
On the Cryptanalysis of two Cryptographic Algorithms that Utilize

Chaotic Neural Networks

Ke Qin∗ and B. John Oommen†

Abstract

This paper deals with the security and efficiency issues of two cipher algorithms which utilize the

principles of Chaotic Neural Networks (CNNs). The two algorithms that we consider are: (1) The CNN-

Hash, which is a one-way hash function based on the Piece-Wise Linear Chaotic Map (PWLCM) and the

One-way Coupled Map Lattice (OCML), and (2) The Delayed CNN-Based Encryption (DCBE), which

is an encryption algorithm based on the Delayed CNN. Although both these cipher algorithms have

their own salient characteristics, our analysis shows that, unfortunately, the CNN-Hash is not secure

because it is neither Second-Preimage resistant nor collision resistant. Indeed, one can find a collision

with relative ease, demonstrating that its potential as a hash function is flawed. Similarly, we show that

the DCBE is also not secure since it is not capable of resisting known-plaintext, chosen-plaintext and

chosen-ciphertext attacks. Furthermore, unfortunately,both the schemes are not efficient either, because

of the large number of iteration steps involved in their respective implementations.

1 Introduction

Over the last few decades, the phenomenon of chaos has been widely investigated and applied in a variety of

domains including social networks, control systems, and prediction etc. A chaotic system is characterized by

salient phenomena such as its sensitivity to initial values, its pseudo-randomness and ergodicity, rendering

it to be quite similar to a cryptographic system. The characteristics that render chaotic systems to be akin to

cryptographic algorithms are listed below:

1. Chaotic maps vs. Encryption/Decryption algorithms.

The form of a chaotic system is usually iterative, when the system is discrete, or it involves differential

equations when it is continuous. As opposed to this, an encryption/decryption algorithm is usually

a nonlinear mapping from the plaintext space to the ciphertext space, and this mapping is, often, not
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complex. The similarity between the two is that both of them can yield, as their outputs, results that

appear to be random – by virtue of the underlying algorithm repeating certain steps.

2. Iterations vs. Rounds.

For a chaotic system, each of the steps mentioned above that are “repeated” constitute a so-called

“ iteration”. As opposed to this, a cryptographic system involves a sequence of “rounds”. Only long-

term chaotic iterations can yield sequences that appear to be random [1].

3. Controlling parameters vs. Keys.

If a chaotic system starts from a given initial value, different control parameters can yield different

output sequences at each iteration. This, in turn, is analogous to the role of keys in a cryptographic

system. The similarity between the two lies in the fact that it is computationally infeasible to deduce

the initial input without knowing the controlling parameters or the keys respectively.

4. Sensitive to initial values vs. Diffusion and Confusion.

When it concerns a chaotic system, a slightly different initial value may result in a significant dif-

ference in the output generated after a sufficiently large number of iterations. Analogously, in a

cryptographic system, the change of even a single bit (whether it be in the key or the plaintext) should

affect most of the ciphertext bits. Furthermore, the statistics relating the plaintext and the key should

be “as complicated as possible”. Thus, if we regard the plaintext or the key as the initial value, the

ciphertext should be highly sensitive to these.

5. Pseudo-random and ergodic.

The sequence of outputs generated by a chaotic system shouldbe able to fill the entire range in

a random-like manner. Analogously, a good encryption algorithm requires that the ciphertexts are

randomly distributed in the cipher space.

1.1 Brief Survey of the Field

As a result of the above observations, chaos has also been widely applied in the field of information security

since Matthews proposed the first chaotic encryption algorithm [2] in 1984. Later, Baptista and Alvarez

reported two cryptographic algorithms based on the phenomenon of chaotic searching in [3], [4] and [5]

respectively. While Erdmannet al described a stream cipher based on the so-called Henon maps [6], Kanso

and his co-authors illustrated a novel hash function [7] andshowed how one could achieve digital image

encryption based on chaotic maps [8]. Kocarev and his coauthors presented a public-key encryption [9] and

random number generators [10] based on chaotic maps. A detailed list of articles that advocate the use of

chaotic principles in cryptographic systems can also be found in [11] and [12], and systematic reviews about

chaos-based ciphers are found in [13] and [14].

