
Clemson University
TigerPrints

All Dissertations Dissertations

8-2014

Unified Dynamics and Control of a Robot
Manipulator Mounted on a VTOL Aircraft
Platform
Peng Xu
Clemson University, pxu@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Xu, Peng, "Unified Dynamics and Control of a Robot Manipulator Mounted on a VTOL Aircraft Platform" (2014). All Dissertations.
1321.
https://tigerprints.clemson.edu/all_dissertations/1321

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1321?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Unified Dynamics and Control of a Robot
Manipulator Mounted on a VTOL Aircraft

Platform

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Peng Xu

August 2014

Accepted by:

Dr. Timothy C. Burg, Committee Chair

Dr. Richard E. Groff, Co-Chair

Dr. Ian D. Walker

Dr. John R. Wagner



Abstract

An innovative type of mobile manipulator, designated Manipulator on VTOL

(Vertical Take-Off and Landing) Aircraft (MOVA), is proposed as a potential can-

didate for autonomous execution of field work in less-structured indoor and outdoor

environments. Practical use of the MOVA system requires a unified controller that

addresses the coupled and complex dynamics of the composite system; especially

the interaction of the robotic manipulator with the aircraft airframe. Model-based

controller design methods require explicit dynamics models of the MOVA system.

Preliminary investigation of a two-dimensional MOVA system toward a dy-

namics model and controller design is presented in preparation for developing the

controller of the more complex MOVA system in 3D space. Dynamics of the pla-

nar MOVA system are derived using the Lagrangian approach and then transforming

the result into a form that facilitates controller design using the concept of a virtual

manipulator. A MOVA end-effector trajectory tracking controller was designed with

the transformed dynamics equation using the integrator back-stepping control de-

sign framework. Validity of the controller is shown via stability analysis, simulation

results, and results from a physical test-bed.

A systematic approach is illustrated for the derivation of the 3D MOVA system

dynamics equations. The resulting dynamics equations are represented abstractly in

the standard robot dynamics form and proven to have the skew-symmetric property,
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which is a useful property for control derivation. An open source Mathematica pro-

gram was developed to achieve automatic symbolic derivation of the MOVA system

dynamics. Accessory tools were also designed to create a tool-chain that starts with

an Autodesk Inventor CAD drawing, generates input to the Mathematica program,

and then formats the output for direct use in MATLAB and Simulink. A unified

nonlinear control algorithm that controls the 3D MOVA system, including both the

aircraft and the onboard manipulator, as a single entity was developed to achieve

trajectory tracking of the MOVA end-effector position and attitude based on the ex-

plicit dynamics equation. Globally Uniformly Ultimately Bounded (GUUB) stability

is proven for the controller using Lyapunov-type stability analysis. Physical testing

was constructed in order to to demonstrate the performance of the proposed controller

on a MOVA system with a two-link onboard manipulator.
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Chapter 1

Introduction

An innovative type of aerial vehicle system, designated Manipulator on VTOL

(Vertical Take-Off and Landing) Aircraft (MOVA), is proposed as a potential can-

didate for autonomous execution of field work in less-structured indoor and outdoor

environments. To maximize load capacity of the MOVA system, a unified and mini-

mized design is sketched. Model-based approach is adopted for design of a controller

for the complex and coupled system dynamics, which requires that a dynamics model

of the MOVA system be derived. A brief reading guide is provided at the end of this

chapter.

1.1 Motivation

Data from U.S. Bureau of Labor Statistics between 1992 and 2010 (plotted in

Fig. 1.1) [1] suggests more than six hundred fatal work-related injuries occur every

year due to falling, which ranks as the third most frequent cause of fatal work injury.

Tasks related to maintenance, construction, and inspection, for example, changing

lights or components on a tower, expose a worker to height hazards. The field of
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Figure 1.1: Number of work-related fatal injury events caused by falling. Plotted
from data published by U.S. Bureau of Labor Statistics[1].

robotics has grown to replace humans in such dangerous environments. For example,

small VTOL aircraft were recently exploited for inspection after the accident at the

Fukushima Nuclear Power Plant in Japan caused by the earthquake and the induced

tsunami.

Advances in robot manipulators, sometimes called robot arms, have propelled

manufacturing forward in gigantic steps since the introduction of the first industrial

models in the 1950s. Equipped with superior accuracy, reliability, and endurance,

compared to a person, they have been widely deployed in factory assembly lines and

other industrial settings to perform repetitive, precision, or dangerous tasks. Tech-

nology improvements in software and hardware have spawned new applications in

scenarios that have similar requests for automation, precision and reliability, such as

autonomous package handling in warehouses and surgical procedures in hospital oper-
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ating rooms. However, traditional fixed-base installations impose a severe workspace

limitation proportional to the size of the manipulator. In addition, most manipu-

lators are designed to work in highly structured environments and demand setup

and calibration procedures when deployed into new locations. Thus, conventional

robot manipulators have small utility in field work scenarios, in which covering large

workspaces and the ability to adapt to environmental changes are generally required.

Mobile robots are built and programmed to move about the environment and

have theoretically infinite workspace. Mobile manipulators, a fusion of a robot ma-

nipulator and a mobile robot platform, suggest the promise of moving the accuracy

and reliability into the field by extending the limited workspace of the manipulator.

Selection of the mobile robot platform and the manipulator is largely application

specific.

VTOL aircraft platforms have merits over the ground-based ones, because as

an aerial robot, it is able to travel in three-dimensional space which extends the

workspace above ground-based mobile robots to arbitrary height levels. Use of an

aerial vehicle minimizes terrain related issues and can approach a target location

from the shortest path, which is a big advantage in terms of viability and agility.

There appears to be a specific opportunity to combine a VTOL platform with

a manipulator base, this system will be referred as manipulator on VTOL aircraft

(MOVA). The unique features of the VTOL would enable the hybrid MOVA system to

address off-the-ground scenarios. Besides the ability of performing tasks of a ground

vehicle based mobile manipulator, the MOVA is especially adaptable to tasks that

take place where no negotiable terrain path leads to the work site. Examples include

the top of a water tower, half-way up a cliff, in a locked building with open windows,

and inside of a cave with rough ground. Thus, the MOVA system would be able to

carry out many tasks that are not feasible otherwise. For instance, a MOVA system

3



could be adopted to replace staff who work on power transmission line towers, radio

signal towers, roof-top of buildings, scaffolds or other aloft positions. A MOVA system

could potentially physically interact with the environment and assist the recovery of

plant function. The MOVA could also serve in exploration or object manipulation

tasks in less human-friendly environments, such as bomb searching and defusing (see

Fig 1.2).

1.2 System Description

The proposed MOVA system is a new type of mobile manipulator and there

are few existing implementations or guidelines for how the system should be struc-

tured. Similar applications include a manipulator on an underwater vehicle and a

manipulator on a satellite. The underwater system is significantly different from the

MOVA in the amount of damping from the water and the potential for neutral buoy-

ancy of the system. The space systems usually have over-actuated satellite bases

and manipulators with at least six degrees-of-freedom and are deployed in a gravity

free environment. The main concern is to avoid application of attitude correction

mechanism on satellite by careful path planning that reduces the effects of dynamic

reaction of the satellite manipulator. In this section, a unified, minimized form of the

MOVA system is sketched in order to ensure the highest load capacity of the mobile

manipulator. Then the control problem of such MOVA system naturally arises as the

resulting MOVA system has a complex dynamics structure and is not suitable to be

controlled by independent arm and platform controllers. The resulting MOVA dy-

namics are complex due to the interaction between the manipulator and the moving

aircraft base, that is, the force resulting from motion of the manipulator arm are large

relative to the inertia of the VTOL platform. The complex dynamics interaction will

4
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Figure 1.2: Illustration of several potential applications of the MOVA system. A)
MOVA changing light bulb on a road lamp; B) MOVA installing new antenna onto the
mobile signal tower; C) MOVA defusing a bomb located on top of a vending machine
in a subway station, an inaccessible location for ground-based mobile manipulators;
D) MOVA flying into a factory through a window and shutting down a malfunctioning
machine.
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Figure 1.3: Body-fixed thrust force and torques abstraction of varies types of VTOL
aircraft.

likely prohibit MOVA from being directly controlled by operator, but will also pose

an interesting control problem with unique characteristics. In order to generalize the

discussion, various types of VTOL aircraft are abstracted by one free-floating body

with a body-fixed thrust vector and torques direction of three orthogonal axis as

shown in Fig. 1.3.

The load capacity of the MOVA system, the ability of the MOVA system to

manipulate objects by its end-effector, is determined primarily by payload capacity of

VTOL aircraft and the design of onboard manipulator. In order to maximize load ca-

pacity of MOVA system specification, two major qualitative criterion are considered:

the ratio between maximum VTOL aircraft and MOVA system self-weight should be

high to allow for heavier payload and necessary maneuver room of VTOL aircraft;

6



and the onboard manipulator ought to be designed so that with certain motor ratings

the end-effector is able to have maximum force or torque for payload manipulation.

Increase of lift and weight ratio can be achieve by adopting more efficient

means of lift force generation and more importantly reducing the total system mass.

Higher lift force quite often leads to more weight for the power system, which includes

the fuel (or battery), engine (or motor) and transmission and represent trade-offs that

must be balanced in any design. On the other hand, the efficiency of the thruster is

limited by available technology and is not easily improved in the design of a specific

aircraft. The most feasible path to improve lift to weight ratio is to reduce weight

of components. Minimizing system total weight can be done by applying lighter

materials for construction, designing better structure and mechanism.

One important method for reducing total system weight, that also helps meet

the payload capability requirements of the manipulator, is to reduce the number of

joints of the onboard manipulator and “borrow” the lost degrees-of-freedom from the

VTOL aircraft that carries the manipulator. Less joints will lead to fewer motors and

transmission parts for the manipulator, a nontrivial reduction in weight for the whole

system. Moreover, since a joint closer to the base also has to provide force or torque

that drives the joints downstream to the end-effector, a smaller number of joints is

more efficient in the sense that available torque and force are better transferred to

the payload at the end-effector.

To minimize the weight, construction of a minimized MOVA system designed

is proposed. The attached manipulator will have the minimum necessary number

of joints without losing ability for the MOVA end-effector to move to any point in

three-dimensional space at any orientation, i.e., still provide 6DOF movement of

the end-effector. At the extreme, is a manipulator with no joints at all, i.e. the

end-effector is directly attached to VTOL aircraft, where the work of placing end-

7



VTOL with 4 controlled DOF 

2 DOF onboard  

manipulator 

6 DOF manipulator with  

unlimited workspace 

Figure 1.4: MOVA system with a VTOL and two DOF onboard manipulator is
equivalent to 6 DOF manipulator with unlimited workspace.

effector falls entirely to the VTOL aircraft. However, this is not achievable due to

the capabilities of the VTOL aircraft. Though the VTOL aircraft is a free-body in

three-dimensional space with six degree-of-freedom, two of these, the pitch and roll

angles, cannot be independently controlled. Only three translational DOF and yaw

movement can be independently controlled for the aircraft types shown in Fig. 1.3.

The pitch and roll of the VTOL aircraft are dedicated to translation movement of the

aircraft via reorientation of the body-fixed thrust vector. Consequently, the aircraft

body is only able to provide four controlled degree-of-freedom to the end-effector of

manipulator. In other words, two additional DOFs are expected for the end-effector

to track an arbitrary position and orientation trajectory in three-dimensional space.

This fact dictates that the minimum number of DOFs for the attached manipulator to,

required for the MOVA to perform the trajectory tracking objective, is two revolute

joints. This concept of the MOVA as a 6DOF manipulator with unlimited workspace

is depicted in Fig. 1.4.
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For practical purposes, the MOVA system has to be automatically controlled,

or at least assisted, since complexity of the coupled multi-DOF dynamics of the MOVA

will prohibit it from being effectively controlled directly by human operators. A fully

autonomous MOVA is desirable for increased cost and efficiency. Motion control of

MOVA focuses on establishing end-effector position and orientation, a common yet

important precursor to establishing higher levels of task automation, which will be

specific to individual applications.

A separate control strategy is adopted in many existing mobile manipulators

applications, especially those built on ground or under-water vehicles. This approach

is equivalent to controlling onboard manipulator as a fixed-base robot while the base

is moving and simultaneously controlling the carrying vehicle. The dynamical dis-

turbance from the onboard manipulator unmodeled, which is only justified if the

carrying vehicle has significant more mass than the manipulator or is kinematically

constrained to an object that has such property so that the disturbance from manip-

ulator is negligible for the carrying vehicle. Rather than a strategy of controlling the

mobile platform and manipulator separately and regarding movement of each others

as disturbances on the other, an integrated controller that coordinates control of the

VTOL aircraft and the manipulator is necessary.

In sum, the MOVA system proposed, which joins advantages from VTOL

aircraft and robot manipulators, will be suitable for many field tasks that have not

been achieved with help of robots. These tasks poses fatal hazards to human workers

and cannot be established using current robotics technology. A sketched design of the

MOVA is made which contains onboard manipulator with minimal number of links yet

is still able to achieve end-effector trajectory tracking. Application of MOVA system

requires unified model-based controller due to coupled and complex dynamics. Model-

based controller design methods also requests the dynamics model of the MOVA

9



system to be investigated.

1.3 Previous Work

The need for a MOVA system is compelling and the opportunity is promising.

Study of the dynamics and control strategy for robot manipulator or similar mecha-

nisms mounted on VTOL aircraft became an emerging field after years of extensive

research on unmanned aerial vehicle (UAV) systems [2, 3, 4, 5]. Some recent liter-

ature shows the possibility of such systems while also illustrating the importance of

appropriate handling of dynamics interaction between the onboard manipulator and

the aircraft, and variation of system inertia with change of manipulator configuration.

Lee et al. has introduced the concept of cooridinated control for a UAVARM system

and provided theoratical work on controller design [6]. Korpela and this colleagues

performed experiments of a system composed of a quadrotor and two 4DOF onboard

manipulators to achieve “grab and drop” of object [7]. Preliminary dynamics analysis

and results from a PI controller with additional velocity inner-loop and feedforward

terms are presented. Later, the same group experimented with a larger scale model

helicopter and a 7DOF redundant manipulator using a similar control scheme [8]. Re-

sults from both experiments suggests a model-based controller developed with more

accurate dynamics model of the system will improve the control performance. Thomas

et al. proposed a specialized biomimetic system composed of quadrotor and a one-link

robot manipulator with active claw-like gripper to perform object retrieval task when

the entire system is in continuous flight [9]. Researchers Mellinger et al. and Pounds

et al. separately investigated control problem of a system composed of a VTOL air-

craft and a directly-attached gripper in an object pick-and-place task scenario [10, 11].

Both of them focused on resolving the issue related to varying system inertia in run-
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time, with Mellinger proposed an online estimation system and Pounds worked on

theoretical analysis of system stability bounds under disturbance of payload. Sim-

plified dynamics models are used in all the above mentioned research. Either planar

system dynamics model of a 3D system are adopted or dynamics interaction between

manipulator and the carrier VTOL aircraft is only partially considered. Conceded

that it is justifiable to use a simplified model for controller development and consider

the unmodeled dynamics as disturbances to the system, using more accurate models

will likely to improve system performance. A full-blown 3D dynamics model of the

MOVA system is necessary in construction simulation as well.

On the dynamics modeling side, the MOVA system can be categorized as

a multi-body system, the dynamics of which have been extensively studied in the

past. Some specific multi-body systems, such as satellite-based manipulators, and

underwater vehicle-based manipulators, have strong similarities to the MOVA system

and share similar structures, and thus provide an initial point of reference.

