocations can-
cel each other out. So only the invocations of A,Mpartial−1

(MA) and B remain, where
Mpartial−1

(MA) has no effect as the outcome is (hA,⊥,⊥). This is exactly HybA,B
−1 .

Claim 3. P[b = 1 : GameV
A
−1,WB

1 ] = P[b = 1 : HybA,B
0 ].

In GameV
A
−1,WB

1 , M is initialized with |0r+c〉|0r〉. Uinput0
is applied to MA,M. M is

measured in the computational basis (with outcome m). Uinput0
is applied to MA,M.

Then M is discarded. This is equivalent to executing m ← Minput0
(MA). Thus, in

GameV
A
−1,WB

1 , both (x−1,y−1, z−1) ← Mpartial−1
(MA) and m ← Minput0

(MA) were ex-
ecuted. By Fact 4, this is equivalent to executing (x0,y0, z0) ← Mpartial0(MA). This is
exactly HybA,B

0 .
From Claim 2 and Claim 3 and by assumption of this Lemma, we get:

Claim 4.
∣∣P[b = 1 : HybA,B

0 ] − P[b = 1 : HybA,B
−1 ]

∣∣ = Advcoll
f

(VA
−1,WB) 6 ε, where ε is

the collapsing advantage of f.

For the remaining hybrids, we will bound the success probability by using the collaps-
ingness of the step function and the zero-preimage resistance of f̂. Let

µi :=
∣∣P[b = 1 : HybA,B

i+1 ] − P[b = 1 : HybA,B
i ]

∣∣
for i > 0 be the advantage of adversary (A,B) in distinguishing games Hybi and Hybi+1.
Next, we will upper bound this advantage for 0 6 i < T . This is done analyzing the suc-
cess probability of (VA

i ,WB) for 0 6 i < T . Note that whenever the case xi = ⊥ in
line 3 of VA

i occurs, the two hybrids HybA,B
i and HybA,B

i+1 are perfectly indistinguishable
as applying Mpartiali+1

(MA) has no effect at all. Hence, these cases cannot contribute to
(A,B)’s success probability and we can abort. Therefore, the distinguishing advantage
µi must come from cases where xi 6= ⊥. We can split these cases into two depending on
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the value of x̂i. In the following, we denote by µ ′i the advantage of (A,B) in distinguish-
ing Hybi and Hybi+1 conditioned on x̂i = 0c and by µ ′′i the distinguishing advantage
conditioned on x̂i 6= 0c. These two advantages are related by the following claim.

Claim 5. There exists a pi ∈ [0, 1] such that

µi = piµ
′
i + (1 − pi)µ

′′
i .

As the conditioning is on a binary event such a pi must exist.
Now, we first develop a bound on µ ′′i in the next four claims.

Claim 6. (VA
i ,WB) is a valid adversary for function stepf for 0 6 i 6 T − 1, conditioned

on x̂i 6= 0c.

After measurement (xi,yi, zi) ← Mpartiali(MA), we have that MA contains a su-
perposition of messages |m〉 with partiali(m) = (xi,yi, zi). Per assumption we got
x̂i 6= 0c. So by Fact 3, MA contains a superposition of messages |m〉 with the property
stepf(inputi+1(m)) = xi =: c. NowVA

i initializesMwith |0r+c〉|0r〉 and appliesUinputi+1

to MA,M. Thus after that, M is in a superposition of |x,y〉 such that stepf(x,y) = h.
This means (VA

i ,WB) is a valid adversary for stepf.

For 0 6 i 6 T − 1, let GameV
A
i ,WB

1 denote Game1 (i.e. with measurement) of
Definition 2.3, but with adversary (VA

i ,WB) and function stepf. Analogous we define

GameV
A
i ,WB

2 as the game with measurement.

Claim 7. P[b = 1 : GameV
A
i ,WB

2 ] = P[b = 1 : HybA,B
i ], conditioned on x̂i 6= 0c.

In GameV
A
i ,WB

2 , no measurement occurs between the two invocations of Uinputi+1
by

VA
i and WB, so these two invocations cancel out. Thus only the invocations of A,Mpartiali

and B remain. This is exactly HybA,B
i .

Claim 8. P[GameV
A
i ,WB

1 ] = P[b = 1 : HybA,B
i+1 ], conditioned on x̂i 6= 0c.

Note that in GameV
A
i ,WB

1 , after the measurement Mpartiali , on the registersMA,Mwe
have the following sequence of operations. As x̂i 6= 0c per assumption, M is initialized
with |0r+c〉|0r〉. Uinputi+1

is applied toMA,M. M is measured in the computational basis
(with outcome m). Uinputi+1

is applied to MA,M. M is discarded. This is equivalent to
executing m←Minputi+1

(MA).
So Mpartiali(MA) and Minputi+1

(MA) were executed. By Fact 4, this is the same as

executing Mpartiali+1
(MA). This means GameV

A
i ,WB

1 is equivalent to HybA,B
i+1 , which is

the claim.
From Claims 6, 7, and 8, Lemma 2.8 and the assumptions of this Lemma, we get:

Claim 9. µ ′′i 6 Advcollstepf
(VA
i ,WB) 6 ε̂, where ε̂ is the collapsing advantage of f̂.

Before we can put things together, we still have to upper bound µ ′i. This is done in
the next claim. To upper bound µ ′i we have to analyze the case where x̂i = 0c. From
the definition of inputi+1 we know that applying Uinputi+1

to MA, |0r+c〉|0r〉 leads to a
superposition of messages in the second register of the following form: Every message in
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the superposition is either ⊥ (if the message only consisted of i blocks) or some mj such
that f̂(mj) = 0c, i.e., a preimage of zero.

Note that there can only be at most a single message inMA in the case that xi+1 =⊥:
the adversary already applied Mpartiali(MA) and thereby measured the whole message
ms which consisted of i blocks (i.e. the fact that x̂i = 0c stems from the initial internal
state of 0c). Hence, HybA,B

i and HybA,B
i+1 are perfectly indistinguishable as applying

Mpartiali+1
(MA) has no effect at all.

It remains to show that executing Minputi+1
(MA) outputs ⊥ and not one of the mj

with f̂(mj) = 0c. This is the part where we need the zero-preimage resistance of f̂.

Claim 10. µ ′i 6
√
εz.

Conditioned on x̂i = 0, we can see the success probability µ ′i of the adversary (A,B)

in distinguishing HybA,B
i from HybA,B

i+1 as the quantum state-discrimination problem
between the two states ρ0 and ρ1, where ρ0 is the superposition of messages |m〉 in
MA after measuring Mpartiali(MA) and ρ1 is the superposition in MA after measuring
Mpartiali+1

(MA). But note that by Fact 4, the state ρ1 is exactly the state after measuring
Mpartiali(MA) and Minputi+1

(MA) conditioned on x̂i = 0, i.e. the operations of Algorithm

VA
i . The probability that VA

i outputs a zero-preimage of f̂ is bounded by εz by assump-
tion. Hence, the output of Algorithm VA

i , conditioned on x̂i = 0c, will be “1”(i.e. abort)
with probability P[(⊥,⊥)←Minputi+1

(MA)] > 1−εz. By Lemma 2.12, the trace distance
between ρ0 and ρ1 is therefore bounded by

√
εz, hence the distinguishing advantage in

the two games can differ at most the trace distance between ρ0 and ρ1:

µ ′i 6
√
εz

Putting Claims 9 and 10 together with Claim 5 we obtain

Claim 11. There exists a pi ∈ [0, 1] such that

µi 6 pi
√
εz + (1 − pi)ε̂ 6

√
εz + ε̂.

Thus, using Claims 4 and 11, we get:

ε
(2.4)
=
∣∣∣P[b = 1 : HybA,B

−1 ] − P[b = 1 : HybA,B
T−1]

∣∣∣
=

∣∣∣∣∣
T−2∑
i=−1

P[b = 1 : HybA,B
i ] −

T−2∑
i=−1

P[b = 1 : HybA,B
i+1 ]

∣∣∣∣∣
6
∣∣∣P[b = 1 : HybA,B

−1 ] − P[b = 1 : HybA,B
0 ]

∣∣∣+ T−2∑
i=0

∣∣∣P[b = 1 : HybA,B
i ] − P[b = 1 : HybA,B

i+1 ]
∣∣∣

6 ε+ (T − 1)(
√
εz + ε̂)

This is exactly the claimed bound and thereby concludes the proof.
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2.5 — Comparison with published version

Concurrent to the work that this chapter is based on [CGHS17], there was another
publication [Unr17] on the same subject. After the decision to merge the two works, many
changes were applied that improved readability and even some results. Despite of this,
the chapter is still largely based on the work from the unpublished version [CGHS17],
as the author of this thesis had a lot more influence on that work. The main differences
between this chapter (in the next comparison referred to as SP1) and the published ver-
sion [CGH+18] (referred to as SP2) are:

• Improved readability and simplified proof. The published version SP2 has been
greatly improved on readability. Theorem 2.13 in SP1 is quite technical, and in
SP2 a better idea of the proof is sketched. For example, in SP1, we directly prove
the collapsing property of the sponge construction S for the absorb and squeeze
phase. However, one can view the sponge construction as the composition of the
padding function pad, the absorb function SAB and the squeeze function SSQ, i.e.
S = SSQ◦SAB◦pad. In SP2, this breakdown is used by showing that all components
are collapsing, i.e. showing the collapsing property for the pad, SAB and SSQ.
This fact and earlier results [Unr16b] prove that the composition of these three
functions, i.e. the full sponge function, is collapsing. A second improvement in SP2
is the removal of functions such as step, partial and input by factoring the problem
differently: for each game, it is simply stated which register is measured and at what
cost. Instead of linking the proof together using the step function, only the internal
state registers, i.e. ŝi in each step i, are measured. Using the collapsingness of f̂,
this implies that all internal registers si can be measured with negligible success
probability for the adversary to notice. When all internal registers s are measured,
a simple lemma shows that this implies that all message registers m are collapsed
to basis states, completing the proof.

• Improved results for collapsing bound. In SP2, the main results are slightly better.
This is mainly due to the fact that in SP2, there is just one measurement that mea-
sures whether there are preimages of zero in the message register, i.e. messages
where the zero-preimage resistance of f̂ breaks. This removes the factor T − 1 in
front of

√
εz in the main result of this chapter. As this also removes the conditioning

on zero pre-images, the factors pi also disappear, although this does not influence
the tightness of the result.

• More results. In addition to the proof for the collapsingness of sponges, also a
direct proof for collision resistance is given in SP2, which is tighter than our proof
in Corollary 2.15. In addition, a quantum search algorithm for finding collisions
in any random function, including the sponge construction, is given to provide an
upper bound.





CHAPTER 3

Oops I did it again

3.1 — Overview

Context. The first post-quantum signature schemes considered for standardization are
hash-based Merkle Signature Schemes [MCF19,HBG+18]. These schemes form the most
confidence-inspiring post-quantum solution for digital signatures as their security only re-
lies on some mild assumptions about properties of cryptographic hash-functions [HRS16].
Hash-based signature schemes can be split into stateful (e.g. [Mer89,BGD+06,BDK+07,
HRB13] and two recent RFCs [HRS16, LM95]) and stateless (e.g. [BHH+15, ABD+17])
proposals. In this context, statefulness means that the secret key changes after every
signature. In case a ’secret key state’ is used twice, all security guarantees vanish. In
practice it turns out that in many scenarios keeping a state becomes a complicated is-
sue [MKF+16]. However, currently stateful schemes are the ones considered for stan-
dardization as these schemes are far more efficient in terms of signature size and signing
speed than the stateless alternatives.

The reason these schemes are stateful is that their core building block are so-called
one-time signature schemes (OTS). A one-time signature scheme allows to use a key
pair to sign a single (arbitrary) message. If a key pair is used to sign a second, different
message, no security guarantees are given. The security reductions only apply as long
as just a single message is signed. While this is commonly interpreted as the schemes
are entirely broken if a key pair is used to sign twice, this is not necessarily the case. It
is known that if an adversary has full control of the messages to be signed, the schemes
are fully broken after two signatures, i.e. the secret key can be extracted without any
effort. However, in practice the OTS causing statefulness are used to sign the digest
of an adversarially chosen message. Moreover, in both recent RFC’s [MCF19, HBG+18]
these message digests are randomized. Hence, the actually signed message (digest) is
unpredictable for an adversary.

Taking the message digest into account is one of the crucial steps in the construction
of hash-based few-time signature schemes like HORS [RR02] that allow to use a key pair
to sign a small number of messages before security drops below the acceptable limit.
This opens up the question if classical hash-based OTS are still one-time when we take
the message digest into account or if a similar argument applies as for HORS. In practice,
this question translates to the question if reuse of a secret key state leads to a hard fail or
if one is “only” facing graceful degradation of security.

Summary. In this chapter we analyze the security of hash-based one-time signature-
schemes under different kinds of two-message-attacks. We carry out the analysis for the
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most prominent proposals: Lamport’s scheme [Lam79], the optimized version of Lam-
port’s scheme [Mer89], and the Winternitz OTS (WOTS) [Mer89]. It turns out that actu-
ally, all three schemes are still secure under two-message attacks if we take into account
that a message digest is signed, at least if we consider the attacks asymptotically (see
Table 3.1).

The general working of these schemes is as follows. We consider the case that a
message m is first compressed using a cryptographic hash function H to obtain a fixed
length message digest m∗ = H(m), as well as the case that the message is under full
control of the adversary (in this case it means H is the identity function and thus m∗ =
m). A mapping function G is used to map m∗ to some index set B = (B1, . . . ,B`) =
G(m∗). Finally, secret values indicated by the index set B are published as signature.
Generally, the secret values are the preimages of public key values under a cryptographic
hash function F. Verification works by applying F to the given values and comparing the
results to the respective public key values. In case of WOTS secrets are arranged in hash
chains. The end nodes of the chains are the public key values. In this case, there exists
some dependency, i.e., if a value from a chain is part of the signature, all later values of
that chain can be derived applying F.

After seeing two signatures under the same key, there exist two possible ways to forge
a signature. First, an adversary can try to find a message that is mapped to an index set
which is covered by the union of the index sets of the two seen signatures. In this case,
all the required secret values are contained in the two signatures. Second, an adversary
can try to compute the secret values not covered by the union of the index sets for a
signature from the respective public key values. However, this requires to break one of
the security properties of F and would also allow to forge signatures after seeing just the
public key. Parameters in practice are chosen such that this is infeasible. Consequently,
we just consider the first kind of attacks in this chapter. The possibility and complexity of
attacks of this type depends on the properties of hash function H, the message-mapping
function G, and possible dependencies of secret values (as in the case of WOTS). In our
analysis we focus on the latter two. For H we assume that it behaves like a random oracle.
This decision follows the same reasoning as above. Vulnerabilities of H would already
allow for forgeries under one-message attacks. For WOTS this implies that the obtained
results also apply to the recent variants of WOTS that minimize security assumptions
[BDE+11,Hül13,HRS16] as the mapping function and the arrangement of secret values
for these variants is the same as in the original scheme.

For Lamport’s scheme, we obtain exact complexities for two-message attacks. For the
optimized Lamport scheme and WOTS analysis becomes extremely complex when look-
ing at the actual mapping functions. This is caused by a checksum which is added to the
message. This checksum introduces a lot of dependencies between probabilities, eventu-
ally leading to sums with an exponential number of summands. Therefore, we decided to
analyze a simplified variant where we assume that the checksums are independent and
uniformly distributed. For this simplified message mapping, we obtain exact complexities.
We experimentally verified the results obtained for the simplified mapping function.

We analyze security of the OTS without initial message hashH in terms of full break re-
sistance, universal, selective, and existential unforgeability under random and adaptively
chosen message attacks. Please note that as we assume H to be a random oracle, exis-
tential unforgeability under an adaptively chosen message attack (EU-CMA) of a scheme
with initial randomized message hashing is equivalent to existential unforgeability under
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Table 3.1: Complexity for an existential forgery under a random message attack for the given signature scheme
with typical parameters (see text).

Signature scheme Attack Complexity
Lamport O((1.34)m)

Optimized Lamport O((1.14)m+logm)
Winternitz O((1.09)m+logm)

a random message attack (EU-RMA) of the scheme without initial message hash. Ac-
cordingly, the crucial case for practice is EU-RMA security of the scheme without initial
message hash. It covers the case of accidental reuse of an OTS key pair when using one
of the recent RFC’s for stateful hash-based signatures [MCF19,HBG+18]. While all three
schemes turn out to be EU-RMA-secure under two-message attacks in the asymptotic set-
ting, we get different results for typical parameter choices. For Lamport’s scheme with
a message digest size of 256 bits, the complexity to produce existential forgeries under
two-random-message attacks is still 2106 hash function calls, ignoring the costs for pair-
wise comparison of all message digests. Hence, in this setting a signer is still on the safe
side even after using a one-time key pair twice. For the optimized Lamport OTS with 256
bit message digests, the complexity to produce existential forgeries under two-random-
message attacks is already down to 251. Which means attacks are not for free, but they are
possible. For WOTS in the same setting, using the parameters from [HBG+18], we are left
with an attack complexity of 234 hash function computations. This can be done on a mod-
ern computer within few days if not hours. These parameters use a Winternitz parameter
of w = 16, i.e. hash chains of length 16. For bigger values of w, the attack complexity
goes down even further. These results show that Lamport’s scheme is still somewhat for-
giving but especially for WOTS, measures have to be taken that prevent OTS key reuse in
any case. However, as soon as we are considering attacks on quantum-computers, com-
plexities drop at least by a square-root factor. In this case even Lamport’s scheme has to
be considered broken after two-random-message attacks for typical parameters.

Organization. In Section 3.2 we discuss the models we use as well as required notation.
We start our analysis in Section 3.3 with Lamport’s scheme. We continue in Section 3.4
with the optimized Lamport scheme and in Section 3.5 with WOTS. In Section 3.6, we
experimentally verify our results.

3.2 — The model

Security of one-time signature schemes (OTS) can be analyzed with regard to all
traditional security definitions for general signature schemes. The difference is that the
number of adversarial signature queries is limited to q = 1. Formally, any signature
scheme that achieves EU-CMA-security (see definition below) when the adversary may
only make a single signature query is a OTS. To understand the security of a OTS under
two-message attacks in any of the models, we simply investigate the security for q =
2. We first discuss the traditional definitions and afterwards we discuss how to analyze
security within these models.

3.2.1 – Digital signature schemes. First, what exactly are we talking about? From a
formal perspective the objects we are talking about are digital signature schemes, defined
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as follows:

Definition 3.1 (Digital Signature Scheme). Let M be the message space. A digital signature
scheme DSS = (kg, sign, vf) is a triple of probabilistic polynomial time algorithms:

• kg(1n) on input of a security parameter 1n outputs a private signing key sk and a
public verification key pk;

• sign(sk, m) outputs a signature σ under sk for message m, if m ∈M;
• vf(pk,σ, m) outputs 1 iff σ is a valid signature on m under pk;

such that the following correctness condition is fulfilled:

∀(pk, sk)← kg(1n), ∀(m ∈M) : vf(pk, sign(sk, m), m) = 1.

Throughout this thesis signature scheme always refers to a digital signature scheme.

3.2.2 – Security of signature schemes. The definition above is only a functional def-
inition of the object at hand that says nothing about security. It leaves the question of
how to define security for a signature scheme. In general we can split security notions
into the goals an adversary A has to achieve (e.g., a valid signature on any new mes-
sage for existential unforgeability) and the attack capabilities given to A (e.g., adaptively
learning signatures on messages of its choice after seeing the public key). For the goals,
the relevant notions1 are:
Full break (FB): A can compute the secret key.
Universal forgery (UU): A can forge a signature for any given message. A can effi-

ciently answer any signing query.
Selective forgery (SU): A can forge a signature for some message of its choice. In this

case A commits itself to a message before the attack starts.
Existential forgery (EU): A can forge a signature for one arbitrary message. A might

output a forgery for any message for which it did not learn the signature from an
oracle during the attack.

On the other hand, for the attacks we got2:
Random message attack (RMA): A learns the public key and the signatures on a set

of random messages.
Adaptively chosen message attack (CMA): A learns the public key and is allowed to

adaptively ask for the signatures on messages of its choice3.
These two attacks are parameterized by the number of signature queries q the adversary
is allowed to ask. For one-time schemes we only require that a notion is fulfilled for
q = 1.

Any combination of a goal and an attack from the above sets gives a meaningful notion
of security. The strength of the notion increases going down each list. Accordingly, a
scheme that is only secure against a full break under a random message attack offers
the weakest kind of security while a scheme that offers existential unforgeability under
adaptively chosen message attacks offers the strongest security guarantees.

3.2.3 – Formal definitions. We now give formal definitions for the notions above.
EU-CMA. The standard security notion for digital signature schemes is existential un-

1We omit strong unforgeability here as it is irrelevant for this context
2We omit key-only attacks as these allow for no signature queries at all
3We omit the non-adaptive setting as it turns out that there is no difference in the given setting.
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forgeability under adaptive chosen message attacks (EU-CMA) which is defined using the
following experiment. By DSS(1n) we denote a signature scheme with security parameter
n.

Experiment ExpEU-CMA
DSS(1n) (A)

(sk, pk)← kg(1n)
(M?,σ?)← Asign(sk,·)(pk)
Let {(mi,σi)}

q
1 be the query-answer pairs of sign(sk, ·).

Return 1 iff vf(pk,M?,σ?) = 1 and M? 6∈ {mi}
q
1 .

For the success probability of an adversary A in the above experiment we write

SuccEU-CMA
DSS(1n) (A) = P

[
ExpEU-CMA

DSS(1n)(A) = 1
]

.

Definition 3.2 (EU-CMA). Let n ∈ N, DSS a digital signature scheme as defined above.
We call DSS (t, ε(t),q)-EU-CMA-secure if InSecEU-CMA (DSS(1n); t,q), the maximum success
probability of all possibly probabilistic adversaries A running in time 6 t, making at most
q queries to sign in the above experiment, is bounded by ε(t):

InSecEU-CMA (DSS(1n); t,q) def= max
A

{SuccEU-CMA
DSS(1n) (A)} 6 ε(t).

A (t, ε(t))-EU-CMA-secure one-time signature scheme is a DSS that is (t, ε(t), 1)-
EU-CMA secure, i.e. the number of signing oracle queries of the adversary is limited
to one.

We can give similar definitions for the remaining notions. The difference between
the different notions is described by a modified experiment. The definition of success
probability and what it means for a scheme to fulfill the notion can be obtained replacing
the experiment in the above definitions (and, of course, tracing the resulting changes
through the definition).

SU-CMA. Selective unforgeability is formally described by the following experiment. In
this experiment A consists of two independent algorithms (A1,A2). The first of which,
A1, outputs the target message and some temporary state S that is forwarded to A2.

Experiment ExpSU-CMA
DSS(1n) (A = (A1,A2))

(MA, S)← A1(1n)
(sk, pk)← kg(1n)
σ? ← ASign(sk,·)(pk,MA, S)
Let {(mi,σi)}

q
1 be the query-answer pairs of sign(sk, ·).

Return 1 iff vf(pk,MA,σ?) = 1 and MA 6∈ {mi}
q
1 .

UU-CMA. Universal unforgeability is formally described by the following experiment. The
difference to the SU notion is that the target message MA is now selected by the experi-
ment.

Experiment ExpUU-CMA
DSS(1n) (A = (A1,A2))

(sk, pk)← kg(1n)
S← A

Sign(sk,·)
1 (pk)
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MA
$←M

σ? ← A2(S,MA)
Return 1 iff vf(pk,MA,σ?) = 1.

EU-RMA. Existential unforgeability under random message attacks (EU-RMA) is defined
using the following experiment. Instead of giving the adversary oracle access as in the
EU-CMA game, the experiment generates signatures on q random messages and hands
these to the adversary.

Experiment ExpEU-RMA
DSS(1n) (A)

(sk, pk)← kg(1n)
Let {(mi,σi)}

q
1 be the set of q message signature pairs, obtained by

sampling mi
$←M and computing σi = sign(sk, mi).

(M?,σ?)← A(pk, {(mi,σi)}
q
1 )

Return 1 iff vf(pk,M?,σ?) = 1 and M? 6∈ {mi}
q
1 .

SU-RMA. Similarly to the previous notion, SU-RMA is defined be the experiment

Experiment ExpSU-RMA
DSS(1n) (A = (A1,A2))

(MA, S)← A1(1n)
(sk, pk)← kg(1n)
Let {(mi,σi)}

q
1 be the set of q message signature pairs, obtained by

sampling mi
$←M and computing σi = sign(sk, mi).

σ? ← A(pk, {(mi,σi)}
q
1 ,MA, S)

Return 1 iff vf(pk,MA,σ?) = 1.

UU-RMA. Finally, universal unforgeability under random message attacks is formally de-
scribed by the following experiment.

Experiment ExpUU-RMA
DSS(1n) (A = (A1,A2))

(sk, pk)← kg(1n)
Let {(mi,σi)}

q
1 be the set of q message signature pairs, obtained by

sampling mi
$←M and computing σi = sign(sk, mi).

S← A1(pk, {(mi,σi)}
q
1 )

MA
$←M

σ? ← A2(S,MA)
Return 1 iff vf(pk,MA,σ?) = 1.

Attack complexity. For a (t, ε(t))-secure scheme, we define the attack complexity as 2t∗

for t∗ = mint{ε(t) > 1
2 }. As we will show in the next chapters, the most costly operations

of all attacks are calls to the message digest function H. We measure the attack complexity
as the number of calls to H and denote its (constant) cost for one call with CH.

Further model decisions. For our analysis we made several decisions on how we are
analyzing the security in the above models. We are not interested in attacks that exploit
weaknesses of the used hash-functions as these already apply in the one-message attack
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setting. Therefore, we model all used hash functions as random oracles. Due to this
decision, RMA-attacks model the setting where randomized hashing is used for the initial
message digest. Hence, we do not do a separate analysis for variants of the schemes that
use randomized hashing.

3.3 — Lamport’s scheme

We start with analyzing Lamport’s scheme which was the first proposal for a hash-
based signature scheme. For q = 1 it achieves the strongest security notion EU-CMA-
security when the used function is one-way; this holds even without hashing the message
first. Now let us look at the two-message attack case.

3.3.1 – Scheme description. The first and most intuitive proposal for an OTS is Lam-
port’s scheme (sometimes called Lamport-Diffie OTS) [Lam79]. The scheme uses a one-
way function F : {0, 1}n → {0, 1}n, and signsm bit strings. The secret key consists of 2m
random bit strings

sk = (sk1,0, sk1,1, . . . , skm,0, skm,1)

of length n. The public key consists of the 2m outputs of the one-way function

pk = (pk1,0, pk1,1, . . . , pkm,0, pkm,1) = (F(sk1,0), F(sk1,1), . . . , F(skm,0), F(skm,1))

when evaluated on the elements of the secret key. Signing a message (digest) m∗ ∈
{0, 1}m corresponds to publishing the corresponding elements of the secret key:

σ = (σ1, . . . ,σm) = (sk1,m∗1 , . . . , skm,m∗m).

To verify a signature the verifier checks whether the elements of the signature are mapped
to the right elements of the public key using F:

(F(σ1), . . . , F(σm))
?
= (pk1,m∗1

, . . . , pkm,m∗m
).

For Lamport’s scheme, the message mapping G can be considered the identity.

3.3.2 – Security under two-message attacks. Considering a CMA setting, we cannot
achieve any security without an initial message hash. Otherwise, an adversary A can
choose any pair of messages (m∗1 , m∗2) such that m∗1 = ¬m∗2 , where ¬ denotes bitwise
negation, and will learn the full secret key. In the following we assume a message m is
first hashed using a hash function H : {0, 1}∗ → {0, 1}m, i.e., anm-bit message digest m∗

is used to select the secret key elements. Our results are summarized in Table 3.2.

FB-CMA. A full break requires A to find a pair of messages (m1, m2) such that H(m1) =
¬H(m2). This task has the same complexity as collision finding for H. The only difference
between the two tasks is that the equality condition is replaced by equality after negation.
Sadly, this does not mean that we get a reduction from collision resistance as the counter
example of the identity function shows: The identity function is collision resistant as no
collisions exist but it is trivial to find a pair such that one message is the negation of the
other. However, assuming H behaves like a random function a birthday bound argument

shows that the complexity of finding such a pair is CB · 2m/2 where CB =
√

2 log( 1
1−p )
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Table 3.2: Overview of the computational complexity for two-message attacks against Lamport’s scheme. If the
success probability of an attack is not constant in terms complexity, we give the attack complexity to achieve a
success probability of 1/2. CH is the cost for one hash operation and CB is the birthday-bound constant.

Security Goal Attack Complexity P[Success]
EU-CMA CH · (4/3)m/3 1

2
SU-CMA CH · (4/3)m/3 1

2
UU-CMA CH · 2m/2 1

2
FB-CMA CH · CB · 2m/2 1

2

EU-RMA CH · (4/3)m 1
2

SU-RMA - (3/4)m

UU-RMA - (3/4)m

FB-RMA - (1/2)m/2

is the birthday-bound constant for success probability p, which can be carried out as
pre-computation as long as H is known. For p = 1/2 this constant is CB ≈ 1.1774.

EU-CMA. To produce a valid forgery in a chosen message setting, an adversary A has to
find a triple of messages m1, m2, m3 such that

break(m1, m2, m3) = (∀i ∈ [0,m− 1]) : H(m1)i = H(m2)i ∨ H(m1)i = H(m3)i)

where H(·)i denotes the i-th bit of the message digest. In this case, we say that m2, m3

form a cover for m1.
For random messages m1, m2, m3, the probability that m2, m3 cover m1 is the inverse

probability of each bit of m∗1 not being covered by m∗2 , m∗3:

Pm1 [break(m1, m2, m3) = 1] = (1 − (1/2)2)m = (3/4)m

For an existential forgery, A can start by hashing τ > 2 random messages, pick a
random set of two hashed message and check if these cover a hashed third message. There
are

(
τ
2

)
such pairs of hashed messages, and τ − 2 hashed messages that are potentially

covered, leaving a total of
(
τ
2

)
(τ− 2) possibilities. We can bound the success probability

of an existential forgery by the union bound:

P{m1,...,mτ}[∃(ma, mb, mc) ∈ {m1, . . . , mτ} : break(ma, mb, mc) = 1]

6

(
τ

2

)
(τ− 2)(3/4)m 6

1
2
τ3(3/4)m

We want to know for which τ this upper bound reaches 1/2, which is τ = (4/3)m/3.
Hence, the attack complexity is lower bounded by (4/3)m/3. As an example, if we con-
sider m = 256 then 236 > (4/3)m/3. It has to be noted that this is all pre-computation,
which can be done before choosing a victim: no knowledge of the public key is required.
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Figure 3.1: This plot shows the relation between the amount of pre-computation and the success probability of
a universal forgery in a chosen message attack on Lamport’s One-Time Signature Scheme.

It remains to show how tight our upper bound is. In Section 3.6, we experimentally verify
that it is tight for the case of optimized Lamport and Winternitz.

SU-CMA. For selective forgeries, A can pick a message m for which it needs to find a
cover before receiving signatures. However, since no knowledge of the public key is
needed to start an attack, there is no difference between a selective forgery and an exis-
tential forgery. A can simply search for three messages (m1, m2, m3) satisfying the break
condition before the attack starts using the correct hash function. It can then commit
to m1 before learning pk, and use the signatures of m2, m3 to sign m1. This means, the
complexity of a selective forgery can again be lower bounded by (4/3)m/3.

UU-CMA. For universal forgeries, A can try to find two messages m1, m2 such that they
have non-overlapping message digests in r indices. After the experiment, A can forge any
message with probability (1/2)m−r, since a message digest has to overlap with the digests
of m1, m2 in m − r indices. The probability that any two messages m1, m2 have non-
overlapping message digests in r indices is

(
m
r

)
(1/2)r(1/2)m−r =

(
m
r

)
(1/2)m. Using

similar arguments as in the EU-CMA case after τ calls to H, the probability that two mes-
sages have r non-overlapping indices is bounded by at least 1/2 if

(
τ
2

)
> 1/2 · 2m

(
m
r

)−1
,

where we can estimate that τ = 2m/2
(
m
r

)−1/2
. It is easy to see that the more pre-

computation an attacker is doing, the higher the success probability becomes. Figure
3.1 shows the success probability as a function of the pre-computation carried out. For
m = 256, a pre-computation of 2136 calls to H is required to reach a probability of 1/2.
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EU-RMA. In this case, the adversary gets a signature of two random messages (m1, m2)
and has to find a third message m3 that is covered by m1, m2. The difference to the CMA
case is that A cannot optimize the choice of m1, m2. This means each index should be
covered, which happens with probability (3/4)m. In consequence, A has to compute
τ = (4/3)m message digests before it finds a forgery with probability > 1/2. For m =
256, this means the attacker has to compute about 2106 message digests. However, for
m = 128 bit message digests, this would mean a computational cost of 253, which should
be pretty easy for strong attackers.

SU-RMA. For SU-RMA, the adversary selects a message before it receives two signatures
of two random messages. There is no way for A to optimize the selection of this message,
as A does not know (or has influence on) the two random messages for which it learns the
signatures. The probability that A can afterwards sign the selected message is (3/4)m.
This is also the success probability of the attack. Note that this probability is constant for
fixed parameters, i.e., there is nothing the adversary can do.

UU-RMA. For random message attacks, there is no difference between universal and se-
lective forgery attacks since the adversary has no power over the signed messages and
cannot affect his success probability by choice of a target message. This means also in
this case, the probability of a forgery is (3/4)m.

FB-RMA. The probability of a full break under a random message attack, is simply the
probability that two messages are each-others negated version. This happens with prob-
ability (1/2)m.

3.4 — Optimized Lamport

The optimized Lamport scheme is very similar to Lamport’s scheme and first appeared
in [Mer89]. While it is interesting on its own, it is also of interest as it can be viewed as
a special, simplified version of the Winternitz OTS discussed in the next section.

3.4.1 – Scheme description. The optimized Lamport scheme uses a one-way function
F : {0, 1}n → {0, 1}n, and signsm bit messages. The secret key consists of ` = m+logm+
1 random bit strings

sk = (sk1, . . . , sk`)
of length n. The public key consists of the ` outputs of the one-way function

pk = (pk1, . . . , pk`) = (F(sk1), . . . , F(sk`))

when evaluated on the elements of the secret key. Signing a message m∗ ∈ {0, 1}m

corresponds to first computing and appending a checksum to m∗ to obtain the message
mapping G(m∗) = B = m∗‖CwhereC =

∑m
i=1 ¬m∗i . The signature consists of the secret

key element if the corresponding bit in B is 1, and the public key element otherwise:

σ = (σ1, . . . ,σm) with σi =
{

ski , if Bi = 1,
pki , if Bi = 0.

To verify a signature the verifier checks whether the full public key is obtained by hashing
the elements of the signature that correspond to 1 bits in B:

Return 1, iff (∀i ∈ [1, `]) : pki =
{

F(σi) , if Bi = 1,
σi , if Bi = 0.
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3.4.2 – Security under two-message attacks. As with the non-optimized Lamport
scheme, we cannot achieve any security without initial message hash. While it is impos-
sible to learn the whole secret key from a two-message attack for typical parameters (this
is the case as form being a power of two the most significant bit of the checksum is only
1 for the all zero message, and it is impossible to learn the remaining secret key values
from the signature of a single message), it is trivial to obtain all secret key elements but
the one that corresponds to the most significant bit of the checksum. This allows to sign
any message but the all 0 message. An adversary can for example use the all 1 message
(to learn the secret key values for the message part of B) and any message with a single
one (to learn the secret key values of the checksum part of B, besides the one at the most
significant position).

In the following we assume a message m is first hashed using a hash function H :
{0, 1}∗ → {0, 1}m to obtain a message digest m∗ – making attacks significantly harder. It
is easy to see that checksum C follows a binomial distribution. However, the analysis of
the scheme as described above turned out too complex to be carried out exactly due to
the dependency between C and m∗. The problem is that it would be possible to condition
on two checksums to cover a third one in the existential forgery setting. These conditions
would give an exact Hamming weight for the message parts. However, there would be
exponentially many possibilities, each with a specific probability, rendering a very com-
plex analysis. For that reason, we simplified the analysis assuming that C is uniformly
random and thereby that digest m∗ and checksum C are independent of each other. Note
that the neglected dependency, and the neglected distribution of C, can make the attack
both easier and harder, depending on whether the higher order bits of C are covered.
Our theoretical results are summarized in Table 3.3. For an experimental verification of
our results see Section 3.6.

Remark: It is important to note that for extreme cases our analysis is not good enough.
In the FB-CMA, UU-CMA, SU-RMA and FB-RMA settings for the optimized Lamport (and
also for Winternitz in Chapter 3.5), we are trying to push the message mappings to ex-
treme cases to allow for forgeries. However, due to the inverse nature of the checksum,
our analysis leads to impossible message mappings. For example, a high weight message
part means a low weight checksum part for optimized Lamport, but in our analysis we
are trying to push both message and checksum part to high weights. Therefore we expect
the complexity to be much higher for these extreme cases (i.e. when r is very low or
very high, with the meaning of r as described in optimized Lamport and Winternitz for
the UU-CMA and SU-RMA case). So although this is a non-tight approximation in theory,
we will show with experiments (Section 3.6) that this seems good enough in the average
case.

FB-CMA. As mentioned above form being a power of two (which is the typical setting), it
is impossible to learn the whole secret key from a two-message attack. For other choices
of m, an adversary A has to find two messages m1, m2 such that (B1)i = 1 or (B2)i = 1
for all i ∈ {0, . . . , `− 1}.

As H is modeled as random oracle and we assume the checksum is uniformly random
and independent of the message, every random input message m leads to a random mes-
sage mapping B of length `. For two random input messages m1, m2, the probability that
at least one of the two corresponding message mappings B1,B2 is 1 at each position is:

P[FB(m1, m2)] = (3/4)`.
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Table 3.3: Overview of the computational complexity for two-message attacks against the optimized Lamport
scheme. If the success probability of an attack is not constant in terms of complexity, we give the attack com-
plexity to achieve a success probability of 1/2 (aside from SU-RMA as the best we can achieve is a success
probability of 3

8 ). CH is the cost for one hash operation.

Security Goal Attack Complexity P[Success]
EU-CMA CH · (8/7)`/3 1

2
SU-CMA CH · (8/7)`/3 1

2
UU-CMA CH · (4/3)`/2 1

2
FB-CMA CH · (4/3)`/2 1

2

EU-RMA CH · (8/7)` 1
2

SU-RMA CH · 2` 3
8

UU-RMA - (7/8)`

FB-RMA - (3/4)`

Similar to the strategy of the existential forgery in Lamport’s scheme, we can hash τ
messages and check all pairs for a full break. The probability of a full break is bounded
by
(
τ
2

)
(3/4)`. We can therefore lower bound the attack complexity of a full break by

(4/3)`/2 calls to H. For m = 256, this complexity equals 254.

EU-CMA. We will now explore forgeries for a third message, given the signatures for
two messages. We define the condition for a break for three messages m1, m2, m3 with
message mappings B1,B2,B3 as:

break(m1, m2, m3) := (∀i ∈ [0, `− 1]) : (B1)i = 1⇒ (B2)i = 1 ∨ (B3)i = 1 (3.1)

where (Bj)i denotes the i-th bit of the mapping of message mj. If the condition is fulfilled,
we say that m2, m3 form a cover of m1.

In other words: we only need the secret values for those bits of the first message
mapping that are 1, so the probability for a break is higher for target messages with a
low weight message mapping. Recall that we assume that m∗j and Cj are independent,
meaning we assume we have three independent random bit strings.

To get the probability that we cover a bit of B1, we can condition on the value of that
bit b ∈ {0, 1}:

P[(B1)i 6 (B2)i ∨ (B1)i 6 (B3)i]

=
∑
b∈{0,1}

P[(B1)i 6 (B2)i ∨ (B1)i 6 (B3)i |(B1)i = b]P[(B1)i = b]

=
1
2
· P[0 6 (B2)i ∨ 0 6 (B3)i |(B1)i = 0]

+
1
2
· P[1 6 (B2)i ∨ 1 6 (B3)i |(B1)i = 1]

=
1
2
· 1 +

1
2
· 3

4
=

7
8

This means that the probability that the break condition is fulfilled for three random
messages is

(
7
8

)`
.
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Figure 3.2: This plot shows the relation between the amount of pre-computation and the success probability of
a universal forgery in a chosen message attack on the optimized Lamport scheme.

As with the original Lamport scheme, we can precompute τ message mappings, and
calculate the upper bound for the success probability. This time, for the bound to reach
1/2 we need to compute τ = (8/7)`/3 message mappings, using similar arguments as
in the EU-CMA case for Lamport. For m = 256, this means the adversary needs to
precompute τ = 217 hash digests. For m = 128, this would mean τ = 29 hash digests.

SU-CMA. As with the original Lamport scheme, the adversary does not need knowledge
of the public key to compute three messages that satisfy the break condition. This means
that also for the optimized Lamport scheme, a selective forgery has the same complexity
as an existential forgery under chosen message attacks.

