
Short Solutions to Nonlinear Systems of
Equations

Alan Szepieniec and Bart Preneel

imec-COSIC KU Leuven, Belgium
first-name.last-name@esat.kuleuven.be

Abstract. This paper presents a new hard problem for use in cryptogra-
phy, called Short Solutions to Nonlinear Equations (SSNE). This problem
generalizes the Multivariate Quadratic (MQ) problem by requiring the
solution be short; as well as the Short Integer Solutions (SIS) problem
by requiring the underlying system of equations be nonlinear. The joint
requirement causes common solving strategies such as lattice reduction
or Gröbner basis algorithms to fail, and as a result SSNE admits shorter
representations of equally hard problems. We show that SSNE can be
used as the basis for a provably secure hash function. Despite failing to
find public key cryptosystems relying on SSNE, we remain hopeful about
that possibility.

Keywords: signature scheme, hard problem, post-quantum, MQ, SIS, SSNE,
hash function

1 Introduction

The widely deployed RSA and elliptic curve cryptosystems rely on the hard-
ness of the integer factorization and discrete logarithm problems respectively,
which are in fact easy to solve on quantum computers by means of Shor’s al-
gorithm [31]. These encryption and signature schemes will therefore become
insecure once large enough quantum computers are built; and as a result we
need to design, develop and deploy cryptography capable of resisting attacks by
quantum computers, despite running on classical computers.

A number of hard problems have been proposed to replace integer factoriza-
tion and discrete logarithms for precisely this purpose of offering post-quantum
security. For instance, the problem of finding short vectors in high-dimensional
lattices relates to normed linear algebra problems such as SIS [1] and LWE [29],
which in turn generate many types of public key cryptosystems. Finding satis-
fying solutions to systems of multivariate quadratic (MQ) systems of equations
seems to be hard even if the quadratic map embeds a secret trapdoor allow-
ing only the secret-key holder to generate signatures [14]. Evaluating isogenies
between elliptic curves is easy, but finding the isogeny from input and output
images is hard; this enables a rather direct adaptation of the Diffie-Hellman
key agreement protocol [20]. Even traditionally symmetric problems such as



hash function inversion have been used to generate stateless digital signature
schemes [5]. However, in nearly all post-quantum cryptosystems to date, either
the public key or else the ciphertext or signature is huge — measurable in tens of
kilobytes if not megabytes1. In the interest of easing the transition away from the
quantum-insecure but very low-bandwidth ECDSA, designing a post-quantum
signature scheme with short signatures or ciphertexts and short public keys is a
major open problem.

In this paper, we propose a new cryptographic problem called Short Solutions
to Nonlinear Equations (SSNE) and argue that it is likely hard, even for quantum
computers. Informally, our new hard problem asks to find a short solution to
a system of non-linear multivariate polynomial equations, and thus generalizes
both the Short Integer Solution (SIS) problem where the system is linear, and
the Multivariate Quadratic (MQ) problem where the solution need not be short.
Adopting both requirements renders standard attack strategies inapplicable or
wildly inefficient.

Nevertheless, we show in Section 4 that it is possible to attack SSNE with
limited success, in a way that improves over brute force search. We take this
attack and its limitations into account and delineate a niche of parameter space
in which brute force is the most efficient attack strategy. As a result, SSNE offers
a denser encoding of computational hardness than either SIS or MQ, and if it
is possible to design public key cryptosystems that rely on this hard problem,
it holds promise of generating a smaller public keys, ciphertexts and signatures
than their MQ and SIS counterparts without incurring a security cost.

While designing a public key cryptosystem on top of SSNE remains an open
problem, designing a hash function whose security relies on SSNE does not, as
this problem is solved in Section 5. This result does not merely serve to demon-
strate design of cryptographic primitives in lieu of the comparably more difficult
end-goal of designing public key functionalities; it has standalone value as well.
From the point of view of provable security, very few hash functions come with
a security proof showing that finding a solution implies solving a hard problem
that is defined independently of the hash function itself. Therefore these not-
provably-secure hash functions offer less assurance of security than provably se-
cure hash functions whose underlying hard problems are studied independently.
Moreover, it is prudent to diversify the hard problems upon which cryptographic
primitives rely, in order to isolate the effects of cryptanalytic breakthroughs.

2 Preliminaries

Notation. We denote by Fq the finite field of q elements. The integer range
{a, a+ 1, . . . , b− 1, b} is denoted by [a : b]. Vectors are denoted in boldface, e.g.,
x and matrices by capital letters, e.g., A, with indexation starting at zero. The

1 The curious exception to this rule is the supersingular isogeny Diffie-Hellman key
agreement scheme, but even so it does not seem possible to use this construction for
small signature schemes.

2



slice of A consisting of rows i—j and columns k—l is denoted by A[i:j,k:l], and
we drop the , k : l when slicing from a vector instead of a matrix.

Lattices. A lattice of dimension n and embedding degree m is a discrete n-
dimensional subspace of Rm; without loss of generality, we consider subspaces
of Zm. Any such lattice L can be described as the set of integer combinations
of a set of vectors b0, . . . ,bn−1 ∈ Zm, which is called a basis for the lattice and
is not unique for a given lattice. A lattice L is q-ary whenever membership of a
point p ∈ Zm is decided by pmod q, i.e., with each component reduced modulo
q.

The LLL algorithm [24] takes a matrix of integers A ∈ Zh×w whose rows
span a lattice, and outputs another matrix B ∈ Zh×w whose rows span the same
lattice but are much shorter in length. Without loss of generality we assume the
LLL algorithm also outputs a unitary matrix U such that UA = B. The shortest
basis vector produced by LLL when applied to a lattice spanned by h vectors of
w elements, is bounded in length by

‖b0‖2 ≤
(

4

4δ − 1

)(w−1)/4

det(L)1/w , (1)

where 1
4 < δ ≤ 1 is the LLL parameter and where the determinant of the lattice

is given by det(L) = det(AAT)1/2 = det(BBT)1/2 if A and B have linearly
independent rows.