The Euler-Lagrangian approach based on Hamilton’s principle is a well-known

general approach for deriving multi-body system dynamics [12, 13]. Given a set of

independent general coordinates describing system configuration and the Lagrangian

expression, which for a mechanical system is the difference between kinetic energy

and potential energy, the dynamics of each coordinate variable can be systematically

evaluated. The benefit of the Euler-Lagrangian approach over the Newtonian method

is that interactions among bodies are intrinsically handled and do not need special

attention. The difficulty in directly applying the Euler-Lagrangian resides in finding

a description of the kinetic and potential energy by a set of suitable coordinates and

handling the larger number of terms this approach yields.

The MOVA system is postulated as a serial manipulator connected to a VTOL

aircraft. For serial fixed-based robotic manipulators, kinematics is often abstracted
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by a set of Denavit-Hartenberg (D-H) parameters for concise representation. These

parameters can be substituted into a set of general form equations from which the

kinematics and differential kinematics of the manipulator can be derived. The kine-

matics and differential kinematics are then used for systematic derivation of the ma-

nipulator dynamics equation [14]. It is well known that the dynamics of a system

composed of multiple bodies cannot be formed by trivially stacking together dynamics

of single components. Interaction between constraint bodies can create new terms in

the dynamics equation that do not exist in dynamics of individual bodies. Thus, the

dynamics of MOVA cannot be found by simply combining the individual dynamics of

onboard manipulator and the VTOL aircraft, which is usually modeled as rigid-body

with six degree-of-freedom.

Researchers of other mobile manipulator systems have faced the same chal-

lenge and provided hints for a solution. Space-based manipulator communities were

the first to investigate mobile manipulator dynamics by augmenting the general dy-

namics derivation with a framework that helps with description of the Lagrangian

energy equation and yields clearer result in a more compact format via hierarchical

representation [15]. One core idea of this framework is representation of the transla-

tional displacement of any points in the multi-body system with a virtual kinematic

chain starting from an imaginary point called the virtual ground, which is the center

of mass of the entire system. The kinematic chain is systematically derived with the

barycenter representation. In contrast to forming the kinematics representation from

a significant point on the mobile platform, such as the VTOL center of gravity, this

approach yields simpler dynamic equations. In this methodology, the translational

dynamics of the center of mass and the rotational dynamics of a body-frame affixed

to the center of mass is decoupled from rest of the system naturally since internal

forces and torques among bodies do not have an effect on the center of mass. It is
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desirable to have dynamics equations in a less coupled form to facilitate controller de-

velopment. Moreover, a special kinematic chain which starts from the virtual ground

and ends at the end-effector of the manipulator is called the virtual manipulator [16].

The virtual manipulator includes one more spherical joint than the actual onboard

manipulator. The spherical joints represents rotation of the mobile vehicle on which

the manipulator is attached. With the spherical joint rotate according to the mobile

vehicle attitude and the other joints having the same joint parameters as the actual

manipulator, the virtual manipulator has the same end-effector position and orien-

tation as the actual manipulator. Aided by the systematic approach and compact

representation, computer program was developed based on this framework to aid in

the derivation of system dynamics equations for space manipulators in analytical form

[17].

Researchers of Unmanned Under-water Vehicle (UUV) based manipulator have

been utilizing the similar approach for dynamics modeling, yet concerns more about

the dynamics involving interaction with the surrounding liquid [18, 19, 20]. The

relatively high density of water inevitably induces hydrodynamics terms that cannot

be ignored.

Besides deriving dynamics model analytically, numerical method also exist

for system simulation purposes. Given physical parameters of individual parts of

multi-body system and set of constraints, evolution of the dynamical system can be

calculated [21]. This numerical method does not output closed form dynamics model,

which will be needed for dynamics property analysis and controller design, though it

offers ability to simulate complex multi-body system as long as computational power

permits. The result of simulation may be also utilized for validation of analytically

derived model when direct observation of system is not yet available.

Similarity in system structure and method for dynamics modeling may suggest
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that controller design of the MOVA system can be found in literature on space and

underwater mobile manipulators. However, this has been found not true after survey

of the research documents. The control objective for MOVA is quite different from

that of manipulators deployed on satellites and space stations. Much of the space

manipulator control research are focuses on minimizing use of the attitude control

fuels, as they are precious and the major limiting factor of satellite system life-span.

Enhanced Disturbance Map (EDM) was developed by Dubowsky and Torres to en-

able a heuristic path planning approach for minimization of dynamic disturbance of

manipulator on the attached space vehicle [22]. Zero Reaction Maneuver (ZRM) was

proposed in order to generate trajectories for the space manipulator that has zero re-

action on the carrying vehicle [23]. However, this technique turns out to have limited

application because ZRM trajectory for 6 DOF manipulator only exists in special

cases. Besides generating an optimal trajectory to minimize the reaction from the

onboard manipulator on the space vehicle, a dynamic balance control strategy was

presented by Huang et al. which utilizes additional manipulator to counter-react the

dynamic disturbance. One onboard manipulator is used as the working manipulator

at a time while the other move accordingly to generates exact opposite disturbance

to the space vehicle. Attitude control fuel can be saved since the manipulator is

powered by electricity which can be regenerated via solar panel on the satellite. A

summary of planning and controlling of of free-flying and free-floating space robotic

system was presented with examples in [24]. Literature about control of underwater

vehicle based manipulator mainly employ separated control strategy for the vehicle

and manipulator. Topics of control for such system was initially investigated in [18],

in which feedback linearized controller were designed for vehicle and manipulator

separately. In publication of Wilson et.al., effects of coupling dynamics was quantita-

tively evaluated along with the proposed separate controller. Neglecting of coupling
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dynamics in underwater manipulator control research may be due to the fact that the

mass of underwater vehicle and the associated hydrodynamical added mass causes

dominance of the underwater vehicle dynamics over that of the onboard manipulator.

That is, the dynamic disturbance of manipulator on the underwater vehicle is small

comparatively and thus can be ignored.

Although research of other mobile manipulator do not help control derivation

of the MOVA, inspiration for control formulation of the MOVA system can be found

in VTOL aircraft control research. Literature about VTOL aircraft control serves

as an important resource because the MOVA system contains components of nonlin-

ear, under-actuated, non-minimum-phase dynamics that originate from the VTOL

aircraft. Many attempts have been made for VTOL aircraft control using different

types of controllers. Erginer and colleagues published proportional-derivative con-

troller applied to quadrotor VTOL [25]. Bouabdallah et al. showed simulation and

experimental results of their OS4 quadrotor for performance comparison of traditional

proportional-integral-derivative (PID) controller and the linear quadratic regulator

(LQR) in [26]). A nonlinear tracking controller for VTOL aircraft is proposed in [27]

by Setlur et al. and proved to have globally uniformly ultimately bounded (GUUB)

tracking error with continuous trajectory input. In [28], Saeki et al. displayed a

two-step linearization method for VTOL aircraft control, which is based on a linear

high gain approximation of a back-stepping controller. Bouabdallah et al. also pre-

sented results for quadrotor control with back-stepping and sliding-mode controller

[29] and showed that back-stepping controller yields a more smooth control input than

that from the sliding-mode controller. Extensions of back-stepping techniques were

demonstrated in literature to address concerns about application specifics. An adap-

tive approach is mixed with back-stepping control algorithm to compensate in the

control design for model parameter uncertainty [5, 4]. Visual servo controllers were
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developed in [30, 31] to relieve the requirement of velocity measurement in application

that only has VTOL position measurement via vision-based sensors.

Moreover, on the topics of 3D attitude control, quaternion based derivation

is frequently used to avoid singularity issues inherited in representation that uses

sequential rotation angles, such as Eular angle. Work of Joshi et al. presented

a quaternion based robust controller that achieves three-axis attitude stabilization

of a rigid spacecraft [32]. This controller is suitable for large-angle maneuver of

satellite for its singularity free derivation and proved with global asymptotic stabil-

ity (GAS). Fragopoulos and Innocenti investigated the stability issues of quaternion

based attitude controller in [33], in which they adopted a discontinuous Lyapunov

function to obtain desired GAS stability for inherited discontinuous control law of

three-dimensional attitude control. Kristiansen et al. also demonstrated an attitude

controller using quaternion derivation for micro-satellite application in [34, 35]. It

employed a back-stepping style derivation and obtained a controller in the similar

form as [32] and achieved asymptotic stability.

1.4 Organization

The goal of this work is to implement trajectory tracking controller for the

MOVA system end-effector as the infrastructure for future application level research.

Out endeavor starts from a planar case study presented in Chapter 2 in preparation

for the more complicated three dimensional case. In this preliminary investigation,

dynamics equation of a MOVA system in two-dimensional space is derived and a

controller is designed to enable trajectory tracking of the end-effector of the pla-

nar MOVA system. The results from dynamics derivation and controller design are

tested to ensure the worthiness of extending the work into full three dimensional
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MOVA system. Then, in Chapter 3 a systematic approach for dynamics derivation of

the 3D MOVA system is described. This approach is also implemented into computer

programs in order to alleviate the overwhelming complexity of deriving multi-body

high-DOF dynamics equation of MOVA system by hand. Auxiliary tools are also

developed to connect dynamics derivation steps to upstream and downstream of a

system design process. The 3D MOVA end-effector trajectory controller is developed

on the base of the analytically derived dynamics equation in Chapter 4. In additional

simulation result, a physical test-bed is constructed with major help from Ran Huang

based on the planar MOVA model to evaluate the controller in real world. Construc-

tion of the test-bed is briefly described and the result is shown at the end of Chapter

2 to demonstrate the effective of the controller and the advantage over the strategy of

controlling VTOL aircraft and the onboard manipulator separately. In the end, the

content of this work and the importance of this work for future study is summarized

in Chapter 5 as a conclusion.
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Chapter 2

Dynamics and Control of Planar

MOVA System

2.1 Introduction

Preliminary investigation about a planar MOVA, which consists of a two di-

mensional VTOL aircraft and a single link manipulator, is performed in preparation

for the three dimensional case.

2.1.1 Previous Work

The Euler-Lagrangian approach based on Hamilton’s principle is a well-known

general method for deriving multi-body system dynamics [12, 13]. However, depend-

ing on the choice of the general coordinates, the resulting equations appear in various

forms for the same system, some of which may not be suitable for controller deriva-

tion due to the complex coupling terms. In [16], an alternative way of representing

kinematics of a manipulator mounted on a mobile structure (satellite in their case)

was presented and was named a virtual manipulator. The kinematic chain of a vir-
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tual manipulator starts from the virtual ground, which is the center of mass of the

entire system, ends at the end-effector of the manipulator via a series of virtual

manipulator links, and preserves the joint angle between consecutive links. The dy-

namics of the virtual ground is not susceptible to internal force and torque between

manipulator joints and thus is beneficial to later controller design. Extending this

idea, a framework based on the hierarchical helps with description of the Lagrangian

energy equation and yields a clearer and more compact result [15]. Researchers of Un-

manned Under-water Vehicle (UUV) based manipulators have been utilizing a similar

approach for dynamics modeling [18, 19, 20]. In that work, the major concern is the

dynamic interaction with the surrounding liquid.

Inspiration for control formulation for the MOVA system can be found in

VTOL aircraft control research. Bouabdallah et al. presented results for quadrotor

control with back-stepping and sliding-mode controllers [29] and showed that back-

stepping controller yields a more smooth control input than that from the sliding-

mode controller. Extensions of back-stepping techniques were demonstrated in liter-

ature to address concerns about application specifics. An adaptive approach is mixed

with back-stepping control algorithm to compensate in the control design for model

parameter uncertainty [5, 4]. Visual servo controllers were developed in [30, 31] to

relieve the requirement of velocity measurement in application that only has VTOL

position measurement via vision-based sensors.

2.1.2 Contribution

A simplified planar case MOVA system and the necessary steps for designing

an autonomous controller to realize trajectory tracking control of the end-effector are

presented in this chapter. Discussion of the modeling and control of MOVA system
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is based on a simple and general MOVA design in 2D space. The VTOL aircraft

is abstracted by a rigid body with a body-fixed vector thrust input and a torque

input. The onboard manipulator has one revolute joint to provide the ability of

placing the end-effector in arbitrary pose while the under-actuated VTOL aircraft is

flying. Dynamics and control of a planar MOVA system is studied as a precursor of

the investigation of the general three dimensional system. Dynamics model of the

planar MOVA is derived and then transformed into a form suitable for controller

design. Resulting equation of motion is validated against commercial numerical rigid

dynamics simulation package. Controller of the planar system is designed based on

the dynamics using back-stepping method. Stability of the proposed controller is

studied using Lyapunovs stability analysis. Numerical simulation and a physical test-

bed are constructed in order to evaluate the performance of the controller and both

yield satisfying results. Although the outcome of the planar case study do not offer

much value in implementation of a real MOVA system capable of navigation in the

three dimensional physical world, it serves as a guidance for the later research of

the 3D system. Moreover, the study of the planar case is considerably more concise

than the full three-dimensional version and is thus recommended for reading as an

overview of the entire dissertation.

2.1.3 Organization

In Sec. 2.2, a layout of the planar system is presented and kinematics, as

well as the steps for constructing the alternative virtual manipulator kinematics, are

presented. In Sec. 2.3, the dynamics model of planar MOVA is derived using the La-

grangian approach and then rewritten into a form suitable for an integrated controller

design using the kinematics equations from virtual manipulator method. Simulation
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of the derived dynamics equation is compared with commercial numerical dynamics

simulation software package developed by third-party with same input for validation

purpose. Back-stepping end-effector trajectory tracking controller is developed with

inspiration from VTOL aircraft control in Sec. 2.3. The proposed controller is then

proved to be GUUB using Lyapunov’s direct method. Simulation of the back-stepping

trajectory tracking controller is displayed with satisfying result to show the effective-

ness of the proposed controller and to promote future work on the three-dimension

work and hardware-in-the-loop test-bed construction.

2.2 Kinematics of the Planar MOVA

This section describes a planar MOVA system structure and a derivation of

the kinematic model using a virtual manipulator formation. The kinematic equations

then form the basis for the equations of motion derived in Sec. 2.3.

2.2.1 System Structure

Design of a planar MOVA system begins with a two-dimensional (2D) VTOL

aircraft. The VTOL aircraft is abstracted as a rigid body with one body-fixed force

actuator and one torque actuator (see Fig. 2.1). The force actuator, shown as

F in Fig. 2.1, is placed parallel to the “up” direction of the aircraft to simulate

the vertical thrust generated by the VTOL aircraft. The torque, τ0, represents the

attitude maneuvering capability of the VTOL and acts in the counter-clockwise in

direction relative to the perpendicular to the x-z plane at the center of mass. Note that

although the aircraft body has three degrees-of-freedom alone, the rotation is used

for steering of the body-fixed thrust vector in order to achieve translation movement

of the VTOL aircraft in the plane. Thus, only two independent degrees-of-freedom
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Figure 2.1: Coordinate system definition for the planar MOVA system. I indicates
the earth fixed coordinate frame and B represents body-fixed coordinate frame.

are considered as controllable on the aircraft, which corresponds to the number of

actuators on the aircraft body.