UU-CMA. The goal of the adversary is to find two messages m1, m2 such that their com-
bined mappings have the highest weight possible. The probability that any two mes-
sages have weight r is equal to

(
`
r

)
(3/4)r(1/4)`−r, where we again assume that m∗

and C are independent. Note that the mean of this distribution is at ` · (3/4), which
means A should not take any r below ` · (3/4). After τ calls to H, the probability that
two of the messages m1, m2 have a combined weight of r is bounded by at least 1/2 if(
τ
2

)
> 1/2 ·

((
`
r

)
(3/4)r(1/4)`−r

)−1
. We can estimate the pre-computation complexity

as square-root of the right part of this inequality. After the online phase of the attack,
A can sign a new message with probability (1/2)`−r, since for the positions that are not
covered by B1 or B2, the bit of the new message must be 0. The relation between the
pre-computation and the success probability is given in Figure 3.2 for m = 256.
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EU-RMA. According to Eqn. 3.1, two messages m2, m3 have a probability of (7/8)` to
cover a random third message m1. This means that after receiving the signature of two
random messages, the adversary has to search τ = (8/7)` messages to forge a third
signature (again using arguments described in earlier analyses), since it only needs the
secret values for the bits of m1 that are 1. Form = 256, this means a computational cost
of about 251, which is in reach for a strong attacker. For m = 128, this would mean a
computational cost of 226, which can be done within minutes on today’s CPUs.

SU-RMA. Unlike with the original Lamport scheme, for the optimized Lamport scheme an
adversary can optimize his selection of the target message in a random message attack.
In our simplified analysis messages that have low-weight message mappings are more
likely to be covered by the mappings of two random messages. However, note that we
can only select a single target message instead of a whole cover, which makes the pre-
computation more costly. The probability to find a message mapping B with weight r is
equal to

(
`
r

)
(1/2)`, which is again symmetric around `/2. An attacker should therefore

always pick a message with weight r 6 `/2. This message can be signed, after receiving
the signatures of two random messages, with probability (3/4)r, since all positions of B
that are 1 have to be covered by the mappings of the two random messages. If we again

estimate the pre-computation as τ =
((
`
r

)
(1/2)`

)−1
to find a message mapping with

weight r with probability bounded by 1/2, we get the relation between pre-computation
and success probability for a selective forgery in Figure 3.3 for m = 256. Note that this
figure looks similar to Figure 3.2 but a far more pre-computation is required to achieve the
same bound on the success probability. Even for strong attackers, it should be infeasible
to get a high success probability.

UU-RMA. For a universal forgery under a random message attack, the attacker cannot
influence anything in the experiment. This means the success probability for this forgery
is simply the success probability of the conditional break: (7/8)`.

FB-RMA. The probability of a full break under a random message attack, is simply the
probability that all bits are covered. This would be 0 in the real scenario (as described
in the beginning of Section 3.4.2), but happens with probability (3/4)` in our simplified
analysis, which is 2−54 when m = 256.

3.5 — Winternitz OTS

The Winternitz one-time signature scheme (WOTS) is a further improvement of the
optimized Lamport scheme. Instead of using the hash of each secret key value as public
key, the public key values are obtained by hashing more than once, i.e. w times. That
way, more than one bit can be encoded per selection of a hash value. The basic idea
for the Winternitz OTS (WOTS) was proposed in [Mer89]. What we know as WOTS
today is a generalization that was proposed by Even, Goldreich, and Micali [EGM96].
There exist several variants that reduce the assumptions made about the used hash func-
tion [BDE+11, Hül13, HRS16]. Recent standardization proposals for hash-based signa-
tures [MCF19, HBG+18] as well as a recent proposal for stateless hash-based signa-
tures [BHH+15] use WOTS as one-time signature scheme.

3.5.1 – Scheme description. WOTS uses a length-preserving (cryptographic hash)
function F : {0, 1}n → {0, 1}n. It is parameterized by the message length m and the
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Figure 3.3: This plot shows the relation between the amount of pre-computation and the success probability of
a selective forgery in a chosen message attack on the optimized Lamport’s One-Time Signature Scheme.

Winternitz parameter w ∈ N,w > 1, which determines the time-memory trade-off. The
two parameters are used to compute

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w− 1))

log(w)

⌋
+ 1, ` = `1 + `2.

The scheme uses w− 1 iterations of F on a random input. We define them as

Fa(x) = F(Fa−1(x))

and F0(x) = x.
Now we describe the three algorithms of the scheme:

Key generation algorithm (kg(1n)): On input of security parameter 1n the key gen-
eration algorithm choses ` n-bit strings uniformly at random. The secret key sk =
(sk1, . . . , sk`) consists of these ` random bit strings. The public verification key pk is
computed as

pk = (pk1, . . . , pk`) = (Fw−1(sk1), . . . , Fw−1(sk`))

Signature algorithm (sign(1n, m∗, sk)): A message (digest) m∗ of length m and the
secret signing key sk, the signature algorithm first computes a base w representation of
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m∗: m∗ = (m∗1 . . . m∗`1
), m∗i ∈ {0, . . . ,w− 1}. Next it computes the checksum

C =

`1∑
i=1

(w− 1 − m∗i )

and computes its base w representation C = (C1, . . . ,C`2). The length of the base-w
representation of C is at most `2 since C 6 `1(w−1). We set B = (B1, . . . ,B`) = m∗ ‖ C.
The signature is computed as

σ = (σ1, . . . ,σ`) = (FB1(sk1), . . . , FB`(sk`)).

Verification algorithm (vf(1n, m∗,σ, pk)): A message (digest) m∗ of length m, a sig-
nature σ and the public verification key pk, the verification algorithm first computes the
Bi, 1 6 i 6 ` as described above. Then it does the following comparison:

pk = (pk1, . . . , pk`)
?
= (Fw−1−B1(σ1), . . . , Fw−1−B`(σ`)).

If the comparison holds, it returns true and false otherwise.
Remark: the difference between the basic WOTS as described above and the variants

proposed in [BDE+11, Hül13, HRS16] is how F is iterated. As all the attacks below are
independent of this choice, our results apply to all those variants, too.

3.5.2 – Two-message attacks. Without hashing the message, the scheme does not of-
fer any security once an attacker can choose two messages to be signed. As always, the
adversary simply chooses the all zero and the all one message to be signed, and after-
wards knows all secret values (for some parameter choices it will actually be impossible
to extract the whole secret key for the same reason as for optimized Lamport. However,
in that case, as for the optimized Lamport scheme, it is possible to select two messages
that allow learn all but one secret key element).

In the following we assume a message m is first hashed using a hash function H :
{0, 1}∗ → {0, 1}m to obtain a message digest m∗ – making attacks significantly harder. As
for the optimized Lamport scheme, the analysis of the scheme as described above turned
out too complex to be carried out exactly due to the dependency between C and m∗.
We simplified the analysis assuming that C is uniformly random and thereby that digest
m∗ and checksum C are independent of each other. It applies again that the neglected
dependency can make the attack both easier and harder, depending on the setting. Our
theoretical results are summarized in Table 3.4.

Remark: It is important to note that for extreme cases this analysis is not good enough,
as was the case for the analysis in Section 3.4 optimized Lamport. However, in experi-
ments we verify that this analysis seems good enough, see Section 3.6 for the results of
this.

FB-CMA. The adversary has to find messages m1, m2 with mappings B1,B2 such that
for all 0 6 i 6 `: either (B1)i = 0 or (B2)i = 0. The probability to cover an index
of the secret key equals (1 − (w−1

w
)2) for each i, which means the probability that this

is true for all i equals: (1 − (w−1
w

)2)`. After hashing τ messages, the probability to
find two messages satisfying the condition of a full break will be upper bounded by at
least 1/2 if

(
τ
2

)
> 1/2 · (1 − (w−1

w
)2)−`, which means we can lower bound the attack



3.5. WINTERNITZ OTS 53

Table 3.4: Overview of the computational complexity for two-message attacks against the Winternitz OTS. If
the success probability of an attack is not constant in terms of complexity, we give the attack complexity to
achieve a success probability of 1/2. CH is the cost for one hash operation.

Security Goal Attack Complexity P[Success]

EU-CMA CH ·
(

(w+1)(4w+1)
6w2

)`/3
1
2

SU-CMA CH ·
(

(w+1)(4w+1)
6w2

)`/3
1
2

UU-CMA CH ·
(
1 − (w−1

w
)2
)`/2 1

2

FB-CMA CH ·
(
1 − (w−1

w
)2
)`/2 1

2

EU-RMA CH ·
(

(w+1)(4w+1)
6w2

)`
1
2

SU-RMA CH ·
(

1
w

)` 1
2

UU-RMA -
(

(w+1)(4w+1)
6w2

)`
FB-RMA -

(
1 − (w−1

w
)2
)`

complexity by τ > (1 − (w−1
w

)2)−`/2. As a sanity check, we see that for w = 2 we get
τ = (4/3)`/2, which is the complexity of a full break for the optimized Lamport scheme.
Typical parameters for applications are w = 16 andm = 256, which leads to ` = 67 and
τ = 2102.

EU-CMA. For an existential forgery, we first define the condition for a break for WOTS:

break(m1, m2, m3) := (∀i ∈ [0, `− 1]) : (B1)i > (B2)i ∨ (B1)i > (B3)i (3.2)

where (Bj)i denotes the i-th digit of the base-w values of the message mapping Bj for
message mj; j ∈ {1, 2, 3}. If the condition is true, we say m2, m3 form a cover of m1.

We will first see what the probability is to cover one index of B1. If we condition on
the value of (B1)i, we get:

P[(B1)i > (B2)i ∨ (B1)i > (B3)i] =

w−1∑
x=0

P[(B1)i > (B2)i ∨ (B1)i > (B3)i|(B1)i = x]P[(B1)i = x] =

w−1∑
x=0

1
w

(
1 −

(
w− (x+ 1)

w

)2
)

=

1
w3

(
w−1∑
x=0

w2 −

w−1∑
x=0

(w− (x+ 1))2

)
=

1 −
1
w3

w−1∑
i=0

i2 =

1 −
w(w− 1)(2w− 1)

6w3 =

(w+ 1)(4w− 1)
6w2
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Figure 3.4: This plot shows the logarithmic relation between w and Pr[break] for w ∈ {2, 4, 8, 16, 32, 64}.
The logarithmic decrease of the exponent in Pr[break] is clearly making the probability grow faster for larger
w.

Again as a sanity check, we see that for w = 2, this probability equals (7/8), which
we already concluded for the optimized Lamport scheme.

In total we see that the probability for a conditional break is:

Pr[break(m1, m2, m3) = 1] =
(
(w+ 1)(4w− 1)

6w2

)`
≈
(
(w+ 1)(4w− 1)

6w2

)m+logm
logw

We see that for bigger w, the probability that one of the indices is not covered grows,
but the number of indices shrinks. The logarithmic decrease of the exponent is in this
case more important, which means the bigger the w, the bigger the probability of the
conditional break (which means less computational power required for forgeries).

Similar to the arguments for the EU-CMA cases for Lamport and optimized Lamport

scheme, an adversary needs to pre-compute about τ =

((
(w+1)(4w−1)

6w2

)−m+logm
logw

)1/3

message mappings for the bound on the probability to find a cover in the list of τmessage
mappings to reach 1/2. As an example, if we setm = 256 andw = 16, we have τ = 212.
Note that, unlike the FB-CMA setting, it is much easier to forge a third signature for bigger
w: while it becomes harder to get Bi = 0, the probability for a message cover grows.
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Figure 3.5: This plot shows the relation between the amount of pre-computation and the lower bound for the
success probability for a universal forgery under a chosen message attack on WOTS for different values of w
and for each r ∈ {0, . . . ,w− 1}.

SU-CMA. As with Lamport’s scheme and the optimized Lamport scheme, A does not need
knowledge of the public key to start any pre-computation. This means we obtain the same
complexity for a selective forgery as for an existential forgery under CMA.

UU-CMA. For a universal forgery, A can try to compute two message mappingsB1,B2 such
that either (B1)i 6 r or (B2)i 6 r for all i ∈ {0, . . . , `− 1}, where r ∈ {0, . . . ,w− 1}. The

probability that any two messages satisfy these rules equals
(

1 −
(
w−(r+1)

w

)2
)`

, which

means the probability that there exist two such messages in a list of τmessages is bounded

by at least 1/2 if
(
τ
2

)
> 1/2 ·

(
1 −

(
w−(r+1)

w

)2
)−`

, using again the same arguments as

for Lamport and optimized Lamport. Now A obtains a successful forgery for M3 with
probability at least

(
w−r
w

)`
, since we ignored the cases where (B3)i is smaller than r,

but still bigger than (B1)i or (B2)i. The pre-computation τ and corresponding success
probability for different values of w and r ∈ {0, . . . ,w− 1} are given in Figure 3.5.

EU-RMA. For WOTS, two messages cover a third one with probability:

Pr[break(m1, m2, m3) = 1] ≈
(
(w+ 1)(4w− 1)

6w2

)m+logm
logw

.

This means that when an attacker receives two signatures of two random messages, it has



56 CHAPTER 3. OOPS I DID IT AGAIN

2-1 219 239 259 279 299 2119 2139 2159 2179 2199 2219 2239 2259
Pre-computation

2-210

2-193

2-176

2-159

2-142

2-125

2-108

2-91

2-74

2-57

2-40

2-23

2-6

Pr[Success]

w = 4
w = 8
w = 16
w = 32
w = 64

Figure 3.6: This plot shows the relation between the amount of pre-computation and the success probability
of a selective forgery under random message attacks on WOTS for different values of w and for each r ∈
{0, . . . ,w− 1}

to compute about τ =
(

(w+1)(4w−1)
6w2

)−m+logm
logw

messages to find a covered third message.

For m = 256 and w = 16, this equals 234, which can easily be done on today’s CPUs.

SU-RMA. For the selective forgery, an attacker can select an optimal message with a map-
ping that contains as high values as possible. For the analysis, we will use the same strat-
egy as for the universal forgery, but in this case we want (B1)i > r for all i ∈ {0, . . . , `−1},
which happens with probability

(
w−r
w

)`
. Hence, the pre-computation can again be bound

by τ >
(
w−r
w

)−`
to upper bound the probability of finding such a message in a list of τ

messages by at least 1/2. The probability that the adversary can sign his selected mes-

sage after he received two signatures on random messages equals
(

1 −
(
w−(r+1)

w

)2
)`

in this case. A plot of the computational costs with corresponding success probability is
given in Figure 3.6. As for the optimized Lamport scheme, it looks similar to the graph of
the universal forgery under chosen message attacks, but with lower success probabilities
since A only has control over the selected message.

UU-RMA. The probability of a successful universal forgery under a random message attack
equals the probability that three random messages fulfill the break condition:

Pr[break(m1, m2, m3) = 1] ≈
(
(w+ 1)(4w− 1)

6w2

)m+logm
logw



3.6. EXPERIMENTAL VERIFICATIONS 57

The attacker has no influence on the process and cannot use any computational power
before or after the online phase of the attack to increase his success probability. Recall
that for specific cases this probability can also be 0 (e.g. forw = 2 it is equal to optimized
Lamport).

FB-RMA. Similar to Lamport and optimized Lamport, a full break occurs exactly when all
secret values are exposed. For Winternitz with parameterw, this happens with probability
(1 − (w−1

w
)2)`, which is a negligible probability for any w.

3.6 — Experimental verifications

In sections 3.3, 3.4, and 3.5 we discussed the attack complexity of several different
attacks. For the optimized Lamport scheme and WOTS, we assumed that the checksum
is uniformly random and hence the message digest and its checksum behave as indepen-
dent bit strings. However, as already mentioned there, the actual situation is that the
checksum is dependent of the message digest. To verify the obtained results we carried
out experiments for the EU-CMA case for optimized Lamport and WOTS.

We determined a lower bound for the number of calls τ to the message digest func-
tion H, such that a list of size τ of message digests allows to find an existential forgery
with probability upper bounded by at least 1/2. We performed several experiments for
different values of τ, to see how realistic our assumption matches the real situation and
how tight our bound is. We checked how many times a list of τ message mappings con-
tained a cover for optimized Lamport with digest length of m = 128 bits and for WOTS,
withm = 256 and w = 16 (which are the parameters suggested in [HBG+18]). We per-
formed 100 experiments per value of τ. As can be seen from the results in Table 3.5 on
the next page, the experiments closely match the theoretical results using the checksum
simplification. The theoretical analysis predicts that τ = 29 is required for the bound on
the probability of an existential forgery to reach 1/2 for the optimized Lamport scheme
with m = 128. For WOTS, the analysis suggests τ = 212 when m = 256 and w = 16.
From the results of the experiments, we can conclude that the simplifying assumption of
independent message digests and checksums is not causing a significant difference to the
real setting in the case of EU-CMA.

Table 3.5: Experimental results for the success probability of an EU-CMA adversary, using a list of τ message
mappings for optimized Lamport (left table) with digest length m = 128 and for WOTS (right table) with
w = 16 and digest lengthm = 256

τ P[Success]
28 0.02
29 0.13
210 0.77
211 1.0
212 1.0

τ P[Succes]
211 0.1
212 0.49
213 0.94
214 1.0
215 1.0





CHAPTER 4

HILA5 pindakaas

4.1 — Overview

Context. HILA5 [Saa17b] is a public-key lattice-based encryption scheme designed by
Saarinen and published at SAC 2017. We will introduce the background of lattice-based
cryptography (and terms as e.g. RLWE and NTRU) in Section 6.2, as this is not required
to understand this chapter. HILA5 was submitted as a “Key Encapsulation Mechanism
and Public Key Encryption Algorithm” [Saa17a] to NIST’s call [NIS16] for post-quantum
proposals. A Key Encapsulation Mechanism (KEM) is a public-key encryption technique
that fixes a random symmetric session key, that can be used to encrypt data using sym-
metric encryption in the Data Encapsulation Mechanism (DEM). This approach is called
a KEM-DEM technique for hybrid encryption. A DEM can both encrypt and authenticate
data when using authenticated encryption with associated data(AEAD) [Rog02].

HILA5’s design is based on Ring Learning With Errors (RLWE) over NTRU NTT rings.
HILA5 has a similar design as other lattice-based public-key encryption schemes such as
New Hope [ADPS16], but changes the reconciliation method by which Alice and Bob
achieve the same key. New Hope [ADPS16] is a lattice-based KEM, presented as a key-
exchange protocol. In these protocols, two parties perform an interactive “noisy Diffie-
Hellman”, i.e. first Alice sends her public key and then Bob sends a ciphertext. Using her
private key, Alice decrypts to approximately the same shared secret that Bob computed
using Alice’s public key. Additional reconciliation is applied to reduce the probability of
decryption failures.

Recall the two main attacker models for public-key encryption schemes in Section 1.2,
i.e. the IND-CPA (a possible way of using such schemes is using keys one-time) and IND-
CCA setting (keys can be reused/cached). The HILA5 submission [Saa17a] states

This design also provides IND-CCA secure KEM-DEM [CS03] public key encryp-
tion if used in conjunction with an appropriate AEAD [Rog02] such as NIST
approved AES256-GCM [FIP01, Dwo07].

Ajtai–Dwork [AD97] and NTRU [HPS98] are the oldest lattice-based encryption sys-
tems. In lattice-based public-key encryption schemes there is a probability that decryp-
tion fails, i.e. it does not output the correct plaintext from the ciphertext. In 1999 Hall,
Goldberg, and Schneier [HGS99] developed a reaction attack which recovers the Ajtai–
Dwork private key by observing decryption failures for suitably crafted encryptions to the
public key. These decryption failures can be observed by e.g. applications that use the
public-key encryption scheme to generate a shared secret key between two parties. After



60 CHAPTER 4. HILA5 PINDAKAAS

a decryption failure, these parties are not able to communicate. Hence, these failures are
detectable in certain scenarios. Recall from Section 1.2 that the attacker capabilities in
the IND-CCA setting specifically allow for decryption queries and thus allow for detection
of decryption failures. This is not allowed in the IND-CPA setting.

Hall, Goldberg, and Schneier wrote “We feel that the existence of these attacks effec-
tively limits these ciphers to theoretical considerations only. That is, any implementation
of the ciphers will be subject to the attacks we present and hence not safe.” In other
words: it highlights the importance to match applications that use these public-key en-
cryption schemes with the correct attacker model.

Hoffstein and Silverman [HS00] adapted the attack to NTRU. As a defense, they sug-
gested modifying NTRU to use the Fujisaki–Okamoto transform [FO99]. For a system
without decryption failures, this transform turns a CPA-secure system into a CCA-secure
one. At the same time this complicates and slows down the cryptosystem. For NTRU,
the transform turns out to still allow attacks that exploit occasional decryption failures
induced by valid ciphertexts; see [HNP+03].

New Hope [ADPS16] allows occasional decryption failures for valid ciphertexts, and
explicitly avoids the “changes” that would be required for the Fujisaki–Okamoto trans-
form. To prevent any model-mismatch attacks (e.g. reaction attacks or other chosen-
ciphertext attacks) by a malicious Bob, New Hope requires using keys one-time only (i.e.
IND-CPA setting), meaning keys that change with every execution of the protocol. The
New Hope paper warns that reusing a public key in multiple protocol runs (“key caching”)
would be “disastrous for security”, although it does not describe an attack.

Fluhrer [Flu16] showed the details of how to attack the key reuse in a similar key-
exchange protocol. Followup work [DAS+17] extended the attack to more key-exchange
protocols.

HILA5 is similar to New Hope, and still does not use the Fujisaki–Okamoto transform.
HILA5 includes an error-correction method that practically eliminates decryption failures
for valid ciphertexts. HILA5 does not warn against key caching: on the contrary, the
most natural interpretation of the HILA5 security claims is that HILA5 is secure against
chosen-ciphertext attacks (i.e. IND-CCA).

Summary. In this chapter we show a reaction attack on HILA5: We compute Alice’s
private key by sending her multiple encapsulation messages and using her answers to
determine whether her decapsulated shared secret matches a certain guess or not. Our
attack works independently of whether an AEAD is used or not and despite the error
correcting code introduced in HILA5. This shows that the correct claim for the attacker
model in HILA5 should have been IND-CPA at best.

We have fully implemented our attack and experimentally verified that it works with
high probability. We use the HILA5 reference implementation for Alice’s part and also to
verify that the retrieved private key works for decryption. We use a slightly modified ver-
sion of the same software for computations on the attacker’s side; of course the attacker
need not follow the computations an honest party would.

Organization. In Section 4.2 we describe the necessary preliminaries for this chapter.
Specifically, we introduce the relevant parts of the HILA5 scheme and give more details
on Fluhrer’s attack. In Section 4.3, we describe how we circumvent the error-correcting
code and how to adapt Fluhrer’s attack to the HILA5 case. Finally, in Section 4.4 we
discuss candidate countermeasures.
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4.2 — Preliminaries

Although HILA5 is a lattice-based encryption scheme, we do not formally introduce
lattices (other than defining the polynomial ring R below) yet as this is not relevant to un-
derstand the attack in this chapter. For an introduction to lattices, we defer to Section 6.2.
This section describes the HILA5 scheme and Fluhrer’s attack on RLWE schemes.

4.2.1 – The HILA5 scheme. We describe the scheme as given in [Saa17a, Section 4.9]
but leave out formatting and NTT conversions. These are used in the attack implementa-
tion to interface with the reference implementation but do not contribute to the security
and hamper readability.

The major computations take place in the polynomial ring R = Zq[x]/(xn+1), where
n = 1024 and q = 12289. Alice’s private key is a small, random polynomial a ∈ R, where
small (here and in the following) means that the coefficients are chosen from a narrow
distribution around zero, more precisely the discrete binomial distribution Ψ16 which has
integer values in [−16, 16]. To compute the public key she picks another small random
polynomial e ∈ R and a random g ∈ R and computes A = ga + e. She publishes (g,A)
and keeps a as her private key.

An honest Bob picks two random small polynomials b, e ′ ∈ R and computes B =
gb+ e ′ and y = Ab. Bob sends B to Alice. The second value

y = Ab = (ga+ e)b = gab+ eb ≈ gab

is very close to what Alice can compute using her secret and B:

x = aB = a(gb+ e ′) = gab+ e ′a ≈ gab,

because a,b, e, e ′ are all small.
A simple rounding operation to achieve a shared secret, such as taking the top bits

of each coefficient, will induce differences between Alice’s and Bob’s version with too
high probability. For example, Bob could take k[i] = b2y[i]/qc and Alice could take
k ′[i] = b2 x[i]/qc, where we use t[i] to denote the ith coefficient of polynomial or vector
t, but for indices with (gab)[i] ≈ 0 (or q/2) the error-terms can cause the values to flip to
a different bit, i.e., k[i] 6= k ′[i]. For this rounding operation, we call elements of {0,q/2}
the “edges”, as these are the values for which it is probable that errors occur.

This is why Bob sends a second vector, a binary reconciliation vector c, to help Alice
recover the same k as Bob. Basically, this means that the scheme uses two pairs of edges.
If y[i] was close to one edge of a certain pair, Bob will choose the other pair of edges, so
that Alice can still successfully recover the shared secret. In previous work [Pei14], the
reconciliation vector achieves a successful shared secret with high probability, as long as
|x[i] − y[i]| < q/8.

HILA5 differs in how these reconciliation bits are computed. For each coefficient y[i]
of y Bob computes k[i] = b2y[i]/qc, c[i] ≡ b4y[i]/qc mod 2. Additionally Bob computes
another reconciliation vector d that should further reduce the probability of decryption
failures:

d[i] =

{
1 if |(y[i] mod bq/4e) − bq/8c| 6 β
0 otherwise,

where β = 799. Positions with d[i] = 1 are those for which it is likely that Alice and Bob
recover the same value. In other words, for these indices the value (gab)[i] is likely to
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Figure 4.1: Two different mappings in HILA5 from values in [0,q) to bits {0, 1}: the left mapping is used by
Alice when entry ci = 0 and the right map is used when ci = 1. The dashed lines are called the “edges”.

be far away from an edge, thus further reducing the probability of errors in the shared
secret. He then selects the first 496 positions i for which d[i] = 1 and restarts with fresh
b and e ′ if there are fewer. (Note that the description suggests to discard some positions
if there are more than 496 such positions while the code deterministically discards the
later ones by setting d[j] = 0 for them.)

The encapsulation consists of B,d, c, and an extra part r described below; here d
covers the full n positions while c can be compressed to those positions i where d[i] = 1.

Alice recovers the k[i] at the selected 496 positions by computing

k ′[i] =
⌊
2 (x[i] − c[i] · bq/4e+ bq/8e mod q)/q

⌋
.

In Figure 4.1 a visualization of this mapping by Alice is given.
The HILA5 submission shows that k ′[i] = k[i] with probability 1 − 2−36. Let k (resp.

k ′) be the 496-bit string given by the concatenation of the k[i] (resp. k ′[i]).
The role of r is not well described but the HILA5 design overview says that is an

encrypted encoding of a part of k. It is computed by splitting k as k = m‖z, where m
gets the first 256 bits and z the remaining 240 bits. HILA5 uses a custom-designed error-
correcting code XE5 that corrects at least 5 errors to compute a 240-bit checksum s of m
and then computes r = s⊕ z, where ⊕ denotes bitwise addition (XOR).

Alice computes k ′ = m ′‖z ′, the checksum s ′ on m ′, and applies the XE5 error cor-
rection to m ′, s ′, z ′ and r to correct m ′ to m.

4.2.2 – Fluhrer’s attack. The chosen-ciphertext attack on HILA5 that we are going to
present is a variant of the following attack against key reuse in RLWE-based key exchange
protocols presented by Fluhrer in 2016 [Flu16]. This section assumes that Bob computes
the c[i] and k[i] in a way similar to the previous section. The d[i] were added in HILA5
and will be considered in the next section.

Recall that Alice’s version of the shared secret key is

gab+ e ′a,
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Figure 4.2: Visualization of Fluhrer’s attack on HILA51. Evil Bob artificially forces the first coefficient of
(gab)[0] to be close to edge M. Depending on the private key value a0 of Alice, Alice and evil Bob either
have the same shared secret (i.e. k0 = k ′0: “SUCCESS”) or they do not (i.e. k0 6= k ′0: “FAIL”).

where g is some large public generator element, a and b are Alice’s and Bob’s small
private keys, and e ′ is a small noise vector chosen by Bob. This version of the shared
secret differs from Bob’s by some small error, hence they need to employ a reconciliation
mechanism to arrive at the same secret bit string.

The general strategy of an evil Bob is to artificially force one (say, the first) coefficient
of gab to be close to the edge M between the intervals that are mapped to bits 0 and 1
during reconciliation. An honest user would set the reconciliation bit c[0] in that case, so
Alice would use another mapping that is less likely to produce an error; but evil Bob does
not. Since evil Bob proceeds honestly except for the first bit, he knows two possibilities
for Alice’s private key, hence he can query Alice with one of these guesses and distinguish
between 0 and 1 based on her reaction (i.e. a “FAIL” versus “SUCCESS” as depicted
in Figure 4.2). If we assume for the moment that evil Bob can choose, hence knows,
(gab)[0], this reaction tells him that (e ′a)[0] lies in a certain interval.

After a few queries using binary search with varying values for (gab)[0], evil Bob
knows the exact distance of (e ′a)[0] from the edge, and if he sets e ′ = 1, this distance is
nothing but the first coefficient of Alice’s private key a. Note that in Fluhrer’s setting the
edgeM is at zero and he uses b with (gab)[0] = 1, hence evil Bob can just multiply that
b by small distances to obtain a prescribed (gab)[0] when searching for (e ′a)[0]. In our
adaptation of the attack to HILA5, this step is more involved; see Section 4.3.2.

One could apply this method individually to each coefficient to extract Alice’s full
private key. However, being able to recover the coefficient at one position is enough: due
to the structure of the underlying polynomial ring R, evil Bob can shift the ith coefficient
of a into the constant term of e ′a by setting e ′ to −xn−i, i.e., a vector with one entry of

1The original attack of Fluhrer [Flu16] targeted a lattice-based encryption scheme that uses a different
rounding mechanism (i.e. the edges are different). For consistency and to avoid confusion, we already visualize
this step in our attack for HILA5. However, to get to this part in our attack, Evil Bob has to perform more involved
steps, see Section 4.3.2.
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−1 and 0 elsewhere. This means evil Bob can apply the method for each coefficient of
Alice’s private key once.

We now come back to the assumption made above. Notice that evil Bob does not a
priori know a vector b ∈ R such that (gab)[0] = 1, but he can still reasonably guess one:
Alice’s public key is ga+e for small vectors a and e, hence if b is a small low-weight vector
such that (b · (ga+ e))[0] is close to 1, there is a good chance that in fact (gab)[0] = 1.
Thus, while evil Bob does not have a deterministic method to find an “evil” b, he can
still just make educated guesses based on Alice’s public key until he finds one that works.
Finding b ∈ R with (b · (ga+e))[0] close to 1 is an offline computation using only Alice’s
public key; testing for (gab)[0] = 1 requires interaction with Alice.

There are several follow-ups to Fluhrer’s paper, e.g. [DAS+17], but a small and new
generalization of Fluhrer’s attack is sufficient to attack HILA5.

4.3 — Chosen-ciphertext attack on HILA5

In this section, we describe how we circumvent the error-correction code and how to
adapt Fluhrer’s attack to the HILA5 case.

4.3.1 – Working around error correction. The HILA5 construction includes XE5 as
an error-correcting code that is applied to the shared secret after decapsulation. Both
Alice and Bob compute their version of a redundancy check, which will help Alice to
correct up to 5 errors in the shared secret. The redundancy part r is divided into ten
subcodewords r = r0, . . . , r9 of variable sizes. For the purpose of the attack, these sizes
do not matter, but we use the same notation Li for the size, as in the HILA5 paper. This
means we can index each ri = r(i,0) . . . r(i,Li−1) for i ∈ {0, . . . , 9}.

Bob first computes his part of the HILA5 encapsulation, i.e., he computes his version
of the shared secret, selects the indices that are safe to use by Alice and computes the
reconciliation vector. The last 240 bits of Bob’s shared secret are used in XE5 error-
correction. From these bits, Bob constructs his redundancy check r ′, and sends this as
part of the ciphertext.

Upon receiving Bob’s ciphertext, Alice first computes her part of the HILA5 decapsu-
lation, i.e., she computes her version of the shared secret. Then she computes her own
redundancy check r and computes the distance r∆ with Bob’s r ′ from the ciphertext:

r∆ = r ′ ⊕ r

To determine which bits in the shared secret are erroneous, Alice determines a weight
w∆` ∈ [0, 10] for each of the 256 bits by the following formula:

w∆` = r∆0,b`/16c +
9∑
j=1

r∆j,` mod Lj

Now, if a single bit ` of Alice’s shared secret is flipped, it meansw∆` = 10 [Saa17a, Lemma
2], and it is therefore detectable and correctable by Alice. Moreover, it is shown that XE5
corrects bit ` as long as w∆` > 6 [Saa17a, Theorem 1], which means XE5 can correct at
least 5 bits in the shared secret. This means that applying Fluhrer’s original attack directly
to HILA5 will not work, as Fluhrer’s original attack depends crucially on the attacker’s
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ability to detect single-bit errors in Alice’s version of the shared secret. Thus, to apply
Fluhrer’s attack, we have to work around these error-correction abilities.

In the attack described in the next section, we focus on inducing errors only in the
first bit ` = 0 of the shared secret. This means the attacker evil Bob needs to force w∆0 to
be less than 6, as this means XE5 is no longer capable of correcting the first bit. However,
evil Bob needs to leave the remaining error-correction in place, otherwise he still does
not know if the first bit was the only flipped bit. In order to do that, evil Bob needs to
change his redundancy check r ′ to do exactly that. As w∆0 is obtained by summing up
the first bits of the subcodeword distances r∆i , he can flip any 5 of the bits labeled r ′(0,0)

through r ′(9,0) to forcew∆0 < 6. Our attack flips the first 5 of these bits. This means in the
following section we consider the issue of error-correction solved and can directly apply
a modification of Fluhrer’s attack.

4.3.2 – Details of the attack. This section elaborates on evil Bob’s approach to re-
cover Alice’s private key. As mentioned before, the general procedure mimics Fluhrer’s
attack (Section 4.2.2). The major steps are:

1. Guess a small low-weight secret b0 such that (gab0)[0] is at the edge M.
2. For each δ ∈ {−16, . . . , 16}, compute bδ such that (gabδ)[0] =M+ δ.
3. For each target coefficient of Alice’s private key:

a) Choose e ′ such that (e ′a)[0] is the target coefficient.
b) Perform a binary search using the bδ to recover the target coefficient.

(Alice’s coefficient (gabδ + e ′a)[0] maps to a 1 bit iff (−e ′a)[0] > δ.)
4. If the results look “bad” after recovering a few coefficients in this way, the guess for
b0 was probably wrong and evil Bob should start over at step 1.

Note that for each oracle query, i.e., for every interaction with Alice, Bob proceeds hon-
estly except for using specially crafted bδ and e ′, setting d0 = c0 = 1, and flipping a few
bits in the error correction as described in Section 4.3.1. We now explain and analyze the
steps above in more detail.

Forcing coefficients near the edge. In HILA5’s reconciliation mechanism, there is no
edge at zero for any choice of reconciliation bit, hence Fluhrer’s attack does not apply
without modifications. We chose to set the reconciliation bit c0 to 1 and attack the edge
at

M = bq/8e = 1536.

To perform the binary search for Alice’s private key coefficients in the attack, we need to
find small low-weight vectors bδ such that

(gabδ)[0] =M+ δ

for all δwith |δ| 6 16. (As mentioned in Section 4.2.2, Fluhrer’s evil Bob attackedM = 0,
thus he could guess b1 based on Alice’s public key and set bδ = δ · b1.) One could of
course try to guess each bδ individually based on Alice’s public key, but as we want to get
all bδ right at the same time, this has exponentially low success probability. Instead, we
make use of a special property of the M used in HILA5: The inverse

M−1 mod q = −8
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is small.2 Hence, as soon as evil Bob successfully guessed b0, he may simply set

bδ = (1 + δM−1 mod q) · b0.

In our case, we choose b0 with only two non-zero coefficients from {±1}, thus bδ will
have only two non-zero coefficients bounded by 1 + 8δ. This property is necessary to
make sure evil Bob can actually know what Alice’s version of the shared secret will be
(except for the target bit that leaks information): If the coefficients of bδ are too large,
the error eb− e ′a between Alice’s and Bob’s shared secrets becomes too large to recover
from and their shared secrets will mismatch no matter what the value of the attacked bit
is. In theory, with these parameters we still expect a tiny possibility of unintended errors,
but this happens so rarely that it is not an issue in practice. If it ever does occur, Bob can
detect that his recovered shared secret key is wrong and simply start over with a new b0.

When evil Bob chooses a random b0 with two non-zero coefficients in {±1} and with
(Ab0)[0] = M, the probability that in fact (gab0)[0] = M holds is just the probability
that two Ψ16-distributed values sum to zero:

32∑
i=0

(
32
i

)
2
/264 ≈ 9.9%,

hence he can expect to find a good b0 after about 10 tries. Since A can be approximated
by a uniformly distributed sequence over Zq, the expected number of ±1-combinations
of two coefficients of A which equal M is(

1024
2

)
· 4/q ≈ 170.

Hence, the probability that evil Bob exhausts this pool of choices without finding a good
b0 is roughly 2−25.

(If this ever happens, then evil Bob can still try a larger interval, i.e., search for b0

with |(Ab0)[0] −M| 6 T for some small T . This would in theory work for a wider range
of keys, but the expected number of wrong guesses grows slightly. One could also choose
three non-zero coefficients in b0, although this increases the chance of unintended errors
in Alice’s shared secret. We have not had any problems with T = 0 in practice.)

Detecting bad guesses. After choosing b0 based on Alice’s public key as described above,
evil Bob may just go ahead and try to recover Alice’s private key using that b0. If it is
correct, he will of course find a sequence that looks like it was sampled from the Ψ16

distribution. If b0 is bad, say, (gab0)[0] =M+ γ for some small γ 6= 0, then

(gabδ)[0] =M+ δ+ γ− 8δγ,

hence typically (gabδ)[0] is considerably smaller thanM if δ > 0 and considerably larger
if δ < 0; in both cases Alice’s part (e ′a)[0] is dominated by δ+γ−8δγ, which means the
oracle output does not depend on the secret. This implies the binary search will always
converge to 0 or −1 when b0 is bad. (For δ = 0, the behavior does depend on (e ′a)[0]

2Note that this also holds for some other “natural” choices of M as rounded fractions of q, but it is not
automatically true for any conceivableM.
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since γ is small, so both cases really occur.) Evil Bob can detect this failure mode by
determining a few coefficients and checking whether all of them are in {0,−1}. If this
is the case, evil Bob simply starts over with a new b0. The probability that an actual
secret key starts with a sequence of u coefficients from {0,−1} is about 0.27u, hence
setting u = 8 reduces the probability of a false negative to roughly 2−15. There is a small
probability of false positives if evil Bob uses only this heuristic (e. g., when |γ| = 1), but
this can easily be detected using statistical methods (the recovered sequence will not be
Ψ16-distributed) or by simply testing the obtained secret key in the end and running the
attack again if it failed. In practice the heuristic works fine.

The number of queries. Assuming we already have a good b0, the binary search needs
an expected 5+ε queries to the oracle to recover one coefficient.3 Since evil Bob decides
whether he has a good b0 based on the first few coefficients that he obtains using that
b0, he usually wastes a few hundred queries on guesses for b0 that turn out to be useless:
If he looks at the first 8 coefficients obtained from each b0 as suggested above, this adds
expected ≈ 400 queries to the 5120 needed to recover all the coefficients. In summary,
evil Bob will with overwhelming probability recover Alice’s secret key in less than 6000
queries.

Evil Bob can trade computation for a smaller number of queries: retrieve some co-
efficients, and reduce the original lattice problem to low enough dimension to solve by
computation.

4.3.3 – Implementation. We implemented a proof of concept of the attack in Python,
reusing portions of the HILA5 reference implementation via the ctypes library. The only
modifications we made to the reference implementation were making some functions
non-static to be able to call them from within Python, and adding extra parameters to
the encapsulation function (not used by Alice) such that evil Bob can override his private
values b and e ′. The complete attack script can be found at https://helaas.org/
hila5-20171218.tar.gz. As expected, we have never observed the attack script fail-
ing to recover Alice’s private key. The empirical number of queries matches the theoretical
prediction made above.

4.4 — Discussion of candidate countermeasures

A KEM is defined by three algorithms. Key generation produces a private key and a
public key. Encapsulation produces a ciphertext and a shared secret key, given a public
key. Decapsulation produces a shared secret key or failure, given a ciphertext and a
private key. The HILA5 submission document [Saa17a] gives details and reference code
for a particular KEM, the “HILA5 KEM”.

Our attack is a key-recovery attack against the HILA5 KEM: the attacker, evil Bob,
ends up computing the private key of a target Alice. This private key gives the attacker
the ability to run the decapsulation algorithm using Alice’s private key, and thus the ability
to immediately decrypt legitimate ciphertexts sent by other users to Alice.

Our attack is a chosen-ciphertext attack: evil Bob chooses ciphertexts to provide to
Alice (different from the legitimate ciphertexts), and learns something from observing

3The ε arises from the fact that Ψ16 samples from 33 > 25 distinct values, but the extremal values occur
so rarely that ε ≈ 2−27.

https://helaas.org/hila5-20171218.tar.gz
https://helaas.org/hila5-20171218.tar.gz
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the outputs of Alice decapsulating those ciphertexts. Formally, the attack shows that the
HILA5 KEM does not provide IND-CCA2 security.

There are two important ways that the attack does not need the full power of a CCA2
decapsulation oracle. First, the attack is what is called a “reaction attack” in [HGS99] or
a “sloppy Alice attack” in [VDvT02]: evil Bob has a guess for the output of each decap-
sulation, and learns whether Alice’s actual decapsulation output matches this guess. Evil
Bob does not need any further information.

Second, evil Bob chooses all of his ciphertexts, and learns the private key from Alice’s
reactions, before seeing the legitimate ciphertexts to decrypt. Formally, the attack shows
not only that the HILA5 KEM does not provide IND-CCA2 security, but also that it does
not provide IND-CCA1 security.