Now that chaoticmaps have been proven to be useful in encryption, researchers have attempted to

use Chaotic Neural Networks (CNNs), which are characterized by much more complicated dynamics than

chaotic maps, to develop crypto-systems. The authors of [15–17] proposed different one-way hash functions
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based on different CNNs. Similarly, Caoet al proposed an encryption algorithm based on delayed CNNs

[18]. Our present paper concerns some of these results.

1.2 Motivation of this paper

Although the latter above-mentioned authors have affirmed that their schemes are secure and efficient, in

this paper, we shall demonstrate that the security levels guaranteed by them are weak, and that they are

inefficient. For example, most chaos-based ciphers requirean excessive number of iterations, without which

the ciphertexts are not sensitive to plaintexts. As opposedto these, traditional ciphers, e.g., the AES, only

require a 10-round calculation if one utilizes a key of 128-bits. Further, since chaotic equations are typically

specified on the set of real numbers, the associated accuracyof implementing these schemes using digital

computations is also problematic. Indeed, when we implement the associated computations numerically, we

observe that some of the significant digits will be automatically truncated, and the consequence of this is

that the original system which was chaotic within the domainof “real” numbers, is no longer chaotic [13]!

Also, the improvement brought about by increasing the accuracy using higher-precision software entails a

larger computational cost.

In this paper, we analyze two typical CNN-based cipher systems, the first of which is a one-way hash

function, and the second is an encryption method. However, we believe that our analysis is also valid for

other CNN-based schemes.

2 The CNN-based Hash Function

2.1 The Description of the CNN-based Hash Function

The authors of [15] proposed a novel one-way hash function based on a special CNN. The structure of the

network1 is shown in Fig. 1.
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Figure 1: The structure of the network used for the CNN-Hash.

1More details about PWLCM’s dynamics and analysis can be found in [19] and omitted here to avoid repetition.
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More specifically, they used two chaotic maps, namely, the Piece-Wise Linear Chaotic Map (PWLCM,

see Eq. (1)) and the Logistic map:

f(x) =







x
Q , 0 ≤ x < Q

x−Q
0.5−Q , Q ≤ x < 0.5
1−Q−x
0.5−Q , 0.5 ≤ x < 1−Q
1−x
Q 1−Q ≤ x ≤ 1,

(1)

whereQ is a control parameter, which is a real number between 0 and 0.5.

The network has a single input layer with8 neurons, and a single output layer with4 neurons. Each of

the input neurons can receive4 external inputspi,j, i = 0, 1, · · · , 7; j = 0, 1, 2, 3, where eachpi,j consists

of 8 bits. If Pi = [pi,0, pi,1, pi,2, pi,3]
T , we see that the CNN can receive a256-bit external input sequence.

Each of the output neurons can now generate a 32-bit output sequence, where the One-way Coupled Map

Lattice (OCML), specified by Eq. (2) - (5) is used to control the output neurons. The associated weights

{wij}, i = 0, 1, · · · , 7; j = 0, 1, 2, 3 for each connection is a constant,W 1 = [1/28, 1/216, 1/224, 1/232].

Further, the internal state of the input neuronui is given byW 1Pi. LetU = [u1, u2, · · · , u7]
T be the internal

state vector.

In all brevity, we remark that the CNN compresses a256-bit sequence to yield a128-bit sequence.

x0(t+ 1) = (1− ε)g(x0(t)) + εg(x3(t+ 1)); (2)

x1(t+ 1) = (1− ε)g(x1(t)) + εg(x0(t+ 1)); (3)

x2(t+ 1) = (1− ε)g(x2(t)) + εg(x1(t+ 1)); (4)

x3(t+ 1) = (1− ε)g(x3(t)) + εg(x2(t+ 1)). (5)

whereg(x) is the Logistic map andε is a coupling factor between 0 and 1.