The design of the planar MOVA system proceeds by identifying the minimum

number of degrees of freedom needed in the manipulator. The combined VTOL air-

craft and the manipulator arm will move in the same x-z plane as the task object

and hence requires that the 2DOF VTOL base be augmented by a manipulator with

one degree-of-freedom thus producing three degrees-of-freedom of manipulation in

task space, two from translation and one from rotation. That is, to achieve trajec-

tory control of the planar MOVA end-effector, a three degree-of-freedom objective,

one independent actuator must be added through the manipulator sub-system. The

onboard manipulator is designed in the most weight frugal fashion without compro-
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Table 2.1: Notation description
Symbol Description
m0 mass of the VTOL aircraft
J0 moment of inertia of the VTOL aircraft
m1 mass of the single manipulator link
J1 moment of inertia of the manipulator link about its center of mass
l1 length of the single manipulator link
x0, z0 coordinates of the center of mass of the VTOL aircraft
θ0 attitude angle of the VTOL aircraft, with θ0 = 0 representing horizontal

position
θ1 angle formed between the VTOL aircraft and the manipulator link,

with θ1 = −θ0 defined when the manipulator is pointing in the +x
direction

F body-fixed thrust force generated by the VTOL aircraft
τ0 torque on the body of the VTOL aircraft
τ1 torque driving the single manipulator link

mising the control objective; that is, one single rotational joint is needed to augment

the 2DOF body motion to create 3DOF positioning of the end-effector. The manip-

ulator is attached to the center of mass of the aircraft body in order to minimize

reaction torques. Additional joints may be added for a redundant system design;

however, redundancy in kinematics will introduce issues as well as benefits and such

a system is not considered.

Leveraging the simplicity of the planar model, variables describing the states of

the MOVA system are represented in the inertial frame I instead of the aircraft body

frame B as is typically done with regular (in three-dimensional space) aircraft models.

This modeling decision will simplify the model development for the planar case, the

full dimensional system will require body-fixed coordinates. Notation defining the

constants and variables of the MOVA system are listed in Table 2.1.
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2.2.2 Kinematics Derivation

As a starting point for the derivation of the MOVA system kinematics, a

purely geometric analysis is made based on Fig. 2.1 to write the coordinates of several

important points, which include center of mass of the VTOL, center of mass of the

manipulator arm, and the point that represents the end-effector, in the inertial frame

I. A set of intuitive configuration variables, x0, z0, θ0 and θ1 (defined in Table 2.1)

are used for representation of position and orientation.

The center of mass of the VTOL aircraft is denoted by the vector p0 = [x0, z0]
T.

The vector

p1 =

 x0 + 1
2
l1 cos (θ01)

z0 + 1
2
l1 sin (θ01)

 (2.1)

locates the center of mass of the manipulator link and

pe =

 x0 + l1 cos (θ01)

z0 + l1 sin (θ01)

 (2.2)

represents the geometric termination of the end-effector. The short-hand notation

θ01 = θ0 + θ1 is introduced to represent end-effector orientation as a sum of the tilt

angle of the VTOL and manipulator joint angle.

The variable pe (p0, θ0, θ1) describes the kinematic relationship between the

VTOL position and orientation and the manipulator joint angle to the end-effector

position.

This kinematics derivation is an immediate result of the geometric description

of the VTOL aircraft and the attached manipulator. The kinematics chain starts

from origin of the inertial frame I and goes to the end-effector through the VTOL

center of mass, p0, and each manipulator link (in the planar case only one link is
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used). However, vector pe is dynamically affected by both external forces and torques

(the thrust force and torque on the VTOL aircraft) and internal forces and torques

(the force and torque between each link and the VTOL aircraft body). This will be

more obvious in Sec. 2.3 by inspecting terms in the derived dynamics equation (2.14).

It is desired to represent the kinematics of the planar MOVA, pe, in a decoupled form

that is the sum of two parts: one contains only configuration variables related to the

onboard manipulator and the other includes the rest. The decoupled form will yield

more concise derivation of dynamics and offer conveniences in controller design for

the MOVA system.

One general method for achieving this goal is to write the kinematics as a

summation of a series of vectors that starts from the center of mass of the entire

multi-body system called the virtual ground [16]. This approach is equivalent to

finding an alternative kinematics chain that starts from origin of the inertial frame

and ends at the end-effector, but goes through the center of mass of the entire MOVA

system, i.e. the virtual ground. The series of vectors, which is together referred as

the virtual manipulator, can be constructed using the virtual manipulator approach.

The hypothetical virtual manipulator (see Fig. 2.2) has its first link located at the

virtual ground. Derivation of the appropriate virtual manipulator guarantees that

given the same joint angle configurations, the resulting virtual manipulator reaches

the exact same end-effector position and orientation as the real manipulator.

For convenience, the links of both the original and virtual manipulator are

one-base indexed; that is, for manipulator with N links, its links are numbered 1

to N , and the corresponding virtual manipulator links are numbered 1 to N + 1.

Note that the corresponding virtual manipulator has one more link than the original

manipulator. The added link, noted as Link 1, represents the attitude of the base of

the original manipulator, or the VTOL aircraft in a MOVA system. In other words,
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Figure 2.2: Real manipulator kinematics chain versus virtual manipulator kinematics
chain for a general N-link MOVA system. Both chains reach the same endpoint with
the same orientation.

Link i+ 1 in virtual manipulator corresponds to Link i of the original manipulator.

The construction of a virtual manipulator is illustrated in two steps for general

mobile manipulators. The ith virtual manipulator link in Fig. 2.2 is denoted by vector

Vi, which is a sum of intermediate vectors Di and Hi

V1 = D1,

Vi = Di +Hi−1, (i = 2, 3 . . . N).

(2.3)

The intermediate vectors Di and Hi are defined by scaling the vectors Ri and Li of
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the physical manipulator, respectively, according to

Di = Ri

i∑
j=1

mj

mT

, (i = 1, 2 . . . N + 1)

Hi = Li

i∑
j=1

mj

mT

, (i = 1, 2 . . . N)

(2.4)

in which mj is the mass of jth link and mT =
∑

jmj is the total mass of the

system. Terms Ri and Li are vectors defined in the original manipulator, representing

displacements between Joint i and the center of mass of the two bodies it connects.

Specifically Ri is the vector from center of mass of the previous body in the kinematic

chain to Joint i and Li is the vector from Joint i to the center of mass of th next body

in the kinematic chain (see Fig. 2.2).

The starting point of the virtual manipulator, the virtual ground, is the center

of mass of the entire multi-body system, which is a weighted average of vectors rep-

resenting center of mass of each component pvg =
∑

imipi. For the MOVA system,

pvg =
∑N

i=0mipi, where m0 and p0 are the mass and center of mass of the VTOL

aircraft and mi and pi (i = 1, 2 . . . N) are mass and center of mass of the ith link of

the onboard manipulator.

The relationship between rotation of virtual manipulator Link i and the cor-

responding original manipulator link, Link i− 1, is shown in Fig. 2.3. By convention,

Li and Ri+1 are vectors in Link i and thus can be represented as constant body-fixed

vectors on Link i of the original manipulator. From (2.4), Di and Hi are Ri and Li

scaled by constants, respectively. Thus, Hi and Di+1 can be also written as constant

body-fixed vectors on Link i of the original manipulator. By definition of Vi in (2.3),

Vi+1 = Di+1 + Hi is a constant body-fixed vector on Link i of original manipulator

as well. Thus, rotation of Link i in the original manipulator is equivalent to rotation
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Figure 2.3: View of a single link of the virtual manipulator and original manipulator.
The corresponding links never rotate relative to each other.

of Link i + 1 of the virtual manipulator and the rotation of the base of the original

manipulator (the VTOL body for the MOVA) is equivalent to rotation of Joint 1 of

virtual manipulator.

For the specific planar MOVA system with one rotational link discussed in

this section, N = 1. Vectors Li and Ri are calculated from the system geometry in

Fig. 2.1

R1 = [0, 0]T ,

L1 = p1 − p0 =
l1
2

 cos θ01

sin θ01

 ,
R2 = pe − p1 =

l1
2

 cos θ01

sin θ01

 .
(2.5)

Note R1 = [0, 0]T because the manipulator Joint 1 and the center of mass of the
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VTOL aircraft are co-located. By (2.4), vectors D1, H1 and D2 are derived

D1 = [0, 0]T ,

H1 =
m0

mT

L1 =
l1m0

2mT

 cos θ01

sin θ01


D2 = R2 =

l1
2

 cos θ01

sin θ01

 ,
(2.6)

where mT = m0 +m1.

The vectors representing the links of the virtual manipulator, calculated fol-

lowing (2.3), are

V1 = D1 = [0, 0]T ,

V2 = D2 +H1 =
l1 (mT +m0)

2mT

 cos θ01

sin θ01

 . (2.7)

The coordinates of the virtual ground in frame I is calculated by averaging

p0 and p1 weighted with masses of VTOL aircraft and Link 1 of the manipulator

respectively

pvg =
N∑
i=0

mipi

=
1

mT

(m0p0 +m1p1)

= p0 +
l1m1

2mT

 cos θ01

sin θ01

 .
(2.8)
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The corresponding velocity vector

vvg = v0 +
l1m1

2mT

θ̇01

 − sin θ01

cos θ01

 , (2.9)

where v0 = ṗ0 = [ẋ0, ż0]
T.

Using the virtual manipulator representation, the kinematics of the planar

MOVA system is re-derived. The position of the end-effector can be written in the

form

pe = pvg + V1 + V2

= pvg +
l1 (mT +m0)

2mT

 cos θ01

sin θ01

 , (2.10)

and the orientation of the end-effector has its original representation θ01. Further

substituting (2.8) into (2.10) will yield a vector identical to pe in its original form

given in (2.2), meaning the virtual manipulator approach results in an alternative

kinematics for the end-effector of the planar MOVA system. Vector pvg is only in-

fluenced by external forces and torques and is thus dynamically decoupled from the

onboard manipulator.

In summary, the kinematics of the planar MOVA system is derived from ge-

ometry of system. Then, the kinematic chain of the end-effector is transformed into a

representation with virtual manipulator approach. The new representation involves a

virtual manipulator extended from virtual ground (center of mass of the entire MOVA

system) instead of a point fixed on the VTOL aircraft. The virtual ground point has

the property of not being affected by internal forces and torques in the multi-body

system, which will help to yield a decoupled dynamics and facilitate control design.
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2.3 Dynamics of the Planar MOVA

In this section, the dynamics of the planar MOVA system will be derived

and verified through simulation. The MOVA dynamics are first modeled with a

Lagrangian approach using the general coordinate vector

q =



x0

z0

θ0

θ1


(2.11)

and then rewritten with respect to the virtual manipulator representation. Later,

the dynamics equation is validated by comparing simulation results with the results

produced from the SimMechanics R© numerical multi-body dynamics package.

2.3.1 Dynamics by Euler-Lagrangian Approach

The kinetic energy T and potential energy V of the MOVA system are

T =
1

2
m0ṗ

T
0 ṗ0 +

1

2
m1ṗ

T
1 ṗ1 +

1

2
J0θ̇

2
0 +

1

2
J1θ̇

2
01,

V = [0,mTg] · pvg = g
(
mT z0 +

m1

2
l1 sin θ01

)
,

(2.12)

and the Lagrangian is L = T−V . Following the standard Euler-Lagrangian approach,

the equation of motion of the MOVA system under the general coordinate q is found
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by evaluating

d

dt

∂L

∂ẋ0
− ∂L

∂x0
= Fx,

d

dt

∂L

∂ż0
− ∂L

∂z0
= Fz,

d

dt

∂L

∂θ̇0
− ∂L

∂θ0
= τ0,

d

dt

∂L

∂θ̇1
− ∂L

∂θ1
= τ1,

(2.13)

where Fx = −F sin θ0 and Fz = F cos θ0 are projections of the thrust force F attached

to the VTOL aircraft onto the x- and z-axis in I. The resulting dynamics equation

can be put into the form

M (q) q̈ + C (q, q̇) q̇ +G (q) = τ (2.14)

where M ∈ R4×4 is the inertia matrix, C ∈ R4×4 is a matrix containing nonlinear

centripetal and Coriolis terms, G ∈ R4×1 represents gravity effects, and τ ∈ R4×1 is

the general force vector. The complete matrices and vectors M(q), C(q, q̇), G(q), τ

are given by

M =



mT 0 −1
2
l1m1 sin θ01 −1

2
l1m1 sin θ01

0 mT
1
2
l1m1 cos θ01

1
2
l1m1 cos θ01

−1
2
l1m1 sin θ01

1
2
l1m1 cos θ01 J0 + J1 +

l21m1

4
J1 +

l21m1

4

−1
2
l1m1 sin θ01

1
2
l1m1 cos θ01 J1 +

l21m1

4
J1 +

l21m1

4


, (2.15)
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C =



0 0 −1
2
l1m1 cos θ01θ̇01 −1

2
l1m1 cos θ01θ̇01

0 0 −1
2
l1m1 sin θ01θ̇01 −1

2
l1m1 sin θ01θ̇01

0 0 0 0

0 0 0 0


, (2.16)

G =

[
0 mTg

1
2
l1m1 cos θ01g

1
2
l1m1 cos θ01g

]T
, (2.17)

τ =

[
−F sin θ0 F cos θ0 τ0 τ1

]T
. (2.18)

Notice that VTOL aircraft translational (first two rows), VTOL aircraft rotational

(third row), and manipulator link (last row) dynamics are coupled via off-diagonal en-

tries in M(q) and C(q, q̇) in (2.15) and (2.16). If these off-diagonal terms were always

zero, the system could be split into several subsystems and controlled individually

without causing control performance issues. Applying a separate control strategy

when this condition is not satisfied is equivalent to designing controllers for a system

with off-diagonal terms removed. The resulting closed-loop system will sustain dis-

turbances caused by the uncompensated dynamics, which may lead to deteriorated

performance.

The potential effect of the coupling terms for the planar MOVA system can be

estimated by considering the first row of M(q)q̈, which equals mT ẍ0− 1
2
l1m1 sin θ01θ̈01,

where θ̈01 = θ̈0 + θ̈1. For given manipulator motions, the size of l1m1 relative to mT

will dictate the impact of the disturbance. For a short and light manipulator on a

large VTOL aircraft (l1m1 � mT ), it is likely that the disturbances will be small.

In the case where l1m1 = O(mT ), which is the scenario proposed in this work, the

disturbance cannot be neglected without consequence and an integrated controller is
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required. The back-stepping controller design approach will be used to obtain such

an integrated controller but the approach requires the system dynamics in a strict-

feedback form. The off-diagonal terms in M(q) indicate the system is not currently

in that form and will be an obstacle to control design. Thus, a transform into a

decoupled dynamics representation is needed.

2.3.2 Decoupling of Translational Dynamics

From the derivation in Sec. 2.2.2, the kinematics of the planar MOVA can

be rewritten following the virtual manipulator representation into a kinematics chain

passing through the virtual ground, which is also the center of mass of the entire

MOVA system. Position of the virtual ground is only affected by external force

inputs, simply thrust force in the planar MOVA system. Rewriting the translational

dynamics of the planar MOVA system in (2.14) in terms of pvg will decouple it from

rotation of the VTOL and the manipulator.

The first two rows of the dynamics equation (2.14) are extracted as

 mT 0

0 mT

 p̈0 +

 −1
2
l1m1 sin θ01θ̈01 − 1

2
l1m1 cos θ01θ̇

2
01

1
2
l1m1 cos θ01θ̈01 − 1

2
l1m1 sin θ01θ̇

2
01 +mTg

 =

 −F sin θ0

F cos θ0

 ,
(2.19)

where θ̈01 = θ̈0 + θ̈1 and θ̇01 = θ̇0 + θ̇1. Taking the time derivative of (2.9) yields,

p̈vg = p̈0 +
l1m1

2mT


 − sin θ01

cos θ01

 θ̈01 −
 cos θ01

sin θ01

 θ̇201
 . (2.20)

The decoupled translational dynamics of pvg are obtained by multiplying mT I2 (I2 is

2× 2 identity matrix) into both sides of equation (2.20) then substituting result into
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(2.19) to yield

mT p̈vg +

 0

mTg

 =

 −F sin θ0

F cos θ0

 . (2.21)

This result is equivalent to Newton’s law on the center of mass of the entire system.