4.4.1 – Hashing the secret key does not stop the attack. One can easily stop key-
recovery attacks by defining HILA5Hash as follows. HILA5Hash key generation computes
a uniform random 32-byte string s, and then runs HILA5 key generation to obtain a public
key, hashing s to generate all randomness used in HILA5 key generation. The HILA5Hash
secret key is s. HILA5Hash encapsulation is the same as HILA5 encapsulation. HILA5Hash
decapsulation reconstructs the HILA5 secret key from s (again running the HILA5 key-
generation algorithm; alternatively, the HILA5 secret key can be cached), and then runs
the HILA5 decapsulation algorithm.

Unless the hash function is easy to invert, a key-recovery attack against HILA5 does
not produce a key-recovery attack against HILA5Hash. However, this hashing does not
prevent the attacker from decrypting legitimate ciphertexts sent by other users to Alice.

4.4.2 – AEAD does not stop the attack. A PKE is defined by three algorithms. Key
generation produces a private key and a public key, as in a KEM. Encryption produces a
ciphertext, given a plaintext and a public key. Decryption produces a plaintext or failure,
given a ciphertext and a private key.

The subtitle of the HILA5 submission is “Key Encapsulation Mechanism (KEM) and
Public Key Encryption Algorithm”. The submission document does not include a defi-
nition of a PKE, but NIST had already stated before submission that it would automat-
ically convert each submitted KEM to a PKE using the following “standard conversion
technique”: “appending to the KEM ciphertext, an AES-GCM ciphertext of the plaintext
message” where the AES-GCM key is “the symmetric key output by the encapsulate func-
tion”. This is the standard Cramer–Shoup “KEM-DEM” construction, using AES-GCM as
the DEM. We write “HILA5 PKE” for the PKE that NIST will automatically produce in this
way from the HILA5 KEM.4

Breaking the IND-CCA2 security of a KEM does not necessarily imply breaking the
IND-CCA2 security of a PKE obtained in this way. IND-CCA2 attacks against the KEM can
see shared keys produced by decapsulation, whereas IND-CCA2 attacks against the PKE
are merely able to see the result of AES-GCM decryption using those keys.

However, our attack against the HILA5 KEM is also a key-recovery attack against the
HILA5 PKE. It is important here that the attack is a reaction attack: what evil Bob needs

4NIST actually deviates slightly from the KEM-DEM construction: it specifies a “randomly generated IV”
for AES-GCM, while Cramer and Shoup use a deterministic DEM. For consistency with the ciphertext sizes
mentioned in [Saa17a], we actually define “HILA5 PKE” to be the Cramer–Shoup construction using AES-GCM
with an all-zero IV. Switching to NIST’s construction would expand ciphertext sizes by 12 bytes using the default
IV sizes for AES-GCM, and would not affect our attack.



4.4. DISCUSSION OF CANDIDATE COUNTERMEASURES 69

to know is merely whether a guessed shared key is correct. Starting from this guessed
shared key, evil Bob produces a valid AES-GCM ciphertext using this guess as an AES
key. If decapsulation in fact produces this shared key then AES-GCM decryption succeeds
and produces the plaintext that evil Bob started with. If decapsulation produces a differ-
ent shared key then AES-GCM decryption is practically guaranteed to fail (anything else
would be a surprising security flaw in AES-GCM), so evil Bob sees a decryption failure
from the PKE.

To summarize, evil Bob sees decryption failures from the PKE, and learns from this
which guesses were correct, which is the same information that evil Bob obtains from
the KEM. Evil Bob then computes the secret key from this information. Consequently, the
HILA5 PKE does not provide IND-CCA2 security, and does not even provide IND-CCA1
security.

4.4.3 – Black holes would stop the attack. Like other chosen-ciphertext attacks, our
attack is inapplicable to scenarios where the results of decapsulation and decryption are
hidden from the attacker. For example, if ciphertexts are sent to NSA’s public key, and
if NSA hides the results of applying its secret key to those ciphertexts, then an attacker
outside NSA cannot use our attack to compute NSA’s secret key. However, if NSA reacts
to those results in a way that leaks to the attacker which ciphertexts were valid, then the
attacker can compute NSA’s secret key.

4.4.4 – The Fujisaki–Okamoto transform would stop the attack. We briefly out-
line a more radical change to HILA5, which we call “HILA5FO”. HILA5FO ciphertexts are
slightly larger than HILA5 ciphertexts, encapsulation and decapsulation are more compli-
cated, and decapsulation is extrapolated (from reported HILA5 benchmarks) to be several
times slower, but HILA5FO would stop our attack.

The idea of the HILA5FO KEM is to reapply the encapsulation algorithm as part of
decapsulation, and check whether the resulting ciphertext is identical to the received
ciphertext. This is not a new idea: it is used in many other submissions to NIST (with
various differences in details), typically with credit to Fujisaki and Okamoto [FO99].

HILA5 does not provide any easy way to reconstruct the randomness used in encapsu-
lation (most importantly Bob’s b), so the HILA5FO KEM computes this randomness as a
hash of a plaintext recovered as part of decapsulation. The HILA5 KEM does not transmit
a plaintext, so the HILA5FO KEM is instead built from the HILA5 PKE.

Encapsulation in the HILA5FO KEM thus chooses a random plaintext, and encrypts
this plaintext using the HILA5 PKE (the HILA5 KEM producing a shared key for AES-GCM)
using a hash of the plaintext to compute all randomness used inside the PKE. Decapsu-
lation applies HILA5 PKE decryption (HILA5 KEM decapsulation producing a shared key
for AES-GCM decryption), and checks that the resulting plaintext produces the same ci-
phertext.

Deriving a PKE from the HILA5FO KEM would involve two layers of AES-GCM, which
can be compressed to one layer as follows: place 32 bytes of randomness at the beginning
of the user-supplied plaintext, and then encrypt this plaintext using the HILA5 PKE, again
using a hash of the plaintext to compute all randomness used inside the PKE. The overall
ciphertext size is the original plaintext size, plus 32 bytes (the randomness), plus the
HILA5 KEM ciphertext size, plus 16 bytes (the AES-GCM authenticator), i.e., 32 bytes
more than the HILA5 PKE.





CHAPTER 5

Conclusions and future work

We now revisit the research questions posed in Chapters 2 to 4 of this thesis.

Q1: Is the sponge construction (and thus hash functions like SHA3) collapsing?

We have shown in Chapter 2 that the sponge construction is indeed collapsing, when the
internal function is a random function or a random permutation. We have shown that
the required properties of the internal functions are (left- and right-)collapsing and zero-
preimage resistance. We first showed that a certain step function is collapsing. This step
function is then used in the hybrid argument, which ultimately proves that the whole con-
struction is collapsing. Based on the complexity of attacks on the internal function, we
can give bounds on attacks on the sponge construction, thereby finishing the security re-
duction. The results of this chapter strengthen the confidence in the sponge construction,
as this is another result that shows that quantum attackers do not outperform classical
attacks by much more than a square-root speedup.

A very recently published follow-up of this work [CHS19] proves that the sponge
construction, under the same setting as in the chapter, is actually indistinguishable from
a random oracle. This work also proves that a sponge, with a non-trivial inner part (i.e.
instantiated with a symmetric key), can be used to build a quantum-secure CBC-MAC.

Q2: What can we say about the security of hash-based one-time signatures, when a
user accidentally signs twice?

In Chapter 3 we analyzed the security of the most prominent hash-based OTS – Lam-
port’s scheme, its optimized variant, and WOTS – under different kinds of two-message
attacks. For some attacks we could make a tradeoff between pre-computation and online
computation. In fact, for most attacks there is no requirement to know the public key,
meaning that once an attacker found two messages with the right properties, he can do
an attack on any hash-based OTS key-pair. Interestingly, it turns out that the schemes
are still secure under two message attacks, at least asymptotically. However, this does
not imply anything for typical parameters. Our results show that for Lamport’s scheme,
security only slowly degrades in the relevant attack scenarios and typical parameters are
still somewhat secure, even in case of a two-message attack. As we move on to optimized
Lamport and its generalization WOTS, security degrades faster and faster, and typical
parameters do not provide any reasonable level of security under two-message attacks.
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We do not advocate signing two messages with any OTS, despite the asymptotic results
in this chapter.

A direct application of this work is the analysis of fault attacks on hash-based signa-
tures [CMP18]: the introduced faults force a key-reuse of an OTS key-pair. Our work is
also cited on a Request for Comments page by NIST [NIS19], where stateful hash-based
signature schemes are considered for standardization.

Q3: Can error-correction prevent the reaction attack?

In Chapter 4 we analyzed whether the error-correction technique in HILA5 can stop reac-
tion attacks. We answered this negatively by performing a modified version of Fluhrer’s
attack on HILA5. As an evil Bob can modify his share of the key-exchange, he can cir-
cumvent the error-correcting capabilities of Alice by injecting certain errors in the error-
correction code. Once this error-correcting code has been neutralized, the reaction attack
can continue. Evil Bob sends Alice multiple encapsulated messages and using her answers
can determine whether her shared secrets match a certain guess or not. By means of a
binary search, these guesses turn into the recovery of the whole secret key, coefficient by
coefficient. This work shows that it is very important to determine the appropriate secu-
rity model for a public-key encryption scheme like HILA5 that matches the use in practice
(i.e. one-time keys versus cached keys).

Shortly after publication of these results, the author of HILA5 implied that he should
indeed have been claiming only IND-CPA security instead of IND-CCA1. The HILA5 sub-
mission to NIST was later merged into Round5 [BBF+17], which specifies several IND-
CPA and IND-CCA schemes.

Open problems

We end Part I on this thesis by posing some open problems that remain after the questions
answered in Chapters 2 to 4.

I: Can we prove that the sponge construction is collapsing with an invertible
permutation as internal function?

A big open question in the context of Chapter 2 is whether we can prove that the sponge
construction is collapsing when an efficiently invertible permutation is used as an internal
function. This is an important question, as this will show that the hash function SHA3
is collapsing. Unfortunately, our results (and the follow-up work [CHS19]) does not
imply this quite yet. Proving the property of collapsing with invertible permutations most
definitely requires a different strategy than in our proof, as we have already concluded
that the internal function does not have the required properties when it is efficiently
invertible. However, it could still be that a different property of the internal function
does suffice to show that the sponge construction is collapsing.

1Discussed on the PQC-forum: https://groups.google.com/a/list.nist.gov/d/msg/pqc-
forum/_3ZyCahlBJo/AwYySk-mBQAJ

https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/_3ZyCahlBJo/AwYySk-mBQAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/_3ZyCahlBJo/AwYySk-mBQAJ
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II: Can we improve the analysis for the two-message attacks on WOTS by removing
the independence assumption on message and checksum part?

In Chapter 3, we made an important assumption in the analysis of two-message at-
tacks on WOTS: we assumed that both message and checksum are independently chosen
at random. However, the checksum is completely determined by the message, which im-
mediately falsifies our assumption. Or, to turn it around, when a checksum is given, there
is only a specific subset of messages that have that checksum. The good thing is that the
attacks should only get harder when this restriction is handled, which means that our
work can provide upper bounds for attacks. Still, it remains an open question whether
this assumption can be removed or replaced by some other analysis. An additional ques-
tion is whether such an improved analysis can help improve the EU-CMA attack. If the
attacks would focus on covering one part with two messages, be it message part or check-
sum part, it might be that this also improves the running time to find forgeries. Another
improvement might be in the analysis of the checksum itself: the higher order bits of
the checksum are usually mostly zero, which means our assumption that all bits of the
checksum are uniformly random is also not matching reality. We have not taken this into
account.

III: Is it possible to build a tight IND-CCA encryption scheme based on lattices?

In Chapter 4, we showed several fixes to the reaction attack on HILA5. The most ob-
vious choice would be to use the FO transform [FO99], that turns any IND-CPA scheme
into a IND-CCA version. However, the downside in this method is that this adds a non-
tight layer: there is a security loss in this transform when this is done in the QROM,
i.e. dealing with quantum attackers [TU16]. This means the keys and ciphertext need
to be bigger than in the initial scheme to deal with this loss. There have been several
works [SXY18, JZC+18, BHHP19] trying to remove this security loss, but it comes with
additional assumptions on the scheme (i.e. the tight versions work only with determin-
istic schemes that are OW-CPA). It is therefore an open question how to build a tight
IND-CCA encryption scheme based on an IND-CPA lattice-based encryption scheme. As
we can learn from the HILA5 case, it might be best practice to only use IND-CCA encryp-
tion schemes in deployed cryptography, as these model-mismatch attacks (e.g. reaction
attacks) can easily occur by software mistakes.





PART II

SIDE-CHANNEL ATTACKS





CHAPTER 6

Implementations in post-quantum cryptography

6.1 — Problem description

In Part I of this thesis, we have looked at several research problems concerning model-
mismatch attacks in post-quantum cryptography: attacks that can occur in the case of e.g.
accidental wrong usage of a primitive by applications. However, there is another large
category of attacks possible when applications use cryptography; and, in the digital world
of today, everyone uses cryptography: to secure online banking, emails, messaging apps,
log in to social media, and many more. The fact that there exist many applications, also
means many different devices use cryptography: laptops, phones, smartcards, and many
“new connected devices” will follow. All these devices and applications are potentially
vulnerable to so-called side-channel attacks: attacks that make use of the fact that devices
leak physical information, potentially including cryptographic values that are supposed to
be kept secret. These threats do not disappear when everyone starts using post-quantum
cryptography.

A particularly interesting area in post-quantum cryptography is lattice-based cryptog-
raphy. We have already seen HILA5 in Chapter 4, but there exist many more efficient
lattice-based proposals for signatures, encryption, and key-exchange. Modern lattice-
based cryptography has also already seen (limited) real-world evaluation, e.g., the ex-
periments with the NewHope [ADPS16] key-exchange and more recently the NTRU-
HRSS [HRSS17] Key Encapsulation Mechanism by Google [Bra16, Lan16, Lan18], the
implementations of NTRU [HPS98] and BLISS [DDLL13b] in strongSwan [str15] and the
addition of NTRU Prime [BCLvV17] in OpenSSH [Ayi19]. While the theoretical and prac-
tical security of these schemes is under active research1, security of implementations is
still a largely unexplored area. This is the main focus of Part II of this thesis.

6.2 — Lattice-based cryptography

6.2.1 – Lattices. We define a lattice Λ as a discrete subgroup of Rn: givenm 6 n lin-
early independent vectors b1, . . . , bm ∈ Rn, the latticeΛ is given by the setΛ(b1, . . . , bm)
of all integer linear combinations of the bi’s:

Λ(b1, . . . , bm) =

{
m∑
i=1

xibi | xi ∈ Z
}

.

1Official discussion forum of the NIST ‘competition’ at https://groups.google.com/a/list.nist.
gov/forum/#!forum/pqc-forum

https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
https://groups.google.com/a/list.nist.gov/forum/#!forum/pqc-forum
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We call {b1, . . . , bm} a basis of Λ and define m as the rank. We represent the basis as a
matrix B = (b1, . . . , bm), which contains the vectors bi as column vectors. In this thesis,
we mostly consider full-rank lattices, i.e. m = n, unless stated otherwise. A basis for
a lattice is not unique: given a basis B ∈ Rn×n of a full-rank lattice Λ, we can apply
any unimodular transformation matrix U ∈ Zn×n and UB will also be a basis of Λ. The
characteristics of a basis are important in lattice-based cryptography, see Section 6.2.2.
We define a “good basis” and a “bad basis” for a lattice Λ: a good basis is a basis that has
relatively short and orthogonal vectors, whilst a bad basis has long vectors and describes
a very thin parallelepiped. Here, short and long are defined using some norm || · ||, where
we usually use the Euclidean norm denoted with || · ||2.

The LLL algorithm [LLL82], and the BKZ algorithm and its improved versions [CN11],
transform a basis B to its LLL/BKZ-reduced basis B ′ in polynomial time2: a reduced ba-
sis has relatively short and orthogonal vectors. The LLL and BKZ algorithms can there-
fore be seen as algorithms that improve the lattice basis, although there is usually still a
gap between the LLL/BKZ-reduced basis and a “good basis” (especially for random high-
dimensional lattices). In particular, in an LLL/BKZ-reduced basis the shortest vector v
of B ′ satisfies ||v||2 6 2

n−1
4 (| det(B)|)1/n and there are looser bounds for the other basis

vectors. Besides the LLL/BKZ-reduced basis, NTL’s [Sho15] implementation of LLL and
BKZ also returns the unimodular transformation matrix U, satisfying UB = B ′.

An integer lattice is a lattice for which the basis vectors are in Zn. For integer lattices
it makes sense to consider elements modulo q, so coefficients are taken from Zq and
thus vectors from Znq . On top of that, more efficiency can be gained to use, e.g., cyclic
lattices: these lattices have a basis, whose vectors are rotations of one single vector. A
generalization of a cyclic lattice is called an ideal lattice: they are lattices corresponding
to ideals in polynomial rings of the form R = Z[x]/〈h〉 for some irreducible polynomial h
of degree n (see e.g. [LPR10] for more background on ideal-lattice-based cryptography).
Note that being cyclic adds additional structure to these lattices which normal lattices do
not have. In cryptography often the ring Rq = Zq[x]/(xn ± 1) is used, which has the
additional benefit that it inherits efficient polynomial arithmetic via the Number Theoretic
Transform (NTT). The elements in R = Z[x]/(xn+1) can be represented as polynomials
of degree less than n. For each polynomial f(x) ∈ R we define the corresponding vector
of coefficients as f = (f0, f1, . . . , fn−1). Addition of polynomials f(x) + g(x) corresponds
to addition of their coefficient vectors f + g. Multiplication of f(x) · g(x) mod (xn + 1)
defines a multiplication operation on the vectors f · g = gF = fG, where F, G ∈ Zn×n are
matrices, whose columns are the rotations of (the coefficient vectors of) f, g, with signs
matching the reduction modulo xn + 1. Lattices using polynomials modulo xn + 1 are
often called NTRU lattices after the NTRU encryption scheme [HPS98]. When we work
in Rq = Zq[x]/(xn + 1) (or R2q), we assume n is a power of 2 and q is a prime bigger
than 2.

6.2.2 – Hard lattice problems. Two fundamental problems on lattices are the short-
est vector problem and the closest vector problem. The shortest vector problem (SVP) is
given by the following definition: given a basis B of a lattice Λ, find an s ∈ Λ such that
||s|| = λ1(Λ) = minv∈Λ,v6=0 ||v||. The closest vector problem (CVP) is defined by the follow-
ing definition: given a basis B of a lattice Λ and a target vector t ∈ Rn, find a y ∈ Λ such

2BKZ has a subroutine that does not run in polynomial time, i.e. depending on the so-called blocksize BKZ’s
subroutine has exponential running time.
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that ||y − t|| = minv∈Λ ||v − t||. In cryptography, often the approximate versions of these
problems (i.e. SVPγ and CVPγ) are used with a so-called approximation factor γ > 1:
solutions to the above problems within a factor γ suffice as a solution (e.g. a short vector
s̃ ∈ Λ, s̃ 6= 0 with ||s̃|| 6 γλ1(Λ) for SVPγ). In general these problems are easy to solve
given a “good basis” B of Λ, but are hard when a “bad basis” B ′ is given of the same
lattice. Although LLL and BKZ can improve the bad basis, the approximation factor that
is left after applying these algorithms is too large to break lattice-based cryptography.
Hence, these lattice problems could be used as the trapdoor one-way function that allows
to build public-key cryptography: a bad basis of the lattice is given as the public key and
a good basis is the accompanying secret key.

However, the more modern lattice-based cryptosystems do not use the lattice prob-
lems straight-away as the trapdoor. Instead, they use problems that are related to SVP and
CVP. Most notably, Regev [Reg09] introduced the Learning-with-Errors problem: given
multiple noisy inner-products (a, 〈a, s〉 + e mod q), find s. Here, a ∈ Znq is random and
e ∈ Z (and possibly also s ∈ Znq) is randomly generated according to some narrow er-
ror distribution D defined over Z. When D = Dσ is the discrete Gaussian distribution
(we give a definition of this distribution in Chapter 8) centered around 0 with parameter
σ > 0, then specific LWE instances have a (quantum) reduction from a closest vector
problem [Reg09]. Although the originally proposed primitives based on LWE had quite
large outputs (e.g. keys and ciphertexts), improved versions exist that are based on rings
(ring-LWE), i.e. instead of defining LWE over Zq it is defined over, e.g., the polynomial
ring Rq as introduced in the previous section. Recall that such polynomial rings have two
benefits: the underlying lattice is an ideal (e.g. cyclic) lattice and there are efficient algo-
rithms for polynomial multiplication using the NTT. This leads to both smaller and more
efficient schemes than those based on plain LWE. A problem related to LWE is called the
Short Integer Solution (SIS) problem: given A ∈ Zm×nq and a target vector t ∈ Zmq (can
be the all-zero vector), find a small vector s ∈ Znq such that As ≡ t mod q. Many lattice-
based signature schemes use a combination of (ring-)LWE and (ring-)SIS. In Part II of this
thesis we focus on several implementation problems for lattice-based signature schemes.

6.3 — Side-channel attacks

6.3.1 – Introduction. To break (public-key) cryptography, it is not always necessary
to break the underlying hard mathematical problem (mathematical cryptanalysis): there
is a gap between the mathematical theories on the white board and the security of their
cryptographic implementations. Side-channel attacks use the fact that real-world de-
vices potentially leak physical information: in the form of EM-radiation, memory-access
patterns or in general the execution time of an algorithm. If such a device was per-
forming a cryptographic operation and these physical leakages depend on secret values,
the side-channel information might allow to break the cryptographic primitive. Side-
channel attacks have shown to be very effective in breaking real-world security, such
as the widely used internet protocol SSL/TLS [AP13] or email-encryption software like
GnuPG [GST14]. Hence, these attacks must always be considered when cryptography is
implemented in practice. In this thesis, we focus on two types of side-channel attacks:
cache attacks and fault attacks, introduced in the following sections.
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6.3.2 – Cache attacks. The cache is a small bank of memory which exploits the tem-
poral and the spatial locality of memory access to bridge the speed gap between the faster
processor and the slower memory. The cache consists of cache lines, which, on modern
architectures like the Intel architecture we tested, can store an aligned block of memory
of size 64 bytes. In a typical processor there are several cache levels. At the top level,
closest to the execution core, is the L1 cache, which is the smallest and the fastest of
the hierarchy. Each successive level (L2, L3, etc.) is bigger and slower than the preced-
ing level: this hierarchy is caused by the steeply growing cost for fast memory. When
the processor accesses a memory address it looks for the block containing the address in
the L1 cache. In a cache hit, the block is found in the cache and the data is accessed.
Otherwise, in a cache miss, the search continues on lower levels, eventually retrieving
the memory block from the lower levels or from the memory. The cache then evicts a
cache line and replaces its contents with the retrieved block, allowing faster future ac-
cess to the block. Because cache misses require searches in lower cache levels, they are
slower than cache hits. Cache timing attacks exploit this timing difference to gain in-
formation [Ber05, Per05, OST06, GBK11, LYG+15]. In a nutshell, when an attacker uses
the same cache as a victim, victim memory accesses change the state of the cache. The
attacker can then use the timing variations to check which memory blocks are cached
and from that deduce which memory addresses the victim has accessed. Ultimately, the
attacker learns the cache line of the victim’s table access: a range of possible values for
the index of the access.

In this thesis we focus on the FLUSH+RELOAD attack [YF14, GBK11]. A FLUSH+RE-
LOAD attack uses the clflush instruction of the x86-64 architecture to evict a memory
block from the cache. The attacker then lets the victim execute some operation including
a load before measuring the time to access some memory block. If during its execu-
tion the victim has accessed an address within the block, the block will be cached and
the attacker’s access will be fast. If, however, the victim has not accessed the block, the
attacker will cause the processor to reload the block from memory, and the access will
take much longer. Thus, the attacker learns whether the victim accessed the memory
block during that operation. The FLUSH+RELOAD attack has been used to attack imple-
mentations of RSA [YF14], AES [GBK11, AIES14], ECDSA [YB14, vdPSY15] and other
software [ZJRR14,GSM15], before.

6.3.3 – Fault attacks. Fault attacks are active attacks, where an adversary injects
faults during the execution of cryptographic algorithms and caused a different execu-
tion; in contrast, cache attacks do not change the (outcome of the) victim’s execution
itself. The injected faults may lead to unintended behaviour of the execution of the al-
gorithm, potentially changing the outcome of the primitive. These faults can be injected
in the device by, e.g., clock glitching or any type of rare sequence of events. There are
several targets to inject a fault in a calculation, leading to various attack scenarios. For
example, a loop-abort fault attack simply aborts a procedure with a loop before its in-
tended end. If this would happen during a loop that ensures the security of secret values,
these values are potentially output in plain because of the abort. Another type is a differ-
ential fault attack, that requires two (or more) executions of the cryptographic algorithm.
By injecting a fault during one of the executions, the attack tries to gather information
from the difference of the two outputs which could allow to break the primitive. These
attacks have been applied to various implementations of cryptography, but up to recently
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did require physical access to the device to inject the fault. The so-called Rowhammer
attack [GMM16] is a remote fault-attack, thereby increasing the applicability and impact
of fault attacks tremendously.

6.4 — Challenges and research questions

In Part II of the thesis, we will look at several implementation attacks, with a focus
on lattice-based schemes. We now present the research questions that will be answered
in this part, accompanying the following four chapters.

Q1: How much does left-to-right sliding window exponentiation hurt security?

As an intermezzo, we will first look at possible side-channel attacks on deployed cryp-
tography based on RSA. It is well known that constant-time implementations of modular
exponentiation in RSA cannot use sliding windows. However, software libraries such as
Libgcrypt, used by GnuPG, continue to use sliding windows. The reason is that it is widely
believed that, even if the complete pattern of squarings and multiplications is observed
through a side-channel attack, the number of exponent bits leaked is not sufficient to
carry out a full key-recovery attack against RSA. Specifically, a 4-bit sliding windows im-
plementation leaks only 40% of the bits, and 5-bit sliding windows leak only 33% of the
bits. But is this really the case or can we actually retrieve more bits? We investigate this
possibility in Chapter 7.

Q2: Are side-channel attacks possible on the discrete Gaussian sampler?

It is not always trivial to perform a side-channel attack, even in the presence of infor-
mation leakage. Many lattice-based schemes, especially digital signature schemes, use
noise sampled from a discrete Gaussian distribution to achieve a tight security reduction
and high efficiency. This is often coupled with rejection sampling: occasionally reject-
ing signatures to remove the dependency between signatures and the secret key. A very
promising signature scheme implementing these techniques is called BLISS [DDLL13b].
However, it is not straightforward to securely implement samplers for the discrete Gaus-
sian distribution. This makes it a good target for a side-channel attack. In Chapter 8, we
investigate whether side-channel attacks are possible on the discrete Gaussian sampler.

Q3: Is BLISS-B a free countermeasure against side-channel attacks?

In Q2, that is answered in Chapter 8, we investigate the applicability of side-channel
attacks on BLISS, targeting samplers for the discrete Gaussian distribution. However,
there is an upgraded version called BLISS-B, which in particular does not seem vulnerable
to the attacks on BLISS developed in Chapter 8. This is due to the fact that BLISS-B
signatures hide more information than the original BLISS, including information that
could be crucial for an attacker. Hence, any attack on BLISS is not naturally extended to
BLISS-B, on the contrary: this could mean that using BLISS-B instead of BLISS is an easy
countermeasure against side-channel attacks. As it is superior to BLISS, the upgraded
BLISS-B has been implemented in e.g. strongSwan [str15]. Another important problem
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in the applicability of cache-attacks in real-life scenarios is the issue of synchronization:
what if the victim is not synchronized with the attacker? It is not known how to solve
that problem for the side-channel attacks on lattice-based schemes. In Chapter 9 we
investigate whether we can a perform practical asynchronous cache attack on BLISS-B.

Q4: Do deterministic versions of lattice-based signature schemes hurt security?

As it is not straightforward to sample from a discrete Gaussian distribution, it might be a
better option to remove such distributions entirely from lattice-based signature schemes:
noise from the uniform distribution can also be used, at the expense of bigger signature
sizes. On top of that the lattice-based scheme can be made completely deterministic: i.e.
given a secret key and a message, there is a unique signature output by the signature
algorithm. While this is a good strategy against devices that do not have access to good
randomness generators, it opens the door to another category of attacks: differential fault
attacks. These attacks have been shown to be successful against deterministic elliptic-
curve based signature schemes, but are these attacks also possible on deterministic lattice-
based schemes? This is investigated in Chapter 10 of the thesis.



CHAPTER 7

Sliding right into disaster

7.1 — Overview

Context. In this intermezzo chapter we take a brief step out of the realm of post-quantum
cryptography and look at deployed implementations of RSA, motivating the importance
of the topic of side-channel attacks. Modular exponentiation in cryptosystems such as
RSA is typically performed using a square-and-multiply sequence that traverses over the
bits of the exponent. There are two ways to do this: either starting from the most signif-
icant bit (MSB) in a left-to-right manner or starting from the least significant bit (LSB)
in a right-to-left manner. To increase performance, most practical RSA implementations
use the Chinese remainder theorem (CRT) to speed up the decryption operation, as this
halves both the size of the exponent as well as the modulus. As multiplication is the most
time-consuming operation, implementations can furthermore use precomputed values to
decrease the number of multiplications in the exponentiation: instead of traversing over
the key bit-by-bit, multiple bits are grouped together in a so-called window and one mul-
tiplication is done for all the bits covered in the window. There are two options for the
window methods. The fixed window method simply takes a fixed number w of consecu-
tive bits in one window and puts the next window adjacent to it. In the exponentiation, it
performs one multiplication everyw bits with the value depending on the bits in the win-
dow. The sliding window method permits gaps consisting of 0-bits between windows and
performs a squaring for these bits instead. On average this takes fewer multiplications.
Typically these sliding window methods are described in a right-to-left manner, starting
with the encoding of the exponent from the least significant bit, leading to the potential
disadvantage that the exponent has to be parsed twice: once for the encoding and once
for the exponentiation.

This motivated researchers to develop left-to-right analogues of the integer encoding
methods that can be integrated directly with left-to-right exponentiation methods. For
example, the only method for sliding-window exponentiation in the Handbook of Ap-
plied Cryptography [MvOV96, Chap 14.6] is the left-to-right version of the algorithm.
Doche [Doc05] writes “To enable ‘on the fly’ recoding, which is particularly interesting
for hardware applications” in reference to Joye and Yen’s [JY00] left-to-right algorithm.

Given these endorsements, it is no surprise that many implementations chose a left-
to-right method of encoding of the exponent. For example, Libgcrypt implements a left-
to-right exponentiation with integrated encoding. Libgcrypt is part of the GnuPG code
base [GNUa], and is used in particular by GnuPG 2.x, which is a very popular imple-
mentation of the OpenPGP standard [CDF+07] for applications such as encrypted email
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and files. Libgcrypt is also used by various other applications; see [Gnub] for a list of
frontends.

The attack target. In order to compute an RSA signature (or perform an RSA decryption),
a modular exponentiation must be performed: given inputs base b, secret exponent d and
modulus p, compute bd mod p. This is typically performed using a square-and-multiply
operation that traverses over the bits of d = dn−1 . . .d0. Typically about half of the bits
of d are 1, leading to about n/2 time-consuming multiplications.

To speed up the modular exponentiation, the number of multiplications is reduced
by using a small table of pre-computed values: instead of performing the multiplications
bit-by-bit, a group of w bits of d are grouped together to perform one “big” multiplica-
tion using the pre-computed values (we explain what these pre-computed values are in
Section 7.2). To do this, first the sliding window form of d has to be computed: this is an
encoding of the bits using windows of size w. Such a method can be done left-to-right
or right-to-left, but the left-to-right method is the only version that can do encoding and
multiplication “on the fly”: it traverses the bits to find the correct windows and performs
the appropriate multiplications and squarings immediately. A right-to-left method should
first group the bits of d into windows and then traverse the windows a second time to
do the squares and multiplications. The exponentiation requires on average n/(w + 1)
multiplications.

Since a multiplication is the most time-consuming operation, a side-channel attack
could recover the sequence of squares and multiplies, independent of the direction of left-
to-right versus right-to-left. For example, a cache-attack like the FLUSH+RELOAD attack as
discussed in Section 6.3 is able to recover this sequence. An additional benefit for sliding-
window methods is that a side-channel attack targeting the square-and-multiply sequence
recovers less information for bigger w. It might recover that there was a multiplication
for a certain window, but cannot recover the individual value contained in the window.
On average only 1 out of w bits can be recovered from a window, which is a certain
di = 1 depending on the location of the multiplication. Such a side-channel attack
tracing the positions of the multiplications could actually recover a bit more: the lack of
multiplications during the processing of some bits also tells that certain bits di = 0. This
leads to the common belief of “security under leakage” for these sliding-window methods.
For window widthw only about a fraction 2/(w+1) bits would leak: each window has 1
bit known to be 1, and each gap (i.e. a number of processed bits without multiplication)
has on average 1 bit known to be 0, compared to w+ 1 bits occupied on average by the
window and the gap. Typical implementations (including Libgcrypt) usew = 4 orw = 5
depending on the size of the RSA modulus, leading to 40% and 33% recoverable bits by
a side-channel attack. This is too few to use the key-recovery attack [HS09] by Heninger
and Shacham: this method requires at least 50% of the bits known and its running time
grows exponentially for each additional unknown bit.

Libgcrypt 1.7.6, the latest version at the time of doing this research, resists the at-
tacks of [LYG+15, GPPT15], because the Libgcrypt maintainers accepted patches to pro-
tect against chosen-ciphertext attacks and to hide timings obtained from loading precom-
puted elements. However, the maintainers refused a patch to switch from sliding windows
to fixed windows; they said that this was unnecessary to stop the attacks. RSA-1024 in
Libgcrypt uses the CRT method andw = 4, too few to use the key-recovery attack [HS09]
by Heninger and Shacham. RSA-2048 uses CRT and w = 5. In this chapter, we inves-
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tigate whether this common belief is correct and analyze the information that can be
gained from side-channel attacks on the sliding window exponentiation.

Summary. In this chapter we show that the common belief is incorrect for the left-to-right
encoding: this encoding actually leaks many more bits. An attacker learning the location
of multiplications in the left-to-right square-and-multiply sequence can recover the key for
RSA-1024 with CRT andw = 4 in a search through fewer than 10000 candidates for most
keys, and fewer than 1000000 candidates for practically all keys. Note that RSA-1024
and RSA-1280 remain widely deployed in some applications, such as DNSSEC. Scaling
up to RSA-2048 does not stop our attack: we show that 13% of all RSA-2048 keys with
CRT andw = 5 are vulnerable to our method after a search through 2000000 candidates.

We analyze the reasons that left-to-right leaks more bits than right-to-left and ex-
tensive experiments show the effectiveness of this attack. We will give a short intuition
here why there is a difference between these two methods. Recall that in the sliding-
window methods, w bits are processed together for one multiplication using a table with
pre-computed values. To reduce the size of these tables, the windows are limited to odd
values: i.e. the rightmost bit in any window should be 1 (independent of the direction
of left-to-right versus right-to-left). This is easily achieved in the right-to-left method:
whenever a bit di = 1 the window extends from there to als include the next w − 1
values. This means the subsequent w − 1 bits to the left of di (i.e. di+w−1, . . . ,di+1)
are grouped together with di in a window. Since the processing of the window started
with di = 1, which is the least significant bit in the window, it is ensured that the value
in the window is odd. This ensures that whenever a multiplication occurs, at least w
squarings follow. However, when this is turned around in the left-to-right method, the
processing starts with the most-significant bit in such a window: in this case when di = 1
the window extends from there. This means the subsequent w− 1 bits to the right of di
(i.e. di−1, . . . ,di−w+1) are (potentially) grouped together with di in a window. How-
ever, since each window must contain an odd value, there is some additional processing:
the method needs to check whether di−w+1 = 1 as that is the least-significant bit for the
window starting at di. If this is the case, the w bits can be processed with one multipli-
cation as usual, as the window contains an odd value. But if di−w+1 = 0, the window
needs to be smaller: the method needs to check the bit to the left of di−w+1 and repeat
these checks up to the point where the least significant bit in the window is 1 (which can
be di). This means that after a multiplication in the left-to-right method there is not a
fixed number of squarings, but a number that depends on the bits di−1, . . . ,di−w+1. In
the extreme case that di−1 = . . . = di−w+1 = 0, two multiplications could be as close
as adjacent with no squarings in between: this is something a side-channel attack could
detect and thereby determine several bits to be zero. This event is one attack avenue we
cover in Section 7.3, but more of these known bits are possible.

We further improve the algorithm by Heninger and Shacham to make use of less
readily available information to attack RSA-2048, and prove that our extended algorithm
efficiently recovers the full key when the side channel leaks data with a self-information
rate greater than 1/2. Figure 7.1 visualizes the distribution of information recovered (for
w = 4) in previous analysis (i.e. the common belief) for the right-to-left method and the
two new analyses for the left-to-right method described in this chapter.

To illustrate the real-world applicability of this attack, we demonstrate how to obtain
the required side-channel data (the pattern of squarings and multiplications) from the
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Figure 7.1: This graph shows the probability (y-axis) to recover a percentage of bits (x-axis) from the square-
and-multiply sequence using the described analysis. The sequence of squares and multiplies of left-to-right
windowed exponentiation contains much more information about the exponent than from exponentiation in
the other direction, both in the form of known bits (red, Section 7.3-7.5) and information-theoretic bits (green,
Section 7.6). Recovering close to 50% of the information about the key allows an efficient full key recovery
attack.

modular-exponentiation routine in Libgcrypt version 1.7.6 using a FLUSH+RELOAD [YF14,
YB14] cache-timing attack that monitors the target’s cache-access patterns. The attack
combines a small number of traces (at most 20) using the same secret RSA key, and does
not depend on further front end details.

Targeted Software. We target Libgcrypt version 1.7.6, which is the latest version at
the time of doing this research [BBG+17b] that this chapter is based on. We compiled
Libgcrypt using GCC version 4.4.7 and the -O2 optimization level. We performed the
attack on an HP-Elite 8300 desktop machine, running Centos 6.8 with kernel version
3.18.41-20. The machine has a 4-core Intel i5-3470 processor, running at 3.2 GHz, with
8 GiB of DDR3-1600 CL-11 memory.

Organization. In Section 7.2, we discuss the algorithms of RSA, in particular the sliding
window exponentiation method. In Section 7.3, we analyze the left-to-right versus right-
to-left sliding windows, and show how to gain as many secret bits as possible from the
square-and-multiply sequence. In Section 7.4, we analyze in theory how many secret bits
we can get from the bit recovery rules. We also verify the analysis with experiments. In
Section 7.5, we complete the bit analysis and show how to do a full RSA key recovery
using Heninger-Shacham’s algorithm. In Section 7.6, we show how to retrieve more in-
formation from the left-to-right method, that are not immediately translatable to known
bits. Lastly, we verify the found vulnerabilities in Section 7.7 by attacking the implemen-
tation in Libgcrypt.

7.2 — Preliminaries

7.2.1 – RSA-CRT. RSA key generation is done by generating two random primes p,q.
The public key is then set to be (e,N) where e is a (fixed) public exponent and N = pq.
The private key is set to be (d,p,q)where ed ≡ 1 (mod φ(n)) andφ(n) = (p−1)(q−1).
An RSA signature of a message m is done by computing s = h(m)d mod N where
h is a padded cryptographically secure hash function. Signature verification is done
by computing z = se mod N and verifying that z equals h(m). A common optimiza-
tion for RSA signatures is based on the Chinese Remainder Theorem (CRT). Instead
of computing s = h(m)d mod N directly, the signer computes sp = h(m)dp mod p,
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Algorithm 7.1 Sliding window modular exponentiation.

Require: Three integers b, d and p where dn · · ·d1 is a window form of d.
Ensure: a ≡ bd (mod p).

1: procedure MOD_EXP(b,d,p)
2: b1 ← b, b2 ← b2 mod p, a← 1
3: for i← 1 to 2w−1 − 1 do . precompute table of small powers of b
4: b2i+1 ← b2i−1 · b2 mod p
5: for i← n to 1 do
6: a← a · a mod p
7: if di 6= 0 then
8: a← a · bdi mod p

9: return a

sq = h(m)dq mod q (where dp and dq are derived from the secret key) and then com-
bines sp and sq into s using the CRT. The computations of sp and sq work with half-size
operands and have half-length exponents, leading to a speedup of a factor 2–4.

7.2.2 – Sliding Window Modular Exponentiation. In order to compute an RSA sig-
nature (more specifically the values of sp and sq defined above), two modular exponenti-
ation operations must be performed. A modular exponentiation operation gets as inputs
base b, exponent d, and modulus p and outputs bd mod p. A common method used for
efficient implementations is the sliding window method, which assumes that the expo-
nent d is given in a special representation, the window form. For a window size w, the
window form of d is a sequence of digits dn−1 · · ·d0 such that d =

∑n−1
i=0 di2

i and di is
either 0 or an odd number between 1 and 2w − 1.

Algorithm 7.1 performs the sliding window exponentiation method, assuming that
the exponent is given in a window form, in two steps: It first precomputes the values of
b1 mod p,b3 mod p, · · · ,b2w−1 mod p for odd powers of b. Then, the algorithm scans
the digits of d from the most significant bit (MSB) to the least significant bit (LSB). For
every digit, the algorithm performs a squaring operation (Line 6) on the accumulator
variable a. Finally, for every non-zero digit of d, the algorithm performs a multiplication
(Line 8).