In the case of q-ary matrices, a basis matrix can be obtained by adjoining the
original basis matrix with qI. LLL will return a (w + h)× w matrix whose first
w rows consist of all zeros. The determinant of q-ary lattices of this dimension
is qw−h with high probability [27], which means that the length of the shortest
nonzero vector in the output of LLL is bounded by

‖b0‖2 ≤
(

4

4δ − 1

)(w−1)/4

q(w−h)/w . (2)

The ith successive minimum λi(L) of a lattice L is the smallest ρ ∈ R
such that the hypersphere with radius ρ centered at the origin contains at least
i independent lattice points. According to the m-dimensional ball argument of
Micciancio and Regev [27], the first successive minimum of a random q-ary lattice
of dimension h and embedding dimension w can be approximated by

λ0(L) ≈
√

w

2πe
q(w−h)/w . (3)

3 Short Solutions to Nonlinear Equations

Our hard problem generalizes the Multivariate Quadratic (MQ) problem as well
as the Short Integer Solution (SIS) problem. After presenting the definitions we

3



consider some straightforward attacks. In the next section we consider a more
sophisticated one.

MQ Problem. Given a quadratic map P : Fnq → Fmq consisting of m poly-
nomials in n variables of degree at most 2, find a vector x ∈ Fnq such that
P(x) = 0.

The MQ problem is NP-hard in general as well as empirically hard on average
whenever m ≈ n. The best known attack is the hybrid attack [6], which consists
of guessing some variables so as to overdetermine the system of equations and
then solving it using a Gröbner basis type solver such as F4 [16] or XL [13]. The
reduced cost of solving the overdetermined system compensates for the increased
cost of retrying a new guess whenever it leads to no solutions. The complexity of
the optimal-trade-off hybrid attack approaches 2Cqn as n � q → ∞ with Cq =
ω(1.38− 0.44ω log2 q) and where ω ≥ 2 is the exponent of matrix multiplication
complexity [7]. However, when q � n, the cost of even one random guess beyond
the number of variable-fixes that makes the system a determined one, dominates
the attack complexity. In this case the complexity of a purely algebraic attack can
be estimated using the degree of regularity Dreg of the system. For semi-regular
quadratic systems [4,3] (which we assume random quadratic systems are), the
degree of regularity is equal to the degree of the first term with a non-positive
coefficient of the power series expansion of

HS(z) =
(1− z2)m

(1− z)n
. (4)

At this point, the Gröbner basis computation using F4 or XL boils down to
performing sparse linear algebra in the Macaulay matrix whose polynomials

have degree Dreg. The complexity of this task is O
((
n+Dreg+1

Dreg

)2)
in terms of

the number of finite field operations, which in turn are polynomial in log q. In
summary, the complexity of solving the MQ problem is exponential in n ≈ m,
but barely affected by q.

SIS Problem. Given a matrix A ∈ Fn×mq with m > n, find a nonzero vector
x ∈ Zm\{0} such that Ax = 0mod q and ‖x‖2 ≤ β.

While not NP-hard, SIS does offer an average-case to worst-case reduction:
solving random SIS instances is at least as hard as solving the lattice-based
Shortest Independent Vectors Problem (SIVP) up to an approximation factor
of Õ(β

√
n) in the worst case [26]. The most performant attack on SIS is indeed

running a lattice-reduction algorithm such as BKZ 2.0 [8] to find short vectors in
the associated lattice which is spanned by the kernel vectors of A. The complexity
of this task is captured by the root Hermite factor δ > 1, which approaches 1
for more infeasible computations. For a given δ the optimal number of columns
of A to take into account (i.e., by setting the coefficients of x associated to
the other columns to zero) is given by m =

√
n log2 q/log2 δ. At this point the

average length of the lattice points found is 22
√
n log2 q log2 δ and cryptographic

4



security requires β to be smaller than this number. Albrecht et al. estimate the
complexity of obtaining lattice points of this quality as 0.009/log22δ+4.1 in terms
of the base-2 logarithm of the number of time steps [2]. The key takeaway is that
the complexity of SIS grows exponentially in m and n, but polynomially in q and
β.

SSNE Problem (Short Solutions to Nonlinear Equations) Given a map
P : Fnq → Fmq consisting of m polynomials in n variables over a prime field
Fq and with deg(P) ≥ 2, find a vector x ∈ Zn such that P(x) = 0mod q and
‖x‖2 ≤ β.

It is clear that the attack strategies that work for MQ and SIS do not apply
out of the box to the SSNE problem. The random guess of the hybrid attack
on MQ might fix the first few variables to small values, but offers no guarantee
that an algebraic solution to the other variables is small. Alternatively, one can
drop the random guess and compute a Gröbner basis for the under-determined
system. Even if the resulting Gröbner basis consists of a reasonable number
of polynomials of reasonable degrees, obtaining a short vector in the variety
associated with the Gröbner basis seems like a hard problem in and of itself.
Alternatively, one can linearize the system by introducing a new variable for
every quadratic term and treat the resulting matrix of coefficients as the matrix
of a SIS instance. However, in this case it is unclear how to find the correct length
bound β as it now applies to a vector of quadratic monomials. Nevertheless, we
now show under which conditions or adaptations an algebraic attack and attack
based on lattice reduction are possible.

3.1 Algebraic Attack

The constraint ‖x‖2 ≤ β can be formulated algebraically. Assume β < q/2,
and let b = bβc. Then any solution x to the SSNE problem must consist of

coefficients in [−b : b]. For any such coefficient xi, the polynomial
∏b
j=−b(xi− j)

must evaluate to zero. Therefore, by appending these polynomials to P, one
obtains a less under-determined system and perhaps even a determined one. If
that is the case, XL and F4 will find a short solution; however, the Gröbner
basis computation must reach degree 2b for the added polynomials to make a
difference, and for sufficiently large β even this task is infeasible. It is possible to
generalize this strategy so as to require that the sums-of-squares of all subsets of
the coefficients of x are smaller than β. This method cannot work when β > q,
but can be effective when β is small — say, a handful of bits.

Alternatively, it is possible to run down the unsigned bit expansion of every
component of x and introduce a new variable xi,j for each bit and one for
each component’s sign si. This transformation adds n equations of the form

xi = si
∑dlog2qe
j=0 2jxi,j , ndlog2qe equations of the form xi,j(1 − xi,j) = 0, and n

equations of the form (si−1)(si+1) = 0. The advantage of having access to this
bit expansion is that the constraint ‖x‖2 ≤ β can now be expressed as dlog2qe
equations modulo q, even when β > q.