Notice that the dynamics of pvg, the center of mass of the planar system, appears in

a form that is similar to a VTOL aircraft in 2D space. We can exploit this fact and

reference VTOL control research when designing a controller for pvg.

Concise representation of the VTOL aircraft rotation and end-effector orien-

tation dynamics can be obtained by manipulating selected rows in (2.14). A simpler

form of θ0 dynamics is found by subtracting row four from row three of (2.14), which

yields

J0θ̈0 = τ0 − τ1. (2.22)

Orientation of the end-effector is θ01 = θ0 + θ1, for which dynamics can be found by

rewriting row four of (2.14) to show

1

2
l1m1 [− sin θ01, cos θ01] p̈0 +

(
J1 +

l21m1

4

)
θ̈01 +

1

2
l1m1 cos θ01g = τ1. (2.23)

Substituting p̈0 of (2.19) into (2.23), θ01 dynamics is obtained after reducing terms

by trigonometric identities and reorganizing,

(
J1 +

l21m0m1

4mT

)
θ̈01 +

1

2

l1m1

mT

cos θ1F = τ1, (2.24)

which can be written in a form

J̄1θ̈01 = τ1 − ξ1F, (2.25)
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which incorporates the short-hand notation J̄1 = J1 +
l21m0m1

4mT
and ξ1 = l1m1

2mT
cos θ1.

At this point, the dynamics of the system described by (2.14) is completely

rewritten into the form in (2.21), (2.22), and (2.25). These dynamics equations will

be used as the model for the planar MOVA in design of a controller.

2.3.3 Validation of dynamics equation

The dynamics equations of the planar MOVA system are the basis for later

model-based controller development. Although above they are decoupled into a more

friendly form, the transformation is built upon the original complicated form in (2.14).

Minor errors are possible during the Lagrangian partial derivative calculation and

propagate into the final decoupled form. Note that these possible errors are likely

not to have any effect on the controller design and simulation of the closed-loop

system will not show any sign of abnormality as the closed-loop dynamics may not

even contain the incorrectly evaluated term (due to cancellation by the controller).

However, these errors will affect the performance on a real physical system as they are

essentially uncompensated by controller. Thus, it is necessary to validate the derived

dynamics equation before proceeding. A truly “independent” computer simulation is

proposed to validate the dynamics equations.

Numerical multi-body dynamics simulation software is used to provide a ground

truth. These software packages take geometric constraints and the body physical

properties of the system as input and generate a numerical representation of the dy-

namics system behavior under a certain initial condition and input. Although these

simulations does not replace analytical dynamics derivation as it does not yield a

closed-form representation of dynamics, it can be very helpful in validation of the

derived dynamics.
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Test input signal 
Output 

comparison 

Figure 2.4: Block diagram of dynamics validation test-bed.

The elements of the validation test-bed are illustrated in Fig. 2.4. Test input

signal is fed into three different simulations, first of which is based on a numeri-

cal dynamics simulation (I); the second is based on the dynamics derived via the

Euler-Lagrangian approach (2.14) (II); the last is based on the decoupled dynam-

ics equations (2.19),(2.22) and (2.25) (III). By comparing the output of the three

simulations, fidelity of the derived model can be evaluated.

SimMechanics R© toolbox of Simulink R© was used as the numerical dynamics

simulator [21]. Validation result of one of the instance is shown in Fig. 2.5, in which

difference between end-effector positions from three simulations are used for compari-

son. The SimMechanics R© simulation (I) output is chosen as the ground truth, since it

has been developed by a third-party and has been used for years in practice by many

users. End-effector position from the Lagrangian dynamics equation simulation (II)

and decoupled dynamics equation simulation (III), which are both carried out using

Simulink R© software, are subtracted from the ground truth to form two errors, eII(t)

and eIII(t). The norm of two errors are summed up to create the cumulative yield
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Table 2.2: Simulation Plant Physical Parameters
Parameter Value

m0 1 kg
J0 0.125 kg·m
m1 0.5 kg
J1 0.031 kg·m
l1 0.5 m

simulation error,

simulation error(t) = eII(t) + eIII(t) (2.26)

a scalar value that indicate the closeness of three simulation outputs. Moreover, the

relative error is quantified by the ratio between the simulation error and the norm of

ground truth end-effector position vector. Physical parameters of the planar MOVA

system used in the simulation are listed in Table 2.2, these parameters approximate a

small quadrotor helicopter. Note that the mass and moment of inertia of the VTOL

aircraft body and the one-link manipulator are comparable as previously assumed.

For all tested below, the initial condition is set as p0(0) = [0, 0]T, θ0(0) = θ1(0) = 0.

In the first test case, a random noise signal was used as the test signal. All three

input signals, F (t), τ0(t), and τ1(t), are piece-wise constant with values determined

by the corresponding discrete time signals, F [n], τ0[n], and τ1[n], with sample time

Ts = 0.1 sec,


F (t)

τ0(t)

τ1(t)

 =


F [n]

τ0[n]

τ1[n]

 (nTs ≤ t < (n+ 1)Ts) . (2.27)

Discrete time signals F [n], τ0[n], and τ1[n] follow uniform distributions with zero

means, F [n] ∼ U(−10, 10), τ0[n], τ1[n] ∼ U(−1, 1). The simulation was run for 10 sec
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Figure 2.5: Plot of dynamics validation result with random input signals.

and the simulation error shown in Fig. 2.5 is on the order of of 1 × 10−5 m and the

relative error of 1× 10−6%, which is sufficiently accurate for controller design.

In the second case, sine wave signals are fed into the simulations to show the

modeled planar MOVA system acts as expected. The input signals, F (t), τ0(t), and

τ1(t), are generated by


F (t)

τ0(t)

τ1(t)

 =


mTg + 3 sin 10t

sin 5t

sin 5t

 . (2.28)

Note that τ0(t) = τ1(t), which should result in a constant VTOL aircraft attitude by

dynamic equation (2.22). The simulation was run for 10 sec and the simulation error

shown in 2.6. The relative error is on the order of 1× 10−4%, larger than that in the

previous case, because the norm of pe remains relatively small during the simulation

(see plot of pe in Fig. 2.7).
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Figure 2.6: Plot of dynamics validation result with the sine wave test input signal.
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Figure 2.7: Plot of pe with the sine wave test input signal.
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Figure 2.8: Plot of dynamics validation result with the constant test input signal.

In the third case, the input signals are kept constant. Input signals, τ0(t),

and τ1(t) are set to zero. The only non-zero input F (t) = mTg perfectly balances

the gravity force. Thus, the center of mass of the entire system is expected remain

at the same location. The manipulator link oscillates with constant amplitude like

a pendulum because the simulation starts with θ01 = 0, a condition away from the

stable equilibrium point θ01 = π/2 + 2nπ(n ∈ Z), and the link natural damping is

zero. The simulation was run for 10 sec and the simulation error shown in Fig. 2.8.

The relative error is on the order of 1× 10−2%, larger than in the random test input

signal case for the same reason as the second case. The plot of pe is shown in Fig. 2.9,

in which constant amplitude oscillation in both x and y coordinates is observed.

The coupled movement of the VTOL in the x-direction in response to arm motions

highlights the need for control of the full-order, coupled MOVA system.

From all three validation cases, simulation errors and relative simulation er-

rors remain small, which indicates that the derived dynamic models are close to the

assumed ground truth and the two derived model are close to each other. Although
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Figure 2.9: Plot of pe with the constant test input signal.

non-zero, the error is small enough to conclude that the derived models capture the

system behavior and are suitable for the following model-based controller design.

The constant input case also shows the system heuristically behaves as expected.

The source of error is not only related to the accuracy of model, but also in relation

to the numerical dynamics simulator and overall simulation settings.

2.4 Controller Design for the Planar MOVA

In this section, a unified controller is designed to achieve trajectory tracking

control of the end-effector of the planar MOVA system. The dynamics model used

for controller formulation is detailed in (2.21), (2.22), and (2.25). The trajectory of

virtual ground pvg is derived from the desired position and orientation trajectory of

the end-effector by applying the kinematics found in Sec. 2.2. Inspired by VTOL

control research in [4] and [36], the back-stepping control design technique is adopted

to control the underactuated pvg dynamics. The end-effector orientation dynamics,
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represented in (2.25), is driven by a control law derived using feedback linearization.

Stability analysis is performed on the proposed control design and a GUUB tracking

result is achieved. To demonstrate performance of the proposed controller, results

from numerical simulation are presented with satisfactory end-effector position and

orientation tracking error, which indicates a successful controller design.

The control objective is to force the end-effector position pe and orientation

θ01, in the inertial frame I, to converge to reference trajectories per(t) and θ01r(t),

respectively, with additional subscript “r” denotes the reference version of the cor-

responding variable. The reference trajectories per(t) and θ01r(t) are assumed to be

sufficiently smooth and up to the third time derivatives are bounded, i.e., per(t),

ṗer(t), p̈er(t), and
...
p er(t) ∈ L∞, θ01r(t), θ̇01r(t), θ̈01r(t), and

...
θ 01r(t) ∈ L∞. Using the

kinematics stated in (2.2) and (2.8), the virtual ground pvg can be written in the form

pvg = pe −
(mT +m0)l1

2mT

 cos θ01

sin θ01

 . (2.29)

Thus, the reference trajectory of the virtual ground, pvgr, can be found by substituting

per(t) and θ01r(t) to yield

pvgr = per −
(mT +m0)l1

2mT

 cos θ01r

sin θ01r

 , (2.30)

and ṗvgr, p̈vgr and
...
p vgr can be found by taking time derivatives. The control design

problem is then divided into two sub-problems: ensuring pvg(t) follows pvgr(t) and

θ01(t) follows θ01r(t) by specifying appropriate input signals F (t), τ0(t) and τ1(t),

which represents VTOL thrust force, VTOL torque, and torque applied to the onboard

manipulator, respectively.
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2.4.1 Back-stepping Control of the Virtual Ground

The control input to the pvg dynamics equation (2.21) represents a body-fixed

thrust force vector, thus a tracking error system for control of pvg is constructed in

body frame B for convenience. The position error, ep(t), in the body-fixed frame B

is defined as

ep = RT (pvg − pvgr) , (2.31)

and the velocity error, ev(t) is defined in the same fashion as

ev = RT (ṗvg − ṗvgr) , (2.32)

where R ∈ SO(2) is the rotation matrix that transforms a vector in the inertial frame

I into the VTOL body frame B

R =

 cos θ0 − sin θ0

sin θ0 cos θ0

 . (2.33)

Time derivatives of the position error ep and the velocity error ev are

ėp = S(ω)ep +RT (ṗvg − ṗvgr)

= S(ω)ep + ev,

ėv = S(ω)ev +RT (p̈vg − p̈vgr) ,

(2.34)

where ω = θ̇0 and S(ω) ∈ so(2) is a skew-symmetric matrix

S(ω) =

 0 ω

−ω 0

 . (2.35)
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S(ω) is associated with R by d
dt
R = S(ω)R. Substituting the pvg dynamics from

(2.21) into ėv in (2.34) yields

ėv = S(ω)ev −RTp̈vgr −RT

 F

mT

 sin θ0

cos θ0

+

 0

g




= S(ω)ev −RT (p̈vgr + gv) +BFF,

(2.36)

where the gravity force vector gv = [0, g]T and BF = [0,m−1T ]T is the input matrix

associated with input F .

A filtered tracking error r(t) is defined as

r = ev + αep + δ, (2.37)

where α ∈ R+ is a control gain and δ = [0, δ2]
T ∈ R2×1, δ2 > 0, is an auxiliary vector

formulated to introduce the opportunity to use back-stepping in the error dynamics.

Dynamics of r can be found by taking the derivative of (2.37) and substituting in ėp

from (2.34) and ėv from (2.36)

ṙ = S(ω)ev −RT (p̈vgr + gv) +BFF + αS(ω)ep + αev. (2.38)

The dynamics of r is underactuated, because equation (2.38) has two degrees-

of-freedom while the control input F is a single thrust force actuator. An additional

control input is desired to regulate the filtered tracking error r. Such an input can be

indirectly created through ω, which coincides with the fact that VTOL aircraft steers

the body-fixed thrust vector to achieve acceleration in different directions.

The effect of ω on the filtered tracking error is embedded in the S(ω) terms
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in (2.38), which can be revealed by grouping terms related to r to yield

ṙ = S(ω)(ev + αep + δ) + αev −RT (p̈vgr + gv) +BFF − S(ω)δ

= S(ω)r + αev −RT (p̈vgr + gv) +BFF − S(ω)δ.

(2.39)

In the process, a S(ω)δ is created to complete S(ω)r, and the same term is subtracted

at the end to maintain equality. Invoking the identity S(ω)δ = [δ2, 0]Tω and grouping

both the input F and the ω into a vector form, gives

ṙ = S(ω)r + αev −RT (p̈vgr + gv) +

 −δ2 0

0 m−1T

 ·
 ω

F


= S(ω)r + ξ2 +Bµµ,

(2.40)

where ξ2 = αev −RT (p̈vgr + gv),

Bµ =

 −δ2 0

0 m−1T

 , and µ =

 ω

F

 . (2.41)

It is clear that ω will affect the filtered tracking error r, however, ω = θ̇0 is not a

direct control input, and can only be altered through θ0 dynamics (2.22). Thus, µ

cannot be directly specified to stabilize r as ω is one of its element.

The problems is abstracted as controlling the states of cascaded subsystems,

where the desired control input is governed by its own dynamics. This is a typical

situation for applying back-stepping technique. The process begins by first assuming

that there is direct control over µ and continues to seek the desired value for µ, called
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µd, to regulate r; from (2.40), it is clear that

µd =

 ωd

Fd

 = B−1µ (−krr − ξ2 − ep) , (2.42)

where ωd and Fd are the two entries of µd would act to stabilize the r dynamics,

the term −krr is the regulating term, where kr = diag(kr1, kr2)) ∈ R2×2 is a diagonal

control gain matrix, −ξ2 is for cancellation of unnecessary dynamics, and −ep is added

to fulfill later stability analysis.

The mismatch, µe, between input µ and desired input µd is

µe =

 ωe

Fe

 = µ− µd =

 ω − ωd

F − Fd

 (2.43)

In order to accomplish the goal of controlling r via µ, it is necessary that the control

input µ approach µd as close as possible, which is the same as minimizing norm of µe

by specifying the control input properly. For the directly controlled force input F , it

is feasible to let

F = Fd =

[
0 1

]
µd, (2.44)

which leads to Fe = 0. For the indirectly controlled input ω, the source of the control

problem can be identified by looking at the dynamics of the mismatched error ωe

written as

ω̇e =
d

dt
(ω − ωd)

= ω̇ −
[

1 0

]
µ̇d.

(2.45)
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Multiplying both side by J0 and then substituting θ̈0 from (2.22) for ω̇, there is

J0ω̇e = J0θ̈0 −
[
J0 0

]
µ̇d

= τn −
[
J0 0

]
µ̇d,

(2.46)

where τn = τ0 − τ1 denotes the net torque acting on the VTOL aircraft. A control

law for τn is designed by considering that ωe in (2.46) needs to be made small. With

the assistance of stability analysis, τn can be specified as

τn = −kωJ0ωe +

[
J0 0

]
µ̇d +

[
δ2 0

]
r, (2.47)

where kω ∈ R+ is a control gain. The term µ̇d, which is the derivative of µd, is

evaluated as

µ̇d = B−1µ
[
S(ω)RT(p̈vgr + gv) +RT...

p vgr − αėv − ėp − krṙ
]

= B−1µ
[
S(ω)RT(p̈vgr + gv) +RT...

p vgr − (kr + αI2) ṙ + (α2 − 1)ėp
]
.