7.2.3 – Sliding Window Conversion. The representation of a number d as (sliding)
windows is not unique, even for a fixed value of w. In particular, the binary represen-
tation of d is a valid window form. However, since each non-zero digit requires a costly
multiplication operation, it is desirable to reduce the number of non-zero digits in d’s
sliding window representation.

Right-to-Left Sliding Windows. One approach to computing d’s sliding windows (with
fewer non-zero digits) scans d’s binary representation from the least significant bit (LSB)
to the most significant bit (MSB) and generates d’s sliding windows from the least signif-
icant digit (right) to the most significant digit (left). For every clear bit (i.e. a bit that is 0
and does not belong to a window), a zero digit is appended to the left of the current po-
sition. For each set bit (i.e. a bit that is 1), the following steps are performed: a non-zero
digit is appended whose value is thew-bit integer ending at the current bit. Additionally,
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the nextw−1 digits in the expansion are set to be zero digits. The scan resumes from the
leftmost bit unused so far. Finally, any leading zeroes in the window form are truncated.

For example, letw = 3, and d = 181, which is 1 0 1 1 0 1 0 1 in binary. The windows
are underlined. This yields the sliding window form 10030005.

Left-to-Right Sliding Windows. An alternative approach is the left-to-right window form,
which scans the bits of d from the most to least significant bit and the window form is
generated from the most significant digit to the least significant one. Similar to the right-
to-left form, for every scanned clear bit a zero digit is appended to the right of the current
position. Since we require digits to be odd, when a set bit is encountered, the algorithm
cannot simply set the digit to be the w-bit integer starting at the current bit. Instead,
it looks for the the longest integer u that has its most significant bit at the current bit,
terminates in a set bit, and has its number of bits k is at most w. The algorithm sets
the next k − 1 digits in the expansion to be zero, sets the subsequent digit to be u and
resumes the scan from the next bit unused so far. As before, leading zeroes in the sliding
window form are truncated.

Using the d = 181 and w = 3 example, the left-to-right sliding windows are in
this case 1 0 1 1 0 1 0 1 and the corresponding window form is 500501 (and 00500501
before truncation of leading zeroes).

Left-to-Right vs. Right-to-Left. While both methods produce an expansion whose aver-
age density (the ratio between the non-zero digits and the total length) is about 1/(w+1),
generating the window form using the right-to-left method guarantees that every non-
zero digit is followed by at least w− 1 zero digits. This is different from the left-to-right
method, where two non-zero digits can be as close as adjacent. As explained in Sec-
tion 7.4, such consecutive non-zero digits can be observed by the attacker, aiding key
recovery for sliding window exponentiations using the left-to-right direction.

7.2.4 – GnuPG’s Sliding Window Exponentiation. While producing the right-to-left
sliding window form requires a dedicated procedure, the left-to-right form can be gen-
erated “on-the-fly” during the exponentiation algorithm, combining the generation of
the expansion and the exponentiation itself in one go. The left-to-right sliding window
form [MvOV96, Algorithm 14.85], shown in Algorithm 7.2, is the prevalent method used
by many implementations, including GnuPG.

Every iteration of the main loop (Line 6) constructs the next non-zero digit u of the
window form by locating the location i of the leftmost set bit of d which was not pre-
viously handled (Line 8) and then removing the trailing zeroes from di · · ·di−w+1. It
appends the squaring operations needed in order to handle the zero digits preceding u
(Line 13) before performing the multiplication operation using u as the index to the pre-
computation table (thus handling u), and keeping track of trailing zeroes in z.

7.3 — Sliding right versus sliding left analysis

In this section, we show how to recover some bits of the secret exponents, assum-
ing that the attacker has access to the square-and-multiply sequence performed by Al-
gorithm 7.2. We show that more bits can be found by applying this approach to the
square-and-multiply sequence of the left-to-right method compared to that of the right-
to-left method. At a high level, our approach consists of two main steps. In the first
step, we show how to directly recover some of the bits of the exponent by analyzing the
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Algorithm 7.2 Left-to-right sliding window modular exponentiation.

Require: Three integers b, d and p where dn · · ·d1 is the binary representation of d.
Ensure: a ≡ bd (mod p).

1: procedure MOD_EXP(b,d,p)
2: b1 ← b, b2 ← b2, a← 1, z← 0
3: for i← 1 to 2w−1 − 1 do . precompute table of small odd powers of b
4: b2i+1 ← b2i−1 · b2 mod p
5: i← n
6: while i 6= 1 do . main loop for computing bd mod p
7: z← z+ COUNT_LEADING_ZEROS(di · · ·d1)
8: i← i− COUNT_LEADING_ZEROS(di · · ·d1)

. i is the leftmost unscanned set bit of d
9: l← min(i,w)

10: u← di · · ·di−l+1

11: t← COUNT_TRAILING_ZEROS(u)
12: u← SHIFT_RIGHT(u, t) . remove trailing zeroes by shifting u to the right
13: for j← 1 to z+ l− t do
14: a← a · a mod p
15: a← a · bu mod p . notice that u is always odd
16: i← i− l
17: z← t

18: return a

Rule 0: x→ 1

Rule 1: 1xi1xw−i−1 → 1xi10w−i−1 for i = 0, . . . ,w− 2

Rule 2: xxx11→ 1xx11

Rule 3: 1xixw−11→ 10ixw−11 for i > 0

Figure 7.2: Rules to deduce known bits from a square-and-multiply sequence

sequence of squaring and multiplication operations performed by Algorithm 7.2. This
step shows that we are capable of directly recovering an average of 48% of the bits of
dp and dq for 1024-bit RSA with w = 4, the window size used by Libgcrypt for 1024-bit
RSA. However, the number of remaining unknown bits required for a full key recovery
attack is still too large to recover them with a brute-force attack. In Section 7.5.2 we
show that applying a modified version of the techniques of [HS09] allows us to recover
the remaining exponent bits and obtain the full private key, if at least 50% of the bits are
recovered.

7.3.1 – Analyzing the square and multiply sequence. Assume the attacker has ac-
cess to the sequence S ∈ {s, m}∗ corresponding to the sequence of square and multiply
operations performed by Algorithm 7.2 executed on some exponent d. Notice that the
squaring operation (Line 13) is performed once per bit of d, while the multiplication op-
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eration is performed only for some exponent bits. Thus, we can represent the attacker’s
knowledge about S as a sequence s ∈ {0,1,1,x,x}∗ where 0,1 indicate known bits of
d, x denotes an unknown bit and the positions of multiplications are underlined. For
y ∈ {0,1,1,x,x} we denote by yi the i-fold repetition of y.

Since at the start of the analysis all the bits are unknown, we convert S to the sequence
s as follows: every sm turns into a x, all remaining s into x. As a running example, the
sequence of squares and multiplies S = smsssssssmsmsssssm is converted into D1 =
xxxxxxxxxxxxxx. We assume that the attacker knows w = 4.

To obtain bits of d from D1, the attacker applies the rewrite rules in Figure 7.2.

Rule 0: Multiplication bits. Because every digit in the window form is odd, a multipli-
cation always happens at bits that are set. We denote such a bit by 1.

Applied to D1 we obtain D2 = 1xxxxxx11xxxx1.

Rule 1: Trailing zeros. Algorithm 7.2 tries to include as many set bits as possible in one
digit of the window form. So when two multiplications are fewer than w bits apart, we
learn that there were no further set bits available to include in the digit corresponding to
the rightmost multiplication. Rule 1 sets the following bits to zero accordingly and we
denote this by 0.

Applied to D2 we obtain D3 = 1xxxxxx11000x1.

Rule 2: Leading one. If we find two immediately consecutive multiplications, it is clear
that as 7.2 was building the left digit, there were no trailing zeroes in u = di · · ·di−l+1,
i.e. t = 0 in Line 11. This tells us that the bit w − 1 positions to the left of 1 is set. We
denote such a leading one bit by 1.

Applied to D3 we obtain D4 = 1xxx1xx11000x1.

Rule 3: Leading zeroes. Every set bit of d is included in a non-zero digit of the window
form, so it is at mostw−1 bits to the left of a multiplication. If two consecutive multipli-
cations are more than w bits apart, we know that there are zeroes in between, denoting
this by 0.

Applied to D4 we obtain D5 = 10001xx11000x1.

Larger example. Consider the bit string

0100001111100101001100110101001100001100011111100011100100001001.

The corresponding sequence of square and multiply operations (using w = 4) evolves as
follows as we apply the rules:
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
x1xxxxxxx1xxx1xxxx1xxx1xx1xxxx11xxxxx1xxxxxx1x1xxxxx1xx1xxxxxxx1
x1xxxxxxx1xxx1xxxx1xxx1xx10xxx11000xx1xxxxxx1x100xxx1xx10xxxxxx1
x1xxxxxxx1xxx1xxxx1xxx1xx101xx11000xx1xxxxxx1x100xxx1xx10xxxxxx1
x10000xxx1xxx10xxx1xxx1xx101xx11000xx1000xxx1x100xxx1xx10000xxx1.

Out of the 64 bits, 34 become known through this analysis.

Iterative application. The previous examples show that by applying rules iteratively, we
can discover a few more bits. In particular, for a window where a leading one is recovered
(Rule 2), one may learn the leading bit of the preceding window. Reasoning back from
an application of Rule 2 in the example above gives 3 more known leading bits:
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x10000xxx1xxx101xx11xx11x101xx11000xx1000xxx1x100xxx1xx10000xxx1.

This iterative behavior is hard to analyze and occurs rarely in practice. Therefore the
following analysis disregards it. Note that the algorithm of Section 7.5.2 does use the
additional bits.

Completeness. The iterative application of these rules recovers almost all knowable bits,
which is sufficient for our application. We present an alternative approach that is less
intuitive and direct, but is complete in the sense that it recovers all knowable bits, in
Section 7.5.

7.4 — Analyzing bit recovery rules

In this section we analyze the number of bits we are theoretically expected to recover
using Rules 0–3 described in the previous section. The analysis applies to general window
size w and the bit string length n. There are a number of techniques that can be used
here. O’Connor [O’C99]modeled recoding rules using regular languages in order to study
the resulting weight distribution.

Renewal processes with rewards. We model the number of bits recovered as a re-
newal reward process [Ros83]. A renewal process is associated with interarrival times
X = (X1,X2, . . . ) where the Xi are independent, identically distributed and non-negative
variables with a common distribution function F and mean µ. Let

Sn =

n∑
i=1

Xi, n ∈ N,

where S = (0,S1,S2, . . . ) is the sequence of arrival times and

Nt =

∞∑
n=1

I(Sn 6 t), t ∈ R+

is the associated counting process. Now let Y = (Y1, Y2, . . . ) be an i.i.d. sequence asso-
ciated with X in the sense that Yi is the reward for the interarrival Xi. Note that even
though both X and Y are i.i.d., Xi and Yi can be dependent. Then the stochastic process

Rt =

Nt∑
i=1

Yi, t ∈ R+,

is a renewal reward process. The function r(t) = E(Rt) is the renewal reward function.
We can now state the renewal reward theorem [ME78]. Since µX < ∞ and µY < ∞ we
have for the renewal reward process

Rt/t→ µY/µX as t→∞ with probability 1,

r(t)/t→ µY/µX as t→∞.

This is related to our attack in the following way. The n bit locations of the bit string
form an interval of integers [1,n], labeling the leftmost bit as 1. We set X1 = b+w− 1,
where b is the location of the first bit set to 1, that is, the left boundary of the first window.
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Then the left boundary of the next window is independent of the first b+w−1 bits. The
renewal process examines each window independently. For each window Xi we gain
information about at least the multiplication bit. This is the reward Yi associated with
Xi. The renewal reward theorem now implies that for bit strings of length n, the expected
number of recovered bits will converge to nµY

µX
.

7.4.1 – Recovered bit probabilities. In the following we analyze the expected num-
ber of bits that are recovered (the reward) in some number of bits (the renewal length)
by the rules of Section 7.3.1. Then by calculating the probability of each of these rules’
occurrence, we can compute the overall number of recovered bits by using the renewal
reward theorem. Note that Rule 0 (the bits set to 1) can be incorporated into the other
rules by increasing their recovered bits by one.

Some observations. We begin with some intuition on bit string probabilities. The first ob-
servation is that in a uniformly random bit string, each bit follows a Bernoulli distribution
and is independent of all other bits. This means also that at every point the probability
that the next x bits are zeroes (followed by a 1) is P[x] = 1/2x+1. The average reward Rt
is the average number of windows Nt times average reward µy per window. At the left
boundary of a new window, before sliding back, the first bit is a one, while the others are
uniformly distributed. The effective window has length w with probability 1/2 (last bit
is a 1), w− 1 with probability 1/22 of length w− 1 (last bits are 10) and so on. For each
of the rules in the previous section we will analyze the probability that the rule applies,
the average renewal length, and the average reward gained.

Rule 1: Trailing zeroes. The first rule applies to short windows. Recall that we call a
window a “short window” whenever the length between between two multiplications is
less than w− 1.

Let 0 6 j 6 w−2 denote the length between two multiplications. (A length ofw−1
is a full-size window.) The probability of a short window depends on these j bits, as well
asw−1 bits after the multiplication: the multiplication bit should be the right-most 1-bit
in the window. The following theorem gives the probability of a short window.

Theorem 7.1. Let X be an interarrival time. Then the probability that X = w and we have
a short window with reward Y = w− j, 0 6 j 6 w− 2 is

pj =
1 +
∑j
i=1 22i−1

2j+w
.

Proof. To prove this theorem, we first make two observations. The first observation is that
given a substring of the multiplication chain, the attack recovers a bit independently from
bits that are more than w− 1 positions away. Given a set bit in the bit string, its position
in the window that contains it determines whether or not it can be recovered. This only
depends on the values of the w − 1 bits before it and after it. This means that after a
renewal, we can calculate the probability of seeing a string of j > 0 zeroes followed by a
short window by looking at the set of size j+w bitstrings.

The second observation is that this probability pj is equal to |Cj|

2j+w where |Cj| is equal
to the number of elements in

Cj = {x0, . . . , xj−11y0 . . .yw−2|xk,y` ∈ {0,1}; 0 6 k 6 j− 1, 0 6 ` 6 w− 2},
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that is, the set of j + w bitstrings which after the side-channel attack will show an 1 at
position j. We will now prove our theorem by induction. For the base case, let j = 0,
then the w − 1 bits after the multiplication should be the all-zero bitstring. This means
|C0 = 1| and p0 = 1

2w .
Suppose now we have for j > 0

|Cj| = 1 +

j∑
i=1

22i−1,

and therefore we have the following recursive formula

|Cj| = |Cj−1|+ 22j−1.

Then by conditioning on the first bit x0 we get

Cj+1 ={x0 . . . xj1y0 . . .yw−2|xk,y` ∈ {0,1}}
={0|x1 . . . xj1y0 . . .yw−2|xk,y` ∈ {0,1}}
∪ {1|x1 . . . xj1y0 . . .yw−2|xk,y` ∈ {0,1}}.

Since when x0 = 0, we get the same conditions as in the case of a window of size j,
we have

|{0|x1 . . . xj1y0 . . .yw−2|xk,y` ∈ {0,1}}| = |Cj|.

In the case that x0 = 1, we have to count the set

{1|x1 . . . xj1y0 . . .yw−2|xk,y` ∈ {0,1}}

and this will always have multiplication bit 1 at position j + 1 if y0, . . . ,yw−j−2 are an
all-zero string, which leaves 2j · 2j+1 = 22j+1 possibilities for the remaining bits xi and
yi.

This means that |Cj+1| = |Cj| + 22j+1 = 1 +
∑j+1
i=1 22i−1, from which our theorem

follows.

We see in the proof that the bits yw−j−1, . . . ,yw−2 can take any values. Also since bit
yw−j−2 = 0 is known, we have a renewal at this point where future bits are independent.

Rule 2: Leading one. As explained in Section 7.3.1, this rule means that when after
renewal an ultra-short window occurs (a 1 followed by w− 1 zeroes) we get an extra bit
of information about the previous window. The exception to this rule is if the previous
window was also an ultra-short window. In this case the 1 of the window is at the location
of the multiplication bit we would have learned anyways and therefore we do not get
extra information. As seen in the previous section, an ultra-short window occurs with
probability p0 = 1/2w. If an ultra-short window occurs after the current window with
window-size 1 6 j 6 w− 1, we therefore recover (w− j) + 1 bits (all bits of the current
window plus 1 for the leading bit) with probability pjp0 and (w − j) with probability
pj(1 − p0).

Rule 3: Leading zeroes. The last way in which extra bits can be recovered is the leading
zeroes. If a window of sizew−d is preceded by more than d zeroes, then we can recover
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the excess zeroes. Let X0 be a random variable of the length of a bit string of zeros
until the first 1 is encountered. Then X0 is geometrically distributed with p = 1/2. So
P[X0 = k] = (1/2)k · (1/2) = (1/2)k+1. This distribution has mean µX = 1.

Let Xw be a random variable representing the length of the bit string from the first 1
that was encountered until the multiplication bit. For general window length of w, we
have

P[Xw = k] =

{
1

2w−1 k = 1
1

2w−k+1 k > 1.

Now the distribution of the full bit string is the sum of the variables X0 and Xw. We
have that P[X0 + Xw = k] =

∑min(k,w)
i=1 P[Xw = i] · P[X0 = k− i].

Notice that this rule only recovers bits if the gap between two multiplications is at least
w− 1. This means that these cases are independent of Rule 1.

There is a small caveat in this analysis: the renewal length is unclear. In the case that
we have a sequence of zeroes followed by a short window of size j < w, we are implicitly
conditioning on the w− j bits that follow. This means we cannot simply renew after the
the 1 and since we also cannot distinguish between a short and regular window size, we
also cannot know how much information we have on the bits that follow.

We solve this by introducing an upper and lower bound. For the upper bound the
number of recovered bits remains as above and the renewal at X0 +w. This is an obvious
upper bound. This means that for a sequence of zeroes followed by a short window of
size j, we assume a probability of 1 of recovering information on thew− j bits that follow
the sequence. We get an average number of recovered bits of

R =

∞∑
k=w

min(k,w)∑
i=1

(k− i+ 1) · P[Xw = i] · P[X0 = k− i],

and a renewal length of

N =

∞∑
k=w

min(k,w)∑
i=1

(k+w− i) · P[Xw = i] · P[X0 = k− i].

For the lower bound we could instead assume a probability of 0 of recovering infor-
mation on the w− j bits. We can however get a tighter bound by observing that the bits
that follow this rule are more likely a 0 than a 1 and we are more likely to recover a 1 at
the start of a new window then we are a 0. Therefore we bound the renewal at X0 +Xw
and throw away the extra information.

For a lower bound on the number of recovered bits this gives the following expectation

R =

∞∑
k=w

(k−w+ 1) · P[X0 + Xw = k],

and a renewal length of

N =

∞∑
k=w

min(k,w)∑
i=1

k · P[Xw = i] · P[X0 = k− i].
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Table 7.1: Summary of bit information recovered from different patterns

Rule Pattern Probability Renewal length Recovered bits
1 Window size 1 < j < w pj(1 − p0) w (w− j)

pjp0 w (w− j) + 1
2 Window size j = 1 p0 w w

3 ub window size > w P[X+ Y = k] N R
lb window size > w P[X+ Y = k] N R

We summarize the results in Table 7.1.
From this, we can calculate the expected renewal length for fixedw, by summing over

all possible renewal lengths with corresponding probabilities. We can do the same for the
expected number of recovered bits per renewal. Finally, we are interested in the expected
total number of recovered bits in an n-bit string. We calculate this by taking the average
number of renewals (by dividing n by the expected renewal length) and multiplying this
with the number of recovered bits per window. Since we have upper and lower bounds
for both the renewal length and recovered bits for Rule 3, we also get lower and upper
bounds for the expected total number of recovered bits.

Recovered bits for right-to-left. The analysis of bit recovery for right-to-left exponentia-
tion is simpler. The bit string is an alternation of X0 and Xw (see Rule 3), where Xw = w
and X0 is geometrically distributed with p = 1/2. Therefore the expected renewal length
N and the expected reward R are

N =

∞∑
i=0

(w+ i) · P[X0 = i] = w+ 1 and R =

∞∑
i=0

(1 + i) · P[X0 = i] = 2.

Then by the renewal reward theorem, we expect to recover 2n
w+1 bits.

7.4.2 – Experimental verification with perfect side-channel. To validate the previ-
ous analyses with experiments, we sampled n-bit binary strings uniformly at random and
used Algorithm 7.2 to derive the square and multiply sequence. We then applied Rules
0–3 from Section 7.3.1 to extract known bits.

Case n = 512,w = 4. Figure 7.1 shows the total fraction of bits learned for right-to-
left exponentiation compared to left-to-right exponentiation, for w = 4, over 1,000,000
experiments with w = 4 and n = 512, corresponding to the our target Libgcrypt’s im-
plementation for 1024-bit RSA. On average we learned 251 bits, or 49%, for left-to-right
exponentiation with 512-bit exponents. This is between our computed lower bound of
βL = 245 (from a renewal length of N = 4.67 bits and reward of 2.24 bits on average
per renewal) and upper bound βU = 258 (from a renewal length of N = 4.90 bits and
reward of 2.47 bits per renewal). The average number of recovered bits for right-to-left
exponentiation is 204 ≈ 2n

w+1 bits, or 40%, as expected.
Figure 7.3 shows the distribution of the number of new bits learned for each rule

with left-to-right exponentiation by successively applying Rules 0–3 for 100,000 expo-
nents. Both Rule 0 and Rule 3 contribute about 205 ≈ 2n

w+1 bits, which is equal both
to our theoretical analysis and is also the number of bits learned from the right-to-left
exponentiation. The spikes visible in Rule 3 are due to the fact that we know that any
least significant bits occurring after the last window must be 0, and we credit these bits
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Figure 7.3: We generated 100,000 random 512-bit strings and generated the square and multiply sequence with
w = 4. We then applied Rules 0–3 successively to recover bits of the original string. We plot the distribution
of the number of recovered bits in our experiments.
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Figure 7.4: We generated 100,000 random 1024-bit strings and generated the square and multiply sequence
withw = 5. We then applied Rules 0–3 successively to recover bits of the original string and plot the distribution
of the number of new bits recovered for each rule. Compared to thew = 4 case, we learn a lower fraction of
bits in this case.

learned to Rule 3. The number of bits learned from this final step is equal to n mod w,
leading to small spikes at intervals of w bits.

Case n = 1024,w = 5. For n = 1024 and w = 5, corresponding to Libgcrypt’s im-
plementation of 2048-bit RSA, we recover 41.5% of bits, or 425, on average using Rules
0–3. This is between our lower bound of βL = 412 (from a lower bound average renewal
length ofN = 5.67 bits, and expected 2.29 bits on average per renewal) and upper bound
of βU = 436 (from an average renewal length of N = 5.89 bits with an average reward
of 2.51 bits per renewal). Note that the reward per renewal is about the same as in the
first case (n = 512,w = 4), but the average renewal length is higher. This means that
we win fewer bits for this case.

In Figure 7.4 we plot the frequency of the number of recovered bits per rule in 100, 000
experiments, applied in order. Note again that both Rule 0 and Rule 3 contribute about

2n
w+1 bits, which is what we would expect in theory.

7.5 — Full RSA Key Recovery from Known Bits

7.5.1 – Learning all learnable bits. Section 7.3 describes how to learn some bits of
the secret exponent, given the sequence of square and multiply operations performed by
Algorithm 7.2, using four simple rewrite rules. It turns out that one can learn further
bits using a stateful algorithm. To see why there are more bits to be learned, consider for
w = 4 the bit string

10011010101010101010101010000010001,
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producing the sequence

ssssmsssmssssmssssmssssmssssmssmssssssmssssm

which is first converted to

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

and then rules 0–3 recover these bits:

xxx1xx10xx1
a
xx
↑
x1
b

xxx1
c
xxx1

d

x1
e
00xxx1xxx1

But every bit sequence leading to the above sequence of squares and multiplies must
have a 1 in the position marked with an arrow and a 0 to the left of it.

To see why the most significant bit of the multiplier for multiplication bmust be there,
consider the alternatives. It cannot be one bit earlier, as then it would be included in the
window for a. It also cannot be later, i.e. a multiplication with 3 or 1, as then the same
would hold for c, and hence d, which is not possible, as otherwise the multiplication at
d would include the 1 at e.

These missed opportunities are rare (although this leads to 9 bits in the degenerate
example chosen above) and do not significantly affect the efficiency of the pruning, but
in the interest of completeness, we provide an algorithm to recover these additional bits
and prove that it finds all bits whose values can be known with certainty.

7.5.2 – Possible window widths. We can find out all knowable bits if we keep track
of the possible widths of the multiplier of each observed multiplication. Consider a mul-
tiplication at position i = 5, i.e. xxxx1xxxxx. Forw = 4, this corresponds to one of four
cases:
Case 1: x1xx1xxxxx, multiplier width: 4
Case 2: xx1x10xxxx, multiplier width: 3
Case 3: xxx1100xxx, multiplier width: 2
Case 4: xxxx1000xx, multiplier width: 1

The key idea is now that multipliers do not overlap. More precisely, if the multiplier
of the multiplication at position i has width mi and the multiplier of the multiplication
at position j has width mj (with i > j), then

i+mi −w > j+mj.

From this, we can derive a simple linear-time algorithm that calculates the possible
multiplier widths for each multiplication. We define
m−
i to be the smallest possible width of the multiplication at position i, and

m+
i to be the largest possible width of the multiplication at position i.

Let M = {k0,k1, . . . , kn} be the positions of the multiplications, with k0 > · · · > kn.
Then

m−
ki

=

{
1, if i = n

max(1,ki+1 +m
−
ki+1

+w− ki), otherwise, and

m+
ki

=

{
w, if i = 0

min(w,ki−1 +m
+
ki−1

−w− ki), otherwise.
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Note that m− can be calculated going from right to left, while m+ can be calculated
going from left to right.

Given m− and m+, we can calculate all the knowable bits of the input sequence. Let
us represent this by bi ∈ {0,1,x}, defined as follows:

bi =


1, if i ∈M
1, else if j+m−

j − 1 = i = j+m+
j − 1 for some j ∈M

x, else if j+m−
j − 1 6 i 6 j+m+

j − 1 for some j ∈M
0 otherwise.

The first case includes the bits recovered by Rule 0 in Section 7.3 (last bit), the second
includes Rule 2 (first bit) and the last case includes Rules 1 and 3 (trailing and leading
zeroes).

Theorem 7.2. The Algorithm in Section 7.5.2 is correct and complete.

This means not only that the input sequence has bit i set according to bi, but also that
if bi = x, then there are two input sequences that produce the given sequence of squares
and multiplies and differ at bit i. In other words: All knowable bits are known.

Sketch. Correctness follows by construction of the algorithm. The algorithm is complete
because for every unknown bit (x) we can construct two sequences, one with a 1 and one
with a 0 in that spot, that map to the same square-and-multiply sequence.

Example. For the input above, with w = 4, we learn

Input: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
m−: 4 3 3 3 3 3 1 1 1
m+: 4 3 3 3 3 3 1 3 3
bi: 1xx11x101x101x101x101x101000xx10xx1.

Self-information. Calculating m+ and m− not only allows us to read off all knowable
bits, it also allows us to calculate the number of input sequences that produce the given
sequence of squares and multiplies. We define the function f(i, z) to be the number of col-
liding sequences for the output including the window at position ki, under the additional
constraint that the earliest 1 occurs at position z. This function is recursively defined (and
admits to a straight-forward efficient dynamic programming implementation). The base
case is f(i, z) = 1 for i > n, otherwise we have

f(i, z) =

m+
ki∑

m=m−
ki

[ki +m− 1 6 z] · 2max(0,m−2) · f(i+ 1,ki +m− 1 −w),

where
• the sum iterates over all possible multiplier widths at this position,
• the characteristic function selects those where the first 1 of the window is after z,
• the power of two takes into account the unknown bits in this window,
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• and the recursive call goes to the next window, updating the constraint on the next
allowed 1.

The total number of colliding sequences is then f(0, l), where l is the length of the
input, and the self-information of the sequence is Is = − logps = − log f(0,l)

2l .

Example. For the example above, this yields 1408 possible input sequences and a self-
information of 24.5, and hence 0.70 bits of self-information per bit of input. Note that
1408 is not simply two to the number of x’s: not all assignments to the unknown bits
yield this sequence of squares and multiplies.

7.5.3 – Heninger-Shacham’s algorithm. Once we have used the recovered sequence
of squares and multiplies to derive some information about the bits of the Chinese remain-
der theorem coefficients dp = d mod (p − 1) and dq = d mod (q − 1), we can use a
modified version of the branch and prune algorithm of Heninger and Shacham [HS09]
to recover the remaining unknown bits of these exponents to recover the full private key.
The algorithm will recover the values dp and dq from partial information. In order to do
so, we use the integer forms of the RSA equations

edp = 1 + kp(p− 1)

edq = 1 + kq(q− 1)

which these values satisfy for positive integers kp,kq < e.

RSA Coefficient Recovery. As described in [IGI+16, YGH16], kp and kq are initially
unknown, but are related via the equation (kp − 1)(kq − 1) ≡ kpkqN mod e. Thus we
need to try at most e pairs of kp,kq. In the most common case, e = 65537. As described
in [YGH16], incorrect values of kp,kq quickly result in no solutions.

LSB-Side Branch and Prune Algorithm. At the beginning of the algorithm, we have
deduced some bits of dp and dq using Rules 0–3. Given candidate values for kp and kq,
we can then apply the approach of [HS09] to recover successive bits of the key starting
from the least significant bits. Our algorithm does a depth-first search over the unknown
bits of dp, dq, p, and q. At the ith least significant bit, we have generated a candidate
solution for bits 0 . . . i− 1 of each of our unknown values. We then verify the equations

edp = 1 + kp(p− 1) mod 2i

edq = 1 + kq(q− 1) mod 2i

pq = N mod 2i
(7.1)

and prune a candidate solution if any of these equations is not satisfied.

Analysis. Heuristically, we expect this approach to be efficient when we know more than
50% of bits for dp and dq, distributed uniformly at random [HS09, PPS12]. We also
expect the running time to grow exponentially in the number of unknown bits when
we know many fewer than 50% of the bits. From the analysis of Rules 0–3 above, we
expect to recover 48% of the bits. While the sequence of recovered bits is not, strictly
speaking, uniformly random since it is derived using deterministic rules, the experimental
performance of the algorithm matched that of a random sequence.
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7.6 — RSA Key Recovery from Squares and Multiplies

The sequence of squares and multiplies encodes additional information about the
secret exponent that does not translate directly into knowledge of particular bits. A first
example of this kind of conditional information is a variant of the trailing zeros rule.
Consider again w = 4 and we have learned the following substring

xxx1x1x2x31x5,

and suppose x1 = 0. Then the only way the parsing could have occurred such that x4 = 1
is if this sequence was followed by an unset bit (x5 = 0). If however x1 = 1, then no
information is gained on x5. A similar reasoning follows for any 1 followed by a short
window.

A second type is a variant of the leading one rule. Consider the following substring

x1x2x31x51xx,

and suppose x5 = 1. Then the only way the 1 is in position 4 and thus not x5 = 1, is if
the window’s left boundary is at x1. Therefore x1 must be 1. We can gain information on
the options for the left boundary of the first window if it is followed by any short window.

In this section, we give a new algorithm that exploits this additional information by
recovering RSA keys directly from the square-and-multiply sequence. This gives a signif-
icant speed improvement over the key recovery algorithm described in Section 7.5, and
brings an attack against w = 5 within feasible range.

7.6.1 – Pruning from Squares and Multiplies. Our new algorithm generates a depth-
first tree of candidate solutions for the secret exponents, and prunes a candidate solution
if it could not have produced the ground-truth square-and-multiply sequence obtained
by the side-channel attack. Let SM(d) = s be the deterministic function that maps a bit
string d to a sequence of squares and multiplies s ∈ {s, m}∗.

In the beginning of the algorithm, we assume we have ground truth square-and-
multiply sequences sp and sq corresponding to the unknown CRT coefficients dp and
dq. We begin by recovering the coefficients kp and kq using brute force as described
in Section 7.5.2. We will then iteratively produce candidate solutions for the bits of dp
and dq by generating a depth-first search tree of candidates satisfying Equations (7.1)
starting at the least significant bits. We will attempt to prune candidate solutions for dp
or dq at bit locations i for which we know the precise state of Algorithm 7.2 from the
corresponding square and multiply sequence s, namely when element i of s is a multi-
plication or begins a sequence of w squares. To test an i-bit candidate exponent di, we
compare s ′ = SM(di) to positions 0 through i− 1 of s, and prune di if the sequences do
not match exactly.

7.6.2 – Algorithm Analysis. We analyze the performance of this algorithm by com-
puting the expected number of candidate solutions examined by the algorithm before
it recovers a full key. Our analysis was inspired by the information-theoretic analysis
of [PPS12], but we had to develop a new approach to capture the present scenario. Let
ps = P[SM(di) = s] be the probability that a fixed square-and-multiply sequence s is ob-
served for a uniformly random i-bit sequence di. This defines the probability distribution
Di of square-and-multiply sequences for i-bit inputs. In order to understand how much
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information a sequence s leaks about an exponent, we will use the self-information, de-
fined as Is = − logps. This is the analogue of the number of bits known for the algorithm
given in Section 7.5.2. As with the bit count, we can express the number of candidate
solutions that generate s in terms of Is: #{d | SM(d) = s} = 2ips = 2i2−Is . For a given
sequence s, let Ii denote the self-information of the least significant i bits.

Theorem 7.3 (Heuristic). If for the square-and-multiply sequences spi and sqi , we have
Ii > i/2 for almost all i, then the algorithm described in Section 7.6.1 runs in expected
linear time in the number of bits of the exponent.

Sketch. In addition to pruning based on s, the algorithm also prunes by verifying the
RSA equations up to bit position i. Let RSAi(dp,dq) = 1 if (edp − 1 + kp)(edq − 1 +
kq) = kpkqN mod 2i and 0 otherwise. For random (incorrect) candidates dpi and dqi ,
Pr[RSAi(dpi ,dqi) = 1] = 1/2i.

As in [HS09], we heuristically assume that, once a bit has been guessed incorrectly,
the set of satisfying candidates for dpi and dqi behave randomly and independently with
respect to the RSA equation at bit position i.

Consider an incorrect guess at the first bit. We wish to bound the candidates examined
before the decision is pruned. The number of incorrect candidates satisfying the square-
and-multiply constraints and the RSA equation at bit i is

#{dpi ,dqi } 6 #{dpi | SM(dpi) = spi } · #{dqi | SM(dqi) = sqi } · P[RSAi(dpi ,dqi) = 1]

= 2i2−Ii · 2i2−Ii · 2−i

= 2i−2Ii

6 2i·(1−2c)

with Ii/i > c for some c > 1/2. In total, there are
∑
i #{dpi ,dqi } 6

∑
i 2i·(1−2c) 6

1/(1−21−2c) candidates. But any of the n bits can be guessed incorrectly, each producing
a branch of that size. Therefore, the total search tree has at most n · (1 + 1

1−21−2c )
nodes.

A similar argument also tells us about the expected size of the search tree, which
depends on the collision entropy [Ren61]

Hi = − log
∑

s∈{s,m}i

p2
s

of the distribution Di of distinct square-and-multiply sequences. This is the log of the
probability that two i-bit sequences chosen according to Di are identical.

For our distribution Di, the Hi are approximately linear in i. We can define the
collision entropy rate H = Hi/i and obtain an upper bound for the expected number of
examined solutions. The proof is outside the scope of this thesis, but can be found in the
full version of this work [BBG+17a].

Theorem 7.4. The expected total number of candidate solutions examined by the Algorithm
in Section 7.6.1 for n-bit dp an dq is

E

[∑
i

#{dpi ,dqi }

]
6 n

(
1 +

1 − 2n·(1−2H)

1 − 21−2H

)
.
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Figure 7.5: We attempted 500,000 key recovery trials for randomly generated 1024-bit RSA keys withw = 4.
We plot the distribution of the number of candidates tested by the algorithm against the self-information of the
observed square-and-multiply sequences calculated using the algorithm in Theorem 7.5.2 and measured in bits.
The histogram above the plot shows the distribution of self-information across all the trials.

Entropy calculations. We calculated the collision entropy rate by modeling the leak as a
Markov chain. For w = 4, H = 0.545, and thus we expect the Algorithm in Section 7.6.1
to comfortably run in expected linear time. For w = 5, H = 0.461, and thus we expect
the algorithm to successfully terminate on some fraction of inputs. We give more details
on this computation in the full version of this work.

7.6.3 – Experimental Evaluation for w = 4. We ran 500,000 trials of our sequence-
pruning algorithm for randomly generated dp and dq with 1024-bit RSA and plot the
distribution of running times in Figure 7.5. For a given trial, if the branching process
passed 1,000,000 candidates examined without finding a solution, we abandoned the
attempt. For each trial square-and-multiply sequence s, we computed the number of bit
sequences that could have generated it. From the average of this quantity over the 1
million exponents generated in our trial, the collision entropy rate in our experiments is
H = 0.547, in line with our analytic computation above. The median self-information of
the exponents generated in our trials was 295 bits; at this level the median number of
candidates examined by the algorithm was 2,174. This can be directly compared to the
251 bits recovered in Section 7.4.2, since the self-information in that case is exactly the
number of known bits in the exponent.

7.6.4 – Experimental Evaluation for w = 5. We ran 500,000 trials of our sequence-
pruning algorithm for 2048-bit RSA and w = 5 with randomly generated dp and dq
and plot the distribution of running times in Figure 7.6. 8.6% of our experimental trials
successfully recovered the key before hitting the panic threshold of 1 million tries. In-
creasing the allowed tree size to 2 million tries allowed us to recover the key in 13% of
trials. We experimentally estimate a collision entropy rate H = 0.464, in line with our
analytic computation. The median self-information for the exponents generated in our
trials is 507 bits, significantly higher than the 425 bits that can be directly recovered using
the analysis in Section 7.4.2.
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Figure 7.6: We attempted 500,000 key recovery trials for randomly generated 2048-bit RSA keys withw = 5,
and plot the distribution of search tree size by the self-information. The vertical line marks the 50% rate at
which we expect the algorithm to be efficient.

7.7 — Attacking Libgcrypts RSA

In the previous sections we showed how an attacker with access to the square-and-
multiply sequence can recover the private RSA key. To complete the discussion we show
how the attacker can obtain the square-and-multiply sequence and demonstrate the ap-
plicability of the attack on Libgcrypt.

7.7.1 – The Side-Channel Attack. To demonstrate the vulnerability in Libgcrypt, we
use the FLUSH+RELOAD attack [YF14]. Mounting the FLUSH+RELOAD attack on Libgcrypt
presents several challenges. First, as part of the defense against the attack of [YF14],
Libgcrypt uses the multiplication code to perform the squaring operation. While this
is less efficient than using dedicated code for squaring, the code reuse means that we
cannot identify the multiply operations by probing a separate multiply routine. Instead
we probe code locations that are used between the operations to identify the call site
to the modular reduction. The second challenge is achieving a sufficiently high temporal
resolution. Prior side-channel attacks on implementations of modular exponentiation use
large (1024–4096 bits) moduli [YF14,ZJRR12,LYG+15,GST14,GPPT15], which facilitate
side-channel attacks [Wal03]. In this attack we target RSA-1024, which uses 512-bit
moduli. The operations on these moduli are relatively fast, taking a total of less than
2500 cycles on average to compute a modular multiplication. To be able to distinguish
events of this length, we must probe at least twice as fast, which is close to the limit
of the FLUSH+RELOAD attack and would result in a high error rate [ABF+16]. We use
the amplification attack of [ABF+16] to slow down the modular reduction. We target
the code of the subtraction function used as part of the modular reduction. The attack
increases the execution time of the modular reduction to over 30000 cycles. Our third
challenge is that even with amplification, there is a chance of missing a probe [ABF+16].
To reduce the probability of this happening, we probe two memory locations within the
execution path of short code segments. The likelihood of missing both probes is small
enough to allow high-quality traces.

Overall, we use the FLUSH+RELOAD attack to monitor seven victim code location. The
monitored locations can be divided into three groups. To distinguish between the expo-
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Figure 7.7: Libgcrypt Activity Trace.

nentiations Libgcrypt performs while signing, we monitor locations in the entry and exit of
the exponentiation function. We also monitor a location in the loop that precomputes the
multipliers to help identifying these multiplications. To trace individual modular mul-
tiplications, we monitor locations within the multiplication and the modular reduction
functions. Finally, to identify the multiplications that are not squarings, we monitor a
location in the code that conditionally copies the multiplier and in the entry to the main
loop of the exponentiation. The former is accessed when Libgcrypt selects the multiplier
before it performs the multiplication. The latter is accessed after the multiplication when
the next iteration of the main loop starts. We repeatedly probe these locations once ev-
ery 10000 cycles, allowing for 3–4 probes in each modular multiplication or squaring
operation.

7.7.2 – Results. To mount the attack, we use the FR-trace software, included in
the Mastik toolkit [Yar16]. FR-trace provides a command-line interface for performing
the FLUSH+RELOAD and the amplification attacks we require for recovering the square-
and-multiply sequences of the Libgcrypt exponentiation. FR-trace waits until there is
activity in any of the monitored locations and collects a trace of the activity. Figure 7.7
shows a part of a collected activity trace.