5



In both cases, the system of equations becomes infeasibly large whenever β
grows, which is exactly the intended effect from a design perspective. Phrased
in terms of the security parameter κ, we have

Design Principle 1: β must be large: log2β > κ.

Note that β cannot be larger than
√
n(q− 1)/2 because in that case any so-

lution vector x satisfies the shortness criterion, which can therefore be forgotten
at no cost in favor of a very fast algebraic solution. In fact, we want a random
solution to the system of equations to satisfy ‖x‖2 ≤ β with at most a negligible
probability. Design principle 2 requires this probability to be at most 2−κ, where
κ is the targeted security level.

Design Principle 2: β must not be too large: nlog2q ≥ κ+ nlog2β.

3.2 Lattice Attack

In the relatively small dimensions considered for SSNE, basic lattice reduction
algorithms such as LLL [23] manage to find the shortest vector in polynomial
time with all but absolute certainty. Moreover, the nonlinear system P(x) = 0
can always2 be represented as a linear system P x̄ = 0, where P is the Macaulay
matrix of P and x̄ is the vector of all monomials in x that appear in P. If the
solution x to P(x) = 0 is short enough, then its expansion into x̄ will also be a
solution to P x̄ = 0 — and might be found quickly by lattice-reducing any basis
for the kernel of P and weighting the columns as necessary.

In fact, the vector x̄ associated with a solution x to P(x) = 0 will always lie
in the kernel of P , although not every kernel vector corresponds to a solution.
Since x̄ is necessarily in the lattice spanned by the kernel vectors of P , the only
way to hide it from lattice-reduction is to make it long — as long as random
lattice vectors taken modulo q. The rationale behind the next design principle is
to require that some of the quadratic monomials x̄ are of the order of magnitude
of q (possibly after modular reduction).

Design Principle 3: x must not be too small: log2‖x‖22 ≥ log2 q.

A straightforward attack strategy to cope with this design principle is to
focus only on those columns of P that correspond to the monomials of degree 1
in x̄. Lattice reduction will then find short kernel vectors for this reduced matrix
P̃ . The attack runs through linear combinations of these small reduced kernel
vectors until it finds a small linear combination c such that P(c) = 0. A rigorous
argument counts the number of points in this lattice that have the correct length
and then computes the proportion of them that solve P(x) = 0, and infers from
this a success probability and hence a running time for the attack. A far simpler
but heuristic argument pretends that the nonlinear monomials of x̄ multiply
with their matching columns from P and thus generate a uniformly random

2 This assumes that P has no constant terms, but the same arguments apply with
minor modifications even if it does.

6



offset vector p. The attacker succeeds only when p + P̃x = 0, which can be
engineered to occur with at most a negligible probability.

Design Principle 4: The output space must be large enough: mlog2 q ≥ κ.

Lattice-reduction has been used in the past to find small solutions to uni-
variate and multivariate polynomial equations, for instance in the context of
factoring RSA moduli n = pq where some of the bits of p or q are known. These
applications of LLL were first discovered by Coppersmith [10,9], and were then
expanded on by Howgrave-Graham [19], Jutla [21], Coron [11,12], and most re-
cently by Ritzenhofen [30]. The common strategy behind all these attacks is to
generate clever algebraic combinations of the polynomials but which must be lin-
early independent. LLL is run either on the resulting system’s Macaulay matrix
or on its kernel matrix to find either polynomial factors with small coefficients
or else short roots. However, this family of methods is only effective when the
targeted solution is short enough. In particular, if Xi ∈ Z is a bound on xi, i.e.,
|xi| ≤ Xi, then success is only guaranteed whenever for every term t ∈ Fq[x] of
every polynomial of P (interpreted as t ∈ Z[x])

|t(X1, . . . , Xn)| < q . (5)

This success criterion is inconsistent with design principle 3.

3.3 Additional Considerations

Note that the shortness constraint ‖x‖2 ≤ β does not have to apply to all

variables. Even requiring only
√∑

i∈S x
2
i ≤ β where the sum is taken only over

a non-empty subset S of the variables suffices to capture the hardness of the
problem. More generally, the problem can be defined with respect to any weight
matrix W ∈ Zn×n, namely by requiring that xTWx ≤ β2. Diagonalization of W
leads to a partitioning of the variables into one set which should be short and
one set whose length does not matter. Nevertheless, one should be careful to
ensure that the number of short variables must be larger than the dimension of
the variety. Otherwise the shortness constraint is no constraint at all because it
is possible to guess the short variables and subsequently solve for the remaining
variables using a Gröbner basis algorithm.

Design Principle 5. There should be more small variables than the dimen-
sion of the variety: rank(W +WT) > dimV (P) = n−m.

Remark. The concise way to capture “the number of variables that must be
small after optimal basis change” is indeed rank(W +WT). To see this, observe
that xTWx is a quadratic form and therefore equal to xT(W +A)x for any skew-
symmetric matrix A (i.e., square matrix such that AT = −A). Up to additions
of skew-symmetric matrices and up to constant factors we have W ≡W +WT.
This latter form is preferred for diagonalization, which finds an invertible basis
change S such that makes ST(W +WT)S diagonal. The zeros on this diagonal

7



indicate the variables whose size is unconstrained. Moreover, the rank of W+WT

cannot change under left or right multiplication by invertible matrices such as
ST or S.

3.4 Estimating Hardness

The main selling point of the SSNE problem is that neither the algebraic solvers
nor lattice-reduction algorithms seem to apply, and as a result of this immunity
it admits a much conciser encapsulation of cryptographic hardness. In MQ prob-
lems, the hardness derives from the large number of variables and equations n
and m, and is largely independent of the field size q. In SIS problems, the hard-
ness derives mostly from the large lattice dimension n, although the field size q
and length constraint β are not entirely independent. Since both Gröbner basis
and lattice-reduction algorithms do not apply, the hardness of SSNE problems
must be much more sensitive to the size of the search space than their MQ and
SIS counterparts. In particular, this sensitivity allows designers to achieve the
same best attack complexity while shrinking m and n in exchange for a larger
q — a trade-off that makes perfect sense because in all cases the representation
of a single problem instance is linear in log2 q and polynomial in m and n.