We now present the process involved in the hash function:

1. Data Preparation: Divide the given plaintext into small blocksPi, where each block is4 × 8 bits

long. All together, there are 8 such blocks. Thus, the network is able to accept a 256-bit length input

sequence at a time.

2. Data Formatting: Format the input integer numbers to be real number between [0, 1] by means of

the PWLCM. To be specific, this is achieved by usingui = f τ (W 1Pi, Q), whereτ is the number of

iterations that is enforced so as to yield the required “diffusion” and “confusion”, andQ ∈ (0, 0.5) is

the control parameter. The authors of [15] have suggested tosetτ = 40 andQ = 1/3.

3. Key Preparation: For the given 128-bit keyK, divide it into 4 32-bit sequencesK0,K1,K2,K3.

Using these, computeki = Ki/2
32, i = 0, 1, 2, 3. The four values of{ki} are used as the initial

values of the OCML. The authors suggested to set the value ofε asε = 1/3.

4. Hash Computing: For every 30 iterations, record a vectorX0 = [x00, x
0
1, x

0
2, x

0
3], and repeat this until

we have gathered10 vectors. The vectorsX0,X1, · · · ,X7 are used as the connection weightsW 2
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between the input and output neurons,W = [XT
0 ,X

T
1 , · · · ,X

T
7 ]4×7. Θ = [x80, x

8
1, x

8
2, x

8
3] is set as

the threshold, andQ = [x90, x
9
1, x

9
2, x

9
3] is used as the PWLCM’s control parameter.

5. Output Preparation: The output of each neuron is given by:

ci = f τ (mod(W 2
i U +Θi, 1), Qi), (6)

whereW 2
i means theith row ofW 2.

6. Loop: Repeat the above steps until all message blocks have been processed.

7. Assembling: Transform the output of each neuron of the last CNN to be a 32-bit sequence, and then

combine the four 32-bit sequences to be be the final 128-bit hash value, as shown in Fig. 2.

C0,K1

M0
M1 Mn−1

C1,Ki Kn−1

Mi

CNN CNN · · · CNN G Hash

M

K0

Figure 2: The CBC mode hashing process.

Summary: The entire process of the CNN-Hash can be summarized by the following equations:

ui = f τ (W 1Pi, Q), (7)

ci = f τ (mod(W 2U +Θi, 1), Qi), (8)

H = G(C). (9)

whereW 2,Θ, Q are computed according to the CNN,W 1, τ are given constants,Pi is transformed from

the plaintext.

2.2 The Analysis of the CNN-based Hash Function

Although the authors of [15] claimed that this CNN-Hash has good properties such as its sensitivity to the

plaintext and the key, its one-way computation power, its anti-birthday attack etc., our analysis below proves

that it is not secure.

As is well known, a good one-way hash function (both keyed or unkeyed) must satisfy the following

conditions [20]:

1. Efficiency: For a given keyk and messagem, it must be easy to compute the Message Authentication

Code (MAC):H(m,k).

2. Preimage Resistance: For a given valueH∗, it must be computationally infeasible to findx such that

H(x, k) = H∗
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3. Second-Preimage Resistance: For a given messagex, it must be computationally infeasible to find a

different messagey such thatH(x, k) = H(y, k).

4. Collision Resistance: It must be computationally infeasible to find two different messagesx andy

such thatH(x, k) = H(y, k), where the two inputsx andy can be freely chosen.

We now evaluate the properties of the CNN-Hash by using the above metrics.