(2.48)

The closed-loop dynamics of r and ωe can be evaluated by substituting the

control input specified in (2.44) and (2.47) into the original open-loop dynamics equa-

tions. Substituting µ = µd + µe into (2.40) yields the closed-loop dynamics of r

ṙ = −krr + S(ω)r +Bµµe − ep. (2.49)

The closed-loop dynamics of ωe is found by substituting (2.47) into (2.46) to yield

J0ω̇e = −kωJ0ωe +

[
δ2 0

]
r. (2.50)
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2.4.2 End-effector Orientation Control

An error system of θ01 is formulated for the design of the end-effector orien-

tation controller. The end-effector orientation tracking error, e01(t), is defined as the

difference between the actual and desired orientation

e01 = θ01 − θ01r, (2.51)

and the time derivative is

ė01 = θ̇01 − θ̇01r. (2.52)

A filtered orientation tracking error signal, r2(t), can be expressed as

r2 = ė01 + βe01, (2.53)

where β ∈ R+ is the control gain for end-effector orientation control. Dynamics of

the filtered orientation tracking error is derived by taking time derivative of (2.53),

multiplying both sides of the resulting equation with J̄1 (defined with (2.25)), and

then substituting in θ01 dynamics from (2.25) to produce

J̄1ṙ2 = J̄1θ̈01 − J̄1θ̈01r + J̄1βė01

= τ1 − ξ1F − J̄1
(
θ̈01r − βė01

)
.

(2.54)

Based on (2.54), the torque input to the manipulator joint, τ1, is designed as

τ1 = −k2J̄1r2 + ξ1F + J̄1

(
θ̈01r − βė01 − e01

)
(2.55)
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in order to regulate the r2 dynamics, where k2 ∈ R+ is a control gain. External

torque input on the VTOL aircraft can be calculated using

τ0 = τn + τ1. (2.56)

The closed-loop dynamics of r2 becomes

J̄1ṙ2 = −k2J̄1r2 − J̄1e01, (2.57)

which is equivalent to

ṙ2 = −k2r2 − e01 (2.58)

as J̄1 is a scalar.

2.4.3 Stability Analysis

Lyapunov stability analysis is performed on the closed-loop error systems re-

sulting from the proposed controller described in Sec. 2.4.1 and 2.4.2. A positive

definite function is designed as

V =
1

2
eTp ep +

1

2
rTr +

1

2
J0ω

2
e +

1

2
r22 +

1

2
e201 (2.59)

which has a time derivative

V̇ = eTp ėp + rTṙ + J0ωeω̇e + r2ṙ2 + e01ė01. (2.60)
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After substituting in ėp from (2.34) and the closed-loop error dynamics of r, ωe, r2

expressed in (2.49), (2.50) and (2.58) respectively, it is found that

V̇ = eTp [S(ω)ep + ev] + rT [−krr + S(ω)r +Bµµe − ep]− kωJ0ω2
e

+ ωe[δ2, 0]r − k2r22 − r2e01 + e01 (r2 − βe01) .
(2.61)

As S(ω) is skew-symmetric, ξTS(ω)ξ = 0 for any ξ ∈ R2 and thus terms S(ω)ep in

the first bracket and S(ω)r in the second bracket will vanish. Substituting rTep for

eTp r and reorganizing terms yields

V̇ = eTp (ev − r) + rTBµµe − rTkrr − kωJ0ω2
e + ωe[δ2, 0]r − k2r22 − βe201. (2.62)

By the definition in (2.41), Bµ is a diagonal matrix and Bµ = BT
µ ; thus, rTBµµe is

rewritten as

rTBµµe = µT
eBµr = −ωe[δ2, 0]r, (2.63)

utilizing the definition of µe. Applying this identity to V̇ yields

V̇ = −αeTp ep − rTkrr − kωJ0ω2
e − k2r22 − βe201 − eTp δ. (2.64)

The first five terms are all less than zero. The upper-bound of last term can be found

as

−eTp δ ≤‖ep‖ · ‖δ‖

≤ 1

2

(
λ1 ‖ep‖2 +

1

λ1
δ22

)
,

(2.65)
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where λ1 ∈ R+. Thus,

V̇ ≤ −
(
α− λ1

2

)
eTp ep − rTkrr − kωJ0ω2

e − k2r22 − βe201 +
1

2λ1
δ22. (2.66)

A greater upper bound of V̇ can be written as

V̇ ≤− λ2
(
‖ep‖2 + ‖r‖2 + J0ω

2
e + r22 + e201

)
+

1

2λ1
δ22

≤− 2λ2V +
1

2λ1
δ22,

(2.67)

where a constant scalar λ2 ∈ R+ is given by

λ2 = min

{(
α− λ1

2

)
, kr1, kr2, kω, k2, β

}
. (2.68)

Solving the differential inequality in (2.67) yields

V ≤ V0 · e−2λ2t +
1

4λ2λ1
δ22
(
1− e−2λ2t

)
, (2.69)

where V0 is V evaluated at t = 0.

A complete tracking error vector of the control system is defined as

η =
[
eTp , r

T,
√
J0ωe, r2, e01

]T
, (2.70)

which can be rewritten as

1

2
‖η‖2 = V. (2.71)

Substituting (2.71) into (2.69), multiplying by 2 and taking square root on both sides

yields,

‖η(t)‖ ≤
√
‖η0‖2 e−2λ2t +

1

2λ2λ1
δ22 (1− e−2λ2t), (2.72)
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where η0 is η evaluated at t = 0. This result represents the steady state bound on

‖η(t)‖ as

lim
t→∞
‖η(t)‖ =

δ2√
2λ1λ2

. (2.73)

In other words, the norm of the complete tracking error, η(t), is globally uniformly

ultimately bounded (GUUB).

Further analysis can be done to show all signals are bounded. By (2.71), V

is bounded. From (2.73) and the definitions of η in (2.70), ep, r, ωe, r2, and e01

are bounded. By definition of r in (2.37), ev is bounded. Since R ∈ SO(2), and

‖R‖ ≡ 1, pvg and ṗvg ∈ L∞ by ep and ev definitions and the smoothness assumption

of the reference trajectories. From (2.42), we can observe µd is bounded, which also

means ωd and F ∈ L∞. Further, we can show ω is bounded by definition of ωe. From

definition of µe, it is bounded because ωe is bounded and Fe = 0. Signals ṙ and ėp are

bounded by the closed-loop dynamics of r in (2.49) and (2.34), respectively, which

leads to µ̇d ∈ L∞. From (2.47), the net torque τn is bounded. From definition of r2

in (2.53), ė01 ∈ L∞ because r2 and e01 are bounded. Thus, we know τ1 is bounded

from the control law defined in (2.55) and τ0 is bounded from (2.56). Therefore, we

conclude that all signals are bounded in the closed-loop system.

2.5 Experimental Results

Experiments are implemented in order to evaluate the performance of the con-

troller. Numerical simulation of the planar system is constructed with the validated

dynamics model and proposed controller. A circular reference trajectory is employed

in the simulation and both position and orientation trajectory tracking error of the

end-effector is shown. The physical test-bed is constructed by Ran Huang. It adopted
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a pan-tilt mechanism with relatively large radius to mimic the constraint of a two

dimensional space, which is difficult to reproduce in real world without significant

interaction with the interested dynamics of MOVA system. Design and construction

of the test-bed is briefly discussed in this section and the implementation details are

covered in work of Huang [37]. Experimental results on the physical test-bed demon-

strate clearly that for the MOVA system, a unified controller offers superior system

performance than controllers designed using the separate control strategy.

2.5.1 Simulation Results

Numerical simulations of the planar MOVA system with the proposed con-

troller were performed with Simulink R© to show that the proposed controller is able

to achieve the goal of end-effector trajectory tracking with acceptable error. The

simulated plant was previously validated in Sec. 2.3.3. The same planar MOVA sys-

tem physical parameters (Table 2.2) are used for simulation as in Sec. 2.3.3 where

the plant MOVA system dynamics is validated. Note that the mass and moment of

inertia of the VTOL aircraft body and the one-link manipulator are comparable.

The reference trajectory of the end-effector (see Figure 2.10) is a 5m diameter

circular trajectory centered at the origin, moving at angular rate ω = 0.5 rad/s. The

reference orientation of the end-effector follows a sine wave with the same ω. This

trajectory is described by the following function

per (t) =

 A cos(ωt)

A sin(ωt)

 ,
θ01r (t) =

1

2
π sin(ωt),

(2.74)

where A = 5 m and ω = 0.5 rad/s. The simulation lasts enough time for the trajectory
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t = 3π 

Figure 2.10: Trajectory of end-effector for simulation is shown as the dashed circle.
The tip of arrow (not to scale) denotes the end-effector of the MOVA system.

to go around a full circle.

The initial conditions for the simulation are p0(0) = [4.5, 0]T m, θ0(0) = 0 rad

and θ1(0) = 0 rad, which results in pe(0) = per(0) = [5, 0]T m. The initial velocity of

both the aircraft and the onboard manipulator are zero. In other words, the MOVA

system starts statically with the end-effect at the desired location. Controller gains

are set to the following values for this simulation: kr = 10I2, kω = 10, δ2 = 0.02,

α = 10, β = 10, k2 = 10.

The results of the simulation are captured in Figures. 2.11 to 2.13. Fig. 2.11

shows the position error vector of the end-effector, projected onto the x- and z- axis

of the inertial frame I. The same error is also illustrated by plotting the norm of

error in Fig. 2.12. These two figures show that the position error of the end-effector

starts at zero and rapidly ramps up due to the mismatch between the initial velocity

command and the condition that the entire system has zero velocity initially. Both

of the error components and the norm of the error quickly decays after reaching a

peak of 0.13 m to less than 0.005 m at around t = 1.5 sec and keeps below that
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Figure 2.11: End-effector position error projected onto x- and z-axis of I
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Figure 2.12: Norm of end-effector position error
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Figure 2.13: Plot of θ01r(t), the reference trajectory of end-effector orientation, θ01(t),
the actual trajectory and e01(t), the tracking error.

level for the rest of simulation. Given the magnitude of the actual trajectory, the

tracking error is relatively small percentage, disregarding the initial “catching up”

period. The end-effector orientation tracking performance is shown in Fig. 2.13. The

tracking error, e01(t), keeps closely to zero during the entire period of simulation and

the actual orientation of end-effector almost overlaps with the reference trajectory,

indicating a very good tracking result.

The simulation results shown are suggestive in that the tracking error of both

the end-effector position and end-effector orientation match a small bounded error

predicted by the theoretical result. Taken together, the modeling, control design, and

simulation results indicate that the goal of a unified controller for the fully modeled

planar MOVA system has been achieved.
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Figure 2.14: Illustration of the proposed hardware-in-the-loop test bed. The light
colored cylinders represent passive joints of the test-bed, which also serve in mea-
surement of VTOL position and orientation. The triple lines represents links of the
test-bed while single lines illustrate frames and the manipulator link of the 2D MOVA
system. The dark colored cylinder is the joint of the onboard manipulator.

2.5.2 Experimental Result from Physical Test-bed

A hardware-in-the-loop experimental test-bed of the planar MOVA was con-

structed to demonstrate the performance of the controller under realistic constraint

of implementation. The test-bed was designed in collaboration with Ran Huang and

the plots along with some system description are shared and appear both here and

in Huang’s thesis [37]. Considering the difficulty in physically restraining a system

to move only in a 2D plane, as the planar MOVA system assumed, without affecting

the dynamics of the system being tested, a spherical approximation is made. Instead

of being constrained in a vertical plane, the 2D VTOL aircraft of planar MOVA is

attached to a long, light-weight passive manipulator arm which is attached to the

inertial frame via a spherical joint (Fig. 2.14). The resulting system has the same

number of degrees-of-freedom as the planar MOVA system.

In Fig. 2.15, a photo of the test-bed implementation is shown. The passive

manipulator is formed by a pan-tilt mechanism and a revolute joint near the VTOL

aircraft. Optical incremental encoders are used for VTOL aircraft position and atti-

tude feedback. The VTOL aircraft is realized by a “twin-rotor” aircraft, which has
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Figure 2.15: Photo of the planar MOVA hardware-in-the-loop test-bed.

Table 2.3: Physical Parameters of Planar MOVA test-bed
Parameter Value Parameter Value

m0 0.780 kg J0 5.86× 10−3 kg·m2

m1 0.059 kg J1 4.14× 10−5 kg·m2

l1 0.3 m lp 0.95 m

two rotors to provide the lift force and torque on the aircraft body. The onboard ma-

nipulator is driven by a DC motor with optical encoder position feedback. Physical

parameters of testbed components are listed in Table. 2.3. The parameter lp is the

length of passive manipulator arm of the test bed. Mass of the passive manipulator

arm is added into the m0. Values of the variables x0 and z0 are obtained using the

spherical approximation by multiply lp to corresponding passive manipulator joint

angle for the experiment.

In order to highlight the rationale for the proposed controller, an experiment to

compare between a separate control strategy and the proposed unified controller was

performed. The separate controller controls the “twinrotor” and onboard manipulator

individually without considering dynamics coupling. The onboard manipulator arm

is controlled using a PD (Proportional-derivative) controller. To ensure the validity

of the comparison, the separate “twinrotor” controller is also derived using back-
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stepping method following [4]. The same values are used for shared gains between

experiment.

Desired position and attitude trajectory of the end-effector for this experiment

are described by

θ01r (t) = 0.8 sin (1.5t)− π/2,

per (t) =

 l1 cos θ01r (t)

l1 sin θ01r (t)

 . (2.75)

From the kinematics equation (2.2), it is found that the desired position for the CM of

the VTOL aircraft stays at origin and the desired manipulator movement is seemingly

the trajectory of a pendulum.

The controller gains of the unified MOVA controller used in this experiment

are: kr = 0.08I2, kω = 0.03/J0, α = 0.05, δ2 = 0.25, β = 15, and k2 = 100.

The proportional and derivative gains of the onboard manipulator in the separate

controller are 15 and 1, respectively.

The test results are demonstrated in two figures comparing outcome from

the unified controller and the separate controller. In Fig. 2.16, the norm of end-

effector position error is plotted over time, which shows the general performance of

the two controllers. During experiment, the system was hand launched, the initial

condition cannot be guaranteed to be the same for both tests. The data displayed

was measured at steady state starting from t = 25 sec. For the unified controller,

the error is around 0.1 m during the entire period and the fluctuation is less than

0.05 m. On the other hand, the error of the separate controller has average value

at about 0.18 m and maximum value more than 0.25 m. Moreover, the error from

the separate controller clearly shows sine wave pattern which may corresponds to
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Figure 2.16: Comparison of norm of end-effector position error at steady state from
t = 25 sec to t = 45 sec

dynamics interaction between the onboard manipulator and the VTOL aircraft as

the desired trajectory of the end-effector.

The other plot (Fig. 2.17) shows dynamical disturbance of the onboard manip-

ulator on the position of the VTOL aircraft more obviously. The horizontal position,

x0, is plotted since it is more susceptible than z0 under the disturbance of onboard

manipulator when the end-effector has a desired trajectory described in (2.75). Kine-

matics analysis shows that x0 is supposed to stay at 0 m following the desired trajec-

tory. It is clear that the result from the separate controller has greater fluctuations

than that from the unified controller. The horizontal location of the VTOL aircraft

varies from -0.07 m to +0.04 m using the unified controller, while the same variable

oscillate between -0.2 m and 0.13 m. Like Fig. 2.16, the sinusoidal x0 of separate

controller result demonstrates the effect of the unmatched dynamics during controller

design in a close-loop system. There are approximately 5.5 cycles in the sinusoidal

curve of x0 in the 22.5 seconds range in the separate controller result, which matches
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Figure 2.17: Comparison of VTOL aircraft coordinate x0. The reference trajectory
of end-effector attitude is added to show the direct effect of dynamics disturbance of
the onboard manipulator on the VTOL aircraft.

closely (2π × 5.5/22.5 = 1.535) to the frequency of desired trajectory of the onboard

manipulator.