All five design principles, including design principle 6 which will be derived
in Section 4, have a limited range of applicability. No known algorithm solves
SSNE problems for which all six criteria are met, faster than the following brute
force search does. In the most optimistic scenario, no such algorithm exists. We
invite the academic community to find attacks on SSNE that outperform this
brute force search. In Section 5 we propose a hash function whose security relies
on the assumption that either such an algorithm does not exist or that if it does,
it does not beat brute force by any significant margin.

A brute force strategy must only search across Fn−mq . Each guess of the first
n − m variables is followed by an algebraic solution to the remaining system
of m equations in m variables. If m is not too large then the task of finding
this solution algebraically is rather fast, and the complexity of this joint task is
dominated by O(qn−m). In quantum complexity, Grover’s algorithm [18] offers
the usual square root speed-up of O(q(n−m)/2).

4 An Algebraic-Lattice Hybrid Attack

In this section we describe an attack that applies when m(m + 1)/2 ≤ n and
manages to produce somewhat short solutions. In a nutshell, the attack treats
the polynomial system as a UOV− public key. A UOV reconciliation attack
recovers the secret decomposition and at this point the attacker samples vinegar
and oil variables such that the resulting “signature” is small. We consider the
various steps separately. This section uses the terms “signature” and “solution”
interchangeably because in the context of attacks on UOV they are identical.

8



4.1 UOV

Unbalanced Oil and Vinegar [22] is an MQ signature scheme with parameters
n = o + v, v ≈ 2o and m = o. The public key is a homogeneous quadratic
map P : Fnq → Fmq . The secret key is a decomposition of this public map into
F : Fnq → Fmq and S ∈ GLn(Fq) such that P = F ◦ S. While S is a randomly
chosen invertible matrix, F must have a special structure. All m components
fi(x) partition the variables into two sets: vinegar variables x0, . . . , xv−1, which
are quadratically mixed with all other variables; and oil variables xv, . . . , xn−1.
Visually, the matrix representations of these quadratic forms have an all-zero3

o× o block:

fi(x) = xT


x . (6)

In order to compute a signature for a document d ∈ {0, 1}∗, the signer
computes its hash y = H(d). He then chooses a random assignment to the
vinegar variables and substitutes these into the system of equations P(x) = y,
or more explicitly

...∑v−1
j=0

∑j
k=0 f

(i)
j,kxjxk +

∑v−1
j=0

∑n−1
k=v f

(i)
j,kxjxk = yi

...

, (7)

where f
(i)
j,k represents the coefficient of the monomial xjxk of the ith component

of F . The underlining indicates vinegar variables, which are substituted for their
assignments. It is clear from this indication that the system of equations has
become linear in the remaining oil variables, and since m = o, it has one easily
computed solution in the generic case. The signer chooses a different assignment
to the vinegar variables until there is one solution. At this point, the signature
s ∈ Fnq is found by computing s = S−1x. It is verified through evaluation of P,

i.e., P(s)
?
= H(d).

4.2 Reconciliation Attack

The reconciliation attack [15] is essentially an algebraic key recovery attack: the
variables are the coefficients of S−1 and the equations are obtained by requiring
that all the polynomials be of the same form as Eqn. 6. Näıvely, this requires
solving a quadratic system of mo(o + 1) equations in n2 variables. However,
the attack relies on the observation that there is almost always a viable S′−1

3 Or since it represents a quadratic form, skew-symmetric instead of all-zero.

9



compatible with (6) but of the form

S′−1 =

 v

o

 . (8)

This observation is justified by the fact that only the coefficients of S−1 that are
located in the rightmost o columns appear as indeterminates in the coefficients
that are equated to zero. Moreover, any linear recombination of these columns
also maps the oil-times-oil coefficients to zero and therefore we might as well
consider only the representative of this equivalence class (equivalence under lin-
ear recombination of the rightmost o columns) whose bottom right o × o block
is the identity matrix.

The use of this observation reduces the number of variables to v×o. Moreover,
the key observation behind the reconciliation attack is that the o columns of S′−1

can be found iteratively, solving a new quadratic system at each step. Moreover,
the authors of this attack argue that the complexity of this strategy is dominated
by the first step, which requires solving only m equations in v variables [15].

These optimizations are no issue in our attack on SSNE. The parameters m
and n are generally small enough to make näıvely solving a quadratic system
of mo(o+ 1)/2 equations in n2 variables feasible. However, for generic systems,
whenever mo(o+ 1)/2 > n2 there might not exist a S−1 ∈ GLn(Fq) that brings
P into the form of Eqn. 6. But choosing o to be different from m might bring a
suitable S−1 back into existence. This motivates the following definition.

Definition 1 (o-reconcilable). A system P of m multivariate quadratic poly-
nomials in n variables over Fq is o-reconcilable iff there exists an S ∈ GLn(Fq)
such that P ◦ S partitions the n variables into v = n− o vinegar variables and o
oil variables distinguished by P ◦ S being linear in the oil variables.

Remark. Clearly, constant and linear terms are linear in all variables under
any change of basis. Reconcilability considers only the quadratic part of the
polynomials and without loss of generality we may restrict attention to their
homogeneous quadratic part.

Theorem 1 (m-reconcilability of UOV). Let P : Fnq → Fmq be the public key
of a UOV cryptosystem. Then P is m-reconcilable.

Proof. Trivial: follows from construction of P = F ◦ S. F induces the required
partition into oil and vinegar variables. ut

Theorem 2 (bn/2c-reconcilability when m = 1). Assume q is odd. Let P :
Fnq → Fq be a single quadratic polynomial. Then P is bn/2c-reconcilable.

Proof. Let Qp ∈ Fn×nq be a symmetric matrix representation of P(x) via P(x) =

xTQpx. Then Qp is diagonalizable, i.e., there exists an invertible matrix A ∈
Fn×nq such that ATQpA is nonzero only on the diagonal.

10



All non-zero elements on the diagonal must be one except for the last which
might be the smallest quadratic non-residue in Fq. Now choose a random sym-
metric matrix Qf ∈ Fn×nq such that the lower right bn/2c×bn/2c block consists
of all zeros and such that rank(Qf ) = rank(Qp). It is also diagonalizable: there is
an invertible matrix B ∈ Fn×nq such that BTQfB is a diagonal matrix consisting
of all ones except for the last element which might be the smallest quadratic
non-residue. If BTQfB = ATQpA we are done because F = P ◦B−1 ◦A induces
the required partition. If BTQfB 6= ATQpA they must differ in the last diagonal
element. So then multiply any one nonzero row of Qf by any quadratic residue
and obtain another diagonalization. Now BTQfB = ATQpA must hold and we
are done. ut

Theorem 3. In the generic case, a system of m quadratic polynomials in n
variables over Fq is o-reconcilable when m(o+ 1)/2 ≤ n.