Recall that the FLUSH+RELOAD attack identifies activity in a location by measuring
the time it takes to read the contents of the location. Fast reads indicate activity. In the
figure, monitored locations with read time below 100 cycles indicate that the location was
active during the sample. Because multiplications take an average 800 cycles, whereas
our sample rate is once in 10000 cycles, most of the time activity in the multiplication code
is contained within a single sample. In Figure 7.7 we see the multiplication operations as
“dips” in the multiplication trace (dotted black). Each multiplication operation is followed
by a modular reduction. Our side-channel amplification attack “stretches” the execution
of the modular reduction and it spans over more than 30000 cycles. Because none of
the memory addresses traced in the figure is active during the modular reduction, we see
gaps of 3–4 samples between periods of activity in any of the other monitored locations.

To distinguish between multiplications that use one of the precomputed multipliers
and multiplications that square the accumulator by multiplying it with itself, we rely
on activity in the multiplier selection and in the exponentiation loop locations. Before
multiplying with a precomputed multiplier, the multiplier needs to be selected. Hence
we would expect to see activity in the multiplier selection location just before starting the
multiplication, and due to the temporal granularity of the attack we are likely to see both
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Figure 7.8: Distribution of the number of errors in captured traces.

events in the same sample. Similarly, after performing the multiplication and the modular
reduction, we expect to see activity in the beginning of the main exponentiation loop.
Again, due to attack granularity, this activity is likely to occur within the same sample
as the following multiplication. Thus, because we see activity in the multiplier selection
location during sample 431 and activity in the beginning of the exponentiation loop in the
following multiplication (sample 435), we can conclude that the former multiplication is
using one of the precomputed multipliers. In the absence of errors, this allows us to
completely recover the sequence of square and multiplies performed and with it, the
positions of the non-zero digits in the sliding window representation of the exponent.

However, capture errors do occur, as shown in Figure 7.8. To correct these, we capture
multiple traces of signatures using the same private key. On average there are 14 errors in
a captured trace. We find that in most cases, manually aligning traces and using a simple
majority rule is sufficient to recover the complete square-and-multiply sequence. In all of
the cases we have tried, combining twenty sequences yielded the complete sequence.





CHAPTER 8

Flush, Gauss, and reload

8.1 — Overview

Context. In Section 6.2 we gave a brief introduction to lattice-based cryptography and
in Section 6.3 we discussed the threat of side-channel attacks, in particular cache attacks.
In this chapter we will combine these two topics and make a first step towards under-
standing implementation security of lattice-based cryptography: we investigate whether
samplers for the discrete Gaussian distribution are vulnerable to side-channel attacks. In
particular, we investigate the applicability of cache-attacks on the Bimodal Lattice Sig-
nature Scheme (BLISS) by Ducas, Durmus, Lepoint, and Lyubashevsky from CRYPTO
2013 [DDLL13b]. The samplers for the discrete Gaussian distribution are a good target
for such cache attacks, as it is unclear (at the time of writing this work) whether these
samplers can be implemented securely in practice (i.e. constant-time). Additionally, note
that more lattice-based schemes (i.e. not only BLISS) use noise sampled according to a
discrete Gaussian distribution, so any attack on the discrete Gaussian sampler might be
applicable to other lattice-based schemes and implementations. It is possible to avoid
such attacks by using schemes which avoid discrete Gaussians, at the cost of more ag-
gressive assumptions (e.g. [GLP12,LDK+17,BAA+17] and Chapter 10).

The attack target. At the time of writing, BLISS was the most recent piece in a line of
work on identification-scheme-based lattice signatures, also known as signatures with-
out trapdoors. An important step in the signature scheme is blinding a secret value in
some way to make the signature statistically independent of the secret key. For this, a
blinding (or noise) value y is sampled according to a discrete Gaussian distribution (see
Section 8.2.2 for the definition). In the case of BLISS, y is an integer polynomial of degree
less than some system parameter n and each coefficient is sampled separately. Essentially,
y is used to hide the secret polynomial s in the signature equation z = y + (−1)b(s · c),
where noise polynomial y and bit b are unknown to an attacker and c is the challenge
polynomial from the identification scheme which is given as part of the signature (z, c).

If an attacker learns the complete noise polynomials y for just a few signatures, he can
compute the secret key using linear algebra and guessing the bit b per signature. Actually,
the attacker will only learn the secret key up to the sign but for BLISS −s is also a valid
secret key. However, such an exhaustive leakage would be quite unlikely and probably
not achievable in practice. Are other, more realistic attacks possible on BLISS?

Summary. In this chapter we present a FLUSH+RELOAD attack on BLISS. We implemented
the attack for two different algorithms for Gaussian sampling. First we attack the CDT
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sampler with guide table, as described in [PDG14] and used in the attacked implementa-
tion as default sampler [DDLL13a]. CDT is the fastest way of sampling discrete Gaussians,
but requires a large table stored in memory. Then we also attack a rejection sampler,
specifically the Bernoulli-based sampler that was proposed in [DDLL13b], and also pro-
vided in [DDLL13a].

On a high level, our attacks exploit cache access patterns of the implementations to
learn a few coefficients of y per observed signature. We then develop mathematical at-
tacks to use this partial knowledge of different yj’s together with the public signature
values (zj, cj) to compute the secret key, given observations from sufficiently many sig-
natures.

In detail, there is an interplay between requirements for the offline attack and restric-
tions on the sampling. First, restricting to cache access patterns that provide relatively
precise information means that the online phase only allows to extract a few coefficients
of yj per signature. This means that trying all guesses for the bits b per signature becomes
a bottleneck. We circumvent this issue by only collecting coefficients of yj in situations
where the respective coefficient of s · cj is zero as in these cases the bit bj has no effect.

Second, each such collected coefficient of yj leads to an equation with some coeffi-
cients of s as unknowns. However, it turns out that for CDT sampling the cache patterns
do not give exact equations. Instead, we learn equations which hold with high proba-
bility, but might be off by ±1 with non-negligible probability. We managed to turn the
computation of s into a lattice problem and show how to solve it using the LLL algo-
rithm [LLL82]. For Bernoulli sampling we can obtain exact equations but at the expense
of requiring more signatures. It turns out that the number of required signatures and the
success probability of the attack largely depend on the chosen parameters for the discrete
Gaussian distribution, in a way that is unrelated to the security parameter.

We first tweaked the BLISS implementation to provide us with the exact cache lines
used, modeling a perfect side-channel. For BLISS-I, designed for 128 bits of security,
the attack on CDT needs to observe on average 441 signatures during the online phase.
Afterwards, the offline phase succeeds after 37.6 seconds with probability 0.66. This
corresponds to running LLL once. If the attack does not succeed at first, a few more
signatures (on average a total of 446) are sampled and LLL is run with some randomized
selection of inputs. The combined attack succeeds with probability 0.96, taking a total
of 85.8 seconds. Similar results hold for other BLISS versions. In the case of Bernoulli
sampling, we are given exact equations and can use simple linear algebra to finalize the
attack, given a success probability of 1.0 after observing 1671 signatures on average and
taking 14.7 seconds in total.

To remove the assumption of a perfect side-channel we perform a proof-of-concept
attack using the FLUSH+RELOAD technique on a modern laptop. This attack achieves
similar success rates, albeit requiring 3438 signatures on average for BLISS-I with CDT
sampling. For Bernoulli sampling, we now have to deal with measurement errors. We
do this again by formulating a lattice problem and using LLL in the final step. The attack
succeeds with a probability of 0.88 after observing an average of 3294 signatures.

Section 8.7 includes a discussion of candidate countermeasures against our specific
attacks, including countermeasures presented in previous and concurrent work. We show
that the standard countermeasures induce significant overhead.

As an extension of our work, we discuss two additional sampling techniques in Sec-
tion 8.8: the Knuth-Yao [KY76,DG14] and the Discrete Ziggurat [BCG+13] samplers. We
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argue that it is very likely that these sampling techniques are also vulnerable to cache
attacks. We further discuss potential countermeasures for each technique. However, be-
cause there is no implementation of BLISS with any of these samplers, we do not perform
any experiments (with or without perfect side-channels) to verify the vulnerabilities.

Organization This chapter contains the following. In Section 8.2, we give brief introduc-
tions to BLISS and the used methods for discrete Gaussian sampling. We then present
two information leakages through cache-memory for CDT sampling and provide a strat-
egy to exploit this information for secret key extraction in Section 8.3. In Section 8.4,
we present an attack strategy for the case of Bernoulli sampling. To examine the per-
formance of the attacks, we present experimental results for both strategies assuming a
perfect side-channel in Section 8.5. In Section 8.6, we show that realistic experiments
also succeed, using FLUSH+RELOAD attacks. Finally, in Section 8.7, we discuss candi-
date countermeasures against our specific attacks. As an extension, we briefly examine
the applicability of the attacks on two other samplers in Section 8.8, with discussion of
countermeasures.

8.2 — Preliminaries

This section describes the BLISS signature scheme and the used discrete Gaussian
samplers. For the background on lattices see Section 6.2. In particular, the part about
NTRU lattices and LLL/BKZ is important for this chapter.

8.2.1 – BLISS. We provide the basic algorithms of BLISS, as given in [DDLL13b]. De-
tails of the motivation behind the construction and associated security proofs are given
in the original work. All arithmetic for BLISS is performed in R = Z[x]/(xn + 1) and
possibly with each coefficient reduced modulo q or 2q. We follow notation of BLISS and
also use boldface notation for polynomials.

By Dσ we denote the discrete Gaussian distribution with parameter σ > 0. In the
next subsection, we will discuss this distribution in more detail and how to sample from
it in practice. The main parameters of BLISS are dimension n, modulus q and parameter
σ. BLISS uses a cryptographic hash function H, which outputs binary vectors of length
n and weight κ; density parameters δ1 and δ2, such that d1 = dδ1ne and d2 = dδ2ne
determine the density of the polynomials forming the secret key; and d, determining the
length of the second signature component.

Algorithm 8.1 BLISS Key Generation

Output: A BLISS key pair (A, S) with public key A = (a1, a2) ∈ R2
2q and secret key

S = (s1, s2) ∈ R2
2q such that AS = a1 · s1 + a2 · s2 ≡ q mod 2q

1: choose f, g ∈ R2q uniformly at random with exactly d1 entries in {±1} and d2 entries
in {±2}

2: S = (s1, s2) = (f, 2g + 1)
3: if S violates certain bounds (details in [DDLL13b]), then restart
4: aq = (2g + 1)/f mod q (restart if f is not invertible)
5: return (A, S) where A = (2aq,q− 2) mod 2q
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Algorithm 8.1 generates correct keys because

a1 · s1 + a2 · s2 = 2aq · f+ (q− 2) · (2g+ 1) ≡ 2(2g+ 1) + (q− 2)(2g+ 1) ≡ q mod 2q.

Note that when an attacker has a candidate for key s1 = f, he can validate correctness
by checking the distributions of f and aq · f ≡ 2g + 1 mod 2q, and lastly verify that
a1 · f + a2 · (aq · f) ≡ q mod 2q, where aq is obtained by halving a1.

Signature generation (Algorithm 8.2) uses p = b2q/2dc, which is the highest order
bits of the modulus 2q, and constant ζ = 1

q−2 mod 2q. In general, with b.ed we denote
the d highest order bits of a number. In Step 1 of Algorithm 8.2, two integer vectors are
sampled, where each coordinate is drawn independently and according to the discrete
Gaussian distribution Dσ. This is denoted by y← DZn,σ.

Algorithm 8.2 BLISS Sign
Input: Message µ, public key A = (a1,q− 2), secret key S = (s1, s2)

Output: A signature (z1, z†2, c) ∈ Zn2q × Znp × {0, 1}n of the message µ
1: y1, y2 ← DZn,σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(bued mod p,µ)
4: choose a random bit b
5: z1 = y1 + (−1)bs1 · c mod 2q
6: z2 = y2 + (−1)bs2 · c mod 2q
7: continue with a probability based on σ, ||Sc||, 〈z, Sc〉 (details in [DDLL13b]), else

restart
8: z†2 = (bued − bu − z2ed) mod p
9: return (z1, z†2, c)

In the attacks, we concentrate on the first signature vector z1, since z†2 only contains
the d highest order bits and therefore lost information about s2 · c; furthermore, A and
f determine s2 as shown above. So in the following, we only consider z1, y1 and s1, and
thus will leave out the indices.

In lines 5 and 6 of Algorithm 8.2, we compute s · c over R2q. However, since secret
s is sparse with small coefficients (i.e. upper bounded by 2) and challenge c is sparse
and binary (i.e. with weight κ), the absolute value of ||s · c||∞ 6 2κ � 2q, with || · ||∞
the `∞-norm. This means these computations are simply additions over Z, and we can
therefore model this computation as a vector-matrix multiplication over Z:

s · c = sC,

where C ∈ {−1, 0, 1}n×n is the matrix whose columns are the rotations of challenge c
(with minus signs matching reduction modulo xn+1). In the attacks we access individual
coefficients of s · c; note that the jth coefficient equals 〈s, cj〉, where cj is the jth column
of C.

For completeness, we also show the verification procedure (Algorithm 8.3), although
we do not use it further in this chapter. Note that reductions modulo 2q are done before
truncating and reducing modulo p.
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Algorithm 8.3 BLISS Verify

Input: Message µ, public key A = (a1,q− 2) ∈ R2
2q, signature (z1, z†2, c)

Output: Accept or reject the signature
1: if z1, z†2 violate certain bounds (details in [DDLL13b]), then reject
2: accept iff c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p,µ)

Parameter Set λ n q σ δ1, δ2 κ

BLISS-0 (Toy) 6 60 256 7681 100 0.55, 0.15 12
BLISS-I 128 512 12289 215 0.3, 0 23
BLISS-II 128 512 12289 107 0.3, 0 23
BLISS-III 160 512 12289 250 0.42, 0.03 30
BLISS-IV 192 512 12289 271 0.45, 0.06 39

Table 8.1: Parameter suggestions for different security levels of BLISS (from [DDLL13b])

The authors of BLISS [DDLL13b] proposed several parameter sets for the signature
scheme for different levels of security. We give the important ones to understand this
chapter in Table 8.1.

8.2.2 – Discrete Gaussian distribution. The probability distribution of a (centered)
discrete Gaussian distribution is a distribution over Z with mean 0 and parameter σ > 0.
A value x ∈ Z is sampled with probability:

ρσ(x)∑∞
y=−∞ ρσ(y) ,

where ρσ(x) = exp
(

−x2

2σ2

)
is the continuous Gaussian distribution with mean 0 and

standard deviation σ. Note that the sum in the denominator ensures that this is actually
a probability distribution (i.e. a proper probability density function (PDF)). We denote
the denominator by ρσ(Z).

To make sampling practical, most lattice-based schemes use three simplifications:
First, a tail-cut τ is used, restricting the support of the Gaussian to a finite interval
[−τσ, τσ]. The tail-cut τ is chosen such that the probability of a real discrete Gaussian
sample landing outside this interval is negligible in the security parameter. Second, values
are sampled from the positive half of the support and then a bit is flipped to determine
the sign. For this the probability of obtaining zero in [0, τσ] needs to be halved. The
resulting distribution on the positive numbers is denoted by D+

σ . Finally, the precision of
the sampler is chosen such that the statistical distance between the output distribution
and the exact distribution is negligible in the security parameter.

There are two generic ways to sample from a discrete Gaussian distribution: using the
cumulative distribution function [Pei10] or via rejection sampling [GPV08]. Both these
methods have some improvements which we describe next. These modified versions are
implemented in [DDLL13a] and the main samplers under investigation.

We note that there are also other ways [DG14, RVV13, PG13, BCG+13] of efficiently
sampling discrete Gaussians. As an extension, we discuss two additional sampling tech-
niques in Section 8.8: the Knuth-Yao [KY76,DG14] and the Discrete Ziggurat [BCG+13]
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samplers. We investigate whether these sampling techniques are also vulnerable to cache
attacks. Because there is no implementation of BLISS with any of these samplers, we do
not perform any experiments (with or without perfect side-channels) to verify vulnera-
bilities.

CDT sampling. The basic idea of using the cumulative distribution function in the sam-
pler, is to approximate the probabilities py = P[x 6 y| x ← Dσ], computed with λ bits
of precision, and save them in a large table. At sampling time, one samples a uniformly
random r ∈ [0, 1), and performs a binary search through the table to locate y ∈ [−τσ, τσ]
such that r ∈ [py−1,py). Restricting to the non-negative part [0, τσ] corresponds to using
the probabilities p∗y = P[|x| 6 y| x ← Dσ], sampling r ∈ [0, 1) and locating y ∈ [0, τσ].
While this is the most efficient approach, it requires a large table. We denote the method
that uses the approximate cumulative distribution function with tail cut and the modifi-
cations described next, as the CDT sampling method.

One can speed up the binary search for the correct sample y in the table, by using an
additional guide table I [PDG14,L’E11,CA74]. The BLISS implementation we attack uses
I with 256 entries. The guide table stores for each u ∈ {0, . . . , 255} the smallest interval
I[u] = (au,bu) such that p∗au 6 u/256 and p∗bu > (u + 1)/256. The first byte of r is
used to select I[u] leading to a much smaller interval for the binary search. Effectively, r
is picked byte-by-byte, stopping once a unique value for y is obtained. The CDT sampling
algorithm with guide table is summarized in Algorithm 8.4.

Algorithm 8.4 CDT Sampling with Guide Table
Input: Big table T [y] containing values p∗y of the cumulative distribution function of

the discrete Gaussian distribution (using only non-negative values), omitting the first
byte. Small table I consisting of the 256 intervals

Output: Value y ∈ [−τσ, τσ] sampled with probability according to Dσ
1: pick a random byte r
2: let (Imin, Imax) = (ar,br) be the left and right bounds of interval I[r]
3: if (Imax − Imin = 1):
4: generate a random sign bit b ∈ {0, 1}
5: return y = (−1)bImin

6: let i = 1 denote the index of the byte to look at
7: pick a new random byte r
8: while (1):
9: Iz = b Imin+Imax

2 c
10: if (r > (ith byte of T [Iz])):
11: Imin = Iz
12: else if (r < (ith byte of T [Iz])):
13: Imax = Iz
14: else if (Imax − Imin = 1):
15: generate a random sign bit b ∈ {0, 1}
16: return y = (−1)bImin

17: else:
18: increase i by 1
19: pick new random byte r
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Bernoulli sampling (Rejection sampling). The basic idea behind rejection sampling is to
sample a uniformly random integer y ∈ [−τσ, τσ] and accept this sample with probability
ρσ(y)/ρσ(Z). For this, a uniformly random value r ∈ [0, 1) is sampled and y is accepted
iff r 6 ρσ(y). This method has two huge downsides: calculating the values of ρσ(y) to
high precision is expensive and the rejection rate can be quite high.

In the same paper introducing BLISS [DDLL13b], the authors also propose a more
efficient Bernoulli-based sampling algorithm. We recall the algorithms used (Algorithms
8.5, 8.6, 8.7), more details are given in the original work. We denote this method as
Bernoulli sampling in the remainder of this chapter.

Algorithm 8.5 Sampling from D+
Kσ for K ∈ Z

Input: Parameter σ > 0, integer K = b σ
σ2

+ 1c, where σ2 = 1
2 ln 2

Output: An integer y ∈ Z+ according to D+
Kσ2

1: sample x ∈ Z according to D+
σ2

2: sample z ∈ Z uniformly in {0, . . . ,K− 1}
3: y← Kx+ z
4: sample b with probability exp

(
−z(z+ 2Kx)/(2σ2)

)
5: if b = 0 then restart
6: return y

Algorithm 8.6 Sampling from DKσ
Output: An integer y ∈ Z according to DKσ2

1: sample integer y← D+
Kσ (using Algorithm 8.5)

2: if y = 0 then restart with probability 1/2
3: generate random bit b and return (−1)by

The basic idea is to first sample a value x, according to (what the authors of BLISS
describe as) the “binary discrete Gaussian distribution”, which is Dσ2 where σ2 = 1

2 ln 2
(Step 1 of Algorithm 8.5). This can be done efficiently using uniformly random bits
[DDLL13b]. The actual sample y = Kx+z, where z ∈ {0, . . . ,K−1} is sampled uniformly
at random and K = b σ

σ2
+1c, is then distributed according to the target discrete Gaussian

distribution Dσ, by rejecting with a certain probability (Step 4 of Algorithm 8.5). The
number of rejections in this case is much lower than in the original method. This step
still requires computing a bit, whose probability is an exponential value. However, it can
be done more efficiently using Algorithm 8.7, where ET is a small table.

8.3 — Attack 1: CDT sampling

In this section we explore the mathematical foundations of cache attacks on the CDT
sampling. For a brief summary on cache attacks see Section 6.3 We first explain the
phenomena we can observe from cache misses and hits in Algorithm 8.4 and then show
how to exploit them to derive the secret signing key of BLISS using LLL. Sampling of
the first noise polynomial y ∈ DZn,σ is done coefficientwise. Similarly the cache attack
targets coefficients yi for i = 0, . . . ,n− 1 independently.
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Algorithm 8.7 Sampling a bit with probability exp(−x/(2σ2)) for x ∈ [0, 2`)

Input: x ∈ [0, 2`) an integer in binary form x = x`−1 . . . x0. Table ET with precomputed
values ET[i] = exp(−2i/(2σ2)) for 0 6 i 6 `− 1

Output: A bit b with probability exp(−x/(2σ2)) of being 1
1: for i = `− 1 to 0:
2: if xi = 1 then
3: sample Ai with probability ET[i].
4: if Ai = 0 then return 0
5: return 1

8.3.1 – Weaknesses in cache. Sampling from a discrete Gaussian distribution using
both an interval table I and a table with the actual values T , might leak information via
cache memory. The best we can hope for is to learn the cache-lines of index r of the
interval and of index Iz of the table lookup in T . Note that we cannot learn the sign of
the sampled coefficient yi. Also, the cache line of T [Iz] always leaves a range of values
for |yi|. However, in some cases we can get more precise information combining cache-
lines of table lookups in both tables. Here are two observations that narrow down the
possibilities:
Intersection: We can intersect knowledge about the used index r in I with the knowl-

edge of the access T [Iz]. Getting the cache-line of I[r] gives a range of intervals,
which is simply another (bigger) interval of possible values for sample |yi|. If the
values in the range of intervals are largely non-overlapping with the range of values
learned from the access to T [Iz], then the combination gives a much more precise
estimate. For example: if the cache-line of I[r] reveals that sample |yi| is in set
S1 = {0, 1, 2, 3, 4, 5, 7, 8} and the cache-line of T [Iz] reveals that sample |yi| must
be in set S2 = {7, 8, 9, 10, 11, 12, 13, 14, 15}, then by intersecting both sets we know
that |yi| ∈ S1 ∩ S2 = {7, 8}, which is much more precise information.

Last-Jump: If the elements of an interval I[r] in I are divided over two cache-lines of T ,
we can sometimes track the search for the element to sample. If a small part of I[r] is
in one cache-line, and the remaining part of I[r] is in another, we are able to distin-
guish if this small part has been accessed. For example, interval I[r] = {5, 6, 7, 8, 9}
is divided over two cache-lines of T : cache-line T1 = {0, 1, 2, 3, 4, 5, 6, 7} and line
T2 = {8, 9, 10, 11, 12, 13, 14, 15}. The binary search starts in the middle of I[r], at
value 7, which means line T1 is always accessed. However, only for values {8, 9} also
line T2 is accessed. So if both lines T1 and T2 are accessed, we know that sample
|yi| ∈ {8, 9}.

We will restrict ourselves to only look for cache access patterns that give even more
precision, at the expense of requiring more signatures:

1. The first restriction is to only look at cache weaknesses (of type Intersection or Last-
Jump), in which the number of possible values for sample |yi| is two. Since we do
a binary search within an interval, this is the most precision one can get (unless
an interval is unique): after the last comparisons (table lookup in T), one of two
values will be returned. This means that by picking either of these two values we
limit the error of |yi| to at most 1.

2. The probabilities of sampling values using CDT sampling with guide table I are
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known to match the following probability requirement :

255∑
r=0

P[X = x | X ∈ I[r]] = ρσ(x)

ρσ(Z)
. (8.1)

Due to the above condition, it is possible that adjacent intervals are partially over-
lapping. That is, for some r, s we have that I[r] ∩ I[s] 6= ∅. In practice, this only
happens for r = s + 1, meaning adjacent intervals might overlap. For example, if
the probability of sampling x is greater than 1/256, then x has to be an element in
at least two intervals I[r]. Because of this, it is possible that for certain parts of an
interval I[r], there is a biased outcome of the sample.
The second restriction is to only consider cache weaknesses for which addition-
ally one of the two values is significantly more likely to be sampled, i.e., if |yi| ∈
{γ1,γ2} ⊂ I[r] is the outcome of cache access patterns, then we further insist on

P[|yi| = γ1 | |yi| ∈ {γ1,γ2} ⊂ I[r]]� P[|yi| = γ2 | |yi| ∈ {γ1,γ2} ⊂ I[r]].

So we search for values γ1 so that P[|yi| = γ1 | |yi| ∈ {γ1,γ2} ⊂ I[r]] = 1 − α
for small α, which also matches access patterns for the first restriction. Then, if we
observe a matching access pattern, it is safe to assume the outcome of the sample
is γ1.

3. The last restriction is to only look at cache-access patterns, which reveal that |yi|
is larger than β · E[〈s, c〉], for some constant β > 1, which is an easy calculation
using the distributions of s, c. If we use this restriction in our attack targeted at
coefficient yi of y, we learn the sign of |yi| by looking at the sign of coefficient zi
of z, since:

sign(yi) 6= sign(zi)↔ 〈s, c〉 > (yi + zi).

So by requiring that |yi| must be larger than the expected value of 〈s, c〉, we expect
to learn the sign of yi. We therefore omit the absolute value sign in |yi| and simply
write that we learn yi ∈ {γ1,γ2}, where the γ’s took over the sign of yi (which is
the same as the sign of zi).

There is some flexibility in these restrictions, in choosing parameters α,β. Choos-
ing these parameters too restrictively, might lead to no remaining cache-access patterns,
choosing them too loosely makes other parts fail.

In the last part of the attack described next, we use LLL to calculate short vectors of
a certain (random) lattice we create using BLISS signatures. We noticed that LLL works
very well on these lattices, probably because the basis used is sparse. This implies that
the vectors are already relatively short and orthogonal. The parameter α determines the
shortness of the vector we look for, and therefore influences if an algorithm like LLL finds
our vector. For the experiments described in Section 8.5, we required α 6 0.1. This made
it possible for every parameter set we used in the experiments to always have at least one
cache-access pattern to use.

Parameter β influences the probability that one makes a huge mistake when compar-
ing the values of yi and zi. However, for the parameters we used in the experiments,
we did not find recognizable cache-access patterns which correspond to small yi. This
means, we did not need to use this last restriction to reject certain cache-access patterns.
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8.3.2 – Exploitation. For simplicity, we assume we have one specific cache access pat-
tern, which reveals if yi ∈ {γ1,γ2} for i = 0, . . . ,n− 1 of polynomial y, and if this is the
case, yi has probability (1 − α) to be value γ1, with small α. In practice however, there
might be more than one cache weakness, satisfying the above requirements. This would
allow the attacker to search for more than one cache access pattern done by the victim.
For the attack, we assume the victim is creating N signatures1 (zj, cj) for j = 1, . . . ,N,
and an attacker is gathering these signatures with associated cache information for noise
polynomial yj. We assume the attacker can search for the specific cache access pattern,
for which he can determine if yji ∈ {γ1,γ2}. For the cases revealed by cache access
patterns, the attacker ends up with the following equation:

zji = yji + (−1)bj〈s, cji〉, (8.2)

where the attacker knows coefficient zji of zj, rotated coefficient vectors cji of chal-
lenge cj (both from the signatures) and yji ∈ {γ1,γ2} of noise polynomial yj (from the
side-channel attack). Unknowns to the attacker are bit bj and s.

If zji = γ1, the attacker knows that 〈s, cji〉 ∈ {0, 1,−1}. Moreover, with high probabil-
ity (1−α) the value will be 0, as by the second restriction yji is biased to be value γ1. So
if zji = γ1, the attacker adds ξk = cji to a list of good vectors. The restriction zji = γ1

means that the attacker will in some cases not use the information in Equation (8.2),
although he knows that yji ∈ {γ1,γ2}.

When the attacker collects enough of these vectors ξk = cji; 0 6 i 6 n − 1, 1 6 j 6
N, 1 6 k 6 n, he can build a matrix L ∈ {−1, 0, 1}n×n, whose columns are the ξk’s. This
matrix satisfies:

sL = v (8.3)

for some unknown but short vector v. The attacker does not know v, so he cannot simply
solve for s, but he does know that v has norm about

√
αn, and lies in the lattice spanned

by the rows of L. He can use a lattice reduction algorithm, like LLL, on L to search for v.
LLL also outputs the unimodular matrix U satisfying UL = L ′. The attack tests for each
row of U (and its rotations) whether it is sparse and could be a candidate for s = f. As
stated before, correctness of a secret key guess can be verified using the public key.

This last step does not always succeed, but does with high probability. To make sure
the attack succeeds, this process is randomized and repeated if necessary. Instead of
collecting exactly n vectors ξk = cji, we gather m > n vectors, and pick a random
subset of n vectors as input for LLL. While we do not have a formal analysis of the success
probability, experiments (see Section 8.5) confirm that this method works and succeeds
in finding the secret key (or its negative) in few rounds of randomized repetition.

A summary of the attack is given in Algorithm 8.8.

8.4 — Attack 2: Bernoulli sampling

In this section, we discuss the foundations and strategy of our second cache attack on
the Bernoulli-based sampler (Algorithms 8.5, 8.6, and 8.7). We show how to exploit the
fact that this method uses a small table ET, leaking very precise information about the
sampled value.

1Here zj refers to the first signature polynomial zj1 of the jth signature (zj1, z†j2, cj).
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Algorithm 8.8 Cache-attack on BLISS with CDT Sampling
Input: Access to cache memory of a victim with a key-pair (A, S). Input parameters

n,σ,q, κ of BLISS. Access to signature polynomials (z1, z†2, c) produced using S. Vic-
tim uses CDT sampling with tables T , I for noise polynomials y. Cache weakness that
allows to determine if coefficient yi ∈ {γ1,γ2} of y, and when this is the case, the
value of yi is biased towards γ1

Output: Secret key S
1: let k = 0 be the number of vectors collected so far and let M = [] be an empty list of

vectors
2: while (k < m): // collect m vectors ξk before randomizing LLL
3: collect signature (z1, z†2, c), together with cache information for each coeffi-

cient yi of noise polynomial y
4: for each i = 0, . . . ,n− 1:
5: if yi ∈ {γ1,γ2} (determined via cache information) and z1i = γ1:
6: add vector ξk = ci to M and set k = k+ 1
7: while (1):
8: choose random subset of n vectors from M and construct matrix L whose

columns are those vectors from M
9: perform LLL basis reduction on L to get: UL = L ′, where U is a unimodular

transformation matrix and L ′ is LLL reduced
10: for each j = 1, . . . ,n:
11: check if row uj of U has the same distribution as f and if (a1/2) ·uj mod 2q

has the same distribution as 2g+1. Lastly verify if a1 ·uj+a2 ·(a1/2) ·uj ≡
q mod 2q

12: return S = (uj, (a1/2) · uj mod 2q) if this is the case

8.4.1 – Weaknesses in cache. The Bernoulli-sampling algorithm described in Sec-
tion 8.2.2 uses a table with exponential values ET[i] = exp(−2i/(2σ2)) and inputs of
bit-size ` = O(logK), which means this table is quite small. Depending on bit i of input
x, line 3 of Algorithm 8.7 is performed, requiring a table look-up for value ET[i]. In par-
ticular when input x = 0, no table look-up is required. An attacker can detect this event
by examining cache activity of the sampling process. If this is the case, it means that the
sampled value z equals 0 in Step 2 of Algorithm 8.5. The possible values for the result
of sampling are y ∈ {0,±K,±2K, . . .}. So for some cache access patterns, the attacker is
able to determine if y ∈ {0,±K,±2K, . . .}.

8.4.2 – Exploitation. We will use the same methods as described in Section 8.3.2,
but now we know that for a certain cache access pattern the coefficient yi is in the
set {0,±K,±2K, . . .}, i = 0, . . . ,n − 1 of the noise polynomial y. If max |〈s, c〉| < K,
(which is something anyone can check using the public parameters and which holds
for typical implementations, see Section 8.2.1), we can determine yi completely us-
ing the knowledge of signature vector z. When more signatures2 (zj, cj); j = 1, . . . ,N
are created, the attacker can search for the specific access pattern and verify whether
yji ∈ {0,±K,±2K, . . .}, where yji is the i’th coefficient of noise polynomial yj.

2Again, zj refers to the first signature polynomial zj1 of the jth signature (zj1, z†j2, cj).
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If the attacker knows that yji ∈ {0,±K,±2K, . . .} and it additionally holds that zji =
yji, where zji is the i’th coefficient of signature polynomial zj, he knows that 〈s, cji〉 = 0.
If this is the case, the attacker includes coefficient vector ζk = cji in the list of good
vectors. Also for this attack the attacker will discard some known yji if it does not satisfy
zji = yji.

Once the attacker has collected n of these vectors ξk = cji; 0 6 i 6 n − 1, 1 6
j 6 N, 1 6 k 6 n, he can form a matrix L ∈ {−1, 0, 1}n×n, whose columns are the
ξk’s, satisfying sL = 0, where 0 is the all-zero vector. With very high probability, the
ξk’s have no dependency other than introduced by s. This means s is the only kernel
vector. Note the subtle difference with Equation (8.3): we do not need to randomize the
process, because we know the right-hand side is the all-zero vector. The attack procedure
is summarized in Algorithm 8.9.

Algorithm 8.9 Cache-attack on BLISS with Bernoulli sampling
Input: Access to cache memory of victim with a key-pair (A, S). Input parameters

n,σ,q, κ of BLISS, with κ < K. Access to signatures (z1, z†2, c) produced using S.
Victim uses Bernoulli sampling with the small exponential table to sample noise poly-
nomial y

Output: Secret key S
1: let k = 0 be the number of vectors gained so far and let M = [] be an empty list of

vectors
2: while(k < n):
3: collect signature (z1, z†2, c) together with cache information for each coefficient

yi of noise polynomial y
4: for each i = 1, . . . ,n do:
5: if yi ∈ {0,±K,±2K, ..} (according to cache information), and z1i = yi

then add coefficient vector ξk = ci as a column to M and set k = k+ 1
6: form a matrix L from the columns in M. Calculate kernel space of L. This gives a

matrix U ∈ Z`×n such that UL = 0, where 0 is the all-zero matrix
7: for each j = 1, . . . , ` do: // we expect ` = 1
8: check if row uj of U has the same distribution as f and if (a1/2) ·uj mod 2q

has the same distribution as 2g+1. Lastly verify if a1 ·uj+a2 ·(a1/2) ·uj ≡
q mod 2q

9: return S = (uj, (a1/2) · uj mod 2q) if this is the case
10: remove a random entry from M, put k = k− 1, goto step 2

Possible extensions One might ask why we not always use the knowledge of yji, since
we can completely determine its value, and work with a non-zero right-hand side. Un-
fortunately, bits bj from Equation 8.2 of the signatures are unknown. This means an
attacker has to use a linear solver 2N times, where N is the number of required signa-
tures (grouping columns appropriately if they come from the same signature). For large
N this becomes infeasible andN is typically on the scale of lattice dimension n (which is
related to the security parameter). By requiring that zji = yji, we remove the unknown
bit bj from the Equation (8.2).

Similar to the first attack, an attacker might also use vectors ξk = cji, where 〈s, cji〉 ∈
{−1, 0, 1}, in combination with LLL and possibly randomization. This approach might
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help if fewer signatures are available, but the easiest way is to require exact knowledge,
which comes at the expense of needing more signatures, but has a very fast and efficient
offline part. Section 6.3 deals with this approximate information.

8.5 — Results with a perfect side-channel

In this section we provide experimental results, where we assume the attacker has
access to a perfect side-channel: no errors are made in measuring the table accesses of
the victim. We apply the attack strategies discussed in the previous two sections and show
how many signatures are required for each strategy.

Attack setting Sections 8.3 and 8.4 outline the basic ideas behind cache attacks against
the two sampling methods for noise polynomials y used in the target implementation of
BLISS. We now consider the following idealized situation: the victim is signing random
messages and an attacker collects these signatures. The attacker knows the exact cache-
lines of the table look-ups done by the victim while computing the noise vector y. We
assume cache-lines have size 64 bytes and each element is 8 bytes large (type LONG).
To simplify exposition, we assume the cache-lines are divided such that element i of any
table is in cache-line bi/8c.

Our test machine is an AMD FX-8350 Eight-Core CPU running at 4.1 GHz. We use
the research oriented C++ implementation of BLISS, made available by the authors on
their webpage [DDLL13a]. Both of the analyzed sampling methods are provided by the
implementation, where the tables T , I and ET are constructed dependent on σ. We use
the NTL library [Sho15] for LLL reductions and kernel calculations.

CDT sampling When the signing algorithm uses CDT sampling as described in Algo-
rithm 8.4, the perfect side-channel provides the values of br/8c and bIz/8c of the table
accesses for r and Iz in tables I and T . We apply the attack strategy of Section 8.3.

We first need to find cache-line patterns, of type intersection or last-jump, which reveal
that |yi| ∈ {γ1,γ2} and P[|yi| = γ1| |yi| ∈ {γ1,γ2}] = 1 − α with α 6 0.1. One way
to do that is to construct two tables: one table that lists elements I[r], that belong to
certain cache-lines of table I, and one table that lists the accessed elements Iz inside
these intervals I[r], that belong to certain cache-lines of table T . We can then brute-force
search for all cache weaknesses of type intersection or last-jump. For example, in BLISS-I
the first eight elements of I (meaning I[0], . . . , I[7]) belong to the first cache-line of I, but
for the elements in I[7] = {7, 8}, the sampler accesses element Iz = 8, which is part of
the second cache-line of T . This is an intersection weakness: if the first cache-line of I
is accessed and the second cache-line of T is accessed, we know yi ∈ {7, 8}. Similarly,
one can find last-jump weaknesses, by searching for intervals I[r] that access multiple
cache-lines of T . Once we have these weaknesses, we need to use the biased restriction
with α 6 0.1. This can be done by looking at all bytes except the first of the entry T [Iz]
(this is already used to determine interval I[r]). If we denote the integer value of these 7
bytes by (T [Iz])byte 6=1, then we need to check if T [Iz] has property

(T [Iz])byte 6=1/(256 − 1) 6 α

(or (T [Iz])byte 6=1/(256 − 1) > (1 − α)). If one of these properties holds, then we have
yi ∈ {Iz − 1, Iz} and P[|yi| = Iz| |yi| ∈ {Iz − 1, Iz}] = 1 − α (or with Iz and Iz − 1
swapped).
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Parameter Set Type Cache
line u

Cache
line(s)
Iz

{γ1,γ2} γ1 α

BLISS-0 (Toy) Last-Jump 25 6,7 {127,128} 127 0.0447

BLISS-I Intersection 0 1 {7, 8} 8 0.0998
Last-Jump 6 6,7 {55,56} 55 0.0246
Last-Jump 21 25,26 {207, 208} 207 0.0465
Last-Jump 24 31,32 {254,255 } 255 0.0431
Last-Jump 27 40,41 {327,328 } 327 0.0200
Last-Jump 28 41,42 {334,335} 335 0.0226
Last-Jump 29 48,49 {390,391} 391 0.0104
Last-Jump 30 51,52 {414,415} 415 0.0018

BLISS-II Last-Jump 26 17,18 {143,144} 143 0.0643

BLISS-III Last-Jump 8 10,11 {87,88} 87 0.0903
Last-Jump 10 13,14 {111,112} 111 0.0139
Last-Jump 18 24,25 {199,200} 199 0.0272
Last-Jump 20 28,29 {231,232} 231 0.0087

BLISS-IV Last-Jump 9 12,13 {103,104} 103 0.0545
Last-Jump 10 14,15 {119,120} 119 0.0015

Table 8.2: We found these weaknesses in cache, for the five suggested parameter sets, satisfying the size and
biased requirement, as described in Section 8.3. For each weakness, we give the type (intersection or last-
jump), the corresponding values of bu/8c and bIz/8c, the possible outcomes {γ1,γ2}, where the outcome
has probability (1 −α) to be γ1.

For each of the suggested parameter sets of BLISS we found at least one of these
weaknesses using the above method. The weaknesses are given in Table 8.2.

