9,804 research outputs found

    Unified Dynamics and Control of a Robot Manipulator Mounted on a VTOL Aircraft Platform

    Get PDF
    An innovative type of mobile manipulator, designated Manipulator on VTOL (Vertical Take-Off and Landing) Aircraft (MOVA), is proposed as a potential candidate for autonomous execution of field work in less-structured indoor and outdoor environments. Practical use of the MOVA system requires a unified controller that addresses the coupled and complex dynamics of the composite system; especially the interaction of the robotic manipulator with the aircraft airframe. Model-based controller design methods require explicit dynamics models of the MOVA system. Preliminary investigation of a two-dimensional MOVA system toward a dynamics model and controller design is presented in preparation for developing the controller of the more complex MOVA system in 3D space. Dynamics of the planar MOVA system are derived using the Lagrangian approach and then transforming the result into a form that facilitates controller design using the concept of a virtual manipulator. A MOVA end-effector trajectory tracking controller was designed with the transformed dynamics equation using the integrator back-stepping control design framework. Validity of the controller is shown via stability analysis, simulation results, and results from a physical test-bed. A systematic approach is illustrated for the derivation of the 3D MOVA system dynamics equations. The resulting dynamics equations are represented abstractly in the standard robot dynamics form and proven to have the skew-symmetric property, which is a useful property for control derivation. An open source Mathematica program was developed to achieve automatic symbolic derivation of the MOVA system dynamics. Accessory tools were also designed to create a tool-chain that starts with an Autodesk Inventor CAD drawing, generates input to the Mathematica program, and then formats the output for direct use in MATLAB and Simulink. A unified nonlinear control algorithm that controls the 3D MOVA system, including both the aircraft and the onboard manipulator, as a single entity was developed to achieve trajectory tracking of the MOVA end-effector position and attitude based on the explicit dynamics equation. Globally Uniformly Ultimately Bounded (GUUB) stability is proven for the controller using Lyapunov-type stability analysis. Physical testing was constructed in order to to demonstrate the performance of the proposed controller on a MOVA system with a two-link onboard manipulator

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    Analysis of a closed-kinematic chain robot manipulator

    Get PDF
    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links

    A Nonlinear Model Predictive Control Scheme for Cooperative Manipulation with Singularity and Collision Avoidance

    Full text link
    This paper addresses the problem of cooperative transportation of an object rigidly grasped by NN robotic agents. In particular, we propose a Nonlinear Model Predictive Control (NMPC) scheme that guarantees the navigation of the object to a desired pose in a bounded workspace with obstacles, while complying with certain input saturations of the agents. Moreover, the proposed methodology ensures that the agents do not collide with each other or with the workspace obstacles as well as that they do not pass through singular configurations. The feasibility and convergence analysis of the NMPC are explicitly provided. Finally, simulation results illustrate the validity and efficiency of the proposed method.Comment: Simulation results with 3 agents adde

    Control/structure interaction during Space Station Freedom-Orbiter berthing

    Get PDF
    The berthing maneuver is essential for the construction and assembly of Space Station Freedom (SSF) and has a direct effect on the SSF assembly build up and SSF/Orbiter operations. The effects of flexible body dynamics coupled with the available control system may impose new requirements on the maneuver. The problem is further complicated by the effect of the SSF control system on the Shuttle Remote Manipulator System (SRMS). These effects will play a major role in the development of operational requirements which need to be identified and validated in order to assure total safety and maneuver execution during SSF construction. This paper presents the results of ongoing studies to investigate the Control/Structure Interaction (CSI) during the berthing operations. The problem is formulated in terms of multi-flex body equations of motion for SSF and the SRMS and on-orbit flight control systems for the SRMS and the SSF, which includes the Control Moment Gyro (CMG) and Reaction Control System (RCS) Attitude Control Systems (ACS). The SSF control system designs are based on the Preliminary Design Review (PDR) version of the Honeywell design. The simulation tool used for the analysis is briefly described and the CSI results are presented for given berthing scenarios

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms
    • …
    corecore