Proof. The number of coefficients of S−1 that are involved in the mo(o + 1)/2
equations that set the oil-times-oil coefficients to zero is no, corresponding the
rightmost n × o block of S−1. The other elements of S−1 do not affect these
coefficients. This leads to a system of mo(o + 1)/2 quadratic equations in no
variables which generically has solutions when mo(o+1)/2 ≤ no, or equivalently
when m(o+ 1)/2 ≤ n. ut

4.3 Generating Small Solutions

After obtaining an o-reconciliation (F , S), the task is to obtain a solution x
such that F(x) = 0 and such that S−1x is small. The partitioning of x into the
vinegar variables x0, . . . , xv−1 and the oil variables xv, . . . , xn−1 separates the
shortness objective into two parts. On the one hand, the vinegar contribution(

S−1
)
[:,0:(v−1)] x[0:(v−1)] (9)

must be small; on the other hand, the oil contribution(
S−1

)
[:,v:(n−1)] x[v:(n−1)] (10)

must be small as well. The reason for this separation is not just that the vinegar
variables and oil variables are determined in separate steps; in fact, determining
vinegar variables that lead to a small vinegar contribution is easy. The form of
Eqn. 8 guarantees that small vinegar variables will map onto a small vinegar
contribution. Therefore, the only requirement for selecting vinegar variables is
that they be small enough, say roughly q1/2. By contrast, the process of finding
suitable oil variables is far more involved.

A quadratic map where o > m can be thought of as a UOV− map, i.e., a
UOV map with o−m dropped components. This gives the signer, or an attacker
who possesses the reconciliation, o −m degrees of freedom for selecting the oil
variables. Coupled with the freedom afforded by the choice of vinegar variables,
the signer or attacker can generate a vector x such that S−1x is short.

11



The task is thus to find an assignment to the oil variables such that a)
F(x) = 0 is satisfied; and b)

(
S−1

)
[:,v:(n−1)] xv:(n−1) is small as well. Constraint

(a) is satisfiable whenever m ≤ o (in the generic case, i.e., assuming certain
square matrices over Fq are invertible). Constraint (b) requires o > m and the
resulting vector can be made shorter with growing o−m.

The matrix representation of a quadratic form is equivalent under addition
of skew-symmetric matrices, which in particular means that it is always possible
to choose an upper-triangular representation even of UOV maps such as Eqn. 6.
The ith equation of F(x) = 0 can therefore be described as

fi(x) = xT

 Qi Li

x + `(i)Tx + ci = 0 (11)

(
xT
[0:(v−1)]Li + `

(i)T
[v:(n−1)]

)
x[v:(n−1)] = −xT

[0:(v−1)]Qix[0:(v−1)] − `
(i)T
[0:(v−1)]x[0:(v−1)] − ci.

(12)

All m equations can jointly be described as Ax[v:(n−1)] = b for some matrix
A ∈ Fm×oq and vector b ∈ Fmq , because the vinegar variables x[0:(v−1)] assume

constant values. Let x(p) be any particular solution to this linear system, and let

x
(k)
0 , . . . ,x

(k)
o−m−1 be a basis for the right kernel of A. Any weighted combination

of the kernel vectors plus the particular solution, is still a solution to the linear
system:

∀(w0, . . . , wo−m−1) ∈ Fo−mq . A

(
x(p) +

o−m−1∑
i=0

wix
(k)
i

)
= b . (13)

This means we have o−m degrees of freedom with which to satisfy constraint (b).
In fact, we can use LLL for this purpose in a manner similar to the clever

selection of the vinegar variables. The only difference is that the weight associ-
ated with the vector x(p) must remain 1 because otherwise constraint (a) is not
satisfied. This leads to the following application of the embedding method.

Identify x(p) and all x
(k)
i by their image after multiplication by

(
S−1

)
[:,v:(n−1)],

thus obtaining z(p) =
(
S−1

)
[:,v:(n−1)] x

(p) and z
(k)
i =

(
S−1

)
[:,v:(n−1)] x

(k)
i . Then

append q2 to z(p) and 0 to all z
(k)
i , and stack all these vectors in column form

over a diagonal of q’s to obtain the matrix C:

C =



— z(p)T — q2

— z
(k)T
0 — 0
...

...

— z
(k)T
o−m−1 — 0

q
. . .

q


. (14)

12



Run LLL on this matrix to obtain a reduced basis matrix B ∈ Z(o−m+1+n)×(n+1)

of which the first n rows are zero, and a unimodular matrix U satisfying B = UC.
The appended q2 element guarantees that the row associated with the particular
solution will never be added to another row because that would increase the size
of the basis vectors. As a result, there will be one row in the matrix B that ends in
q2. Moreover, this row will be short because it was reduced by all other rows. We
now proceed to derive an upper bound for the size of this vector considering only
the first n elements, i.e., without the q2. Unfortunately, the best upper bound
we can prove rigorously is d q2e

√
n, but we can rely on the following heuristic

argument for a meaningful result.
Let s be the index of this targeted row. Without row s and omitting the last

column, the nonzero rows of B form an LLL-reduced basis for a q-ary lattice of
dimension o−m and embedding dimension n. We approximate the sizes of these
vectors using λi(L) ≈ λ0(L). Coupled with the m-dimensional ball argument of
Micciancio and Regev for estimating the first successive minimum [27], this gives

‖b`‖2 . 2(o−m)/2

√
n

2πe
q(n−o+m)/n . (15)

Moreover, row s (considered without the q2) cannot be much larger than this
quantity because it is LLL-reduced with respect to vectors of this size. So
‖bs‖2 ≈ ‖b`‖2. Our experiments show that this heuristic bound is followed
quite closely in practice for small m,n and large q.

The solution s = S−1x consists of two parts: the vinegar contribution and
the oil contribution. Therefore, we can bound the size of the whole thing.