1. Analysis on Efficiency:

As explained above, the computations needed for the CNN-Hash are done on the elements of the real

numbers in [0, 1], which is, unarguably, much slower than thecorresponding computations executed

on the set of integers. Besides, according to Step 4), we haveto do at least300 iterations to compute

the first outputC0, which is thereafter used as the input for hashing the secondblock. Therefore, for

hashing a message of1MB, we need at least1024 × 1024 × 8 × 300/256 = 9, 830, 400 iterations,

which is a computationally intensive task. The authors of [15] have stated that their algorithm is not

competitive against MD5 or SHA, and said that it requires almost twice as much computation as both

of them. Our analysis and experiments, however, show that the performance is even worse than they

claimed. To confirm this, we mention that we conducted a simulation on an Intel Celeron CPU E1500

(2.20GHz) with 4G main memory, and the time involved for the CNN-Hash for a1MB input of text

was almost 59.83s – which is much more expensive than the costof both the MD5 and the SHA.

2. Analysis on Preimage Resistance:

Because chaotic maps have ergodic and stochastic properties, it is, indeed, not possible to find the

inverse of a given value. This is especially true of the CNN-Hash which uses two different chaotic

systems. From this perspective, we agree with that the CNN-Hash is preimage resistant even when

the keyK is known.

3. Analysis on Second-Preimage Resistance:

Although the CNN-Hash is preimage resistant, it isnot Second-Preimage Resistant. The reason for

this is quite straightforward. Consider Eq. (7) – (9) from which we see that the final hash value only

depends on the initial valuePi and the keyK. Thus, if we are able to find another differentP ∗
i such

that f τ (W 1P ∗
i , Q) = f τ (W 1Pi, Q), we can conclude that the subsequent intermediate/final results

are exactly the same if the system uses the same key. For example, consider Eq. (1) and the iteration

trajectories of the PWLCM as shown in Fig. 3. From examining these, we see that we can determine

four different values:

x1 = 0.3, x2 = 0.475, x3 = 0.525, x4 = 0.7,

sharing the same iteration trajectories yielding the final result f τ (x) = 0.39887. Thus, if we let

v = W 1Pi andf(v,Q) = F (whereF is some specified value), by examining Eq. (1), we see that

we can have at least four solutions for{v}:

v1 = FQ, v2 = F (0.5 −Q) +Q, v3 = (1−Q)− F (0.5 −Q), v4 = 1− FQ.
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We can thus have four different{P ∗
i } each of which is the solution ofW 1P ∗

i = vi, whence we see

that the CNN-Hash isnot Second-Preimage resistant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3: An example of the PWLCM’s iteration trajectories.The four red bold lines make up the image
of the PWLCM. The liney = x, vertical and horizonal lines indicate the iteration process. In this figure,
an iteration begins at starting point(0.3, 0.75) (marked with∗) and ends at(0.84, 0.40) (marked with a
“square”). The reader should note that associated with the line y = 0.75 (marked with dash-dot line), there
are at least four starting points that share the same trajectory. These are, namely, the points(0.3, 0.75),
(0.475, 0.75), (0.525, 0.75) and(0.7, 0.75), which, in turn, implies that there is a collision for at least four
different initial inputs.

4. Analysis on Collision Resistance:

The analysis on collision resistance is quite similar to theanalysis on Second-Preimage resistance,

and is omitted here in the interest of brevity.

Besides the above four conclusions, we can also claim:

1. The OCML component has many “weak keys” .

According to Step 3), the initial values of the OCML come fromthe initial keyK. Based on the above,

one can see thatthose keys which lead to the four equal parts are necessarily weak keys. Further, the

reader should observe that since the CNN is a fully-connected network, ifk0 = k1 = k2 = k3, we can

conclude that no matter how many iterations have been done, the conditionx0(t) = x1(t) = x2(t) =

x3(t) always holds, which implies that a message of length256-bits compresses to be32 bits long

instead of being128 bits long. Thus, in this case, we see that it is feasible to finda collision since the

ciphertext space is contracted.

2. Hash values do not obey a uniform distribution.

The OCML employs the Logistic chaotic map, whose values are not uniformly distributed in [0, 1].