Cache weaknesses in CDT sampling
We collect m (possibly rotated) coefficient vectors cj and then run LLL at most t =

2(m − n) + 1 times, each time searching for s in the unimodular transformation matrix
using the public key. We consider the experiment failed if the secret key is not found
after this number of trials; the randomly constructed lattices have a lot of overlap in their
basis vectors which means that increasing t further is not likely to help. We performed
1000 repetitions of each experiment (different parameters and sizes form) and measured
the success probability psucc, the average number of required signatures N to retrieve m
usable challenges, and the average length of v if it was found. The expected number of
required signatures E[N] is also given, as well as the running time for the LLL trials. This
expected number of required signatures can be computed as:

E[N] =
m

n · P[CP] · P[〈s1, c〉 = 0]
,

where CP is the event of a usable cache-access pattern for a coordinate of y.
From the results in Table 8.3 we see that, although BLISS-0 is a toy example (with

security level λ 6 60), it requires the largest average number N of signatures to collect
m columns, i.e., before the LLL trials can begin. This illustrates that the cache-attack
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Parameter Set m psucc ||v||22 N E[N] Offline
Time
(in s)

BLISS-0 (Toy) 256 0.690 10 2537 2518 1.9
(n,σ, κ) = 257 0.841 10 2547 2528 2.9
(256, 100, 12) 258 0.886 10 2565 2538 3.5

259 0.903 10 2571 2548 4.0
260 0.943 10 2580 2558 4.5
261 0.943 10 2596 2568 4.6

BLISS-I 512 0.655 29 441 450 37.6
(n,σ, κ) = 513 0.809 29 442 451 60.0
(512, 215, 23) 514 0.881 29 442 452 71.3

515 0.925 30 443 453 73.9
516 0.95 30 446 454 81.3
517 0.961 30 446 455 85.8

BLISS-II 512 0.478 33 2021 2020 37.5
(n,σ, κ) = 513 0.675 34 2023 2024 72.1
(512, 107, 23) 514 0.772 34 2030 2028 95.6

515 0.818 35 2033 2032 110.4
516 0.870 35 2033 2036 117.5
517 0.897 35 2041 2040 122.0

BLISS-III 512 0.855 23 945 930 42.2
(n,σ, κ) = 513 0.950 23 946 932 51.6
(512, 250, 30) 514 0.975 23 951 934 55.9

515 0.987 24 954 935 55.3
516 0.987 24 952 937 55.8
517 0.996 24 957 939 54.4

BLISS-IV 512 0.617 35 1206 1189 46.2
(n,σ, κ) = 513 0.817 36 1209 1191 75.3
(512, 271, 39) 514 0.885 36 1211 1194 88.4

515 0.932 36 1215 1196 93.7
516 0.947 36 1216 1198 102.4
517 0.955 36 1217 1201 104.4

Table 8.3: Experimental results with a perfect side-channel, when BLISS is used with CDT sampling (Algorithm
8.4). For each parameter set, we managed to gatherm equations fromN signatures. The running time of the
offline part is given in seconds.

depends less on the dimension n, but mainly on σ. For BLISS-0 with σ = 100, there is
only one usable cache weakness with the restrictions we made.

For all cases, we see that a small increase ofm greatly increases the success probabil-
ity psucc. The experimental results suggest that picking m ≈ 2n suffices to get a success
probability close to 1.0. This means that one only needs more signatures to always suc-
ceed in the offline part.

Bernoulli sampling When the signature algorithm uses Bernoulli sampling from Algo-



122 CHAPTER 8. FLUSH, GAUSS, AND RELOAD

Parameter Set m psucc N E[N] Offline
Time
(in s)

BLISS-0 (Toy) 256 1.0 1105 1102 0.8
BLISS-I 512 1.0 1671 1694 14.7
BLISS-II 512 1.0 824 839 14.4
BLISS-III 512 1.0 3018 2970 16.0
BLISS-IV 512 1.0 4223 4154 18.1

Table 8.4: Experimental results with a perfect side-channel, when BLISS is used with Bernoulli sampling (Al-
gorithms 8.5, 8.6, 8.7).

rithm 8.6, a perfect side-channel determines if there has been a table access in table ET.
Thus, we can apply the attack strategy given in Section 8.4. We require m = n (possibly
rotated) challenges ci to start the kernel calculation. We learn whether any element has
been accessed in table ET, e.g., by checking the cache-lines belonging to the small part of
the table. We performed only 100 experiments this time, since we noticed that psucc = 1.0
for all parameter sets with a perfect side-channel. This means that the probability that
n random challenges c are linearly independent is close to 1.0. We state the average
number N of required signatures in Table 8.4. This time, the expected number is simply:

E[N] =

 1
ρσ(Z)

bτσ/Kc∑
x=−bτσ/Kc

ρσ(xK)

 · P[〈s1, c〉 = 0]

−1

for K = b σ
σ2

+ 1c and tail-cut τ > 1.
Note that the number of required signatures is smaller for BLISS-II than for BLISS-I.

This might seem surprising as one might expect it to increase or be about the same as for
BLISS-I because the dimensions and security level are the same for these two parameter
sets. However, σ is chosen a lot smaller in BLISS-II, which means that also value K is
smaller. This influences N significantly as the probability to sample values xK is larger
for small σ.

8.6 — Proof-of-concept implementation

So far, the experimental results were based on the assumption of a perfect side-
channel: we assumed that we would get the cache-line of every table look-up in the
CDT sampling and Bernoulli sampling. In this section, we reduce the assumption and
discuss the results of more realistic experiments using the FLUSH+RELOAD technique.

When moving to real hardware some of the assumptions made in Section 8.5 no longer
hold. In particular, allocation does not always ensure that tables are aligned at the start of
cache lines and processor optimizations may pre-load memory into the cache, resulting
in false positives. One such optimization is the spatial prefetcher, which pairs adjacent
cache lines into 128-byte chunks and prefetches a cache line if an access to its pair results
in a cache miss [Int12].

FLUSH+RELOAD on CDT sampling Due to the spatial prefetcher, FLUSH+RELOAD cannot
be used consistently to probe two paired cache lines. Consequently, to determine access to
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two consecutive CDT table elements, we must use a pair that spans two unpaired cache
lines. In Table 8.5, we show that when the CDT table is aligned at 16 bytes, we can
always find such a pair for BLISS-I. Although this is not a proof that our attack works
in all scenarios, i.e. for all σ and all offsets, it would also not be a solid defence to pick
exactly those scenarios for which our attack would not work, e.g., because α could be
increased.

Offset within
cache-pair

Cache
lines Iz

{γ1,γ2} γ1

0 15,16 {207,208} 207
16 8,9 {141,142} 141
32 1,2 {27,28} 27
48 0,1 {9,10} 9
64 3,4 {55,56} 55
80 7,8 {117,118} 117
96 6,7 {99,100} 99
112 9,10 {145,146} 145

Table 8.5: Last-jump weaknesses for BLISS-I, in the case of different offsets (in bytes) within the same cache-
pairs. For every offset, we found a last-jump weakness satisfying the size and biased requirement (α < 0.1),
allowing the attacks described in Section 8.6.

The attack was carried out on an HP Elite 8300 with an i5-3470 processor. running
CentOS 6.6. Before sampling each coordinate yi, for i = 0, . . . ,n − 1, we flush the
monitored cache lines using the clflush instruction. After sampling the coordinate,
we reload the monitored cache lines and measure the response time. We compare the
response times to a pre-defined threshold value to determine whether the cache lines
were accessed by the sampling algorithm.

A visualization of the FLUSH+RELOAD measurements for CDT sampling is given in
Figure 8.1. Using the intersection and last-jump weakness of the sampling method in
cache-memory, we can determine which value is sampled by the victim by probing two
locations in memory. To reduce the number of false positives, we focus on one of the
weaknesses from Table 8.2 as a target for the FLUSH+RELOAD. This means that the other
weaknesses are not detected and we need to observe more signatures than with a perfect
side-channel, before we collect enough columns to start with the offline part of the attack.

We executed 50 repeated attacks against BLISS-I, probing the last-jump weakness for
{γ1,γ2} = {55, 56}. We completely recovered the private key in 46 out of the 50 cases. On
average we require 3438 signatures for the attack, to collect m = 2n = 1024 equations.
We tried LLL five times after the collection and considered the experiment a failure if we
did not find the secret key in these five times. We stress that this is not the optimal strategy
to minimize the number of required signatures or to maximize the success probability.
However, it is an indication that this proof-of-concept attack is feasible.

Other processors We also experimented with a newer processor (Intel core i7-5650U)
and found that this processor has a more aggressive prefetcher. In particular, memory
locations near the start and the end of the page are more likely to be prefetched. Conse-
quently, the alignment of the tables within the page can affect the attack success rate. We
find that in a third of the locations within a page the attack fails, whereas in the other two
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yi ∈ {γ1, γ2}

Figure 8.1: Visualization of FLUSH+RELOAD measurements of table look-ups for BLISS-I using CDT sampling
with guide table I. Two locations in memory are probed, denoted in the vertical axis by 0, 1, and they represent
two adjacent cache-lines. For interval I[51] = [54, 57], there is a last-jump weakness for {γ1,γ2} = {55, 56},
where the outcome of |yi| is biased towards γ1 = 55 with α = 0.0246. For each coordinate (the horizontal
axis), we get a response time for each location we probe: dark regions denote a long response time, while
lighter regions denote a short response time. When both of the probed locations give a fast response, it means
the victim accessed both cache-lines for sampling yi. In this case the attacker knows that |yi| ∈ {55, 56}; here
for i = 8 and i = 41.

thirds it succeeds with probabilities similar to those on the older processor. We note that,
as demonstrated in Table 8.2, there are often multiple weaknesses in the CDT. While some
weaknesses may fall in unexploitable memory locations, others may still be exploitable.

FLUSH+RELOAD on Bernoulli sampling For attacking BLISS using Bernoulli sampling,
we need to measure if table ET has been accessed at all. Due to the spatial prefetcher
we are unable to probe all of the cache lines of the table. Instead, we flush all cache
lines containing ET before sampling and reload only even cache lines after the sampling.
Flushing even cache lines is required for the FLUSH+RELOAD attack. We flush the odd
cache lines to trigger the spatial prefetcher, which will prefetch the paired even cache
lines when the sampling accesses an odd cache line. Thus, flushing all of the cache lines
gives us a complete coverage of the table even though we only reload half of the cache
lines.

Since we do not get error-free side-channel information, we are likely to collect some
c with 〈s, ci〉 6= 0 as columns in L. Instead of computing the kernel (as in the idealized
setting) we used LLL (as in CDT) to handle small errors and we gathered more than n
columns and randomized the selection of L.

We tested the attack on a MacBook air with the newer processor (Intel core i7-5650U)
running Mac OS X El Capitan. We executed 50 repeated attacks against BLISS-I, probing
three out of the six cache lines that cover the ET table. We completely recovered the
private key in 44 of these samples. On average we required 3294 signatures for the
attack to collect m = n + 100 = 612 equations. The experiment is considered a failure
if we did not find the secret key after trying LLL five times.

Conclusion Our proof-of-concept implementation demonstrates that in many cases we
can overcome the limitations of processor optimizations and perform the attack on BLISS.
The attack, however, requires a high degree of synchronization between the attacker
and the victim, which we achieve by modifying the victim code. For a similar level of
synchronization in a real attack scenario, the attacker will have to be able to find out
when each coordinate is sampled. One possible approach for achieving this is to use
the attack of Gullasch et al. [GBK11] against the Linux Completely Fair Scheduler. The
combination of a cache attack with the attack on the scheduler allows the attacker to
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monitor each and every table access made by the victim, which is more than required for
our attacks.

8.7 — Discussion of candidate countermeasures

In this chapter we presented cache attacks on two different discrete Gaussian sam-
plers. In the following we discuss some candidate countermeasures against our specific
attacks but note that other attacks might still be possible.

A standard countermeasure against cache-attacks are constant-time accesses. In this
case constant-time table accesses means accessing every element of the table for every
coordinate of the noise vector, and were also discussed (and implemented) by Bos et
al. [BCNS15] for key exchange. This increased the number of table accesses by about
two orders of magnitude. However, in the case of signatures the tables are much larger
than for key exchange: a much larger parameter σ for the discrete Gaussian distribution
is required. For 128 bits of security, σ = 8/

√
2π ≈ 3.19 suffices for key exchange, re-

sulting in a table size of 52 entries. In contrast, BLISS-I uses σ = 215, resulting in a
table size of 2580 entries. It therefore seems that this countermeasure induces signifi-
cant overhead for signatures: at least as much as for the key exchange. It might be the
case that constant-time accesses to a certain part of the table is already sufficient as a
countermeasure against our attack, but it is unclear how to do this precisely. One might
think that constant-time accesses to table I in the CDT sampler is already sufficient as
a countermeasure. In this case, the overhead is somewhat smaller, since I contains 256
entries. However, the last-jump weakness only uses the knowledge of accesses in the T
table, which is still accessible in that case.

In the case of the Bernoulli-based sampler, doing constant-time table accesses does
not induce that much overhead: the size of table ET is about ` ≈ 2 logK. This means
swapping line 2 and 3 of Algorithm 8.7 might prevent our attack as all elements of ET
are always accessed. Note that removing line 4 of Algorithm 8.7 (and returning 0 or 1
at the end of the loop) does not help as a countermeasure. It does make the sampler
constant-time, but we do not exploit that property. We exploit the fact that table accesses
occur, depending on the input.

Concurrent work by Saarinen [Saa18] discusses another candidate countermeasure:
the VectorBlindSample procedure. The VectorBlindSample procedure basically samples
m vectors of discrete Gaussian values with a smaller σ, shuffles them in between, and
adds the resulting vectors. The problem of directly applying our attack is that we need
side-channel information of all summands for a coefficient. The chances for this are quite
small. However, it does neither mean that other attacks are not possible nor that it is
impossible to adapt our attack. In fact, recent work [Pes16] has shown (adapted) attacks
that still work despite the usage of this shuffling.

More recently, another promising approach [MW17] uses several building blocks to
generate discrete Gaussian samples in an efficient and simple manner. A sampler for a
discrete Gaussian distribution with small standard deviation is used as core sampler, and
multiple samples are combined to generate values with arbitrary standard deviation. As
the core sampler for values with small standard deviation can be made constant-time
more easily (as it only requires small tables), the whole sampler is made constant-time
more easily.

Alternatives to Gaussian noise. This chapter shows that high-precision Gaussian sam-
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plers are a prime target for attacking lattice-based schemes. And while the above coun-
termeasure can fix the exploited leak in this specific implementation, different attack
techniques and side-channels might still allow for key recovery. Due to the complexity,
implementing such samplers both correctly and efficiently is already challenging and er-
ror prone, even without considering side-channel attacks.

Some cryptographers seem to have noted this, as there exist lattice-based schemes that
avoid Gaussians for these reasons. For instance, the NewHope key exchange [ADPS16]
uses the centered binomial distribution (which is trivial to sample from) as a low-precision
approximation to Gaussians. The lattice-based signature schemes TESLA [ABB+16] and
Dilithium [DLL+17] also avoid discrete Gaussians and use uniform noise instead. Both
proposals cite implementation concerns as a motivation for this design choice.

Another new approach is that of rounded Gaussians [HLS18]. Sampling from the
continuous Gaussian distribution is easier than sampling from the discrete Gaussian dis-
tribution: it can be done with basic arithmetic, coupled with the sine and cosine functions.
A discrete value could then be obtained by rounding this Gaussian value to the nearest
integer. However, this rounded Gaussian distribution is not exactly the discrete Gaussian
distribution. Hence in [HLS18] the authors adapt the proofs of BLISS to handle these
rounded Gaussians.

8.8 — Other samplers

In the following section we look at two other methods of sampling from the discrete
Gaussian distribution: Knuth-Yao [KY76, DG14] and the discrete Ziggurat [BCG+13].
While we did not implement an attack against any specific implementations that use these
samplers, we examine different ways to exploit specific ways to implement these sam-
plers. The attack target remains to learn a BLISS secret key. This section only presents the-
oretical concepts and can be skipped as it is supplemental work. We leave an experiment-
based evaluation of the described attacks for future work.

8.8.1 – Knuth-Yao. The basic idea of the Knuth-Yao sampling method [KY76, DG14]
is to build a binary tree, known as the discrete distribution generating (DDG) tree, using
binary representations of the probability distributionDσ. At sampling time, one performs
a random walk in this tree. A different representation of this tree is given using a binary
matrix Pmat ∈ {1, 0}τσ×λ, where λ indicates the precision of the table. Each row of
Pmat corresponds to the probability of sampling the index of the row. Each element of
Pmat represents a node in the DDG tree, and each non-zero element corresponds to a
terminal node in the tree. When such a terminal node is hit, the corresponding index of
the row is output. One can again restrict to the non-negative part of the discrete Gaussian
distribution, and draw a random sign at the end. Algorithm 8.10 describes the steps of
Knuth-Yao, more details can be found for instance in [DG14].

Weaknesses in cache. The value to track in this method is row, which can be done
by tracking the end of the for-loop, using knowledge of the accesses in Pmat. Notice that
the 2-dimensional array Pmat is stored as a 1-dimensional array, storing Pmat[row][col]
at Pmat[row ·MAXCOL + col] in memory. This means that it is possible, depending on
e.g. storage type, size and precision, that Pmat[i][col] and Pmat[i − 1][col] are stored in
different cache-lines for all i ∈ {0, . . . ,MAXROW}. If, during sampling time, cache-line
of Pmat[i][col] is accessed and Pmat[i − 1][col] is not, it means that |y| = i. For instance,
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Algorithm 8.10 Knuth-Yao Sampling

Input: Probability matrix Pmat ∈ {1, 0}τσ×λ

Output: Sample y with probability according to Dσ
1: set d = 0 and col = 0
2: while (true):
3: sample bit r uniformly
4: d = 2d+ r
5: for row =MAXROW down to 0 do
6: d = d− Pmat[row][col]
7: if d = −1 then
8: set x = row
9: sample bit s uniform

10: return y = (−1)sx
11: col = col+ 1
12: if col =MAXCOL then restart

in [dCRVV15] the entries are stored as data-type INT, resulting in this weakness.
But even when multiple rows are stored in the same cache-line, which is more likely,

there are possibilities of tracking the for-loop. Suppose Pmat[j][col] up to Pmat[k][col] are
stored in the same cache-line. If the attacker is able to figure out the number of accesses
` in this cache-line, he knows that |y| = k − `. For instance, by using FLUSH+RELOAD

between table accesses from the victim might leak this number `. Note that the attacker
has to be much faster than the victim in order to perform operations even between table
accesses, but it might be possible to use degrading techniques such as done in [ABF+16].
It is possible that all values between Pmat[j][col] up to Pmat[k][col] were accessed and the
for-loop has not ended. There are two ways of overcoming this: he can also monitor the
next cache-line, to measure if this line is not accessed. Or the attacker can require that
` < k− j before acting on it, since he then knows that the for-loop ended for sure.

For both of these exploits, the attacker does not make errors if all cache-line measure-
ments were correct. This means he can apply the same attack strategy for BLISS with the
Bernoulli-based sampler, as shown in Section 4, and use similar adaptations to real-life
experiments, as shown in Section 6.

Countermeasures. To block our specific exploit, the end of the for-loop has to be
hidden in terms of accesses in Pmat. One possible countermeasures is similar to that
of the CDT sampler: perform the implementation in constant time. It means that the
implementation always has to finish the for-loop in this case. However, that means that
one has to access τσ elements for each sample, which could mean a significant slow-down
for the sampler, as stated earlier.

In [dCRVV15,RRVV14], a modification has been proposed for the Knuth-Yao sampler,
that uses one (or two) additional look-up tables L, which represents the first few levels of
the binary tree. At sampling time, one first uses L to see if a sample can be determined,
and otherwise performs a loop as in Algorithm 8.10. Depending on the size of L, it only
means the complexity of our exploit increases: only for samples that are not covered in
L, the loop in Pmat is performed. This simply means requiring more signatures before
the attack can be finished. [RRVV14] discusses the Knuth-Yao sampler for a lattice-based
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encryption scheme, where the authors noticed the possibility of a timing/power attack
for this sampling method. The authors tried to mitigate this exploit, when the sampling
did not succeed with the look-up table, by applying a random permutation at the end
of sampling. It has the effect that we can only measure that a certain weakness has
occurred in the sampling of the noise vector but we do not know the index. However, we
can still check every index of z for a possible match since we want the Gaussian sample
to be equal to the corresponding coordinate of z. A sample is discarded if more than one
index is possible. On top of all, it might also be possible to spy on the look-up tables L
themselves.

8.8.2 – Discrete Ziggurat. The discrete Ziggurat [BCG+13] is a sampler, that allows
for a time-memory tradeoff to adapt to the needs of a use-case. The idea is to divide the
area beneath the probability distribution function of Dσ into m rectangles Ri of equal
volume. At sampling time, a random rectangle is picked and a sample inside this picked
rectangle is output, depending on a further rejection step. These rectangles can be divided
into two parts: one part where a sample is immediately accepted, and another part where
rejection sampling is performed. Only for the rejection sampling one needs high-precision
values of the probability distribution Dσ. In practice two tables are used to store the
x- and y-coordinates of the rectangles. Picking more rectangles m means that fewer
rejection steps are required on average, speeding up the sampler. However, naturally a
higher m also means more storage space. More details are in [BCG+13], a simplified
version of the sampler is given in Algorithm 8.11. Here, (Rx[i],Ry[i]) denotes the lower
right corner of rectangle Ri for 1 6 i 6 m, where Rx[i] is rounded down to the nearest
integer.

Algorithm 8.11 Discrete Ziggurat Sampling
Input: Number of rectangles m, tables Rx and Ry of size m,
Output: Sample y with probability according to Dσ

1: while (true): // continue until success
2: sample i← {1, . . . ,m}, s← {0, 1}, x← {0, ...,Rx[i]} uniformly.
3: if 0 < x 6 Rx[i− 1] then return y = (−1)sx
4: else
5: if x = 0 then
6: sample bit b uniformly
7: if b = 0 then return y = (−1)sx
8: else continue
9: else // in rejection area of Ri

10: sample bit b, using values Rx[i − 1],Rx[i],Ry[i − 1],Ry[i] (details in
[BCG+13])

11: if b = 0 return y = (−1)sx.
12: else continue

Weaknesses in Cache. For a potential cache-attack, parameterm is of high influence:
a small m means a small table, which means fewer possibilities of cache weaknesses.
However, to compete with the CDT sampler in terms of speed, m has to be chosen quite
large, for instance 256 or 512.
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The weakness in this sampler is based on the fact that if a victim has to perform
rejection steps, the outcome is bounded to a certain range: |y| ∈ (Rx[i−1],Rx[i]] for some
i ∈ {0, . . . ,m}. Furthermore, only when rejection steps have to be performed, values
Ry[i − 1] and Ry[i] are required. Now in the case that we have a large m, it is possible
that this range of values for |y| is simply one unique value: when Rx[i−1]+1 = Rx[i]. If
it happens to be that Rx[i − 1] and Rx[i] are in different cache-lines, we can monitor for
cache access patterns similar to the last-jump weakness for the CDT sampler. This means
an attacker monitors two adjacent cache-lines, corresponding to the accesses of Rx[i− 1]
and Rx[i]. In addition to this, also the cache-line corresponding to value Ry[i−1] (and/or
Ry[i]) has to be monitored. Only in the case of rejection steps, these values are accessed.
When all these three cache-lines are accessed by the victim and the sampling stops, the
attacker knows that |y| = Rx[i].

This means an attacker can monitor certain cache-lines, and when these are accessed,
he knows the value of |y| without making errors. It means also for this sampler, the attack
strategy of Section 4 can be applied.

Countermeasures. For our specific exploit, we make use of the fact that we know
when rejection steps are performed, since only in that case Ry values are accessed. This
means that in this case, one can overcome this issue by always access the corresponding
Ry values, no matter if rejection steps are performed. This simply requires two more
loads. However, it does not mean other exploits are not possible.





CHAPTER 9

To BLISS-B or not to be

9.1 — Overview

Context. In the previous chapter, we presented the first-of-its-kind side-channel attack
on a lattice-based signature scheme called BLISS. The attack targets a noise vector that
is sampled from the discrete Gaussian distribution and used to hide information of the
secret key in the signature. Dedicated algorithms, among others those proposed by the
authors of BLISS, are used to sample from this distribution. We showed how to retrieve
estimations of some elements of the noise vector by carefully examining access-patterns
to cache memory. Using signatures and recovered (estimations of) noise elements by the
side-channel, we then recovered the secret key by means of a lattice-basis reduction.

However, the presented attacks have some shortcomings. First, in the proof-of-concept
cache attack (Section 8.6) we only target the “research-oriented” reference implementa-
tion of BLISS [DDLL13b]. We also modified its code in order to achieve perfect synchro-
nization of the attacker with the calls to the sampler. While this method demonstrates
the existence and exploitability of the side-channel, it is not a realistic real-world setting.

Second, and maybe more importantly, the attacks do not apply to BLISS-B [Duc14],
an improved version of BLISS that accelerates the signing operation by a factor of up
to 2.8, depending on the used parameter set. Due to its better performance, this new
variant is the only option for the adoption of BLISS in strongSwan, an IPsec-based VPN
suite [str15].

The new attack target. Recall that the main operation in BLISS is to multiply the secret
key s with a binary challenge vector c and add a noise vector y which is sampled at random
from a discrete Gaussian distribution. The result z = y+(−1)b(s·c), where b is a random
bit, together with the challenge vector c form the signature. In Chapter 8 we used the
recovered values of y over many signatures, to construct a lattice from the challenge
vectors such that s is part of the solution to the shortest vector problem in that lattice.
This short vector is found using a lattice-basis reduction.

In BLISS-B, however, the secret s is multiplied with a ternary vector c ′ ∈ {−1, 0, 1}n

for which c ′ ≡ c mod 2. Still, only the binary version c is part of the signature and c ′ is
undisclosed. Thus, the signs of the coefficients of the used challenge vectors are unknown
and constructing the appropriate lattice to find s is infeasible for secure parameters. Note
that this problem (or similar ones) are also present in other works on implementation
attacks targeting the original BLISS, both for side-channel attacks [Pes16] as well as fault
attacks [BBK16, EFGT16]. Hence, one might be tempted to think of BLISS-B as a “free”
side-channel countermeasure.
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Summary. In this chapter we show that BLISS-B is not a free side-channel countermea-
sure. First, we present a new key-recovery attack that can, given side-channel information
on the Gaussian samples in y, recover the secret key s. Apart from being applicable to
BLISS-B, this new key recovery approach can also increase the efficiency (in the num-
ber of required side-channel measurements) of earlier attacks on the original BLISS (e.g.
from the previous chapter or [Pes16]). And second, we use this new key-recovery ap-
proach to mount an asynchronous cache attack on the BLISS implementation provided
by strongSwan. Hence, we attack a real-world implementation in a realistic setting.

Our key-recovery attack consists of four steps:
• In the first step, we use side channels to gather information on the noise vector. We

use these leaked values, together with known challenge vector elements, to con-
struct a linear system of equations. However, the signs in this system are unknown.

• In the second step, we solve the above system. We circumnavigate the problem
of unknown signs by using the fact that −1 ≡ 1 mod 2. That is, we first solve
the linear system in GF(2), instead of over the integers. Due to errors in the side
channel the linear system may include some errors. Solving such a system is known
as the Learning Parity with Noise (LPN) problem. We use an LPN solving algorithm
to learn the parity of the secret key elements, i.e. to find s mod 2.

• In some parameter sets of BLISS-B, the key s ∈ {0,±1}n and thus the above already
uniquely determines the magnitude of the coefficients. In others, however, the
secret key can also have some coefficients with ±2, which have parity zero. In the
third step, we employ one of two heuristics (depending on the parameter set) to
identify those, both heuristics exploit the magnitude of the coefficients of s ·c ′. The
first heuristic uses an Integer Programming solver. The second uses a Maximum
Likelihood estimate.

• At this stage we know the magnitude of each of the coefficients of the secret key
s. In the fourth step, we finalize the attack and extract s. We construct a Shortest
Vector Problem (SVP) based on the public key and the known information about
the secret key. We solve this problem using the BKZ lattice-reduction algorithm.

For the idealized cache-attacks presented in the previous chapter (Section 8.5) and
the BLISS-I parameter set, the new method can reduce the number of required signatures
from 450 to 325.

We then perform a cache attack on the BLISS-B implementation which is deployed as
part of the strongSwan VPN software. Unlike the attack in the previous chapter, we al-
low the adversary to be asynchronous and running in a different process than the victim.
The adversary uses the FLUSH+RELOAD attack by [YF14], combined with the amplifica-
tion attack of [ABF+16]. Furthermore, we target a real-world implementation and not a
research-oriented reference implementation. Consequently, our attack scenario is much
more realistic.

Differences with published version. There are several changes in this chapter compared
to the published paper [PGY17]. The main changes are the removal of the details about
the error correction mod 2 (Section 9.3.4), as well as the details of the Maximum Like-
lihood technique (Section 9.3.5), as the author of this thesis did not contribute to these
parts. Section 9.6 is an additional section written solely by the author of this thesis.

Organization. In Section 9.2, we present BLISS-B and discrete Gaussians. Then, in Sec-
tion 9.3 we discuss previous work on side channel analysis. We then show our improved
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key-recovery attack. We evaluate our new method in Section 9.4 by comparing it to ear-
lier work. In Section 9.5, we perform a full attack on the BLISS implementation provided
by strongSwan. We discuss a possible improvement in Section 9.6. We give specific coun-
termeasures in Section 9.7.

9.2 — Preliminaries

In this section, we briefly describe background concepts required for the rest of the
chapter. Most of the required background is already handled in the previous chapters.
For the required background on lattices see Section 6.2. This chapter again relies on the
knowledge of NTRU lattices and LLL/BKZ. For the required background on cache-attacks,
see Section 6.3. The signature scheme BLISS and its algorithms, as well as several discrete
Gaussian samplers are discussed in Section 8.2. Therefore, in this section we only state
the differences between BLISS and BLISS-B.

The differences between the BLISS signature scheme and its optimized version BLISS-
B are minor, although with a big impact on the applicability of side-channel attacks. Key-
generation of both BLISS and BLISS-B are similar except that in BLISS-B keys no longer
need to be rejected (Line 3 of Algorithm 8.1 is skipped). The verification algorithms
of both schemes are identical (Algorithm 8.3), which means that signatures are both
backward and forward compatible.

9.2.1 – BLISS-B. The BLISS-B signing procedure is given in Algorithm 9.1. The main
difference to the original BLISS is Line 4 of the procedure. Recall that the challenge vector
c, used in the Fiat-Shamir transform [FS86], is computed by invoking a hash function H.
In BLISS-B, this function returns a binary vector of length n and a Hamming weight of ex-
actly κ. GreedySC (9.2) then computes the product Sc ′ for some vector c ′ ∈ {−1, 0,+1}n

that satisfies c ′ ≡ c mod 2. Note that for the specific BLISS input S = (s1, s2) ∈ R2
2q in

GreedySC, we have m = 2n and si = S1i for 0 6 i < n and si = S2i for n 6 i < 2n
where S1i and S2i are the rotations of s1 and s2, respectively, with possibly opposite sign
matching the reduction in R2q. The generated c ′ contains information on the secret key,
hence it is kept secret and not output as part of the signature. GreedySC is not part of the
first version of BLISS (see Algorithm 8.2). Instead, the product Sc is used directly, i.e.,
v1 = s1 · c.

[DDLL13b] propose several parameter sets for different security levels. As these
remain unchanged for BLISS-B, the parameters relevant for the attacks are (still) those
in Table 8.1 of the previous chapter.

Discrete Gaussians. Like BLISS, also BLISS-B uses discrete Gaussian noise vectors to
statistically hide the secret vector (Line 1 in Algorithm 9.1). For a background on this
subject, see Section 8.2 of the previous chapter. The two described sampling methods,
the CDT sampler and the Bernoulli sampler, are also analyzed in this work. In partic-
ular, the Bernoulli sampler is the method that is implemented in strongSwans BLISS-B
implementation.

9.3 — An improved side-channel key-recovery technique

In this section, we present our new and improved side-channel attack on BLISS, that
also works for BLISS-B. We first discuss why these steps are necessary by discussing the
limitation of the attack described in the previous chapter.
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Algorithm 9.1 BLISS-B Sign

Input: Message µ, public key A = (a1,q− 2), private key S = (s1, s2)

Output: A signature (z1, z†2, c)
1: y1 ← Dnσ , y2 ← Dnσ
2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(bued mod p||µ)
4: (v1, v2) = GreedySC(S, c)
5: Sample a uniformly random bit b
6: (z1, z2) = (y1, y2) + (−1)b(v1, v2)
7: Continue with some probability f(v, z), restart otherwise (details in [Duc14])
8: z†2 = (bued − bu − z2ed) mod p
9: return (z1, z†2, c)

Algorithm 9.2 GreedySC

Input: a matrix S ∈ Zm×n and a binary vector c ∈ Zn
Output: v = Sc ′ for some c ′ ≡ c mod 2

1: v = 0 ∈ Zn
2: Let Ic be the set of indices 0 6 i 6 n− 1 where ci = 1
3: for i ∈ Ic
4: ζi = sign(〈v, si〉)
5: v = v − ζisi
6: return v

9.3.1 – Limitations of Previous Attacks. The side-channel attacks on BLISS from the
previous chapter have certain limitations and caveats. As already stated above, due to the
unknown bit b, which is potentially different for each signature, the attacks in Chapter 8
only use samples where zi = yi and thus 〈s, ci〉 = 0 (with high probability). This,
however, only holds in roughly 15% of all samples (cf. Figure 10.2) and thus a lot of
information is discarded. By finding a method to use all samples for the attack, the
number of required signatures could drop drastically.

A second and more severe limitation is that the previous attacks do not apply to the
improved BLISS-B signature scheme. The attacks recover the key by solving a (possi-
bly erroneous) linear system sL ≈ 0, where L consists of the used challenge vectors ci.
However, the GreedySC algorithm, which was added with BLISS-B, performs a multipli-
cation of s with some unknown ternary c ′ ≡ c mod 2, with c ′ ∈ {−1, 0, 1}n. In simple
terms, the signs of the coefficients in c ′ (and thus also in the resulting lattice basis L ′) are
unknown. Hence, a straight-forward solving of sL ′ ≈ 0 is not possible anymore.

On the practicality of previous attacks. A third limitation of the attack in Chapter 8 is
the question of real-world applicability. The demonstrated attack (Section 8.6) targets an
academic implementation that is not used in any “real-world” applications. Furthermore,
the attack is synchronous. To achieve this, we modified the code of the BLISS implemen-
tation in order to interleave the phases of the FLUSH+RELOAD attack with the Gaussian
sampler. In practice, it is not clear if an attacker can achieve such a level of synchro-
nization without modifying the source, and an adversary that can modify the source can
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access the secret key directly without needing to resort to side channel attacks. Conse-
quently, while we showed a proof-of-concept, the attack falls short in terms of real-world
applicability.

9.3.2 – Overview of the improved attack. Our method consists of four major steps,
each step reveals additional information on the secret signing key s. The first step is
equivalent to the attacks described in Section 8.3 and 8.4 of the previous chapter. That
is, the attacker performs a side-channel attack, e.g., a cache attack, on the Gaussian-
sampler component to recover some of the drawn samples yi of y. With this information
we can construct a (possibly erroneous) system of linear equations over the integers,
using knowledge on zi − yi = (−1)b(s · c ′). (Section 9.3.3)

Due to the previously mentioned sign-uncertainty in BLISS-B (the recovered term s·c ′
instead of s · c), the solution cannot be found with simple linear algebra in Z. Instead,
in Step 2 we solve this system in GF(2). For error correction, one can employ an LPN
algorithm or simply brute-force if the error probabilities are small enough (Section 9.3.4)

This does not give us the full key, but instead s∗ = s mod 2. For some parameter
sets however, there are some coefficients ±2 (i.e., BLISS-0, BLISS-III and BLISS-IV have
δ2 > 0). In Step 3, we retrieve their positions. We use the current knowledge on the
secret key s∗ to derive 〈s∗, ci〉, and compare this with zi−yi = 〈s, c ′i〉 (obtained from the
side channel). Based on that, we give two different methods in Section 9.3.5 to determine
the positions of the ±2 coefficients and derive |s| ∈ {0, 1, 2}n.

In the fourth step, we finally recover the full signing key. We use |s| to reduce the size
of the lattice basis generated from the public key. We then perform a lattice reduction and
search for s2 as a short vector in the lattice spanned by this smaller basis. Linear algebra
then allows recovery of the full private key (s1, s2). (Section 9.3.6)

We now give a more detailed description of these steps.

9.3.3 – Step 1: Gathering Samples. Akin to the previous chapter, we need to observe
the generation of multiple signatures and use a side-channel to infer some of the elements
of the corresponding noise vector y = y1. In previous works, the exploited side channels
were based on cache attacks (previous chapter) or on power analysis (in [Pes16]).

Side-channel analysis has to deal with measurement errors and other uncertainties.
Due to these effects a recovered sample yi might not be correct. In our scenario, the
probability ε of such an error is known (or can be estimated to a certain extent) and can
possibly be different for each sample.

For each recovered (and reassigned) sample yi, we can write an equation zi = yi +
(−1)b〈s, c ′i〉, which holds with probability 1 − ε. As the signs of coefficients of c ′i are
unknown, we can simply ignore the multiplication with (−1)b and instead implicitly
include this factor into c ′i. Unlike in the previous chapter, we do not require that 〈s1, ci〉 =
0 and thus can use all recovered samples. We compute the difference ti = zi − yi and
rearrange all gathered c ′i into a matrix L ′ to get sL ′ = t.

This system is defined over Z. However, due to the unknown signs in the challenge
c ′ it cannot be directly solved using straight-forward linear algebra, even in the case that
all recovered samples are correct. Instead, a different technique is required.

9.3.4 – Step 2: Finding s1 mod 2. In the second attack step, we solve the above
system by using the following observation. Line 6 of Algorithm 9.1, i.e., z1 = y1± s1 · c ′,
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is defined over Z. That is, there is no reduction mod q involved1. Such an equivalence
relation in Z also holds mod 2, i.e., in GF(2), whereas the reverse is not true.

In GF(2), we have that −1 ≡ 1 mod 2. This resolves the uncertainty in L ′ and we can,
at least when assuming no errors in the recovered samples, solve the system s∗L ′ = t∗

over GF(2). Here s∗ and t∗ denote s mod 2 and t mod 2, respectively. In the BLISS-I
parameter set (Table 8.1), we have that δ2 = 0. Thus, s∗ reveals the position of all
dδ1ne = 154 nonzero, i.e., (±1), coefficients. However, a simple enumeration of all 2154

possibilities for s is still not feasible. Before we discuss a method to recover the signs of
s and thus the full key, we briefly show how errors in t∗ can be corrected.

Error Correction mod 2. As stated in Section 9.3.3, a recovered Gaussian sample yi
might not be correct. Hence, the right-hand-side of the system s∗L ′ = t∗ is possibly
erroneous. In the perfect side-channel attack on the Bernoulli sampler, there are no errors
and the secret key can be found with simple linear algebra. However, in the cache attack
on the CDT sampling algorithm (Section 8.3), errors cannot be avoided. For some cache
weaknesses (see Table 8.2), it might be possible to find the secret key by gathering more
signatures and trying a subset of challenges c that are hopefully error-free. However, the
need for such an expensive technique increases the number of required signatures.

Another way is to rewrite the above equations in GF(2) as s∗L ′ = t∗ + e. Here, t∗ is
errorless and the error is instead modeled as vector e. Solving this system is exactly the
LPN problem [Pie12], thus we employ an LPN solving algorithm [GJL14,LF06] to recover
s∗. The details for this part are outside the scope of this thesis, but can be found in the
published version of this chapter [PGY17].

9.3.5 – Step 3: Recovering the Positions of Twos. After the above second attack
step, we know s∗ ≡ s mod 2. If we have d2 = δ2n > 0 (i.e., in BLISS-0, BLISS-III or
BLISS-IV), we denote s ∈ {0, 1}n the vector with si = 1 whenever si = ±2, i.e. this
vector is non-zero at each coefficient where vector s has coefficient ±2.

In the third attack step, we use one of two methods to recover s, one based on integer
programming and the other based on a maximum likelihood test. Both make use of the
fact that the weight κ of the challenge vector c (and hence also c ′) is relatively small.
Thus, in any inner product 〈s, c ′i〉, only a small number of coefficients in s are relevant.
From knowledge of s∗, we can immediately derive how many of the selected coefficients
are ±1. We define this quantity as η1 = 〈s∗, |ci|〉. The other κ − η1 are then either 0 or
±2. We define the (unknown) number of twos as η2 = 〈s, |ci|〉, this number is bound by
0 6 η2 6 min(d2, κ− η1)

Both methods then compare the output of the side-channel analysis, i.e., |zi − yi| =
|〈s, c ′i〉|, to η1 and use this to derive information on η2. We will now discuss both methods.

Integer Programming Method. Our first method recovers s by transforming the problem
into an Integer Program. First, suppose we perfectly retrieved yji from a side-channel. If

|zi − yi| = |〈s, c ′i〉| > η1 + 1,

then we know that η2 > 0, i.e. there has to be a at least one ±2 involved making up for
the difference in the above inequality. We save all |ci| for which the above is true in a

1In fact, due to the parameter choices and the tailcut required by a real Gaussian sampler, |y1 + s1 · c ′| can
never exceed q.
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matrix M. Then, we need to find a solution r for the following constraints:

Mr > 1.

We also add another constraint stating that a solution must satisfy ||r||1 = δ2n, so that we
end up with the correct number of coefficients in the solution. Also the indices where s∗

is non-zero should be eliminated from the solution space.
Finding the solution s can be seen as a minimal set cover problem with additional

constraints. Here, the indices of Mi form sets and r a cover. We find the smallest solution
for this problem using an Integer Program solver, namely GLPK [Prond]. Note that by
adding more constraints, i.e., more rows in M, the probability that the solver finds the
correct solution increases.

The above method cannot be used if the errors in the recovered samples y exceed±2.
Such errors could break the Integer program due to conflicting constraints. However,
it is possible to deal with ±1 errors, as the difference between |zi − yi| and η1 needs
to be at least 2. Samples with an error of ±1 can be detected and discarded, simply
due to knowledge of the correct parity. Note that in the attacks of the previous Chapter
(Section 8.5), a perfect side-channel adversary targeting the CDT sampling algorithm
only makes errors of ±1. Hence, this method can be used for this scenario.

Statistical Approach. A second approach that can recover the position of twos in secret
key s1 is based on a statistical approach rather than integer programming. Thus, in some
cases it withstands errors more easily. The details for this part are outside the scope of
this thesis, but can be found in the published version of this chapter [PGY17].

9.3.6 – Step 4: Recovering s1 with the Public Key. After the above 3 steps we have
recovered |s|. In the fourth and final step, we recover the signs of all its nonzero coeffi-
cients and thereby the full signing key s.