‖s‖2 ≤ ‖S−1[:,0:(v−1)]x[0:(v−1)]‖2 + ‖S−1[:,v:(n−1)]x[v:(n−1)]‖2 (16)

.
√
n− o · q1/2 + 2(o−m)/2

√
n

2πe
q(n−o+m)/n . (17)

Or if we treat n,m, o, v as small constants,

‖s‖2 ∈ O
(
q(n−o+m)/n

)
. (18)

4.4 Summary

Figure 1 shows pseudocode for the algebraic-lattice hybrid attack algorithm.
Line 1 attempts to launch a UOV reconciliation attack, but the algorithm

fails when this attack is unsuccessful. In fact, the criterion for success is precisely
whether the map P is o-reconcilable. Generically, this criterion is only satisfied
for m(o + 1)/2 ≤ n, as per Theorem 3, although it is certainly possible to
construct maps that are o-reconcilable for m(o + 1)/2 > n — indeed, standard
UOV public keys match this ungeneric description. A prudent strategy for maps
whose structure is unknown is to try step 1 for several values of o and to pick
the decomposition of P where o is largest. However, in this case the length of

13



algorithm ALHA
input: P : Fnq → Fmq — a quadratic map

: o ∈ Z — number of oil variables
output: s ∈ Fnq such that P(s) = 0

and such that ‖s‖2 ∈ O(qo/n + q(n−o+m)/(n+1))

. find decomposition P = F ◦ S where F is quadratic but linear in
xn−o, . . . , xn−1, and where S ∈ GLn(Fq)

1: try: F , S ← UOVReconciliationAttack(P, o)

. get vinegar variables x0, . . . , xn−o−1

2: x[0:n−o−1]
$←− [−bq1/2c : bq1/2c]n−o

. get oil variables xn−o, . . . , xn−1

3: Find A ∈ Fm×oq and b ∈ Fmq such that Ax[(n−o):(n−1)] = b⇔ F(x) = 0

4: Find particular solution x(p) to Ax[(n−o):(n−1)] = b

5: Find kernel vectors x
(k)
0 , . . . ,x

(k)
o−m−1 of A

6: z(p) ←
(
S−1

)
[:,(n−o):(n−1)]

x(p)

7: for i ∈ [0 : (o−m− 1)] do:

8: z
(k)
i ←

(
S−1

)
[:,(n−o):(n−1)]

x
(k)
i

9: end
10: Compile matrix C from z(p) and z

(k)
i . according to Eqn. 14

11: U,B ← LLL(C)
12: Find s such that B[s,:] ends in q2

13: x[(n−o):(n−1)] ← x(p) +
∑o−m−1
i=0 U[s,1+i]x

(k)
i

. join vinegar and oil variables, and find inverse under S
14: s← S−1x
15: return s

Fig. 1. Algebraic-lattice hybrid attack.

the returned solution is not fixed beforehand but depends on the largest o for
which step 1 succeeds.

With this algebraic-lattice hybrid attack in mind, we formulate the last design
principle for SSNE instances. The rationale is that the targeted solution should
be significantly smaller (i.e., κ bits, spread over n variables) than what the
algebraic-lattice hybrid attack can produce.

Design Principle 6: Let o be the largest integer such that the system is
o-reconcilable. If o > m then guarantee that

κ

n
+ log2β ≤

n− o+m

n+ 1
log2q . (19)

14



4.5 Discussion

Equation 15 is an upper bound whereas we actually need a lower bound in order
to delineate a portion of the parameter space where the attack does not apply.
In practice, the short solutions found by the algebraic lattice hybrid attack are
indeed shorter than the heuristic upper bound of Eqn. 17. Nevertheless, the
solutions found by the attack have length very close to this bound, to the point
where it is a suitable estimate. Fig. 2 plots in full blue the minimum length
of solutions found by the algebraic lattice hybrid attack across one hundred
trials for various modulus sizes. This graph follows the dashed green line, which
represents the estimate or heuristic upper bound of Eqn. 17, quite closely. Both
are far apart from the recommendation of design principle 6, which is drawn
in full red. This graph represents many random SSNE instances with m = 2
and n = 9. The same behavior was observed across a wide range of parameter
choices.

0

50

100

150

200

250

0 50 100 150 200 250 300 350

lo
g
2

o
f
`2

n
o
rm

log2 q

min
(17)

DP 6

Fig. 2. Comparison of prediced length against experimental length of solutions ob-
tained by the algebraic-lattice hybrid attack.

It is worth stressing that the algebraic-lattice hybrid attack applies only
when o > m. When o = m it does not produce solutions that are shorter than
random vectors in Fnq , and when o < m there is no guarantee it will find even
one solution. Obviously, instead of requiring β to be significantly smaller than
the expected length of this attack’s solutions, the designer might also choose n
and m so as to render the algebraic-lattice hybrid attack inapplicable.

15



5 Hash Function

At this time we do not know how to use SSNE to generate short-message public
key functionalities. The next best option is to generate a hash function, which
is what this section is about.

The resulting design does not merely exemplify using the SSNE problem
constructively; it has concrete advantages over other hash functions as well.
For instance, not only is the SSNE hash function provable secure (in contrast
to all widely deployed hash functions), but it also relies on a different hard
problem, which is likely to be unaffected by potential future breakthroughs in
cryptanalysis of other hard problems. Also, our hash function has essentially
optimal output length in terms of security: for κ bits of security against collision
finders the output is 2κ bits long. This stands in contrast to many other provably
secure hash functions which either have larger outputs or else require purpose-
defeating post-processing functions to shrink them.

Additionally, because the hash function is built on top of SSNE instances, it
requires comparably few finite field multiplications to compute. This property
of having low multiplication complexity is interesting from the point of view of
multiparty computation, zero-knowledge proofs, and fully homomorphic encryp-
tion, where multiplication operations are typically so expensive as to compel
minimization at all costs. However, this argument ignores the cost of the bit
shuffling, which are nonlinear operations over the finite field.

We note that it is possible to generate digital signature schemes from just
hash functions [17,5], although the size and generation time of the signatures
scales poorly. Nevertheless, anyone wanting to implement this signature scheme’s
key generation or signature generation procedures in a distributed manner —
for instance, in order to require majority participation — must develop applied
multiparty computation protocols and must consequently look to minimize mul-
tiplication complexity. Therefore, the SSNE hash function might be a good can-
didate for instantiating hash-based digital signature schemes with if they must
enable distributed key and signature generation.