To demonstrate this, we have computed the statistics of the distribution, and these are shown below

7



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

(a) (b)

Figure 4: The distribution of the values of the OCML. (a): Trajectories of 300 points. (b): The distributions
of the 300 points in ten intervals from 0 to 1. The four figures in (a) and (b) are forx0(t), x1(t), x2(t), x3(t)
respectively.

in Fig. 4 (a) and (b). We can clearly see from the two figures that most of the values fall into the

intervals close to unity. This will cause the distribution of the hash values to also be non-uniform,

further implying that the probability of collision is high in certain parts of the interval [21].

3 The Delayed CNN-based Cryptography

3.1 The Description the Delayed CNN-based Cryptography

Delayed CNNs have been widely investigated in the past decades. The authors of [18] proposed a crypto-

graphic system based on a special type of the delayed CNN. Themodel used in [18] is also a Hopfield-like

NN which exhibits chaotic phenomenon and which obeys Eq. (10):

dxi(t)

dt
= −cixi(t) +

n∑

j=1

aijf(xj(t)) +
n∑

j=1

bijf(xj(t− τij(t))) + Ii(t), where (10)

1. n denotes the number of units in the CNN,

2. x(t) = {x1(t), x2(t), · · · , xn(t)} ∈ Rn is the state vector associated with the neurons,

3. I = {I1, I2, · · · , In} ∈ Rn is the external input vector,

4. f(x(t)) = {f1(x1(t)), f2(x2(t)), · · · , fn(xn(t))} ∈ Rn are the neurons’ activation functions,

5. τ(t) = τij(t)(i, j = 1, 2, · · · , n) are the time delays,

6. C = diag(c1, c2, · · · , cn) is a diagonal matrix, and

7. A = (aij)n×n andB = (bij)n×n are the connection weight matrix and the delayed connectionweight

matrix, respectively.
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Figure 5: The trajectories of Eq. (10). In this figure, the values ofx(t) andy(t) are calculated by means of
the fourth-order Runge-Kutta method. The time span is from 0to 200 with a total of 30,000 steps.

The dynamics of Eq. (10) have been well studied and it is reported that it can exhibit rich chaotic phe-

nomenons [22,23]. As demonstrated in [18,23], if the parameters are:

A =

(

2.0 −0.1

−5.0 3.0

)

, B =

(

−1.5 −0.1

−0.5 −2.5

)

, C =

(

1 0

0 1

)

,

and if

fi(xi(t)) = tanh(xi(t)),

τ(t) = 1 + 0.1sin(t), and

I = 0,

the trajectories of Eq. (10) are shown in Fig.5

The encryption and decryption schemes proposed in [18] are based on the above Eq. (10) and can be

summarized as following:

• Initialization: Obtain the starting pointx0 from the lastN0 transient time iterations asx0 = x1(N0h)

whereh is the discretized time step.

• Data Preparation: Divide the plaintextm into subsequencesmj of lengthl bytes, e.g.,l = 4. That

is, any messagem can be digitized as:

m = p0, p1, · · · , pl−1
︸ ︷︷ ︸

pl, pl+1, · · · , p2l−1
︸ ︷︷ ︸

· · ·

m0 m1 · · ·

wherepi is an 8-bit binary string. Then combine fourpi to form a 32-bit binary block, implying that

Pj = pj , pj+1, pj+2, pj+3.
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The following steps constitute the core process of encryption:

1. Dynamic Parameter Computing: Iterate the initial valuexk 38 times and to yieldxk+1, xk+2, · · · , xk+38.

Extractone bit from the38 numbers and to obtain a38-bit random binary sequence,

Bi = Bk+1
i Bk+2

i · · ·Bk+38
i ,

whereBk
i = bi(xk), is computed as per:

bi(xk) =

2i−1∑

r=1

(−1)r−1Θ(e−d)(r/2i)+d(xk), (11)

and wheree andd are the upper and lower bounds ofxk respectively.