We do so by combining all knowledge on |s| = |s1| with the public key. Key generation
(Algorithm 8.1) computes a public key A = {2aq,q − 2}, with aq = s2/s1 = (2g + 1)/f
in the ring Rq. In case of the BLISS-I and BLISS-II parameter sets (Table 8.1), both f, g
have dδ1ne = 154 entries in {±1}, while all other elements are zero. Thus, both these
vectors are small.

When writing s1 ·aq = s2, it is easy to see that s2 = 2g+1 is a short vector in the q-ary
lattice generated by aq (or more correctly, the rows of Aq). Obviously, the parameters of
BLISS were chosen in a way such that a straight-forward lattice-basis reduction approach
is not feasible. However, knowledge of |s| allows a reduction of the problem size and thus
the ability to recover the key.

With matrix-vector notation, i.e., s1Aq = s2, it becomes evident that all rows of Aq at
indices where the coefficients of |s| (and thus s1) are zero can be simply ignored. Thus,
we discard these rows and generate a matrix A?

q with size (dδ1ne ×n), i.e., (154× 512)
for parameter sets BLISS-I and BLISS-II). Hence, the rank of the lattice, i.e., the number
of basis vectors, is decreased.

We further transform the key-recovery problem as follows. First, we do not search for
s2 directly, but instead search for the even shorter g used in the key-generation process.
We have that f · aq = 2g + 1, thus f · aq · 2−1 = g + 2−1 and we simply multiply all
elements of A?

q with 2−1 mod q. We discard the computation of the first coefficient,
which contains the added 2−1 mod q, and thus reduce the dimension of the lattice to
n− 1.
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And second, we reduce the lattice dimension further to some d with δ1n < d < n−1
by discarding the upper n − 1 − d coefficients. Hence, we do not search for the full g
but for the d-dimensional sub-vector g?. If, on the one hand, this dimension d is too low,
then g? is not the shortest vector in the q-ary lattice spanned by the now (dδ1ne × n)
matrix A?

q. If, on the other hand, d is chosen too large, then a lattice-reduction algorithm
might not be able to find the short g?. For our experiments with parameter sets BLISS-I
and BLISS-II, we set d = 250.

Finally, we feed the basis of the q-ary lattice generated by the columns of A?
q into

a basis-reduction, i.e, the BKZ algorithm. If we picked d correct, the returned shortest-
vector is the sought-after g?. We then simply solve f?A?

q = g? for f? ∈ Zdδ1ne. This f?

will only consist of elements in ±1, which are the signs of the nonzero coefficients of the
full f. By simply putting the elements of f? into the nonzero coefficients of s ′1, we can
fully recover the first part of the signing key f = s1. Finally, the second part of the key is
s2 = aq · s1. Thus, the full signing key is now recovered.

9.4 — Evaluation of key recovery

In this section, we give an evaluation of our new key-recovery technique. That is, we
apply our algorithm to attacks presented in earlier work on original BLISS and compare its
performance. Recall, however, that all previous work was unable to perform key-recovery
for BLISS-B.

In order to allow a fair comparison, we reuse the modeled and idealized adversaries
of earlier work. Concretely, we look at the idealized cache-adversary targeting the CDT
sampling algorithm of [GHLY16] and the modeled adversaries for the attack on shuffling
by [Pes16]. Thus, for the evaluation our Step 1 is identical to theirs.

We analyze the performance of the following steps in our key recovery. We analyze
the key recovery mod 2, i.e., the LPN solving approach (Step 2). Then, we evaluate the
success rate of both two-recovery approaches (Step 3). And finally, we state figures for
the full-key recovery using a lattice reduction (Step 4).

9.4.1 – Step 2: Key-Recovery mod 2. For evaluation of the second attack step, i.e.,
mod-2 key recovery, we only consider the BLISS-I parameter set.

Our used LPN approach utilizes differing error probabilities of samples. Its first step is
to filter samples, i.e., keep only those with lowest error probability. Evidently, this means
that the success probability increases with the number of gathered LPN samples. Thus,
we tested the performance for a broad set of observed signatures. For each test, we ran
decoding on all 16 hyperthreads of a Xeon E5-2630v3 CPU running at 2.4GHz. If this does
not find a solution after at most 10 minutes, then we abort and mark the experiment as
failed.

Cache attack on CDT sampling. Figure 9.1 shows the results of the idealized cache-attack
on the CDT sampler (as in Section 8.4). We do not perceive any significant differences be-
tween the original BLISS and BLISS-B here, so we perform experiments for both versions
and give the average. We reach a success rate of about 0.9 when using 325 signatures.
This is roughly 28 % less than the 450 signatures required in previous work. These sav-
ings can be explained as follows. We can now use all recovered samples, and not only
those where z = y. However, this is somewhat offset by the fact that our LPN-based
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approach is not as error-tolerant as their lattice-based method which is not applicable in
our setting.
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Figure 9.1: Success rate of LPN decoding for an idealized attack on CDT sampling

9.4.2 – Step 3: Recovery of Twos. For evaluation of the third attack step, we analyze
the success rate of both twos-recovery procedures (subsection 9.3.5) with the idealized
CDT adversary. We consider all parameter sets with δ2 > 0, i.e., BLISS-0, BLISS-III, and
BLISS-IV.

We show the success rate as a function of the number of recovered samples in Fig-
ure 9.2. Please note that this is not equal to the number of required signatures (see
Section 8.4). As seen in part a, the linear-programming approach requires 30 000 sam-
ples for BLISS-0 and 400 000 samples for BLISS-III, respectively. Here we do not evaluate
the performance with BLISS-IV due to even higher requirements on the number of sam-
ples. The second approach, which is based on statistical methods, requires more samples
for BLISS-0 (45 000) but performs better for BLISS-III (35 000) and BLISS-IV (130 000).
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Figure 9.2: Success rate for Twos recovery

9.4.3 – Step 4: Key-Recovery using Lattice Reduction. In the last step, i.e., recovery
of the full signing key s from |s| (subsection 9.3.6), we use the BKZ lattice-reduction
algorithm. Concretely, we use the implementation provided by Shoup’s Number Theory
Library NTL [Sho15]. We set the BKZ block size to 25 and abort the reduction algorithm
as soon as a fitting, i.e., short enough, candidate for the d-dimensional vector g? is found.
Such a candidate vector must have a Hamming weight of at most dδ1ne and must consist
solely of elements in {±1}.
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We evaluate the correctness and performance of this method by running over 250 key-
recovery experiments for both the original BLISS-I and BLISS-BI. In each experiment, we
generate a new key, perform a key recovery mod 2 (assuming a perfect and errorless
side-channel), and finally perform a lattice reduction. All our experiments are successful,
hence we can assume that once s∗ = s1 mod 2 is known, the full signing key can always
be recovered. The average runtime of lattice reduction (with early abort) was roughly
4-5 minutes on an Intel Xeon E5-2660 v3 running at 2.6GHz.

Other parameter sets. For parameter sets BLISS-0, BLISS-III, and BLISS-IV, we were not
able to perform full key-recovery using the above method. In case of BLISS-I and BLISS-II,
the Hamming weight of s1 and hence the rank of the reduced q-ary lattice is δ1n = 154.
For BLISS-III and BLISS-IV, this quantity increases to 232 and 262, respectively. Due to
the resulting increased rank of the lattice, we were not able to recover the key using BKZ.

9.5 — Attacking strongSwans BLISS-B

In this section, we perform a cache attack on the BLISS-B implementation of the
strongSwan IPsec-based VPN suite [str15]. Concretely, we use the parameter set BLISS-I.
We describe the setup and the execution of the cache attack in Section 9.5.1. Our adver-
sary is not synchronized with the victim, thus we perform synchronization based on the
signature output (Section 9.5.2). This corresponds to the first step of our key-recovery
method. Afterwards one can apply the key-recovery attacks described in the previous
section.

9.5.1 – Asynchronous Cache Attack. To gather samples with a side-channel attack,
we use the FR-trace tool of the Mastik toolkit version 0.02 [Yar16]. FR-trace is a
command line utility that allows mounting the FLUSH+RELOAD attack with amplification.
We set FR-trace to perform the FLUSH+RELOAD attack every 30000 cycles. We de-
scribe the locations we monitor below. We set an amplification attack against the function
pos_binary, which is used as part of Line 1 of the Bernoulli sampler (Algorithm 8.6).
This slows the average running time of the function from 500 to 233000 cycles, creating
a temporal separation between calls to the Bernoulli sampler. However, this slowdown
is not uniform and 26% of the calls take less than 30000 cycles, i.e. below the temporal
resolution of our attack.

strongSwan’s implementation of BLISS uses the Bernoulli-sampling approach as de-
scribed in Section 8.2. Thus, we reuse the exploit described in the previous Chapter
(Section 8.4) and detect if the input to Algorithm 8.7 was 0. Our cache adversary is asyn-
chronous. Thus, to detect the zero input we have to keep track of several events. First,
we detect calls to the Gaussian sampler (Algorithm 8.6). Second, strongSwan interleaves
the sampling of the two noise vectors y1 and y2, i.e., it calls the sampler twice in each
of the 512 iterations of a loop. As we only target the generation of y1, we detect the
end of each iteration and only use the first call to the Gaussian sampler in each iteration.
Third, we track the entry to Algorithm 8.7 and only use the last entry per sampled value.
Other calls to this function correspond to rejections and thus cannot be used. Finally, if
we detect that Line 4 of Algorithm 8.7 was not executed, we know that x = 0. In this
case, the sampled value y is a multiple of K = 254.

For BLISS-I, the above events, which we will dub zero events from now on, happen
on average twice per signature. In order to minimize the error rate, we apply aggressive
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filtering. Also, we found that possibly due to prefetching, access to Line 4 of Algorithm 8.7
is often detected although x = 0. As a result, we detect zero events on average 0.74 times
per signature. 92% of these detections were correct, the other 8% were false positives in
which the access to Line 4 was missed by the cache attack.

We carry out the experiment on a server featuring an 8 core Intel Xeon E5-2618L v3
2.3GHz processor and 8GB of memory, running a CentOS 6.8 Linux, with gcc 4.4.7. We
use strongSwan version 5.5.2, which is the current version at the time of writing this work.
We build strongSwan from the sources with BLISS enabled and with C compile options
-g -falign-functions=64. To validate the side-channel results against the ground-
truth, we collect a trace of key operations executed as part of the signature generation.
The trace only has a negligible effect on the timing behaviour of the code and is not used
for key extraction.

9.5.2 – Resynchronization. Even though zero events can be detected by an adversary,
due to the asynchronous nature of the attack it is not obvious which of the 512 samples
corresponds to this detection. In other words, we can detect (with high probability) that
there exists a sample y ∈ {0,±K,±2K, . . .}, but we do not know which sample.

We recover the index i of a detected zero event as follows. First, we locate the first
and the last call to the Gaussian sampler in the cache trace. We then estimate the posi-
tions of the other 510 calls by placing them evenly in between. Note that Algorithm 8.6
does not run in constant time, hence this can only give a rough approximation. How-
ever, we found that run-time differences average out and that the estimated positions are
relatively close to the real calls. In fact, this method gives better results than counting
the calls to Algorithm 8.6 in the trace, as some calls are missed and counting errors ac-
cumulate. We also found that the error, i.e., the difference from the estimated index of
an event to its real index in the signature, roughly follows a Gaussian distribution with
standard deviation 3.5. We then compute the time span between the detected event and
the estimated calls to the sampler, match it against the above Gaussian distribution, and
then apply Bayes theorem to derive the probability that the detected call to the Gaussian
sampler corresponds to each index 0. . . 511 in the signature.

This alone, however, does not allow a sufficient resynchronization. We use the sig-
nature output z in order to further narrow down the index i. For each coefficient in z,
we compute the distance d to the closest multiple of parameter K used in Algorithm 8.6.
Then we look up the prior-probability that the sample y corresponding to any signature
coefficient z was a multiple of K, this is simply the probability that a coefficient of s1 · c ′
is equal to d. We estimated this distribution using a histogram approach, it is shown in
Figure 10.2 (for BLISS-I). As K = 254 and the coefficient-wise probability distribution of
s1 · c ′ is narrow, many elements of the unknown y have a zero or very small probability
of being a multiple of K.

Finally, we combine the prior-probabilities derived from the signature output z with
the matching of the trace, which we do by applying Bayes theorem once more. We then
use only these zero events that can be reassigned to a single signature index with high
probability, i.e., > 0.975, and where the prior-probability P(〈s1, c ′i〉 = d) is also high,
i.e., d < 3.

Roughly 1/3 of detected zero events fulfill both criteria. Out of these, 95% are correct,
i.e., correspond to a real zero event and were reassigned to the correct index. Recall that
our key-recovery approach only requires the value of zi − yi mod 2. Thus, 97.5% of all
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Figure 9.3: Coefficient-wise probability distribution of s1 · c ′

recovered samples are correct in GF(2).
We can now apply either a brute-force search for error-less samples or we apply the

LPN approach to recover the secret over GF(2). As we used the parameter set BLISS-I and
thus have s ∈ {0,±1}n, the third attack step described in Section 9.3.5 is not required.
The fourth attack step, the lattice reduction, then finally returns the secret signing key.
The runtime of this step was already stated in Section 9.4.3.

9.6 — A little bit more side-channel

The results in Section 9.4.3 are a bit unsatisfactory: even after full recovery of the
coefficients that are ±1,±2, the remaining rank of the reduced q-ary lattice is too big
to solve with BKZ. This is independent of the number of recovered samples that one is
able to retrieve via side-channel attacks. However, if we add a little more power to the
side-channel attack, the attack can progress and reduce the rank of the lattice bit by bit.

In the implementation of BLISS in strongSwan [str15] (but also in the research-
oriented implementation [DDLL13a]), the sign bit b in Line 6 of Algorithm 9.1 is not
protected against side-channel attacks. A naive way of implementing Line 6 of Algo-
rithm 9.1 is given in Algorithm 9.3. As the loop proceeds similar for every index, a cache
attack should be able to catch the triggered events, i.e. the branch depending on bit b.
As this is at a much later stage than the discrete Gaussian sampling, both attacks could
be performed one after another. Although this might be considered a naive implementa-
tion, the original goal of adding this bit b to BLISS is for increased performance, not for
increased protection against (side-channel) attacks. Ironically, when only this additional
sign bit is retrieved via side-channel information, the sign bits of the secret key can be
recovered bit by bit, when |s| from the previous chapter is known. This means the attack
can progress.

From the previous two sections, we get all non-zero coefficients of |s|, which is already
quite a lot of information. However, for the last step of the key-recovery, it might be
necessary to reduce the size of the unknown coefficients even more. Especially in the
case of parameter sets I, III and IV, which we were unable to break due to the large lattice
dimensions that is left after the side-channel attack. Let |s| ∈ {0, 1, 2}n be the secret
vector with unknown signs. Note that in the greedy way of computing v = GreedySC(S, c)
(Algorithm 9.2), the first coefficient of c ′ will be −1: due to the v = 0 in the first iteration.
We can use this to our advantage. Let |s|c1 be the coefficient of |s| such that coefficient
c1 of c is the first non-zero element. If |s|c1 6= 0, it is possible that in some cases, there is
only one possibility for the sign of |s|c1 . For example, imagine that |s|c1 6= 0 and consider
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Algorithm 9.3 Vector addition with random bit

Input: Vectors u, v ∈ Zn and bit b ∈ {0, 1}
Output: Vector z = u + (−1)bv

1: initialize z := 0
2: for i ∈ [0,n):
3: if b = 0:
4: zi = ui + vi
5: else if b = 1:
6: zi = ui − vi
7: return z

the extreme case that

zji − yji = |〈s, c ′ji〉| = 〈cji, |s|〉 = −1|s|c1

i.e., the only coefficient that is non-zero in both s and c is c1. Thus this automatically
means that

−1 · sign(|s|c1) = sign(〈s, c ′ji〉) = sign(zji − yji)
Since we now have all the unknown signs, we can determine sign(|s|c1). Although the
probability for this extreme case is quite small, there are other, less extreme cases. If
the retrieval of bit b is done from the start (together with the attack on the discrete
Gaussian sampler), the signatures retrieved for steps 1-3 could be reused. We did not run
experiments for this last step.

9.7 — Countermeasures

The discussion in Section 8.7 also applies to this chapter: the attacks are mitigated
when the whole implementation is written in constant-time. More specifically for this
chapter and for strongSwans implementation: it is crucial that Algorithm 8.7 is imple-
mented in constant-time and without secret-dependent branching, i.e. the handling of
rejections and table look-ups should not depend on the input. As shown in Algorithm 9.4,
this can be done by performing all ` steps in the loop and always sample an Ai. The re-
turn value v is then updated according to the values of Ai and xi in constant time. We
use C-style bitwise-logic operands to describe this update.

Algorithm 9.4 Sampling a bit from B(exp(−x/(2σ2))) for x ∈ [0, 2`), constant-time
version
Input: x ∈ [0, 2`) an integer in binary form x = x`−1 . . . x0. Precomputed table E with

E[i] = exp(−2i/(2σ2)) for 0 6 i < `
Output: A bit b from B(exp(−x/(2σ2)))

1: v = 1
2: for i = `− 1 downto 0 do
3: sample Ai from B(E[i])
4: v = v & (Ai | ∼xi)

5: return v





CHAPTER 10

Learning with differential faults

10.1 — Overview

Context. We have seen in the previous two chapters that securely sampling from a dis-
crete Gaussian distribution is hard to achieve in practice. The attacks, especially the
practical asynchronous attacks of Chapter 9, show the importance of protection against
side-channel attacks. Secure implementation is therefore another aspect of the NIST Post-
Quantum Cryptography standardization process [NIS]. The proposals should be easy to
implement both correctly (ideally also model-mismatch resistant) and securely. Propos-
als that offer such characteristics on a wide variety of platforms, including PCs as well as
constrained devices like smart cards, are more desirable. Naturally this requires analysis
of many implementation attacks, not only the passive side-channel attacks (i.e. cache-
attacks from the previous two chapters), but also active fault attacks ( [BCN+06]). The
latter are a well-known threat to embedded devices. Rowhammer.js, a remote software-
only fault attack [KDK+14, GMM16], demonstrated that also high-performance PCs are
vulnerable. As implementations are evaluated in terms of both security and performance,
they should be made resistant to such attacks ideally without too much costs.

In this regard, an interesting property of many lattice-based signature schemes (in-
cluding BLISS and BLISS-B) is that they make use of the Fiat-Shamir transform [FS86].
Concretely, two NIST submissions, qTESLA [BAA+17] and Dilithium [LDK+17], use a
variant of the transform called Fiat-Shamir with Aborts [Lyu09]. However, signature
schemes built using the Fiat-Shamir transform, such as ECDSA, have a well-known caveat:
signing requires a nonce and a nonce reuse for different messages leads to trivial key re-
covery. This requirement was sometimes violated in the past, as, e.g., shown by the
infamous attack on the PlayStation3 console [BMS10]. In order to sidestep this problem,
the signature scheme can be made entirely deterministic. That is, the nonce is derived
by hashing the message and a special part of the key, which leads to each input having a
unique signature. Both Dilithium and qTESLA1 use this approach and thus follow in the
footsteps of proposals such as EdDSA [BDL+11] and deterministic ECDSA [Por13].

This solution, however, creates problems when it comes to fault attacks. An attacker
can let a victim sign the same message twice, but introduce a computational fault in one of
the signature computations. This results in different signatures using the same nonce and

1Following the initial publication of this work, a very recent update of the qTESLA specification added a
mandatory countermeasure which makes the algorithm non-deterministic and prohibits our attacks. We refer
to the originally submitted version of qTESLA for the remainder of the chapter, and discuss the countermeasure
and update in Section 10.6
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thus in a key recovery. In fact, recent work [BP16,ABF+18,PSS+18,SB18] explored the
vulnerability of elliptic-curve signatures against such differential fault attacks, including
Rowhammer-based ones [PSS+18].

The vulnerability of lattice-based deterministic signatures, however, is less clear. The
possibility of such differential attacks was already hinted at [LDK+17, BAA+17], yet
many questions remain open. Concretely, the abortion technique introduced by Lyuba-
shevsky [Lyu09] and used by both qTESLA and Dilithium may hamper the attack. Further-
more, the different algebraic structure might open up new attack venues. Understanding
the possibilities of such fault attacks is relevant in the standardization process and pos-
sible deployment of these schemes. In this chapter, we investigate the applicability of
differential fault attacks on deterministic lattice-based signature schemes

Summary. We show the applicability of differential fault attacks on deterministic lattice-
based signature schemes. We focus on Dilithium, but all our attacks apply to qTESLA as
well. We explore how and where these schemes are vulnerable to single random faults
and show how fault-induced nonce reuse allows extracting the secret key. Furthermore,
we show attacks that can easily create and then efficiently exploit a partial nonce-reuse.
This scenario yields valid signatures and thus allows to bypass some generic countermea-
sures.

In Dilithium and qTESLA, a unique signature vector z = y+ cs is constructed out of a
challenge c, a secret element s, and a deterministically computed nonce y. The attack is
focused on faulting the computation of challenge c, leaving the nonce y untouched and
thus creating a nonce reuse scenario. By carefully examining two signatures of the same
message yet with a (due to a fault) different challenge c, s can be extracted using lin-
ear algebra. We identify multiple operations inside the Dilithium signing algorithm that
are vulnerable, i.e., where a random fault can lead to nonce reuse. We say "can", as the
use of the Fiat-Shamir with Aborts framework leads to not all faults being exploitable.
We determine the success probabilities for all fault scenarios, they range from 14 % to
91 %. In addition to these scenarios, we also explore fault-induced partial nonce reuse.
There, the fault attack is specifically focused on the computation of nonce y, but in such
a way that only a portion of the computation is different. We exploit this by transform-
ing key recovery into a unique shortest-vector problem, and show how to solve it using
the BKZ lattice-reduction algorithm. While previous work already exploited such partial
reuse scenarios for ECC [ABF+18], our attacks are much less restrictive regarding injected
faults.

Successful extraction of s alone, however, does not directly allow to run the signing
algorithm. This is due to Dilithium’s public-key compression, which causes that some
additional elements of the secret key cannot be computed from just s. Thus, we show a
tweaked signature algorithm that can still produce valid signatures on any new message
despite lacking some parts of the key.

We verified the vulnerabilities by performing clock glitching on an ARM Cortex-M4 mi-
crocontroller. In particular, we induced random faults during polynomial multiplication
and in the SHAKE extendable output function. We show that an attacker with detailed
knowledge of the executed code can easily inject faults at correct locations despite some
non-constant time behavior. An unprofiled attacker who injects a fault anywhere during
the signing process still has a high chance of succeeding. Up to 65.2 % of the execution
time of Dilithium is vulnerable to our attacks.
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We finally give a discussion on generic countermeasures against the attacks and reason
about their applicability and implementation costs. We conclude that probably the sim-
plest yet most effective countermeasure is a rerandomization of deterministic sampling,
which, however, is not covered by the security proof of Dilithium.

Organization. In Section 10.2, we give the necessary background to understand the re-
mainder of the chapter. In Section 10.3, we explore the possibilities of differential fault
attacks on Dilithium. In Section 10.4, we show that the signature algorithm should be
modified since the secret key element extracted by our attacks does not suffices yet to
compute valid signatures for any message. In Section 10.5 we verify the vulnerabilities
with real experiments on an ARM Cortex-M4 microcontroller. In Section 10.6 we end the
chapter with a discussion on countermeasures. In Section 10.7, we show how to apply
the results to qTESLA.

10.2 — Preliminaries

In this section, we introduce additional background on lattices and the Dilithium sig-
nature scheme. We also provide a summary of previous attacks on implementations of
lattice-based cryptography.

10.2.1 – Lattice-Based Cryptography. For a general introduction on lattices, see Sec-
tion 6.2. In this chapter, we furthermore extend the preliminaries on lattices a little bit.
As described in Section 6.2, two hard problems underlying many lattice-based cryptogra-
phy schemes are Ring-LWE/Ring-SIS, which are defined over the ring Rq. Given a public
key (a, t) ∈ R2

q, for Ring-LWE an attacker is asked to find short polynomials s1, s2 such
that t ≡ a ·s1+s2 mod q. With short, we mean polynomials whose coefficients are small,
i.e. in absolute value less or equal to some small η > 0. Module-LWE/Module-SIS are
generalizations of Ring-LWE/Ring-SIS, respectively. There the problems are defined over
Rk×`q for some positive integers k, ` > 1: given a matrix A ∈ Rk×`q and a vector t ∈ Rkq,
find two short elements s1 ∈ R`q, s2 ∈ Rkq such that t ≡ A · s1 + s2 mod q. For the attacks
described in this chapter, this means that an attacker needs to find multiple secret key
elements.

Additional Notation. In this chapter we need to introduce some more notation to im-
prove readability. As we have both vectors and vectors of vectors, we define for each poly-
nomial f ∈ Rq, the corresponding vector of coefficients in Zq as f = (f0, f1, . . . , fn−1).
With := we denote deterministic assignments, with ← we refer to uniform probabilis-
tic sampling from some set. We define the `2 and `∞ norm for w ∈ Rq by ||w||2 =√∑n−1

i=0 w
2
i and ‖w‖∞ = max{|w0|, |w1|, . . . , |wn−1|}, where all wi are represented by

an element in the interval [−q−1
2 , q−1

2 ]. This definition can be naturally expanded to
vectors of polynomials. The set Sη denotes the subset of Rq that includes all elements w
that satisfy ‖w‖∞ 6 η, i.e. the short polynomials described in the previous paragraph.

10.2.2 – Deterministic Lattice Signatures. We now describe the two deterministic
lattice-based signature schemes Dilithium [LDK+17] and qTESLA [BAA+17], both of
which were submitted to the NIST call. For design rationale, associated security proofs,
and more details (e.g., on various subroutines) we refer to the respective submission
documents.
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Algorithm 10.1 Dilithium Key Generation

Output: Keypair (pk, sk)
1: ρ← {0, 1}256,K← {0, 1}256

2: (s1, s2)← Slη × Skη
3: A ∈ Rk×`q := ExpandA(ρ)
4: t := As1 + s2

5: (t1, t0) := Power2Roundd(t)
6: tr ∈ {0, 1}384 := CRH(ρ||t1)
7: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Dilithium. In this chapter we focus mainly on Dilithium, which is why we give a more in-
depth description of this scheme. Dilithium is based on the Module-LWE/SIS assumption.
It operates over the fixed base ring Rq = Zq[x]/(x256 + 1),q = 8380417 and allows for
flexibility by allowing different module parameters (k, `). This means that code used for
arithmetic in Rq can be reused for any module Rk×`q , which makes an adaptation to other
security levels easier.

Key generation is given in Algorithm 10.1. First, two random seeds ρ, K, and two key
elements s1, s2 are sampled. The function ExpandA deterministically expands the seed ρ
into a matrix A ∈ Rk×`q using the extendable-output function (XOF) SHAKE128. This is
done to minimize public and private key sizes as only ρ needs to be stored instead of the
full A. The public key t = As1 + s2 is compressed by feeding it into the Power2Roundq
function, which computes a pair (t1, t0) such that t = t1 · 2d + t0. Only the upper part
t1 is published. The lower bits t0 and a hash of the public key tr = CRH(ρ||t1) are
included in the private key sk. CRH is shorthand for Collision Resistant Hash, Dilithium
uses SHAKE256 with an output length of 384 bits.

Dilithium is based on the Fiat-Shamir with Aborts Framework [Lyu09]. Simply speak-
ing, in this framework a signature σ is rejected and signing restarted to make σ follow
some fixed distribution. This rejection sampling statistically hides any secret information
in the signature and thus provides the zero-knowledge property. The structure of rejec-
tion sampling can be easily seen in Algorithm 10.2, which shows a slightly simplified2

version of the Dilithium signature algorithm. The comments in Algorithm 10.2 refer to
our attack scenarios and can be ignored for now.

Signature generation starts off by recomputing A and hashing the message M to-
gether with the hashed public key tr. The abort loop starts off by using the function
DeterministicSample to generate the noise y ∈ S`γ1−1. The product w = Ay is com-
pressed to w1 using HighBits. The hint h later allows the verifier to recompute this w1.
The hash function H instantiates the random oracle needed in the proof. It returns a
sparse ternary polynomial c ∈ B60, i.e., a polynomial with Hamming weight 60 and all
non-zero coefficients in±1. The function Decompose returns both HighBits and LowBits
of its input. Finally, several checks are performed that determine if the current signature is
accepted or rejected. In case of a rejection, a counter value κ is updated and the signature
generation is repeated with this new value.

Note that all operations in Algorithm 10.2 are completely deterministic and thus gen-

2Some additional checks and constant subroutine arguments are omitted.
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Algorithm 10.2 Dilithium Sign (simplified2)

Input: Message M, private key sk = (ρ,K, tr, s1, s2, t0)
Output: Signature σ = (z, h, c)

1: A ∈ Rk×`q := ExpandA(ρ) . fAρ, fAE

2: µ ∈ {0, 1}384 := CRH(tr||M)
3: κ := 0, (z, h) := ⊥
4: while (z, h) = ⊥ do
5: y ∈ Slγ1−1 := DeterministicSample(K||µ||κ) . fY
6: w := Ay . fW
7: w1 := HighBits(w)
8: c ∈ B60 := H(µ||w1) . fH
9: z := y + cs1

10: h := MakeHint(−ct0, w − cs2 + ct0)
11: (r1, r0) := Decompose(w − cs2)
12: if ‖z‖∞ > γ1 − β or ‖r0‖∞ > γ2 − β or r1 6= w1 then (z, h) := ⊥
13: κ := κ+ 1
14: return σ = (z, h, c)

Algorithm 10.3 Dilithium Verify (simplified2)

Input: Public key pk = (ρ, t1), message M, signature σ = (z, h, c)
1: A ∈ Rk×`q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(CRH(ρ||t1)||M)
3: w1 := UseHint(h, Az − ct1)
4: accept iff c = H(µ||w1)

erate a unique signature for message M3. This property is also used in the proof of
Dilithium in the Quantum Random Oracle Model (QROM) [KLS18]. The proof does
allow a non-deterministic version, albeit at the cost of tightness and a loss in security
proportional to the number of distinct signatures an adversary can observe per message.

For completeness, we also provide a simplified version of the verification procedure
(Algorithm 10.3). Throughout this chapter we use the recommended Dilithium parame-
ter set III shown in Table 10.1. The designers claim 128 bits of security against a Quantum
adversary. Other parameter sets mainly differ in the used (k, `), so our later attacks are
possible for all proposed sets.

qTESLA. Structurally, the signature scheme qTESLA [BAA+17] is very similar to that of
Dilithium. It also uses a variant of the Fiat-Shamir with Aborts framework and is deter-
ministic. Unlike Dilithium, its proof in the QROM model [ABB+17] allows for a non-
deterministic version as well (without losing tightness). The main difference however
is that qTESLA is based on the Ring-LWE/SIS assumptions instead of the module coun-
terparts. Thus, it operates on Rq = Zq[x]/(xn + 1) (so k = ` = 1) with n > 1024.
We will later demonstrate our attacks on the example of Dilithium. Still, with some mi-

3A previous Dilithium description [DLL+17] is probabilistic, but did not include a proof in the QROM.
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Table 10.1: Dilithium parameter sets

I II III IV

weak medium recommended high

n 256 256 256 256

q 8380417 8380417 8380417 8380417

d 14 14 14 14

weight(c) 60 60 60 60

γ1 523776 523776 523776 523776

γ2 261888 261888 261888 261888

(k, `) (3, 2) (4, 3) (5, 4) (6, 5)

η 7 6 5 3

β 375 325 275 175

ω 64 80 96 120

nor modifications they all also apply to qTESLA. We defer the description of qTESLA to
Section 10.7, where we also highlight the similarities to Dilithium.

10.2.3 – The SHAKE Extendable Output Function. Dilithium makes heavy use of
the SHAKE Extendable Output Function (XOF). It is also an important target of our fault
attack, which is why we now very briefly describe it. SHAKE uses the sponge construc-
tion [BDPV07], which we already handled in quite some detail in Chapter 2. For the sake
of completeness, we restate the important parts for this chapter. The sponge construction
has two internal parameters r and c called the rate and the capacity, where the capacity
is chosen such that the sponge construction meets a desired level of security. We call the
internal state of the sponge x, consisting of r+ c bits, with all bits initialized to zero. The
sponge starts with the absorb phase. Any input to the sponge function is first padded,
using some injective padding function, resulting in k > 1 input blocks m1||m2|| . . . ||mk
of length r bits. These message blocks are then XORed with the first r bits of the state x,
interleaved with applications of a permutation f : {0, 1}r+c → {0, 1}r+c. In SHAKE, the
Keccak-f permutation is used. After all message blocks are processed, the squeeze phase
starts. Depending on the desired output length, the function iteratively returns the first
r bit blocks of the internal state x, interleaved with applications of the permutation f. In
Figure 10.1, we show an example for three input blocks and three output blocks. Note
that this construction allows for any number of input and output blocks.

In the context of fault attacks, the important thing to note is that any manipulations
in f corrupt the state x and thus affect all subsequent operations. For instance, faulting
the first application of f in the squeeze phase leads to a correct H0 but faulty H1,H2, . . ..

10.2.4 – Implementation Security of Lattice-Based Cryptography. In the previous
two chapters we discussed various attacks on lattice-based schemes that require high-
precision sampling from a discrete Gaussian distribution. We also discussed several coun-
termeasures. We call these passive implementation attacks: attacks that do not inter-
fere with the computation itself. Active implementation attacks on lattice-based cryp-
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Figure 10.1: Sponge construction with three block input m0||m1||m2 and three block output H0||H1||H2.
With 0r, 0c we denote the all-zero bit string of length r,c. The application of the padding function is not
shown.

tography also received some prior attention. Two concurrent works [BBK16, EFGT16]
investigated fault attacks on non-deterministic lattice-based signature schemes, such as
BLISS [DDLL13b], GLP [GLP12], PASSSign [HPS+14], and ring-TESLA [ABB+16]. Espi-
tau et al. [EFGT16] investigated loop-abort faults in the generation of noise-polynomial
y ∈ Rq. This means that the sampling algorithm for this polynomial is cut off after
the m’th noise coefficient, i.e. y = (y0, . . . ,ym−1, 0, . . . , 0). A key-recovery is possible if
m� n. The target distribution of y is not relevant; the general attack framework applies
to both BLISS (which uses the discrete Gaussian distribution) and the other previously
mentioned schemes (which all use the uniform distribution).

Like Dilithium and qTESLA, the above mentioned lattice-based signatures compute
z = y + cs, where c, z are part of the signature σ and s ∈ Rq is a small secret key
element. We can rewrite this equation as:

c−1z ≡ c−1y+ s mod q (10.1)

where we assume that c ∈ Rq is invertible (which is true with very high probability). As
s is a small element, the target t = c−1z is close to a point in the lattice generated by the
vectors {wi = c−1xi mod q |i ∈ {0, . . . ,m − 1}} and qZn, and the difference is exactly
s. This means that the closest-vector problem in (10.1) can be solved by, e.g., a lattice
reduction followed by application of Babai’s nearest plane algorithm. As this sub-lattice is
of full dimension and too hard to solve at once, one can reduce the size of the problem to
solve (10.1) for a subset I ⊆ {0, . . . ,n− 1} of indices, using the projection ψI : Zn → ZI
given by ψI((ui)06i<n) = (ui)i∈I. It can be shown that if the cardinality of any subset
I is slightly larger than m (see the analysis in [EFGT16]), then (10.1) is solvable for
subset I. By repeating this for multiple subsets, the complete secret key element s can
be recovered. With knowledge of s the full secret key could be recovered using linear
algebra.

10.2.5 – Differential Fault Attacks on ECC. In this chapter we concentrate on differ-
ential fault attacks, in which the difference between a faulty and a correct output is used
to determine information about the secret key. Previous work [BP16, ABF+18, PSS+18,
SB18] explored such attacks on two deterministic elliptic curve signature schemes: Ed-
DSA and deterministic ECDSA. Both of these signature schemes use the Fiat-Shamir trans-
form, thus requiring the usage of a unique nonce per message. The fault attacks mainly
focus on achieving nonce reuse, as this leads to a very efficient key-recovery.

Concretely, Poddebniak et al. [PSS+18] exploit the fact that the message is hashed
twice in EdDSA. By manipulating the message in between these hashing operations with
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Rowhammer, one can induce a nonce reuse and perform a key recovery. Ambrose et
al. [ABF+18] inspect a wider range of scenarios. They show that even random faults
in certain operations can allow attacks. Additionally, they show that faults affecting the
nonce itself are also usable. However, for this they require a very restrictive fault model.
They need that the resulting error is limited to a few bits, as an exhaustive search is
required to find the exact difference between the faulty and correct nonce.

10.3 — Differential faults on deterministic lattice signatures

In this section, we present our differential fault attacks on Dilithium. As previously
mentioned, these attacks apply to qTESLA as well, as we provide the attacks for arbitrary
values of ` and k. First, we briefly describe our fault model. Then we explain the main
intuition of our attacks. We identified multiple vulnerable operations, for each of them
we finally describe how faulting can lead to key recovery. We also discuss additional
properties, such as ease of fault injection, for the scenarios.

Fault model. In this chapter we assume the possibility of injecting a single random
fault. These can encompass instruction skips, arithmetic faults, glitches in storage, and
more. The faults are not restricted to specific operations but can be applied during a large
section of execution time. This model is also used for some of the previously mentioned
attacks on EdDSA [ABF+18] (some scenarios require a more restrictive fault model). In
contrast, previous active attacks on lattice-based signatures required more control, such
as the ability to abort a loop [EFGT16].

10.3.1 – Intuition. The intuition behind our fault attacks is as follows. We let the
signer sign the same message M twice. In the first invocation we do not inject any fault
and receive a valid and proper signature σ = (z, h, c). We inject a fault in the second
run; we use ′, e.g., z ′, to denote variables in this faulted invocation. More concretely,
we inject a fault such that y ′ is undisturbed and due to the determinism equal to y, yet
c ′ 6= c and thus z ′ = y + c ′s1.

Thus, the fault induces a nonce-reuse scenario. When defining ∆z = z − z ′ (and
∆c,∆y analogously), we have ∆z = ∆y + ∆c · s1 = ∆c · s1 as ∆y = 0. Thus, under
the requirement that ∆c is invertible, which is true with very high probability, then s1 =
∆c−1 · ∆z.

The Fiat-Shamir with Abort structure, however, introduces an additional hurdle. We
require that both the valid as well as the faulty signature computation terminate in the
same iteration of the abortion loop. In other words, when using κf to denote the final
value of the loop counter κ, we need that ∆κf = κf − κ

′
f = 0. Observe that in Algo-

rithm 10.2, loop counter κ is input to DeterministicSample. Hence, to achieve y = y ′ we
have the requirement that ∆κf = 0. Due to faulty intermediates and the influence of the
rejection tests, this is obviously not guaranteed.

In the remainder of this section we discuss concrete fault scenarios. That is, we explain
which operations in Algorithm 10.2 can be faulted such that key-recovery is possible. For
each scenario we will give the exploitation technique as well as state its success prob-
ability, i.e., the chance that it terminates in the same loop iteration and thus ∆κf = 0.
This probability was estimated using at least 10 000 fault simulations per scenario. An
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Table 10.2: Fault scenarios discussed in this chapter

Name Section Description

fH 10.3.2 Random fault in call to H
fW 10.3.3 Random fault in polynomial multiplication w := Ay

fAρ 10.3.4 Corrupt ρ during import of sk
fAE 10.3.4 Random fault in expansion A := ExpandA(ρ)
fY 10.3.5 Random fault in sampling y := DeterministicSample(·)

overview of the scenarios is given in Table 10.2, they are listed in order of appearance in
Algorithm 10.2. The order of description will be different.

10.3.2 – Scenario: fH. Probably the most intuitive way to achieve a nonce-reuse is
the fH scenario, where a random fault is injected into the computation c ∈ B60 :=
H(µ||w1). This can be achieved by either manipulating one of the inputs µ, w1 imme-
diately before they are being used in H, or by directly injecting a fault into the hash
function H itself.

We will show in Section 10.5.1 that it is a very reasonable assumption that an attacker
can inject a fault in the correct iteration κf, i.e., the last one in the non-faulty computation.
If the rejection step is then passed with the different c ′, secret element s1 can be recovered
as described in Section 10.3.1.

Since c is a sparse ternary polynomial and s1 ∈ Slη has small coefficients, their product
is also small. We depict its coefficient-wise probability distribution in Figure 10.2, it can be
approximated with a (discretized) Gaussian distribution having zero mean and σ ≈ 24.3.
As ‖cs‖2 � ‖y‖2, ‖w‖2, the acceptance conditions for z and r0 are likely to hold for a
different c as well. This results in a high success probability of over 90 %.
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Figure 10.2: Coefficient-wise probability distribution of cs

Determining success. There are two ways to test if ∆κf = 0 and thus key recovery
is successful. The first method is to simply recover s1 and then test if it is small, i.e.,
s1 ∈ Slη. If ∆y 6= 0 then the recovered key will be a random vector in R`q which will not
fulfill the bound on the `∞ norm. Alternatively, one can also exploit the small norm of cs
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by computing ‖∆z‖2 (or also ‖∆z‖∞) and test if it is below a certain threshold. Again,
∆y 6= 0 will lead to a very large value of ‖∆z‖2.