5.1 Description

We use the Merkle-Damg̊ard construction, which requires dividing the data
stream into a sequence of size b blocks. At every iteration, one data block is
consumed and it is compressed with the state in order to produce a new state.
The hash value is the output of the compression function after the last block has
been consumed. The concept is described visually in Fig. 3.

Before applying the sequence of compression functions, the data stream x ∈
{0, 1}∗ must first be expanded into a multiple of b bits. Let ` = |x| be the number
of bits before padding, and let x`y be its expansion and |`| the number of bits
in this expansion. The expansion function is given by

expand : {0, 1}` → {0, 1}d(`+|`|)/beb = x 7→ x‖0−`mod b‖0−|`|mod b‖x`y . (20)

16



f f f

block i− 1 block i block i+ 1

Fig. 3. Merkle-Damg̊ard construction for hash functions.

Let q be the largest prime smaller than 22κ, where κ is the targeted security
level. For the purpose of defining this hash function, the elements of Fq are
{0, . . . , q − 1}. The compression function itself decomposes into f = P ◦ r. The
purpose of r : {0, 1}b × Fq → F2

q is to permute the bits and output two integers

inside [0 : dq3/4e − 1], which are then interpreted as small elements of Fq. In
particular, on input (s, e) ∈ {0, 1}b×Fq, this reshuffling function takes the most
significant 1

4dlog2 qe bits of e, appends them to s, and reinterprets this bitstring
as an integer. Formally, r maps

r :

(
sb−1‖ · · · ‖s0,

dlog2 qe−1∑
i=0

2iei

)
7→

((
b−1∑
i=0

2isi

)
+

(
d 34 log2 qe−1∑

i=b

2iei+b/2

)
,
d 34 log2 qe−1∑

i=0

2iei

)
.

(21)
In particular, this implies that b = 1

2dlog2 qe.
The map P : F2

q → Fq is a single homogeneous cubic polynomial in two vari-

ables. There are
(
5
2

)
= 10 coefficients which are assigned indices lexicographically

from 0 to 9. Then the ith coefficient has a bit expansion equal to the first 2κ
bits in the expansion of πi+1, without the leading 1.

The description of the hash function is complete except for one remaining
item. The initial state element, i.e., the field element that is fed into the very
first compression function must still be specified. For this value we choose the
first 2κ bits of π−1, again without the leading 1. The formal description of the
algorithm is given in Fig. 4.

5.2 Security

The key property a hash function should possess is collision-resistance, which in-
formally states that it should be difficult to find two different inputs x, y ∈ {0, 1}
such that Hash(x) = Hash(y). Collision-resistance implies weaker properties
such as second preimage resistance and first preimage resistance (also known
as one-wayness). Therefore, it suffices to show that collisions are hard to find.
We demonstrate this fact by showing that any pair of colliding values implies
a collision for P, which should be difficult to find because that task requires
solving a hard SSNE instance.

First, consider that expand is injective. To see this, assume there are two
different strings x and y that have the same output under expand. Then |x| 6= |y|
because otherwise the appended tail is the same and then the difference must

17



algorithm Hash
input: x ∈ {0, 1}` — bitstring of any length
output: h ∈ {0, 1}2κ — hash value

1: h← b(π−1 − 1
4
)22κ+2c

2: x′ ← expand(x)
3: for i ∈ [0 : |x′|/b] do:
4: e1, e2 ← r(x′[ib:(ib+b−1)], h)
5: h← P(e1, e2)
6: end
7: return xhy

Fig. 4. Hash function relying on SSNE.

be present in their images under expand as well. However, the last b bits of the
images under expand uniquely determine the length of the original strings and
this quantity must be the same, which contradicts |x| 6= |y|. This argument
assumes the length of the inputs is less than 2b = 2κ, which is reasonable from
a practical point of view. Since expand is injective, it cannot be the source of a
collision.

Next, the permutation of bits r is a bijection. It cannot be the source of a
collision either.

Therefore, the only source of collisions contained in the description of the
hash function is P. Finding a collision means finding a pair of vectors a,b ∈ F2

q

whose elements have at most 6
4κ bits, such that P(a) = P(b). One can re-write

this equation in terms of the difference d from the mean c = (a + b)/2. The
equation then becomes

P(c + d)− P(c− d) = 0 . (22)

This expression is useful because its degree in c is one less, i.e., 2 instead of 3.
Therefore, by choosing a random value for d the attacker finds c by solving a
quadratic, instead of cubic, SSNE instance. (In fact, this argument was precisely
the motivation for a degree-3 polynomial map P to begin with; to kill an attack
strategy that involves only finding short solutions to linear equations.) The
parameters of the hash function were chosen to ensure that the SSNE instance
of Eqn. 22 (with randomly chosen d) satisfies all design principles.

6 Conclusion

This paper presents a new hard problem called SSNE, which is the logical merger
of the SIS and MQ problems. However, in contrast to both the SIS and MQ
problems, the hardness of an SSNE instance grows linearly with the size of the
modulus q. This linear scaling stands in stark contrast to the quadratic and cubic

18



scaling of the SIS and MQ problems; and therefore, if it is possible to generate
post-quantum public key cryptosystems from SSNE as it is from SIS and MQ,
then these cryptosystems are very likely to require dramatically less bandwidth
for having smaller public keys, ciphertexts, or signatures.

Indeed, the goal of the research that lead to the writing of this paper was to
generate public key cryptosystems with exactly those properties. Needless to say,
we have failed in that endeavor. Some of the design principles came about as a
result of a process of design and attack. At least from a superficial point of view,
this failure suggests that the design principles are incompatible with strategies
for generating public key cryptosystems. Nevertheless, we remain hopeful about
the possibility of finding strategies that are compatible with the design principles
and leave their discovery as an open problem.