Θthreshold(xk) =

{

0, xk < threshold

1, xk ≥ threshold.
(12)

Denote:

Aj = B1
i B

2
i · · ·B

32
i ,

A1
j = B33

i B34
i · · ·B37

i , and

A2
j = B38

i .

Also, letDj denote the decimal value ofA1
j .

2. Permutation: Permute the message blockPj with a left cyclic shiftDj bits and the message block

Aj with right cyclic shiftDj bits, to obtainP ∗
j andA∗

j . If A2
j = 0, thex(t) is used for the successive

block iteration illustrated in Step 1). Otherwise,y(t) is used as the initial value of the next iteration.

3. Encryption by XOR: Encrypt the message blockPj by XOR operations (represented by⊕) to yield:

Cj = P ∗
j ⊕ A∗

j . (13)

4. Loop: Reset the initial value byx(0) = x(38 + Dj) (or x(0) = y(38 + Dj), this depends on the

value ofA2
j .) and repeat the above steps till all blocks are encrypted.

As for the decryption, the steps are very similar to the encryption process except in the case of Step 3)

where:

P ∗
j = Cj ⊕ A∗

j . (14)

The plaintextPj can be recovered by performing inverse permutations with right cyclic shifts ofDj bits.
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3.2 The Analysis of the Delayed CNN-based Cryptography

We now proceed to analyze the security and performance of thedelayed CNN-based cryptography. Our goal

is to demonstrate that this cryptography has several weaknesses:

1. Non-randomness:

x andy are not uniformly distributed, which causes the “random” bits generated in Step 1) to be

non-random. To illustrate this, we present the frequency statistics of the value ofx(t) andy(t). The

parameters used here are exactly the same as those used in Fig. 5. We categorize the combination of

x(t) andy(t) into 4 classes:

(a) x ≥ 0 AND y ≥ 0: 1801

(b) x ≥ 0 AND y < 0: 15618

(c) x < 0 AND y ≥ 0: 10781

(d) x < 0 AND y < 0: 1800

We can clearly see from the statistics that more than a half (52.06%) of thex(t) andy(t) gather in

the first quadrant, while only 48.94% distribute in the otherthree quadrants. This phenomenon is

confirmed from Fig. 5. Furthermore, as demonstrated in Step 1), we can normalizex(t) andy(t) into

[0, 1] by:

g(x) =
x− d

e− d
= 0.b1(x)b2(x) · · · bi(x) · · · bn(x) (15)

wheree andd are the upper and lower bounds ofx respectively. We can thus generate the “random”

binary bits according tog(x). Indeed, the new counts are:

(a) b(x) = 0 AND b(y) = 0: 2769

(b) b(x) = 0 AND b(y) = 1: 11573

(c) b(x) = 1 AND b(y) = 0: 14379

(d) b(x) = 1 AND b(y) = 1: 1279

Clearly, the bits generated by Eq. (12) are not “random”.

2. Trajectory behavior :

The authors of [18] did not use the trajectories as shown in Fig. 5 directly. Instead, the random bits

were generated according to the 38 successively iterations, as demonstrated in Step 1). We should

thus carefully check the randomness of the corresponding sequences. According to Step 2) in Section

3.1, ifA2
j = 0, x(t) is used for the successive iteration, otherwise, it isy(t). In this case, we swap the

value ofx(t) andy(t) every 38 iterations. As shown in Fig. 6 we can see that the value ofx(t) and

y(t) are very close during the 38 iterations, which means the random bitsB1
i B

2
i · · ·B

38
i are almost

identical.
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Figure 6: The controlled trajectories of Eq. (10). For a better view, we have used a larger step 0.05 yielding
a lesser number of points. The points in contained in rectangles marked as 1 and 3, 2 and 4 are symmetric
pairs along the axis given by the liney = x.

In spite of the above, the authors of [18] attempted to use this sequence to achieve the goals of “diffu-

sion” and “confusion”. It is well known that a sequence possessing poor randomness properties cannot

be used in any cryptographic algorithm [21], because it would otherwise lead to a more predictable

ciphertext. Consequently, we argue that this algorithm is not secure.