Both plots demonstrates that the proposed unified controller shows better per-

formance than the control strategy that controls the VTOL aircraft and the onboard

manipulator separately. The advantage of unified controller is attribute to the proper

handling of dynamics coupling between the manipulator and VTOL aircraft.

2.6 Conclusion

A planar MOVA system construction with 2D VTOL aircraft and a single

link onboard manipulator was illustrated. Dynamics equations of this planar MOVA

system, derived by the Lagrangian method, suggest that the control strategy should

compensate for the coupling between the manipulator and the VTOL aircraft. The

equations are transformed into a form with translational and rotational dynamics
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decoupled using the alternative kinematics derived by virtual manipulator method.

A unified MOVA controller is designed based on the decoupled dynamics equations

and proven to have GUUB tracking performance via Lyapunov type stability anal-

ysis. Simulation of the proposed controller is performed and the result is satisfying

in terms of the end-effector tracking error. Construction of a physical test-bed of

the planar MOVA system is described and experimental results on the test-bed was

shown. Comparison of results from the proposed controller and a controller designed

using a separate strategy demonstrate that the proposed controller has advantage

of compensating for subsystem coupling. The approach adopted for planar MOVA

dynamics modeling and control system design in this chapter is able to be generalized

and applied to the full three dimensional MOVA system.
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Chapter 3

Systematic Approach to MOVA

System Dynamics Derivation

3.1 Introduction

The aerial nature gifted MOVA systems with flexibility and maneuverability,

but also suggests difficulties from a control perspective owing to its complex dy-

namics. Categorized as a multi-body system, the dynamics of a MOVA system is

inherently intricate due to its high degree-of-freedom configuration space and inter-

action forces and torques between bodies. This calls for a model-based control design

approach and a unified control strategy that accounts for interaction between body

and the onboard manipulator. An accurate dynamics model is the prerequisite for

model-based control design and is useful in constructing simulations for evaluation

of the proposed controller. Previous planar case study gives a successful example

for dynamics derivation and controller design. However, 3D MOVA system dynamics

derivation is expected to be more complex than the planar case as the number of DOF

of the system increases. Manual derivation of dynamics equations does not scale up
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a practical 3D MOVA system with multiple number of joints. Thus, it is necessary

to develop a systematic framework for dynamics derivation and implementation of

such framework so the equations of motion of MOVA system can be automatically

generated.

3.1.1 Previous Work

Derivation of the MOVA system dynamics model is closely related to that of

other multi-body dynamics systems, such as satellite manipulators and underwater

manipulation systems. Satellite based manipulator research communities were the

first to investigate mobile manipulator dynamics by augmenting the general dynam-

ics derivation with a framework that helps with description of the Lagrangian energy

equation and yields clearer results in a more compact format [15]. Researchers of Un-

manned Under-water Vehicle (UUV) based manipulators utilized a similar approach

for dynamics modeling, yet with concentration on resolving issues caused by hydro-

dynamics interaction on the system [18, 19, 20]. The relatively high density of water

inevitably induces hydrodynamics terms that cannot be ignored.

A generalized framework for derivation of the dynamics equations of multi-

body systems is detailed in Wittenburg’s book, in which commercial software that

adopts this formalism are introduced [38]. Besides the software mentioned in this

book, other automatic dynamics derivation programs exist. SPACEMAPLE is a pro-

gram that derives dynamics equations for satellite manipulators, and was developed

using the algorithms proposed by Moossavian and Papadoupulous [17]. Neweul-M2 is

a general multi-body system dynamics derivation and simulation software developed

by Kurz and colleagues [39, 40]. It is able to output closed-form dynamics equations

by using the symbolic engine in MATLAB for the derivation process. Commercial
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dynamics derivation software described in [38] cannot be used for the MOVA dynam-

ics investigation due to availability issues. SPACEMAPLE is developed for space

manipulator and does not include effects of gravity and aerodynamics. Neweul-M2 is

the only software we are able to obtain for multi-body system dynamics derivation

via individual requests. However, it requires manual specification of system geometry

and mass properties using a command line interface, making it difficult to use given it

lacks the interface with other 3D modeling software for parameters extraction. More-

over, it is not available to the general public such as researchers in universities or

hobbyists.

3.1.2 Contribution

A systematic approach for deriving the dynamics equations of the MOVA sys-

tem with a single onboard manipulator composed of revolute joins is developed here.

In Sec. 3.2, bary-center representation is used in the kinematics development as pre-

vious research on satellite-based system. Dynamics equations of MOVA system are

then derived using the Lagrangian approach in Sec. 3.3. The entire derivation process

uses matrix algebra uniformly to ensure the conciseness. Explicit and general dynam-

ics equation for MOVA system is presented in closed-form as the result. A slightly

different kinematics and dynamics development is adopted in this chapter compared

to that for the planar system described in Chapter 2 in order to ensure a more

concise derivation. For the planar system, the dynamics derivation was performed

using trivially defined kinematics and then an alternative kinematics representation

obtained from virtual manipualtor approach was substituted into the dynamics equa-

tion to yield a decoupled form. Here the linear velocity expressions of individual rigid

bodies are constructed with the linear velocity of the whole system center-of-mass
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as a component so that later in the dynamics derivation the outcome is the in the

decoupled form directly. A program (named MOVADYN) is developed in Sec. 3.4

to automatically perform the derivation with given system parameters that specify

mass and dimensional properties. This program is compatible with parameters given

in symbolic form as it is written to run in a symbolic engine. Additional accessory

programs are also developed to export parameter information from a 3D modeling

software and to convert the derived dynamics equation into code and other files that

can be directly incorporated simulation or controller implementation, saving time

from tedious manual coding process. The MOVADYN program and accessories were

released as an open-source project, made available to both researchers in academia

and hobbyists in order to boost advances in this field. In Sec. 3.5, validation of the

MOVADYN program is performed by comparing the automatically generated out-

put with hand-derived result and comparing the simulation results of the derived

dynamics equation with that from numerical rigid-body dynamics simulator. Both

methods show that the MOVADYN program outputs correct dynamics equations for

the specified system.

3.2 System Description and Kinematics

An abstract definition of the MOVA system is presented and the kinematics

expressions of linear and angular velocity are developed in this section to falicitate

later dynamics equation derivation based on a Lagrangian approach.

3.2.1 System

A general MOVA system consists of a VTOL aircraft of any type and one

or more onboard manipulators. In this work, various types of VTOL aircraft are
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abstracted as one free-floating rigid body with a body-fixed thrust vector and torque

inputs in three orthogonal axes (shown in Fig. 1.3). The onboard device is assumed to

be a single serial manipulator constructed of rigid links connected by revolute joints.

One end of the manipulator, the base, is attached to the VTOL body while the other

is considered as the end-effector.

The links are numbered Link 1 to N , starting from Link 1 closest to the VTOL

aircraft body increasing to Link N at the end-effector. Since the VTOL aircraft and

manipulator links are all rigid bodies, they are uniformly numbered Body 0 to N as

well, where the VTOL aircraft is denoted as Body 0 and the numbering proceeds to

the end-effector, Body N .

3.2.2 Definitions

A few definitions are made to facilitate the MOVA system kinematics deriva-

tion. A reference frame is affixed to the rigid aircraft body and each manipulator link

and are referred to as Bi for i = 0 to N for Body 0 to N , respectively. The inertial

frame is named I. The origin of the inertial frame is point O. Center of mass (CM)

of the entire MOVA system is denoted as point C in the inertial frame.

The symbol p is uniformly used for naming linear position vectors in 3D space.

Decorations are used to differentiate individual vectors, the reference point and the

frame of representation. A subscript A/B denotes the start, A, and the end, B, of

a vector. Besides point C and origin O, A and B can take integer values i ∈ [0, N ],

denoting a start or end point on the center of mass (CM) of Body i. Short-hand

notation pA/O , pA is defined for concise representation of frequently used vectors.

Left superscripts denote the frame of representation: I denotes the inertial frame I

and integer i ∈ [0, N ] denotes body fixed frame Bi. Left superscript 0, which denotes
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Figure 3.1: Illustration of a general MOVA system frame definition and notations
conventions
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Table 3.1: List of notation
Symbol Meaning
I The inertial frame
Bi, i ∈ [0, N ] Frame attached to body i
IpA/B Vector from point A to B in frame I.
ipA/B, i ∈ [0, N ] Vector from point A to B vector in frame Bi
pA/B Vector from point A to B in frame B0
IpA Vector from origin to A in frame I
ipA, i ∈ [0, N ] Vector from origin to A in frame Bi
pA Vector from origin to A in frame B0
Ipi/A, i ∈ [0, N ] Vector from center of mass of Body i to point A in frame I
ipi/A, i ∈ [0, N ] Vector from center of mass of Body i to point A in frame Bi
pi/A, i ∈ [0, N ] Vector from center of mass of Body i to point A in frame B0
Iωi/j, i, j ∈ [0, N ] Angular velocity of Bi using Bj as reference in frame I
kωi/j, i, j, k ∈ [0, N ] Angular velocity of Bi using Bj as reference in frame Bi
ωi/j, i, j ∈ [0, N ] Angular velocity of Bi using Bj as reference in frame B0
Iωi, i ∈ [0, N ] Angular velocity of Bi using B0 as reference in frame I
kωi, i, k ∈ [0, N ] Angular velocity of Bi using B0 as reference in frame Bi
ωi, i ∈ [0, N ] Angular velocity of Bi using B0 as reference in frame B0
ω Angular velocity of B0 using I as reference in frame B0
jRi, i, j ∈ [0, N ] Rotation matrix from Bi to Bj
Ri, i ∈ [0, N ] Rotation matrix from Bi to B0
iR, i ∈ [0, N ] Rotation matrix from B0 to Bi
RI , i ∈ [0, N ] Rotation matrix from I to B0
IR, i ∈ [0, N ] Rotation matrix from B0 to I

the body frame (B0) of the VTOL aircraft, is the default frame and can be omitted.

The abbreviation format to show the frame of representation is the same as

that defined above for vectors. The symbol ω is uniformly used for the angular

velocities of rigid bodies. Angular velocity of frame i with respect to frame j is

written as Iωi/j, where i, j ∈ [0, N ] refers to frame Bi and Bj and I denotes inertial

frame I. Similar to the point notation, defaults are defined for concise use: i in can

be omitted if it is 0 and the reference body in the subscript is left out if the inertial

frame is used. This way, ωi denotes absolute angular velocity of Body i represented

in frame 0. A list of notation is provided in Table 3.1 for reference.
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3.2.3 Pose and Angular Velocity of Rigid Bodies

Transformation of a vector from frame Bi to Bj is described by the rotation

matrix, jRi ∈ SO(3). In other words, for a vector x ∈ R3, it is easy to change the

frame of representation from Bi to Bj using

jx = jRi
ix. (3.1)

A left superscript I, on the rotation matrix, IRi, denotes transformation of a vector

from Bi to the inertial frame. Transformation from or to B0 is frequently used and

thus B0 is the default frame if a super or subscript is omitted.

Transformation from any body frame Bi to the inertial frame can be evaluated

as

IRi = IR0
0Ri = IRRi, (3.2)

where, R0 = I3 and

Ri = 0R1
1R2...

i−1Ri. (3.3)

For a rigid body i in the multi-body system, its angular velocity with respect

to the inertial frame I can be found in a chained form

Iωi = Iω +
i∑

j=1

IRj−1
j−1ωj, (3.4)

since the instantaneous rotation of a series of objects can be summed linearly. Rep-

resentation of the same relationship in B0 is obtained by pre-multiplying the rotation

matrix 0RI = IR0
T

to yield

ωi = ω +

j∑
j=1

Rj−1
j−1ωj, (3.5)
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where the frame of reference B0 is the default and not explicitly marked at the left

superscript position and ω is the aircraft body angular velocity in frame B0.

The variable i−1ωi is the angular velocity of Body i, which is also Link i of the

onboard manipulator, with respect to the previous link toward the VTOL aircraft,

Link i− 1. Since all joints are revolute, it is determined by the joint velocity and the

rotation axis of Joint i. Thus, there exist

i−1ωi = uiq̇i, (3.6)

where q̇i is the joint velocity of Joint i and ui , i−1ui denotes the rotation axis of Joint

i represented in frame Bi−1. This notation then defines q to be the joint configuration

vector of the onboard manipulator, q = [q1, q2, ...qN ]T where qi is the joint position

of a specific link, and q̇ is thus the vector of joint velocities. The angular velocity of

Body i in B0 can be written in matrix representation

ωi = ω + Fiq̇, (3.7)

where, Fi is a Jacobian matrix for angular velocity, which can be written as concate-

nation of a series of vectors

Fi =
[
R0u1 R1u2 ... Ri−1ui O3×(N−i)

]
, (3.8)

and Om×n denotes a zero matrix with dimension specified by the subscript.
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3.2.4 Position and Velocity of an Arbitrary Point

Position of the CM of each rigid body of the MOVA system, pi, is needed

to obtain the corresponding velocity for calculation of total kinetic energy. In the

inertial frame, there is

Ipi = IpC + Ipi/C . (3.9)

The frame of representation of position vectors can be changed from a body frame,

e.g. pi/C , by left multiplying the appropriate rotation matrix and yields

Ipi = IpC + IRpi/C . (3.10)

Due to the serial configuration of the manipulator,

pi/C − pi−1/C = ri−1 − li, (3.11)

where li and ri are vectors from CM of Body i to the previous joint (Joint i− 1) and

the next joint (Joint i) on the manipulator (see Fig. 3.1), respectively. It is worth

noting that iri and ili are both constant because all links and the VTOL aircraft are

rigid. Vector l0 = 0 and rN = 0 as there is no joint prior to Body 0 and after Body

N.

Also, the relation
N∑
i=0

mipi/C = 0 (3.12)

holds since point C is the center of mass of the system, where mi is the mass of Body

i. Solving the vector equation set formed by (3.11) for integer i ∈ [1, N ] and (3.12),

there is

pi/C =
i∑

j=1

(rj−1 − lj)µi −
N∑

j=i+1

(ri−1 − li)(1− µi), (3.13)
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where µi =
∑i−1

j=0mj/Mt and the total mass Mt =
∑N

i=0mi.

Regrouping r and l vectors that bear the same index together, results in

pi/C =
N∑
j=0

vij, (3.14)

where

vij = rj(µj+1 − 1j−i)− lj(µj − 1j−i−1), (3.15)

and 1i is the discrete step function and 1i = 1 if i ≥ 0 and 1i = 0 otherwise. From

the fact that iri in which ili are constant vectors,

jvij = jri(µj+1 − 1j−i)− jlj(µj − 1j−i−1) (3.16)

is a constant vector as well. It is convenient to separate the part of (3.16) that changes

with the configuration variable of the manipulator q and rewrite pi as

pi/C =
N∑
j=0

Rj
jvij. (3.17)

The velocity of a certain point is found by taking the time derivative of the po-

sition vector. However, the derivative of the coordinates of a position vector equals to

the velocity of the point only if the position vector is represented in an inertial frame.