Acknowledgments. The authors would like to thank Fré Vercauteren and
Wouter Castryck for useful discussions and references, as well as the anony-
mous reviewers for helpful comments. Alan Szepieniec is being supported by a
Ph.D. grant from the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen). This work was supported in
part by the Research Council KU Leuven: C16/15/058. In addition, this work
was supported by the European Commission through the Horizon 2020 research
and innovation programme under grant agreement No H2020-ICT-2014-644371
WITDOM and H2020-ICT-2014-645622 PQCRYPTO.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller [28], pp. 99–108, http://doi.acm.org/10.1145/237814.237838

2. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Cryptography 74(2), 325–354 (2015),
http://dx.doi.org/10.1007/s10623-013-9864-x

3. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Ph.D. thesis, Pierre and Marie Curie University,
Paris, France (2004), https://tel.archives-ouvertes.fr/tel-00449609

4. Bardet, M., Faugere, J.C., Salvy, B.: On the complexity of gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving. pp. 71–74 (2004)

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9056, pp. 368–397. Springer (2015), http://dx.doi.org/10.1007/

978-3-662-46800-5_15

6. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate sys-
tems over finite fields. J. Mathematical Cryptology 3(3), 177–197 (2009), http:
//dx.doi.org/10.1515/JMC.2009.009

19

http://doi.acm.org/10.1145/237814.237838
http://dx.doi.org/10.1007/s10623-013-9864-x
https://tel.archives-ouvertes.fr/tel-00449609
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1515/JMC.2009.009
http://dx.doi.org/10.1515/JMC.2009.009


7. Bettale, L., Faugère, J., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: van der Hoeven, J., van Hoeij,
M. (eds.) International Symposium on Symbolic and Algebraic Computation, IS-
SAC’12, Grenoble, France - July 22 - 25, 2012. pp. 67–74. ACM (2012), http:

//doi.acm.org/10.1145/2442829.2442843

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011 - 17th In-
ternational Conference on the Theory and Application of Cryptology and In-
formation Security, Seoul, South Korea, December 4-8, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 7073, pp. 1–20. Springer (2011), http:

//dx.doi.org/10.1007/978-3-642-25385-0_1

9. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer [25], pp. 178–189, https://doi.org/10.1007/
3-540-68339-9_16

10. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer
[25], pp. 155–165, https://doi.org/10.1007/3-540-68339-9_14

11. Coron, J.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications of Cryp-
tographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings. Lec-
ture Notes in Computer Science, vol. 3027, pp. 492–505. Springer (2004), https:
//doi.org/10.1007/978-3-540-24676-3_29

12. Coron, J.: Finding small roots of bivariate integer polynomial equations: A direct
approach. In: Menezes, A. (ed.) Advances in Cryptology - CRYPTO 2007, 27th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4622, pp. 379–
394. Springer (2007), https://doi.org/10.1007/978-3-540-74143-5_21

13. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
Advances in Cryptology - EUROCRYPT 2000, International Conference on the
Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-
18, 2000, Proceeding. Lecture Notes in Computer Science, vol. 1807, pp. 392–407.
Springer (2000), http://dx.doi.org/10.1007/3-540-45539-6_27

14. Ding, J., Yang, B.Y.: Multivariate public key cryptography. In: Post-quantum cryp-
tography, pp. 193–241. Springer (2009)

15. Ding, J., Yang, B., Chen, C.O., Chen, M., Cheng, C.: New differential-algebraic
attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) Applied Cryptography and Network Security,
6th International Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5037, pp. 242–257 (2008),
https://doi.org/10.1007/978-3-540-68914-0_15

16. Faugere, J.C.: A new efficient algorithm for computing gröbner bases (F 4). Journal
of pure and applied algebra 139(1), 61–88 (1999)

17. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller
[28], pp. 212–219, http://doi.acm.org/10.1145/237814.237866

19. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M. (ed.) Cryptography and Coding, 6th IMA International
Conference, Cirencester, UK, December 17-19, 1997, Proceedings. Lecture Notes

20

http://doi.acm.org/10.1145/2442829.2442843
http://doi.acm.org/10.1145/2442829.2442843
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-540-74143-5_21
http://dx.doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-540-68914-0_15
http://doi.acm.org/10.1145/237814.237866


in Computer Science, vol. 1355, pp. 131–142. Springer (1997), https://doi.org/
10.1007/BFb0024458

20. Jao, D., Feo, L.D.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B. (ed.) Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December
2, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7071, pp. 19–34.
Springer (2011), http://dx.doi.org/10.1007/978-3-642-25405-5_2

21. Jutla, C.S.: On finding small solutions of modular multivariate polynomial equa-
tions. In: Nyberg, K. (ed.) Advances in Cryptology - EUROCRYPT ’98, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques,
Espoo, Finland, May 31 - June 4, 1998, Proceeding. Lecture Notes in Com-
puter Science, vol. 1403, pp. 158–170. Springer (1998), https://doi.org/10.1007/
BFb0054124

22. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding. Lecture Notes in Computer Sci-
ence, vol. 1592, pp. 206–222. Springer (1999), http://dx.doi.org/10.1007/

3-540-48910-X_15
23. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational

coefficients. Mathematische Annalen 261(4), 515–534 (Dec 1982), https://doi.

org/10.1007/BF01457454
24. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational

coefficients. Mathematische Annalen 261(4), 515–534 (Dec 1982), https://doi.

org/10.1007/BF01457454
25. Maurer, U.M. (ed.): Advances in Cryptology - EUROCRYPT ’96, Interna-

tional Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, Lecture Notes in Computer Sci-
ence, vol. 1070. Springer (1996), https://doi.org/10.1007/3-540-68339-9

26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007), http://dx.doi.org/10.1137/
S0097539705447360

27. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009), https://doi.org/10.1007/
978-3-540-88702-7_5

28. Miller, G.L. (ed.): Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996.
ACM (1996)

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp.
84–93. ACM (2005), http://doi.acm.org/10.1145/1060590.1060603

30. Ritzenhofen, M.: On efficiently calculating small solutions of systems of polyno-
mial equations: lattice-based methods and applications to cryptography. Ph.D.
thesis, Ruhr University Bochum (2010), http://www-brs.ub.ruhr-uni-bochum.
de/netahtml/HSS/Diss/RitzenhofenMaike/

31. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society
(1994), http://dx.doi.org/10.1109/SFCS.1994.365700

21

https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/BFb0054124
https://doi.org/10.1007/BFb0054124
http://dx.doi.org/10.1007/3-540-48910-X_15
http://dx.doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/3-540-68339-9
http://dx.doi.org/10.1137/S0097539705447360
http://dx.doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
http://doi.acm.org/10.1145/1060590.1060603
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RitzenhofenMaike/
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RitzenhofenMaike/
http://dx.doi.org/10.1109/SFCS.1994.365700

	Short Solutions to Nonlinear Systems of Equations