3. Resistance to attacks:

This cryptographic system cannot resist known plaintext attacks, chosen plaintext attacks and chosen

ciphertext attacks. To demonstrate this, assume that an attacker has some plaintext-ciphertext pairs

(M1, C1), (M2, C2) and(M3, C3), where{Mi} are the first 4 bytes of different plaintexts. If they are

all encrypted by the same key, according to the algorithm, thenA∗
j ,Dj and some other intermediate

iteration results should be the same. Thus:

C1 = (M1 << Dj)⊕A∗
j

C2 = (M2 << Dj)⊕A∗
j .

where<< denotes the cyclic left shift operation. Thus,

C1 ⊕ C2 = (M1 << Dj)⊕ (M2 << Dj)

= (M2 ⊕M2) << Dj .

Since(M1, C1) and(M2, C2) are known, it is quite easy to find the value ofDj . After that, we can

solve the equationC1⊕C3 = (M1⊕M3) << Dj and thereafter determineM3 successfully. Observe

that during the whole process, we did not need any knowledge about the delayed CNN. The reason

why we are able to proceed with such attacks is that the authors did not introduce the concept of the

Initial Vector to the scheme.
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4. Efficiency:

Although the authors of [18] claimed that the algorithm is efficient, this is not really the case. Actually,

this conclusion is also true for many other crypto-systems such as those algorithms presented in [8,24],

which involve time delays in their equations. It is well known that the Runge-Kutta method is one

of the best ways to solve differential equations where the initial values are provided. However, this

method is still far too expensive when compared to traditional block ciphers such the DES or AES.

Indeed, the computation of these traditional ciphers involves a finite field and only makes use of

simple operations such as permutation. As opposed to this, solving differential equations involves the

set of real numbers. For example, to encrypt a plaintext withsize1M bytes, we have to divide the

message into1024 × 1024/4 = 262, 144 blocks, where each block is of length4 bytes. According

to the encryption phase, at leastN0 + 38 iterations are involved to encrypt a single block. If we

assume thatN0 = 62, we see that we have to thus do approximately262, 144 × 100 = 26, 214, 400

iterations to encrypt the entire file, which is, really, prohibitively large. More specifically, on an Intel

Celeron CPU E1500 (2.20GHz) with 4G main memory, this encryption time using Matlab was about

7 minutes, which is unacceptable when compared to the “real time” operation of traditional block

ciphers.

5. Statistical Attacks2:

The reader should take note of the fact that the block size wasincreased from 64 bits in DES to 128 bits

in AES in order to avoid statistical attacks. Thus, it is not recommended that one uses blocks whose

sizes are less than 128 bits in modern block ciphers [25]. Consequently, the fact that the Delayed

CNN-based Cryptography still relies on Exclusion OR operations involving strings of length 32-bits,

renders it more susceptible to statistical attacks.

4 Conclusion

Chaotic Neural Networks have been widely used in various fields such as pattern recognition, dynamic

associate memory and optimization. Recently, cryptography based on chaos or CNNs has drawn great

attention. In this paper, we present a detailed analysis of two typical cipher schemes: The CNN-Hash

and Delayed CNN-Based Encryption. The former compresses a plaintext onto a 128-bit sequence, which is

similar to MAC. The latter encrypts plaintext so that an eavesdropper will not be able to decrypt the message

without the key, which is analogous to common cipher algorithms. Although the authors have affirmed that

their schemes are secure and efficient, our investigation proves that these claims are not valid. We have

proven that the CNN-Hash is not Second-Preimage resistant and collision resistant. The DCBE has also

been shown to not be secure since an attacker can partially recover the plaintext by using a known plaintext

attack, a chosen-plaintext attack or chosen-ciphertext attack. We have also concluded that the two schemes

are not computationally efficient.

2We sincerely thank an the anonymous Referee who provided this insight.
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