Apart from ∆κf = 0, we also require that ∆c is invertible. This is true with very high
probability. The fraction of invertible polynomials in Rq is (1− 1/q)n [LPR13], which is
about 1−2−15 for the Dilithium parameters. In the remainder of this chapter, we assume
this fraction also holds for the polynomials described by ∆c (i.e. the difference of two
random sparse ternary polynomials c, c ′ ∈ B60). We test for invertibility and consider the
attack to have failed in the rare case that ∆c is not invertible.

10.3.3 – Scenario: fW. Instead of directly faulting the hash function H, it is also
possible to alter c := H(µ||w1) by manipulating the computation of its inputs µ, w1. The
message/public key hash µ is also used as seed for DeterministicSample, hence faults in
the computation µ := CRH(tr||M) are not exploitable.

Faults in the computation of w := Ay which lead to an incorrect w1, however, can be
exploited. The required polynomial multiplications in Rq can be efficiently implemented
using the Number Theoretic Transform (NTT). Because the runtime of multiplication is
higher than that of hashing, it can be a more viable target for fault attacks. An NTT
is essentially an FFT-like transform over a prime field and uses similar implementation
techniques, i.e., butterfly networks. Due to these techniques, the number of coefficients
in w affected by a single random fault can range from 1 to all n · k.

As unaffected coefficients of w clearly pass rejection and a single altered one is suf-
ficient to achieve ∆c 6= 0, minimizing the number of faulty coefficients increases the
success probability. Thus, unlike in our other scenarios the concrete fault position has a
much stronger impact. To give a sense of possible success probabilities, we evaluated the
two most extreme cases. First, we inject a fault in the forward-NTT of y. Such a fault
spreads to all n · k coefficients of w and thus leads to a low success probability (25.3 %).
Second, we fault the inverse-NTT applied to w such that only two coefficients are affected.
With a success probability of over 90 %, this sub-scenario is similar to directly faulting H.
Note that while single-coefficient faults are also possible, they are slightly less likely to
lead to a successful key-recovery. This is due to the chance that a faulty coefficient w ′

still rounds to the correct w ′1 = w1, which results in ∆c = 0 and the fault not being
exploitable.

10.3.4 – Scenarios: fAρ, fAE. Another possibility to achieve a faulty w = Ay is to
manipulate the expansion of seed ρ into the matrix A. As seen in Algorithm 10.2, this
is done before entering the abort loop and is thus always executed at the same time.
Furthermore, ExpandA is a major contributor to overall runtime (cf. Section 10.5.2).
Both these properties drastically simplify fault injection for this scenario. Also, A has a
larger footprint (20 kB in Dilithium-III) than other variables and is potentially kept in
memory for a prolonged time, i.e., by caching it one does not need to re-run ExpandA
for every signing operation. These properties make A a particularly interesting target for
memory-based faults, such as Rowhammer.

When focusing on more traditional faulting techniques, then differences in A can be
achieved by either manipulating the seed ρ, e.g., during loading of the private key (sce-
nario fAρ), or by inserting a glitch into the expansion A ∈ Rk×`q := ExpandA(ρ) (scenario
fAE). On first glance these scenarios might seem identical. There are, however, some ma-
jor differences. Observe that in Algorithm 10.4, which sketches the method for expand-
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Algorithm 10.4 ExpandA(ρ)
Input: Seed ρ
Output: uniform A ∈ Rk×`q

1: for i := 0 . . .k− 1 do
2: for j := 0 . . . `− 1 do
3: Ai,j := SamplePoly(ρ||i||j)
4: return A

5: function SamplePoly(s)
6: t ∈ {0, 1}5·r := SHAKE128(s)
7: u := 0
8: while u < n do
9: v := next dlog2 qe bits of t

10: if v < q then
11: ai := v
12: u := u+ 1
13: return a

ing ρ into A, the k · ` polynomials comprising A are generated using independent calls to
SHAKE. Thus, any single fault in the SHAKE permutation leads to just one corrupted
polynomial. Consequently, after the matrix-vector multiplication Ay we have n differing
coefficients of w. This leads to a success probability of approximately 54 %.

Directly faulting ρ, either during import or in storage, obviously results in an all dif-
ferent A and thus w. This decreases the success probability to only 14 %. However, this
type of fault has a major advantage when it comes to defeating countermeasures. It is
potentially (semi-)permanent and can thus, at least under certain circumstances, not be
detected by the generic double-computation countermeasure. In Section 10.6 we discuss
this in more detail.

10.3.5 – Scenario: fY. So far, we have only discussed fault-induced nonce-reuse sce-
narios, i.e. the case where y ′ = y. For our final scenario, we will switch to partial
nonce-reuse. Unlike all previous scenarios, inducing a partial reuse still leads to valid
signatures and is thus not detectable with a signature verification.

We introduce some additional notation for element t ∈ R`q: we define tu ∈ Rq to be
the u’th element of t and (tu)v ∈ [−q−1

2 , q−1
2 ] to be its v’th coefficient, for 0 6 u < `

and 0 6 v < n. We define ej for 0 6 j < n to be the j-th unit vector, i.e. the vector with
a 1 at position j and zero otherwise.

Simple example. First, let us assume the following. We inject a fault in y ′ ∈ S`γ1−1
such that only a single coefficient (y ′

u
)v ∈ y (with index u ∈ {0, . . . , ` − 1} and v ∈

{0, . . . ,n − 1}) is changed to a random value (while preserving |(y ′
u
)v| 6 γ1 − 1). Still,

this leads to a completely different w1, and therefore to a different c ′ and z ′ = y ′+ c ′s1.
We then compute s1 = ∆c−1 · ∆z and determine u by simply using the one index

for which s1,u /∈ Sη. For all i 6= u we have that ∆yi = 0, thus recovery of these
key polynomials succeeds. If we now compute the difference ∆zu, we will notice the
following: for indices i 6= v we see |∆zi| 6 2δ for some threshold δ chosen such that
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Algorithm 10.5 DeterministicSampleγ1−1(s) (simplified4)

Input: Seed s
Output: y ∈ S`γ1−1

1: for u := 0 . . . `− 1 do . Sample ` nonce polynomials
2: t ∈ {0, 1}5·r := SHAKE256(s||u)
3: v := 0
4: while v < n do . Rejection sampling
5: x := next 2dlog2 γ1e bits of t
6: if x 6 2(γ1 − 1) then
7: (y

u
)v := q+ γ1 − 1 − x

8: v := v+ 1
9: return y

‖cs1‖∞ 6 δ holds for any c and s1. Concretely, we can set δ = 60η. The injected
fault in (y ′

u
)v can cause any difference to the value, but on average it will be large. On

expectation |(y ′
u
)v−(y

u
)v| will be 2γ1−1

3 as both of these coefficients are random values
in [−(γ1 − 1), (γ1 − 1)] (by our assumption). Since ‖cs1‖∞ 6 δ� 2γ1−1

3 , we can detect
index v and thus the position of the fault by using the index of maximum |∆zu|.

We finally recover s1,u as follows. Simply speaking, we eliminate row v of the linear
system s1,u = ∆c−1 · ∆zu, guess the value of (s1,u)v (exhaustive search), solve for the
full s1,u and test if it is in Sη. Note that similarly we could also directly guess the value
of (∆y

u
)v (instead of (su)v), albeit there the search-space is much larger. This latter

scenario is the direct counterpart to the partial nonce reuse fault attack on elliptic curve
signatures (as described in [ABF+18] and mentioned in Section 10.2.5): an exhaustive
search is used to determine the exact error in the faulted nonce.

We will show next that for lattice-based signatures these partial-reuse attacks are way
more powerful. The exhaustive search can be replaced with solving a lattice problem,
which is much more efficient. The far larger number of tolerable errors allows replacing
the very restrictive fault model (influencing a small number of bits of the nonce) with
random faults in SHAKE.

Efficient partial nonce reuse attack. The nonce y ∈ S`γ1−1 is generated by function
DeterministicSample, a simplified4 version is given in Algorithm 10.5. Note that input
seed s changes whenever a signature is rejected (Algorithm 10.2), and the counter u will
change the individual elements of y. The idea is that we now fault SHAKE (Line 2), but
in such a way that it only changes a few coefficients of yu for some u ∈ {0, . . . , ` − 1}.
Since all coefficients of (y

u
) are sampled sequentially, a fault that only affects the last

few bytes of t ′ will only change the last few coefficients of (y
u
).

As mentioned in Section 10.2.3, SHAKE operates on a state x of r + c bits and con-
sists of an absorb phase and a squeeze phase. If a fault is injected during the absorb
phase, the output of SHAKE will be completely different. However, if the fault is in-
jected near the end of the squeeze phase, only the last few applications of f will operate

4For example, with very small probability the 5 · r bits are not enough to generate enough values for any
yi. In that case, another call to SHAKE and more rejection sampling is done.
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on a faulty state x and thus return different outputs (cf. Section 10.2.3). In particular, as
DeterministicSample requests 5 output blocks of SHAKE (Line 2), an injected fault in,
e.g., the last or second-to-last application of Keccak-f during the squeeze phase will cause
changes in the last few bytes of t ′. Thus, only the last few coefficients of y ′u will differ
i.e. ∆yu = (0, . . . , 0, ζv, ζv+1, . . . , ζn−1) for some index v ∈ {0, . . . ,n−1}. Note that the
index v for which the values start to differ will vary depending on how many elements
were accepted from the first few output blocks of SHAKE. We can again detect index v
similarly as mentioned previous: by taking the first index where |∆zu| > 2δ. However,
we cannot apply the brute-force search for the corresponding elements in (s1,u)v6i<n
anymore: the search-space will be too large.

Instead, we will transform the search for these n − v secret coefficients to the lattice
problem as described in Section 10.2.4. Thus, when writing:

t = ∆c−1∆zu = ∆c−1∆yu + s1,u

we have a target t and want to determine the closest point on the lattice generated by
∆c−1. The difference between t and its closest lattice point is exactly s1,u. Solving this
closest-vector problem is made possible by using that the first v coefficients of ∆yu are 0.
We use the lattice generated by basis vectors {wi = ∆c

−1xi mod q |i ∈ {v, v+ 1, . . . ,n−
1}} and qZn. Take I = {m,m + 1, . . . ,n − 1} to be the target subset of indices, where
m < v and apply ψI to these basis vectors to project to the target search space, where ψI
as defined in Section 10.2.4. We then cast the problem at hand to a unique shortest-vector
problem as, e.g., described by Albrecht, Fitzpatrick and Göpfert [AFG13], and then apply
a lattice-reduction algorithm (like LLL or BKZ). If successful, we retrieve a small n −m
dimensional vector sguess, whose coefficients correspond to the last n−m coefficients of
s1,u. To get the full s1,u, we replace the last n−m coefficients of ∆zu by the coefficients
of sguess, transform rotation-matrix ∆C of ∆c into C by replacing the last n−m columns
by the identity columns em, em+1, . . . , en−1 and compute the full sguess = ∆zC

−1
. We

can verify correctness by checking that sguess ∈ Sη.
In our experiments, we injected a random fault in the last (denoted by 1P) or second-

to-last (denoted by 2P) application of Keccak-f inside SHAKE (called in Algorithm 10.5,
line 2). Since the input to SHAKE is shorter than the rate r, out of the total five appli-
cations of Keccak-f these are the fourth (2P) and fifth (1P), respectively. Faults in the 3
earlier applications of Keccak-f did not yield a solvable lattice problem. We performed
1000 experiments for both 1P and 2P and determined the average number of errors (so
n− v) and the average running time for BKZ (on an Intel Xeon E5-4669 v4 @ 2.20GHz).
In our experiments, we took m such that the cardinality of I is about 1.4(n − v). For
the lattice reduction, we used BKZ with block-size 25 but included an early abort, i.e., we
abort reduction as soon as a potential key-candidate (a vector in Sη) is found. The results
are shown in Table 10.3. The success probability of the lattice reduction was 100%. Thus,
if a fault is correctly injected and ∆κf = 0, then the key s1 can always be recovered. The
probability that ∆κf = 0 is between 24 and 25 % (Table 10.4).

10.3.6 – Summary of scenarios. We now give a summary of the different fault sce-
narios. In Table 10.4 we restate the success probability of all fault scenarios. Recall that
in scenario fW a large number of outcomes is possible, but we analyzed the best and worst
possible outcomes. For scenarios fY, fH, and fW we assume that the fault is injected in
the last iteration κf.
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Table 10.3: Results of injecting faults in DeterministicSample

Squeeze phase iteration Average number of errors
in yu

Average running time
lattice reduction

1P (last) 39 2.3s

2P (second to last) 93 35.8s

Table 10.4: Fault-attack success probability in percent

fAρ fAE fY-1P fY-2P fW fH

14.3 54.4 24.8 23.9 25.4 - 90.3 91.0

fH is the most intuitive scenario and also achieves the highest success probability.
However, it is also the smallest of all targets (cf. Section 10.5.2). The lowest success
probability is achieved for fAρ, yet with the huge advantage of being potentially per-
manent. Faulting the expansion of A offers both a large and fixed-time target. Finally,
scenario fY lead to valid yet still exploitable signatures.

10.4 — Signing with the recovered key

In the previous sections we showed how to recover s1 after a successful fault injection.
However, s1 is only one component of the private key sk = (ρ,K, tr, s1, s2, t0). The seed
ρ, which is used for generating the matrix A, is also part of the public key. tr can be
trivially recomputed as CRH(ρ||t1) (cf. Algorithm 10.1). K is used as a secret input to
the deterministic sampler and cannot be recovered with our attack. However, an attacker
can just choose any random K and still produce valid signatures. The only downside here
is that the owner of the full private key can test whether or not a signature is forged. He
simply runs the signature algorithm and tests for equality, a new K will obviously result
in a different yet still valid signature.

The situation for the two remaining components, namely s2 and t0, is less clear. Recall
that t := As1 + s2 (cf. Algorithm 10.1). If t is known, then recovering s2 boils down to
simple linear algebra. However, for compression the key generation computes a pair
(t1, t0) satisfying t1 · 2d + t0 = t and includes only the upper part t1 in the public key.
Thus, the equation t1 · 2d + t0 = As1 + s2 cannot be directly solved.

Note also that during signature computation s2 and t0 are only used for hint genera-
tion and rejection purposes. Thus, there are no simple equations that can be exploited for
recovering this part of the private key. This obviously does not imply that there is no in-
formation on s2 present. For instance, in a valid signature we have that ‖r0‖∞ < γ2 −β,
with (r1, r0) := Decompose(w − cs2). As w is recoverable since s1 is already known,
an attacker will get constraints for the possible values for s2. A large number of such
constraints could result in a fully determined s2. However, we expect that a very large
number of valid signatures and high computational effort is needed to perform such a
recovery.

Instead, we now present a modified signing procedure (Algorithm 10.6) that does not
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Algorithm 10.6 Dilithium Sign with recovered key s1

Input: Message M, private key part s1, public key pk = (ρ, t1)
Output: Signature σ = (z, h, c)

1: tr ∈ {0, 1}384 := CRH(ρ||t1) . Recompute tr from public information
2: K← {0, 1}256 . Sample a random seed
3: u := As1 − t1 · 2d . As1 − t1 · 2d = t0 − s2

4: A ∈ Rk×`q := ExpandA(ρ)
5: µ ∈ {0, 1}384 := CRH(tr||M)
6: κ := 0, (z, h) := ⊥
7: while (z, h) = ⊥ do
8: y ∈ Slγ1−1 := DeterministicSample(K||µ||κ)
9: w := Ay

10: w1 := HighBits(w)
11: c ∈ B60 := H(µ||w1)
12: z := y + cs1

13: h := MakeHint(−cu, w + cu) . MakeHint(−c(s2 − t0, ), w − cs2 + ct0)
14: if ‖z‖∞ > γ1 − β then . Remove rejection conditions
15: (z, h) := ⊥
16: else
17: if not Verify(pk,M, (z, h, c)) then (z, h) := ⊥ . Test for correctness

18: κ := κ+ 1
19: return σ = (z, h, c)

require knowledge of s2. Thus, the property that only a single valid/faulty signature pair
is needed for the attack is preserved. Algorithm 10.6 starts off by recomputing tr and
sampling a random K, as described earlier. Then we compute u := As1 − t1 · 2d, which is
exactly the difference of the unknown quantities, i.e., u = t0 − s2. Signature generation
then continues as usual up until the computation of the hint h.

In the original signing algorithm we have h := MakeHint(−ct0, w − cs2 + ct0). The
second argument to MakeHint can be trivially rewritten as w − cs2 + ct0 = w + cu. The
first argument −ct0 cannot be computed without knowledge of t0. We get around this by
exploiting the fact that t0 is vastly larger than s2, with coefficients in the intervals [±2d−1]
and [±η], respectively. Thus, we have that u = t0 − s0 ≈ t0 and simply substitute −ct0

with −cu.

We then skip all rejection conditions that cannot be tested without knowing s2 or t0.
Essentially, we just test if ‖z‖∞ > γ1 − β and reject the signature if this is the case.
Finally, we perform a verification of the signature to catch the very improbable case that
MakeHint(−cu, w + cu) 6= MakeHint(−ct0, w + cu), as that is the only thing that a real
verifier would test.

Due to the removal of rejection conditions, this modified signing algorithm poten-
tially leaks secret information. Thus, anyone being aware of the fact that signatures are
computed by our modified algorithm could maybe also recover the secret key. Since
all produced signatures are valid, there is no trivial way to detect this (without already
knowing the key, as explained earlier).



160 CHAPTER 10. LEARNING WITH DIFFERENTIAL FAULTS

10.5 — Experimental verification

In this section, we back up our previous theoretical expositions and simulations by
running our attack on an actual device. After discussing our platform, we show how an
attacker can inject a fault in the iteration κf without determining the concrete value. This
requires at least some knowledge of the implementation. For this reason, we also demon-
strate that a random fault anywhere during the signing procedure has a high chance of
being exploitable.

Platform. For our experiments, we use an STM32F405 microcontroller (ARM Cortex-
M4F) running on a ChipWhisperer CW308 side-channel evaluation board. We run the
Dilithium C reference implementation5 (compiled with -O3) and clock our device at
30 MHz. For attack evaluation, we signal the start and end of signing with a trigger
pin. As faulting method we make use of clock glitches.

We mounted attacks for all scenarios except fAρ, all with success. For the scenarios
targeting the SHAKE XOF, i.e., fAE, fY, and fH, the ability to precisely time clock glitches
and thus to attack very specific instructions is not needed. A single such permutation
takes approximately 40 000 clock cycles and we only require that its output is different,
thus any random fault suffices. In fact, we did not determine the exact location or effect
of the fault. Attacks on the polynomial multiplication (scenario fW) can benefit from
more precise fault injection (see Section 10.3.3). However, even random faults yield a
high success rate (Section 10.5.2).

10.5.1 – Injecting a Fault in the Correct Iteration. Recall that a fault is only ex-
ploitable if both the faulted and the non-faulted execution of the signing algorithm ter-
minate in the same iteration of the abort loop, i.e., ∆κf = 0. Clearly, in the scenarios fY,
fW, and fH, an attacker can maximize the success probability by injecting the fault in this
last iteration κf.

The Dilithium reference implementation is constant (read: key-independent) time.
The individual rejection conditions (line 12 of Algorithm 10.2) are still tested as soon
as possible. This minimizes the runtime of failed iterations but does not leak sensitive
information on the key. Quite on the contrary, this non-constant-time behavior somewhat
complicates the fault attack. Even an attacker knowing κf cannot exactly pinpoint the
time of execution of vulnerable operations and thus the best time to inject a fault.

We get around this by using the observation that the last loop iteration κf is, unlike the
previous ones, constant time. Only there all operations are guaranteed to be performed
and apart from the rejections the code is constant time. Thus, we determine the time of
execution of vulnerable operations as follows. First, we perform the undisturbed signing
and measure its runtime. And second, we simply subtract a fixed offset (depending on the
to-be-faulted operation) from this overall runtime. We used this method for our attacks
in the scenarios fY, fH, and fW, and were successful for any κf.

10.5.2 – Unprofiled Attacks. The above method is highly accurate, yet requires some
device/code profiling. Concretely, an attacker needs to determine the time offsets (either
from the start or finish of the signing operation) of the vulnerable code. This might not
always be a realistic assumption. For this reason, we now show that an attacker injecting

5Reference implementation available at https://pq-crystals.org/dilithium/software.shtml

https://pq-crystals.org/dilithium/software.shtml
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Table 10.5: Runtime-percentage of vulnerable code

fAE fY fW fH Sum

κf = 1 47.4 3.8 11.2 2.9 65.2

Overall 24.3 2.0 5.7 1.5 33.5

a random fault anywhere in the signing process still has a high chance of succeeding. We
do so by measuring the runtime (in cycles) of the vulnerable code and relating it to the
overall execution time (Table 10.5).

In the best-case scenario for such an attacker, the signing algorithm terminates in the
first iteration (κf = 1). In this case, 65.2 % of execution time are vulnerable. In the
general case (no restriction to κf = 1), the success probability goes down to one-third of
the total execution time.

In both cases, sampling of the matrix A takes by far the most time. Additionally, it
is performed at a fixed time in the execution, shortly after the invocation of the signing
algorithm. Thus, in reality a unprofiled attacker faulting somewhere in this region has a
much higher chance of hitting ExpandA than stated in Table 10.5.

In Figure 10.3, we further visualize the general case and compare runtime to success
probability for different scenarios. Recall that depending on the concrete fault position,
the success probability of scenario fW varies drastically (see Table 10.4). For the case of
the unprofiled attacker, we narrowed down this probability by performing 1000 fault at-
tacks on our target device, with faults at random positions inside fW. Approximately 62 %
of these faults were exploitable. Faulting the call to H yields the highest success prob-
ability (Table 10.4), but also has the smallest footprint. As discussed in Section 10.3.5,
2/5 of the time spent on the SHAKE call by DeterministicSample is vulnerable to the
attack. This makes it a slightly larger target compared to fH, but also with a much lower
success probability. In total, a fault inside the vulnerable portions can be exploited with
a probability of 56 %. These cover 33.5 % of execution time, thus approximately 19 % of
random faults anywhere during signing lead to key recovery.

10.6 — Countermeasures

When presenting new attacks, a discussion on potential countermeasures should never
be missing. For this reason, we present the applicability and effectiveness of three generic
countermeasures against the fault attacks described in this chapter. For each of these
methods, we give the runtime costs and state which fault scenarios will be mitigated by
it. A summary of the latter is shown in Table 10.6.

Double computation. While determinism leads to the applicability of differential fault
attacks in the first place, it can also be used as a countermeasure against such attacks.
Concretely, many faults can be detected by running the signature algorithm twice and
testing the output for equality. With double computation, we mean that the secret keys
are loaded from memory and the signature algorithm as described in Algorithm 10.2 is run
twice. This obviously doubles execution time. The countermeasure can be defeated by
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Figure 10.3: Comparison of scenarios regarding runtime as portion of total signing time (from Table 10.5) vs.
success probability (from Table 10.4). Lines of constant product are drawn in solid gray.

either injecting an identical fault twice, which can be challenging, or by using a permanent
fault, e.g., in scenario fAρ with the seed ρ.

Verification-after-sign.6 Many of the presented attack scenarios lead to signatures be-
ing invalid. Thus, performing signature verification after signing is an effective coun-
termeasure. As runtime costs of verification are less than one-third of signing (see the
runtimes [LDK+17]), this option is also much more efficient than double computation.
As a downside, however, it cannot detect faults injected into the sampling of y as this
yields valid signatures.

Additional randomness. A final and very simple countermeasure is to re-randomize
the deterministic sampling of the noise y. One can simply sample a random x← {0, 1}256

and then invoke y := DeterministicSample(K||µ||κ||x). This effectively mitigates the dif-
ferential fault attack as the faulted call to the signing algorithm uses different y and thus
∆y 6= 0.

Furthermore, this method might also hamper further side-channel attacks coming as
side-effects of determinism. As observed by Seuschek, Heyszl and De Santis [SHS16], as
well as by Samwell, Batina, Bertoni, Daemen and Susella [SBB+18], mixing the known
message µ with the secret seed K in a hash function (in Dilithium this is SHAKE in
DeterministicSample) opens the gates for DPA-like attacks. Hash functions are hard to
protect against such attacks; using an additional random input can be a cheap alternative.
How x needs to be introduced to maximize the protection while keeping the necessary
size of x small likely depends on the used hash function, further investigations are needed
to answer this question for the case of SHAKE. However, as SHAKE is (quantum) indif-
ferentiable from a random oracle [CMSZ19], this method should be fine.

6An earlier version of this work (published at TCHES and ePrint) stated that permanent faults in A can, at
least under certain circumstances, not be detected with an additional verification of signatures. This is incorrect,
verify-after-sign does protect against fAρ, as the verifier will use an unmodified t1.
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Table 10.6: Applicable countermeasures

fAρ fAE fY fW fH

Double computation 7 37 3 3 3

Verification-after-sign 36 3 7 3 3

Additional randomness† 3 3 3 3 3

†Not supported by proof of Dilithium [KLS18].

The added protection against implementation attacks does not negate the protec-
tion against incorrect implementation and resulting nonce reuse (using the same y for
different messages). For instance, using a constant r effectively reverts signing to its
deterministic version. Additional upsides of this countermeasure are its simplicity and
negligible runtime overhead. Furthermore, unlike straight-forward implementations of
the two previous countermeasures, it is single-pass and so does not require to keep a copy
of the message in memory. Note that this countermeasure was already proposed in the
context of EdDSA [ABF+18,SBB+18] and SPHINCS [BHH+15], but it can also be applied
to lattice-based signatures. In fact, a very recent update of the qTESLA specification made
use of this countermeasure mandatory and cites the presented attacks as reason.

There are, however, also considerable downsides of this countermeasure. First, un-
like the two previous countermeasures, this countermeasure is probabilistic and requires
some source of entropy, i.e., a true random number generator. Such a generator might not
be available on all devices, especially low-resource ones. And second, this countermea-
sure violates the security proof of Dilithium. Kiltz, Lyubashevksy, and Schaffner [KLS18]
present a tight proof in the quantum random oracle model (QROM) based on the hardness
of MLWE, MSIS, and a new problem called SelfTargetMSIS. They require the signature
scheme to be deterministic. They do give an alternative proof for a probabilistic version of
Dilithium, yet it is not tight and loses security linearly in the number of observed different
signatures per message.

Thus, introducing this countermeasure voids provable security guarantees, albeit no
concrete attack is known. The Dilithium authors "still recommend using deterministic sig-
natures except in environments that may be vulnerable to the aforementioned side-channel
attacks" [LDK+17]. However, determining whether or not an environment is vulnerable
is not easy, as clearly shown by the Rowhammer attack.

10.7 — Description of qTESLA

In this section we briefly describe the qTESLA signature scheme [BAA+17]. Please
note that we give the originally submitted version of qTESLA. Following the initial pub-
lication of this work, in a very recent update of the qTESLA specification the additional
randomness countermeasure was incorporated as part of the algorithm description. As
the security proof of qTESLA allows for a probabilistic version, this countermeasure can

7For this countermeasure to work, we assume that A is not cached in memory after it is used for the first
time, i.e. expandA is called again in the second signature computation. If A would be cached in memory, the
two signature computations would be identical and the countermeasure would fail.
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be used without violating any security guarantees. Hence the attacks are no longer ap-
plicable.

In Algorithms 10.7, 10.8, and 10.9, we give slightly simplified versions of key gener-
ation, signing, and verification, respectively. Note qTESLA’s similarity to Dilithium, we
highlight this similarity by stating the corresponding variable and function names in Ta-
ble 10.7. The main difference between Dilithium and qTESLA is that the latter is based on
Ring-LWE and thus operates on polynomials in Zq[x]/(xn+1) with n > 1024. Dilithium
is based on the Module-LWE assumption and uses vectors/matrices of polynomials in a
fixed base ring Zq[x]/(x256 + 1).

Algorithm 10.7 qTESLA Key Generation

Output: Keypair (pk, sk)
1: seeda ← {0, 1}256, seedy ← {0, 1}256

2: a ∈ Rq := GenA(seeda)
3: repeat
4: s ∈ Rq ← Dσ, e ∈ Rq ← Dσ . Discrete Gaussian distribution Dσ
5: until s and e fulfill certain criteria
6: t := as+ e mod q
7: return (pk = (seeda, t), sk = (s, e, seedy, seeda)

Algorithm 10.8 qTESLA Sign (simplified)

Input: Message M, private key sk = (s, e, seedy, seeda)
Output: Signature σ = (c, z)

1: a ∈ Rq := GenA(seeda)
2: counter := 0
3: rand := PRF1(seedy,M)
4: repeat
5: y := PRF2(rand, counter)
6: v := ay mod q
7: c := H(Round(v),M)
8: z := y+ sc
9: counter := counter + 1

10: until Reject(z, v, c, sk)
11: return σ = (c, z)

Algorithm 10.9 qTESLA Verify (simplified)

Input: Public key pk = (seeda, t), message M, signature σ = (c, z))
1: a ∈ Rq := GenA(seeda)
2: w := az− tc mod q
3: return c = H(Round(w),M)
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Table 10.7: Comparison of variable/parameter names and function names for Dilithium and qTESLA. Only
differing names are listed.

Variables:

Dilithium ρ K s1 s2 κ µ w

qTESLA seeda seedy s e counter rand v

Functions:

Dilithium ExpandA CRH DeterministicSample HighBits
qTESLA GenA PRF1 PRF2 Round

Applicability of our attacks. All attacks for Dilithium described in Section 10.3 can
easily be adapted to the original deterministic version of qTESLA, with obviously differing
success probabilities due to different parameter sets, rejection conditions, and algebraic
structure. In particular, the major fault scenario (a random fault in SHAKE) would be
the same: SHAKE is used in qTESLA in a similar way to build the functions described
in Table 10.7. A subtle difference however is that Dilithium samples multiple smaller
polynomials, e.g., y ∈ R`q, using independent calls to SHAKE, whereas qTESLA uses
just one call to SHAKE to sample a single but larger polynomial. This most likely affects
success rates and also the available time for fault injection. For instance, in scenario fY in
Dilithium one can inject a fault in the last 2 permutations in any one of the ` independent
SHAKE calls, whereas in qTESLA only the last permutations of the single SHAKE call
can be faulted.

After faulting, key recovery is exactly the same, i.e., computing s = ∆c−1 · ∆z. Note
that in qTESLA the public key t is not compressed, thus recovering e (which corresponds
to s2 in Dilithium) is trivial as soon as s (corresponds to s1) is known. No adapted signa-
ture algorithm (as described in Section 10.4) is needed.





CHAPTER 11

Conclusions and future work

We now revisit the research questions posed in Chapters 7 to 10 of this thesis.

Q1: How much does left-to-right sliding window exponentiation hurt security?

In Chapter 7 we analyzed the common belief about sliding window methods: only 40%
(or 33% depending on the window size) of the bits are leaking trough a side-channel
attack: not enough for a full key-recovery. We show that that belief is incorrect for the
left-to-right recoding: this recoding actually leaks many more bits than previously esti-
mated. We showed two possibilities in analyzing the additional information that can be
recovered from the square and multiply sequence. The first way is to determine specific
rules that transform this sequence into known bits. For RSA-1024 and window-size of 4,
this already means that the number of recovered bits is enough to finish the key-recovery.
However, for RSA-2048 with window-size of 5, this was not enough. Instead of translat-
ing the square and multiply sequence to known bits, the sequence was used directly in
the pruning algorithms by Heninger-Shacham, which greatly improved the attack. This
also incorporated information that is not directly translatable to known bits. This way,
13% of the RSA-2048 keys were vulnerable to key-recovery.

We have disclosed this issue to the Libgcrypt maintainers and have worked with them
to produce and validate a patch to mitigate our attack. The vulnerability was assigned
CVE-2017-7526. This motivates the necessity to also carefully handle side-channel at-
tacks on post-quantum cryptography.

Q2: Are side-channel attacks possible on the discrete Gaussian sampler?

We showed several side-channel attacks on five different samplers for the discrete Gaus-
sian distribution in Chapter 8. In particular, we carried out the analysis for two prominent
samplers: the CDT sampler (with guide table) and the Bernoulli sampler. We showed how
the memory access patterns of these samplers leaked enough information to determine
the sampled value, possibly up to minor errors. The attacks were performed on the lattice-
based signature scheme BLISS, that uses noise sampled from the discrete Gaussian dis-
tribution to hide the secret key within the signature. To remove (possible) measurement
errors, we built a lattice whose basis is generated from multiple challenge vectors. This
basis was then reduced using LLL, returning possible secret keys in the unitary transfor-
mation matrix retrieved from LLL. A proof-of-concept attack verified the vulnerability. All
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BLISS parameter suggestions turned out to be vulnerable to the cache attacks. Roughly
up to 4200 signature executions were needed to perform the attacks.

This work is the basis of many follow-ups (e.g. [Pes16, PGY17]), and is possibly the
reason why BLISS was not submitted to the NIST post-quantum standardization compe-
tition. Instead, several of the authors of BLISS were involved in the submitted scheme
Dilithium (Chapter 10), which does not use noise sampled from the discrete Gaussian
distribution and cites this work (and in general side-channel attacks) as motivation for
this choice.

Q3: Is BLISS-B a free countermeasure against side-channel attacks?

In Chapter 9 we showed that BLISS-B is also vulnerable to side-channel attacks. How-
ever, this required significantly more steps than the attacks against BLISS. We presented a
new side-channel key-recovery algorithm against both the original BLISS and the BLISS-
B variant. Our key-recovery algorithm draws from a wide array of techniques, includ-
ing learning-parity with noise, integer programming, maximum likelihood tests, and a
lattice-basis reduction. With each application of a technique, we reveal additional infor-
mation on the secret key culminating in a complete key recovery. Finally, we showed that
cache attacks on post-quantum cryptography are not only possible, but also practical. We
mount an asynchronous cache attack on the production-grade BLISS-B implementation
of strongSwan. The attack recovers the secret signing key after observing roughly 6000
signature generations.

We have disclosed the vulnerability to strongSwan, but since the attacks are very
technical and non-trivial to mount (and for some parameter sets do not even work), the
maintainers decided not to fix this vulnerability. This means the side-channel vulnerability
is still there.

Q4: Do deterministic versions of lattice-based signature schemes hurt security?

In Chapter 10 we extended the applicability of differential fault attacks to lattice-based
cryptography. In particular, we showed how two deterministic lattice-based signature
schemes, Dilithium and qTESLA, are vulnerable to such attacks. In particular, we demon-
strated that single random faults can result in a nonce-reuse scenario which allows key
recovery. We also expand this to fault-induced partial nonce-reuse attacks, which do not
corrupt the validity of the computed signatures and thus are harder to detect. Using
linear algebra and lattice-basis reduction techniques, an attacker can extract one of the
secret key elements after a successful fault injection. Some other parts of the key cannot
be recovered, but a tweaked signature algorithm can be used to sign any message using
the partial info of the secret key. We provide experimental verification of our attacks by
performing clock glitching on an ARM Cortex-M4 micro-controller. In particular, we show
that up to 65.2% of the execution time of Dilithium is vulnerable to an unprofiled attack,
where a random fault is injected anywhere during the signing procedure and still leads
to a successful key-recovery.

Shortly after the first publication of our result, the qTESLA team modified its specifi-
cation to make the additional randomness countermeasure (i.e. remove the deterministic
feature) mandatory and cites the presented attacks as reason.
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Open problems

We end Part II on this thesis by posing some open problems that remain after the questions
answered in Chapters 7 to 10.

I: Can the attacks be applied to other window methods?

The sliding-window method for RSA is not the only “window method” in cryptography.
There are many cryptographic implementations for e.g. elliptic curves that use similar
techniques. For example, in previous works [BvdPSY14] attacks were shown against
elliptic-curve signature schemes where a so-called window Non-Adjacent Form (wNAF)
was used for the double-and-add sequence. The attack was finished using lattice-basis
reduction. But there are many other window-forms for efficient elliptic-curve arithmetic
[MSJ13]: some are sliding windows, some are fixed windows; some can only be used in
a right-to-left manner, while others can only be used left-to-right. It would be interesting
to see which of these methods are vulnerable to attacks such as in Chapter 7. And more
importantly, which attacks can benefit from the improved analysis, e.g. additional rules
that capture more bits before applying a full key-recovery algorithm.

II: Can we give formal arguments why the side-channel attack on BLISS works?

In Chapter 8, we used a lattice-basis reduction algorithm (LLL) to find the secret key,
given a lattice spanned by challenge vectors. Actually, the secret key is found in the uni-
modular transformation matrix given as part of the LLL output. This means that one of
the short vectors that LLL recovers, is the vector containing the errors from measurements
(or the errors in the attack on CDT). This is unexpected, as usually the short vector that
LLL/BKZ finds (or more exact algorithms that find the shortest vector), is the secret key
itself. There are several questions about why our technique actually works: i.e. why does
LLL even find such a short vector? Although the challenge vectors are sparse (only κ non-
zero coefficients), the determinant of the lattice is in that case still large. This means that
the approximated length of the vectors found by LLL is also large. But instead, LLL finds
vectors that are very close to zero, i.e. vectors with fewer than κ non-zeros. It would be
interesting to know why LLL works so well in this case. It could be that the sparsity of the
challenge vectors improves the working of the algorithm a lot, as in that case the vectors
are also relatively more orthogonal than for, e.g., random lattices. To state this question
in more generality, it would be interesting to give formal arguments why the attacks on
BLISS work.

III: Can we perform a branch-and-prune algorithm on the signs of the secret key?

In Chapter 9, we apply several steps to recover additional information on the secret
key. For the first couple of steps, we use the information recovered from samples (signa-
tures coupled with the side channel), up to the point where we know the magnitudes of
the secret key (everything except for the signs of the non-zero coefficients). From there,
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we apply a lattice-basis reduction algorithm on the lattice that remains after removing
the zero coefficients. Unfortunately, it turned out that the rank of the remaining lattice
was still too large for certain BLISS-B parameter sets (BLISS-III and BLISS-IV), meaning
we were unable to finish the key-recovery. The question remains if we can do better than
a lattice-reduction algorithm. A possible technique might be some sort of branch-and-
prune algorithm, similar to the Heninger-Shacham algorithm for RSA (see Chapter 7).
Each branch would fix the sign for a certain coefficient, and all the information in the re-
covered samples decide whether to prune. This means that if, at a certain point, a branch
has conflicting samples (i.e. the chosen signs of the secret key do not match the possibil-
ities given by certain samples), the branch is pruned. It might be that such a technique is
able to recover the signs of the secret key more efficiently, even tough the search space is
still very large. Such a technique would be valuable, as this means that other side-channel
attacks on lattice-based schemes could mainly focus on recovering the magnitudes of the
secret key and from there apply the key-recovery.

IV: Can we adapt the fault attacks to deterministic lattice-based encryption
schemes?

In Chapter 10, we showed the applicability of differential fault attacks to determinis-
tic lattice-based signature schemes. We showed several possible attacks on two schemes,
Dilithium and qTESLA, which are both deterministic, by generating randomness from
the secret key and the message. However, similar techniques also exist for encryption
schemes. Many lattice-based encryption schemes (including HILA5, see Chapter 4) re-
quire randomness as well, but can be made deterministic in an analogous way to the
signature schemes: by generating randomness deterministically from the message (and
possibly the public key). In fact, turning a lattice-based public-key encryption scheme
into a post-quantum IND-CCA KEM requires the scheme to be deterministic [SXY18]. It
would be interesting to see if such schemes are also vulnerable to (differential) fault at-
tacks. If such an attack can recover the encrypted message, it is probably not enough
to recover the secret decryption key. However, additional steps might lead to a possible
reaction attack as in Chapter 4, i.e. a reaction attack coupled with fault injection on a
deterministic IND-CCA lattice-based encryption scheme.
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Summary

Attacking Post-Quantum Cryptography

Cryptography is a vital part of today’s internet, protecting any data packet containing
sensitive information (such as emails, passwords, banking details) from attackers. These
attackers will try literally everything to break the used cryptography, so a natural question
is how to evaluate the strength of a cryptographic scheme. This evaluation has several
aspects in order to be meaningful: e.g. what is the exact security goal that the crypto-
graphic scheme provides and what are the attacker’s capabilities? This second question
becomes very important when we look at the future: many big companies such as IBM and
Google, as well as many universities and governments, are actively trying to build large
quantum computers. These computers are able to solve the computationally hard math-
ematical problems that underlie the cryptography that we are using everywhere today.
The area of post-quantum cryptography is dealing with this additional attacker capability
by developing cryptography that is able to resist attacks from large quantum computers.
Naturally, post-quantum cryptography also needs evaluation of possible attacks before
it can be deployed on the internet. This thesis covers several attacks on post-quantum
cryptography.

Part I: Model-mismatch attacks. The first part of this thesis focuses on model-mismatch
attacks: what happens when (some of) the assumptions made in the security model for
a cryptographic scheme become invalid? There are several reasons that such a model
mismatch might occur. For example: the concept of quantum computing introduces a
whole new computing paradigm, possibly invalidating the (previous) assumptions on the
capabilities of the attacker, that now has a (large enough) quantum computer. On the
other hand, model mismatch might also occur when cryptography is incorrectly used,
possibly due to accidental events in applications or simply because the security model
did not match the cryptographic scheme itself. The first part of this thesis covers several
model-mismatch attacks and ways to prevent these.

Part II: Side-channel attacks. The second part of this thesis covers side-channel attacks.
These attacks use physical information leakage of devices (such as (cache) memory ac-
cess patterns or EM radiation) that perform cryptographic operations as a short-cut to
break the cryptographic implementation. As post-quantum cryptography introduces new
cryptographic primitives, it also introduces new algorithms and implementations. It is
not always straightforward to achieve a secure implementation, but at the same time it
is also not straightforward to perform such a side-channel attack. The second part of this
thesis covers several side-channel attacks on post-quantum cryptography.
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