Dot notations, i.e. a dot over the variable, are dedicated to denote time derivative

of coordinate points and vectors represented in the inertial frame. According to this

convention, I ṗC = d
dt

(IpC) is the velocity of the CM of the MOVA represented in the

inertial frame and ṗC = RI
d
dt

(IpC) is the velocity of the CM of the MOVA represented

in the inertial frame B0. Note that d
dt
pC is the time derivative of the coordinates of
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point C in frame B0 and ṗC 6= d
dt
pC , because

ṗC = RI
d

dt
(IRpC)

= RI

[(
d

dt
IR

)
pC + IR

d

dt
pC

]
= RI

(
IRS(ω)pC + IR

d

dt
pC

)
= S(ω)pC +

d

dt
pC .

(3.18)

The velocity of the CM of Body i is thus

I ṗi = I ṗC + I ṗi/C (3.19)

where

I ṗi/C =
d

dt
(IRpi/C) = S(Iω)IRpi/C + IR

d

dt
(pi/C). (3.20)

In frame B0, ṗi/C is represented as

ṗi/C = RIS(Iω)IRpi/C +RI
IR

d

dt
(pi/C)

= S(ω)pi/C +
d

dt
(pi/C),

(3.21)

utilizing the fact that

RIS(Iω)IR = IRTS(IRω)IR = S(ω). (3.22)
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By (3.17), d
dt
pi/C is evaluated by taking time derivative on each term, which yields

d

dt
pi/C =

N∑
j=0

d

dt
(Rj

jvij) =
N∑
j=0

S(ωj/0)Rj
jvij. (3.23)

Substituting (3.17) and (3.23) into (3.21), there is

ṗi/C = S(ω)
N∑
j=0

S(ω)Rj
jvij +

N∑
j=0

S(ωj/0)Rj
jvij

=
N∑
j=0

S(ω + ωj/0)Rj
jvij

= −
N∑
j=0

S(Rj
jvij)ωj,

(3.24)

having used an identity of skew-symmetric matrix

S(a)b = −S(b)a a, b ∈ R3. (3.25)

Further, replacing ωj from (3.7) yields

ṗi/C = −
N∑
j=0

S(Rj
jvij)ω −

N∑
j=0

S(Rj
jvij)Fj q̇. (3.26)

Thus, the velocity of Body i with respect to, the original of the inertial frame, O, in

inertial frame is

ṗi = ṗC + Jωiω + Jqiq̇, (3.27)

76



where

Jωi = −
N∑
j=0

S(Rj
jvij),

Jqi = −
N∑
j=0

S(Rj
jvij)Fj.

(3.28)

Equations (3.7), (3.17) and (3.27) will be used for forming the expressions of kinetic

energy and potential energy in the Lagrangian dynamics derivation.

3.3 Derivation of Dynamics Equation

3.3.1 Representation of the Lagrangian

The Lagrangian L is the difference between kinetic energy, T , and potential

energy, V , i.e. L=T-V. The kinetic energy of the entire MOVA system is the sum-

mation of the kinetic energy of each body due to translation or rotation movement

T =
1

2

N∑
i=0

miṗ
T
i ṗi +

1

2

N∑
i=0

(iRωi)
TJi(

iRωi) = T1 + T2, (3.29)

where Ji is the moment of inertia matrix of Body i along the direction defined by Bi,

T1 and T2 are summations of kinetic energy resulting from translation and rotation

of each body, respectively. Potential energy is evaluated directly from the position of

point C as

V = −Mtg
T
v
IpC , (3.30)

the Igv = [0, 0,−g]T is the vector of gravity acceleration in the inertial frame (g is

the value of local gravity acceleration).

Substituting the body velocity from (3.27) into T1, and after expanding the
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vector inner product, there is

T1 =
1

2

N∑
i=0

miṗ
T
i ṗi

=
1

2

N∑
i=0

mi(ṗC + Jωiω + Jqiq̇)
T(ṗC + Jωiω + Jqiq̇)

=
1

2
Mtṗ

T
c ṗc +

1

2

N∑
i=0

mip
T
i/CpC

+
1

2

N∑
i=0

mi

(
ωTJT

ωiJωiω + 2ωTJT
ωiJqiq̇ + q̇TJT

qiJqiq̇
)
.

(3.31)

Summation of mip
T
i/CpC results in zero, because the identity in (3.12) shows

1

2

N∑
i=0

mip
T
i/CpC =

1

2

(
N∑
i=0

mipi/C

)T

pC = 0. (3.32)

and thus,

T1 =
1

2
Mtṗ

T
C ṗC +

1

2

N∑
i=0

mi

(
ωTJT

ωiJωiω + 2ωTJT
ωiJqiq̇ + q̇TJT

qiJqiq̇
)
. (3.33)

The kinetic energy corresponding to rotation, which is the summation T2 in (3.29),

is expanded using (3.7), which yields

T2 =
1

2

N∑
i=0

(iRωi)
TJi(

iRωi)

=
1

2

N∑
i=0

ωT(iR
T
Ji
iR)ω + 2ωT(iR

T
Ji
iRFi)q̇ + q̇T(FT

i
iR

T
Ji
iRFi)q̇.

(3.34)
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Combining (3.33) and (3.34) yields

T =
1

2
Mtṗ

T
C ṗC +

1

2
ωTMωωω

+ ωTMωq q̇ +
1

2
q̇TMqqq,

(3.35)

which is quadratic in variables ṗc, ω, and q̇, where

Mωω =
N∑
i=0

miJ
T
ωiJωi + iR0

T
Ji
iR0,

Mωq =
N∑
i=0

miJ
T
ωiJqi + iR0

T
Ji
iR0Fi,

Mqq =
N∑
i=0

miJ
T
qiJqi + FT

i
iR0

T
Ji
iR0Fi.

(3.36)

Defining the state vector

W =

[
ṗTC ωT q̇T

]T
, (3.37)

the kinetic energy can be concisely represented as

T =
1

2
WTMW, (3.38)

where

M =


MtI3 O3×3 O3×N

O3×3 Mωω Mωq

ON×3 MT
ωq Mqq

 (3.39)

can be seen as a generalized inertia matrix.
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3.3.2 MOVA CM Translational Dynamics

The center of mass (CM) of the entire MOVA system is chosen as the repre-

sentative point for describing the translational movement. The dynamics equation

that governs pC is derived by applying the Lagrangian method

(
d

dt

∂L

∂ṗC
− ∂L

∂pC

)T

= Fv, (3.40)

where Fv = [0, 0, F ]T is the thrust force vector acting on the VTOL aircraft body.

Notice that transpose is applied on the left side of equation (3.40) to comply with

numerator layout notation, which is required for the chain-rule to hold, i.e. ẏ = ∂y
∂x
ẋ,

when x, y are vectors. The first term in the parenthesis on the left-hand size of (3.40)

is expanded in (3.41), and the second term is evaluated in (3.42):

(
d

dt

∂L

∂ṗC

)T

=
d

dt
(MtI3ṗc)

= Mt
d

dt

(
RI

I ṗC
)

= Mt

[
RI

d

dt
I ṗC +

d

dt
(RI)

I ṗC

]
= Mt

[
RI p̈C − S(ω)RI

I ṗC
]

= MtI3p̈C −MtS(ω)ṗC ,

(3.41)

(
− ∂L

∂pC

)T

=

(
∂V

∂pC

)T

= Mt

(
∂(gTv

IRpC)

∂pC

)T

= MtRIgv. (3.42)

Combining (3.41) and (3.42) results in

MtI3p̈C −MtS(ω)ṗC +MtRIgv = Fv. (3.43)
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3.3.3 Aircraft Rotational Dynamics

It is difficult to choose the configuration variables that capture 3D rotation

of the aircraft body and facilitate the Lagrangian derivation. However, knowing

that the Lagrangian L does not depend on the attitude of the aircraft body, it is

feasible to derive the dynamics equation that governs the aircraft body rotation with a

Lagrangian-like formulation that is equivalent to conservation of angular momentum,

as (
d

dt

∂L

∂ω

)T

= τa +
∂ṗ0
∂ω

Fv. (3.44)

On the right side of the equation, the term τa is the external control torque applied to

the body of the aircraft and the effect of the thrust force vector Fv to the ω-dynamics

is ∂ṗ0
∂ω
Fv = JT

ω0Fv using the principle of virtual work. Expanding d
dt
∂L
∂ω

, there is

(
d

dt

∂L

∂ω

)T

=
d

dt

(
∂T

∂ω

)T

=
d

dt
(Mωωω +Mωq q̇)

=
d0

dt
(Mωωω +Mωq q̇) + S(ω) (Mωωω +Mωq q̇)

=Mωω
d

dt
ω +Mωq q̈ +

d

dt
Mωωω +

d

dt
Mωq q̇

+ S(ω)Mωωω + S(ω)Mωq q̇.

(3.45)

Applying the identity S(a)b = −S(b)a, which results in

S(ω)Mωωω = −S(Mωωω)ω, (3.46)

and the following rearrangement of the first term as

d

dt
Mωωω =

(
N∑
i=1

q̇i
∂Mωω

∂qi

)
ω =

N∑
i=1

q̇i
∂Mωωω

∂qi
=
∂Mωωω

∂q
q̇, (3.47)
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there is, (
d

dt

∂L

∂ω

)T

= Mωω
d

dt
ω +Mωq q̈ + Cωωω + Cωq q̇, (3.48)

where

Cωω = −S(Mωωω) +
1

2

d

dt
Mωω,

Cωq =
1

2

∂Mωωω

∂q
+
d

dt
Mωq + S(ω)Mωq.

(3.49)

In fact, there are many other ways for factoring terms into Cωω and Cωq that

will ensure the same the outcome of Cωωω + Cωq q̇. The reason for this specific allo-

cation is to preserve the skew-symmetric property of the final representation of the

dynamics.

3.3.4 Joint Variables Dynamics

Joint variable dynamics can be evaluated with the same technique as the

aircraft rotational dynamics using

(
d

dt

∂L

∂q̇
− ∂L

∂q

)T

= τm +
∂ṗ0
∂q̇

Fv, (3.50)

where the vector τm = [τm1, τm2..., τmN ]T represents the torque at each of the N

revolute joints and ∂ṗ0
∂q̇
Fv = JT

q0Fv represents the effect of Fv on the q̇-dynamics

(
d

dt

∂L

∂q̇

)T

=
d

dt

(
MT

ωqω +Mqq q̇
)

=
d

dt
(MT

ωq)ω +MT
ωq

d

dt
ω +MT

ωqS(ω)ω +
d

dt
(Mqq)q̇ +Mqq q̈,

(3.51)

82



and

(
−∂L
∂q

)T

= −1

2

[
∂(Mωωω)

∂q

]T
ω −

[
∂Mωq q̇

∂q

]T
ω − 1

2

[
∂Mqq q̇

∂q

]T
q̇. (3.52)

Using similar method shown in (3.47) that transform between derivatives and partial

derivatives, there is

d

dt
MT

ωqω =
∂MT

ωqω

∂q
q̇,

d

dt
MT

qq q̇ =
∂Mqq q̇

∂q
q̇,

(3.53)

and [
∂Mωq q̇

∂q

]T
ω =

[
∂MT

ωqω

∂q

]T
q̇. (3.54)

Invoking these identities, (3.51) and (3.52) sum to form the left-hand side of (3.50)

as

Mqq
d

dt
ω +Mqq q̈ + Cqωω + Cqq q̇ = τm + JqFv, (3.55)

where

Cqω = (−S(ω)Mωq)
T − 1

2

[
∂(MT

ωωω)

∂q

]T
,

Cqq =
∂MT

ωqω

∂q
−

[
∂MT

ωqω

∂q

]T
+
∂Mqq q̇

∂q
q̇ − 1

2

[
∂Mqq q̇

∂q

]T
q̇.

(3.56)

Derivatives and partial derivatives of Mωω, Mωq, and Mqq can be obtained using the

chain-rule on their definition in (3.36), which results in expression of derivatives and

partial derivatives of Jωi, Jqi, Fi and Ri as follows:

d

dt
Jωi = S (Jqiq̇) =

N∑
j=1

S (Jqiδj) q̇j (3.57)
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∂

∂qj
= S (Jqiδj) (3.58)

d

dt
Fi =

[
O3×1,−S(R1u2)F1q̇, ...,−S(Ri−1ui)Fi−1q̇, O3×(N−1)

]
(3.59)

∂

∂qj
Fi =


[
O3×j,−S(Rjuj+1)(Rj−1uj), ...,−S(Ri−1ui)(Rj−1uj), O3×(N−i)

]
, j < i;

O3×N , j ≥ i.

(3.60)

d

dt
Jqi = −

N∑
j=1

S
(
S(Fj q̇)Rj

jvij
)
Fj + S(Rj

jvij)
d

dt
Fj (3.61)

∂

∂qk
= −

N∑
j=1

S
(
S(Fjδk)Rj

jvij
)
Fj + S(Rj

jvij
∂

∂qk
Fj) (3.62)

d

dt
iR0

T
Ji
iR0 =

d

dt
RiJiRi

T = S(Fiq̇)RiJiRi
T − RiJiRi

TS(Fiq̇) (3.63)

∂

∂qj

iR0
T
Ji
iR0 =


S(Rj−1uj)RiJiRi

T − RiJiRi
TS(Rj−1uj), j ≤ i;

O3×3, j > i.

(3.64)

Column selector δi is defined as a column vector of appropriate dimension with only

the ith entry being 1 and others being 0, so that Aδi will result in the ith column of

matrix A.
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3.3.5 MOVA Dynamics in General Robotic Form

It is now possible to assemble the dynamics equation from the three parts (in

Sections 3.3.2, 3.3.3, and 3.3.4) into the standard form dynamics equation widely

used in control and robotics research

MẆ + CW +G = τ, (3.65)

where ω is the MOVA state vector defined in (3.37), M is defined in (3.39) and

C =


MtS(ω) O3×3 O3×N

O3×3 Cωω Cωq

ON×3 Cqω Cqq

 ,

G =

 (MtRIgv)

O3+N

 ,

τ =


Fv

τa + JT
ω0Fv

τm + JT
q0Fv

 = BU,

(3.66)

where

B =


I3 O3×3 O3×3

JT
ω0 I3 O3×3

JT
q0 ON×3 IN

 and U =


Fv

τa

τm

 . (3.67)

3.3.6 Skew-symmetric Property of the Dynamics Equation

Skew-symmetric property of the dynamics equation is related to the passivity

of the system and conservation of energy, and is thus referred as “passivity” property,
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which is an important property for controller development [41]. Let

∆ =
d

dt
M − 2C

=


∆p O3×3 O3×N

O3×3 ∆ωω ∆ωq

ON×3 ∆qω ∆qq

 ,
(3.68)

the skew-symmetric property demands

∆−∆T = 0. (3.69)

Calculating the submatrices one by one, there is

∆p =−MtS(ω),

∆ωω =
1

2

d

dt
Mωω + S(Mωωω)− 1

2

d

dt
Mωω = S(Mωωω),

∆ωq =
1

2

d

dt
Mωq −

1

2

∂Mωωω

∂q
− d

dt
Mωq − S(ω)Mωq

=− 1

2

d

dt
Mωq −

1

2

∂Mωωω

∂q
− d

dt
Mωq − S(ω)Mωq,

∆qω =
1

2

d

dt
MT

ωq + (S(ω)Mωq)
T +

1

2

[
∂(MT

ωωω)

∂q

]T
,

∆qq =
1

2

d

dt
MT

qq −
∂MT

ωqω

∂q
+

[
∂MT

ωqω

∂q

]T
− ∂Mqq q̇

∂q
+

1

2

[
∂Mqq q̇

∂q

]T

=−

∂MT
ωqω

∂q
−

[
∂MT

ωqω

∂q

]T− 1

2

(
∂Mqq q̇

∂q
−
[
∂Mqq q̇

∂q

]T)
.

(3.70)

As ∆p, ∆ωω and ∆qq are skew-symmetric, and ∆ωq = −∆T
qω, the overall matrix ∆

satisfies (3.69).
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3.4 Automation of Dynamics Derivation

Dynamics equation for general MOVA system is compacted into a concise

and widely known form in (3.65), which is suitable for analysis and other derivative

work. However, evaluation of explicit terms of the model is still necessary when

implementing a MOVA simulator or model-based controller, it is necessary to follow

the steps in Sec. 3.3 and find the explicit expression of the dynamics model. One

obstacle in doing this is that number of terms in the explicit dynamics equation

grows super-linearly with respect to the number of rigid bodies in the system. The

size of the MOVA dynamics model expression grows quickly as the number of links, N ,

increases. Even when N is small, for example 2, the complexity of the explicit terms

in the dynamics equation causes manual derivation to be tedious and error-prone.

MOVADYN, a computer program that derives the MOVA dynamics equation

automatically, is developed as a solution for this issue. Auxiliary tools are also cre-

ated to interface MOVADYN with up- and down-stream of design steps, enabling

automated flow of design information from 3D modeling of the system to executable

simulation or controller code. In this section, MOVADYN and auxiliary tools are

briefly introduced and demonstration of usage of these tools are shown with exam-

ples at the end of this section.

3.4.1 MOVADYN Dynamics Derivation Program

MOVADYN is written for general MOVA systems with a serial onboard ma-

nipulator with any number of links connected by revolute joints, as initially as stated

in Sec. 3.2. Given sufficient input to describe the kinematics structure and the mass

distribution of the system, this program is able to perform calculation without human

intervention and find explicit expressions for matrices and vectors M , C, G and τ in
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(3.65). Designed to run in a symbolic calculation software package Mathematica R©, it

is able to process parametric models ( physical parameters input in symbolic form).

Users of MOVADYN have the freedom to choose whether to substitute in exact values

of the physical parameters before or after the dynamics derivation. Using numerical

values will end up with a faster derivation process, but results in less information

revealed in the output, since all the numbers are combined together and it is almost

impossible to see which physical parameters are most influential. On the other hand,

if the symbolic form of parameters are input to MOVADYN, the output dynamics

equation contains the same set of symbols as the input, which enables evaluation of

the impact of certain parameters on the resulting system dynamics equation.

The following set of input parameters are required to run the MOVADYN

program (for 1 ≤ i ≤ N): mass, mi, and moment of inertia at principal axes, Ji, of

each link; dimension information of each link in terms of iri and ili vectors; rotation

axis ui of each joint, and pose of each link relative to the aircraft body when the

manipulator configuration vector q = 0, which is Ri0 = Ri|q=0, assuming the body

frames of the VTOL aircraft and each link are aligned with the principle axis of the

associated rigid body./ Output involves kinematics calculation are also included in

the result for convenience in addition to matrices and vectors that constitute the

dynamics equation (3.65).

Implementation of the MOVADYN program follows the steps of derivation

described in Section 3.2 and 3.3. The entire derivation process is shown in a flow chart

in Fig.3.2. Kinematics related matrices and vectors are first evaluated as preparation

for the dynamics model. Vectors jvij are evaluated by (3.16) using the mass of each

individual links, mi, and ili and iri as in input. Rotation matrices, i−1Ri, representing

transformation between frames attached to adjacent bodies, are calculated using the

rotation axis of the revolute joints ui. Rotation matrices Ri are found by matrix
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Figure 3.2: Flow chart of MOVADYN and its auxiliary program
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multiplication of i−1Ri by (3.3). Then, Fi, the matrix that relates joint velocity

to angular velocity of each body relative to the aircraft body, is derived by (3.8).

Jacobian matrices for body i, Jωi and Jqi, are calculated using (3.28).

Based on matrices Jωi and Jqi found in the kinematics above, parts of the gen-

eral inertial matrices, Mωω, Mωq and Mqq, are calculated by (3.36) and later assembled

into M . Time derivatives of Mωω, Mωq and Mqq and their partial derivatives with

respect to q are found using appropriate symbolic calculus functions in Mathematica,

the symbolic software. Matrices Cωω, Cωq, Cqω and Cqq are calculated by (3.49) and

(3.56), which then leads to construction of C matrix by (3.66). Gravity matrix G and

input vector τ are easy to find following their expression in (3.66).

Kinematics related matrices Jωi and Jqi are often necessary for complete simu-

lation of the MOVA system and are thus included in the derivation result in addition

to matrices and vectors M , C, G and τ in the dynamics equation.

3.4.2 Auxiliary Interfacing Tools

MOVADYN will output human readable dynamics equation expressions on

the screen with input of system physical parameters. However, a MOVA system

design, like other mechanical systems, starts with structural design and finally requires

executable code for implementing dynamics simulation and controller testing. In

order to fit the MOVADYN dynamics derivation program into a practical MOVA

system development scenario, two auxiliary tools are made: i) automatically transfer

information from the mechanical design software to physical parameter input needed

by the MOVADYN program; and ii) output dynamics matrix into ready-to-run code

for dynamics simulation and controller implementation. These tools connect the

upstream and downstream of the dynamics derivation and greatly streamline the
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development process by allowing faster and tighter iteration in the design process.

3.4.2.1 MOVA Code Generation Utility

The MOVADYN program derives the dynamics equation of a MOVA system.

The resulting mathematical expressions are expected to be complex so that trans-

forming them into executable code that can be included in simulation or controller

programs is a tiresome job. For this reason, an automatic code generation utility

is included in MOVADYN. The code generated is output in the form of MATLAB

functions and Simulink models which are widely used in both academics and industry

and can be later translated into other languages or directly into executable binary

using tools provided by Mathworks. The code generation work flow is illustrated in

Fig. 3.3. The code generation utility converts Mathematica expressions into code in

text form that is recognized by the MATLAB interpreter and then inserts the code

inside customized template files so that the resulting files are complete MATLAB

functions or Simulink model files. These files include MATLAB functions that eval-

uate dynamics and kinematics of the corresponding MOVA system and a script that

loads and saves system parameters. In addition, a Simulink model that contains a

monolithic block that represents the MOVA system is also generated. This block

invokes the dynamics and kinematics for simulation of the MOVA system plant and

provides a convenient encapsulation with input and output ports defined so that it

can be integrated into a higher level system.

The code generation utility enables any change in design of the MOVA sys-

tem to be propagated, with minimal manual intervention, to executable code which

can used for simulation and controller implementation. It basically automates the

downstream use of the MOVADYN program.
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Figure 3.3: Illustration of MOVADYN code generation facility

3.4.2.2 Physical Parameter Exporter

The parameter exporter is another auxiliary program of MOVADYN. It en-

ables the upstream automation of MOVADYN by extracting physical parameters from

a MOVA system mechanical design and puts them into a script that calls MOVA-

DYN to perform derivation of dynamics and later generation of executable code. This

utility supports Autodesk Inventor, one of the leading 3D mechanical design tools, at

present, and is expected to support other software in the future. Inertial and dimen-

sional parameters of the designed mechanical system as well as information about

kinematics constraint that represents joints between links can be extracted with this

exporter. The outcome is summarized into a script file acceptable by Mathematica,

which is also the symbolic calculation software that MOVADYN and code generator

requires. This way, a top level script can call the generated parameter script file,

MOVADYN, and the code generator consecutively to propagate design information

updates from the source, which is in the 3D mechanical model, into code ready to be

92



integrated into a dynamics simulator or a model-based controller.

3.4.3 Usage and Example

The software is provided as open source and anyone can download these tools

from [42] to use with a MOVA project or other relevant projects. It is licensed under

a Creative Commons Attribution 4.0 International License [43]. Modifications and

improvement of these tools are welcome as long as the original author and copyright

information are retained.

MOVADYN and the accompanying code generation utility are packed in a

single Mathematica package, called “MOVADynamics”. The code generation utility

requires a third-party Mathematica package named “ToMatlab” by Harri Ojanen,

which is available from Wolfram Library Archive [44]. Instructions for installation

of the MOVADYN package in Mathematica can be accessed via the online help file.

After the package is installed, the following code imports the package so its content

can be used:

1 << MOVADynamics‘;

MOVADYN, which is the core dynamics derivation functionality, can be invoked by

the following line,

1 Dyn = DeriveMovaDynamics[Nlink, Ms, Is, ls, rs, Rs, vs];

where variables Nlink, Ms, Is, ls, rs, Rs and vs are N , mi, Ji,
ili,

iri,
i−1Ri|q=0, and

ui, respectively. Per the conventions of the symbolic algebra software being used,

parameters of the same nature but for different links are grouped into an ordered

list using curly brackets. These parameters are passed into the derivation program

DeriveMovaDynamics. Results of the dynamics derivation are retrieved from the
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Table 3.2: Names of matrices and vectors in MOVADYN output
Name Corresponding symbol
Nlink N
M M
C C
T Ri

Gb gv
B B
FwdKin pi

returned value Dyn. For example, Dyn[“C”] contains the C matrix in MOVA dynam-

ics equation. A list of the variable name and the corresponding matrices or vectors

is shown in Table 3.2.

The MOVA code generation utility substitutes placeholders in the template

files with the code embodies the kinematics and dynamics equations. Thus, in order

for code generation utility to function properly, a set of custom template files are to

be provided. Both the kinematics and dynamics template files have three parts, the

preamble, placeholder, and epilogue. The preamble contains the function definition,

description of the function and extra statements that convert the form of the input

parameters so that it can be used in the calculations. The placeholder in the dynamics

template file is a line with “%//[AUTO GEN DYNAMICS]”. It will be replaced by

the code that represents the corresponding equations, in which the following variables

are referenced: “qd1”, “qd2”,. . . “qdN” which represents q̇i (1 < i < N); “q”, a vector

that corresponds to q; and “w0x”, “w0y”, “w0z” which are elements of the body

angular velocity “ω”. The code that replaces the place holder uses these variables

and the physical parameters of the system to calculate M , C, G and B matrices. The

place holder section of kinematics template files are laid out similarly. The differences

are that the placeholder is a single line “%//[AUTO GEN KINEMATICS]” and for

the a single kinematics template functions, two MATLAB functions are generated,
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one yields the rotation matrix of each body in the inertial frame and the other outputs

the center of mass of each body relative to the inertial origin. In the epilog section,

additional code can be placed for post-processing purposes, e.g. Ẇ can be calculated

with the matrices and input vector in the dynamics template function.

MATLAB functions that relate to accessing the physical parameters are gener-

ated at the same time. There are three of these functions, a parameter pack function,

a parameter unpack function and a parameter definition function. The pack and

unpack functions cooperate with the kinematics and dynamics functions to fulfill the

calculation and do not need further editing after being generated. The parameter

definition function will define the actual numerical values for all the symbolic pa-

rameters used during MOVADYN derivation. The generated definition function will

contain every parameter that needs to be specified but assign them with zeros. The

user have to change them to the actual value in SI units, e.g. the mass is defined with

unit of kilogram and length in meter.

In addition, Simulink blocks of the MOVA system and a few helper m-files for

accessing the parameters are also be generated by the code generator. The generated

Simulink block conveniently added into a higher level Simulink diagram with input

signal and logging facility to complete a simulation test bench. The following code

snippet demonstrate the syntax used for code generation: “Id” is a string that contains

a unique name. This name will be postfix to all generated MATLAB function names

as to avoid name collision; “TmplDir” is the directory that contains template files;

“OutDir” is the directory where the generated files are written be and “Dyn” is the

output of the MOVADYN dynamics derivation program.

1 (∗ Write out Dynamics and Kinematics MATLAB functions ∗)

2 WriteMovaDynamics[Id, TmplDir, OutDir, Dyn];

3 (∗ Write out Parameter MATLAB functions ∗)
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4 WriteMovaParameterFunction[Id, OutDir, Dyn];

5 (∗ Write out Simulink block ∗)

6 WriteMovaSimulinkBlock[Id, TmplDir, OutDir];

An complete example of using MOVADYN program to derive the dynamics

equation of the planar MOVA system described in Chapter 2 is given in Appendix

A.1.

The physical parameter exporter is provided as a macro (named “MOVA-

DynamicsExport”) which can be loaded in Autodesk Inventor. In order to use the

exporter, a 3D model of the designed MOVA system have to be built. The 3D model

should be present as a part assembly with aircraft body and each link being modeled

as a “part”. Revolute joints that connects links and the aircraft body in serial have

to be modelled with the “Insert” constraint. Additional constraints can be added in

order to place the links into a zero q configuration (the relative pose when q = 0).

To generate the Mathematica script that contains extracted physical parameters,

execute the macro with the “part” that represent aircraft body being selected (high-

lighted). A file will be generated in the same directory as the 3D model assembly file

with “ mdef” as postfix in file name. An example of using parameter exporter is in

Appendix A.1.

3.5 Validation of Derived Dynamics Equation

In this section, results from the MOVADYN automatic dynamics equation

derivation tool are verified Besides rigorously checking derivation steps in Sec. 3.2

and Sec. 3.3 and the fidelity of the automatic derivation program implementation,

two distinct forms of cross-validation procedures are performed to ensure the cor-

rectness of the MOVADYN output. For a planar MOVA system, the symbolic form
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of derivation output is directly compared with manually derived dynamics equation

to show equivalence between the two. For a more sophisticated MOVA system in

3D space, validation is conducted by comparing the responses of two simulation of

the same MOVA system. One simulation is constructed using dynamics derivation

output of MOVADYN, and the other simulation is based on a off-the-shelf numerical

dynamics simulator.

3.5.1 Cross-validation with Manual Derived Dynamics Equa-

tions

First, the resulting dynamics model from MOVADYN is compared with man-

ually derived dynamics equation of the same system. MOVA systems with multi-link

onboard manipulator in 3D space will result in intricate dynamics equations which

renders manually derivation impractical. For such system, it is very time consuming

to derive dynamics by hand and conceding that it is accomplished the correctness of

the steps in manual derivation will be equivalently questionable due to the complex-

ity. Thus, the planar MOVA system described in Chap. 2 is chosen. Hand-derived

dynamics of the planar MOVA system is shown in equations (2.21), (2.22), and (2.25)

in Sec. 2.3. The script that derives dynamics for the planar MOVA using MOVADYN

program is listed in Sec. 3.4.3.

The derivation result of MOVADYN program needs further processing before

comparing to (2.21), (2.22), and (2.25) because they are based on slightly different

setup. MOVADYN program is designed for MOVA system in 3D space and results

in dynamics equation written in body frame, however, the planar MOVA system is

constrained in 2D space and does not have dynamics for translation and rotation in

the third dimension and the manually derived dynamics equation are described in
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the inertial frame. In order for a valid comparison, the result from MOVADYN is

transformed into the inertial frame and variables are replaced to fit those used in

Chap. 2.

First, projecting the output of MOVADYN into a planar world in the x-z

plane, components corresponding to y-axis of ṗc, x- and z-axis of ω do not exist. The

state variable becomes

W ′ =

[
ṗCx ṗCz ωy q̇1

]T
(3.71)

with the corresponding dynamics equation being

M ′ d

dt
W ′ + C ′W ′ +G′ = τ ′. (3.72)

Rows and columns 2,4 and 6 in M , C, G, τ are deleted and result in M ′, C ′, G′, τ ′,

which are explicitly written as

M ′ =



m0 +m1 0 0 0

0 m0 +m1 0 0

0 0 J0 + J1 +
l21m0m1

4(m0+m1)
J1 +

l21m0m1

4(m0+m1)

0 0 J1 +
l21m0m1

4(m0+m1)
J1 +

l21m0m1

4(m0+m1)


(3.73)

C ′ =



0 (m0 +m1)ωy 0 0

−(m0 +m1)ωy 0 0 0

0 0 0 0

0 0 0 0


(3.74)

G′ = RT

[
0 (m0 +m1)g 0 0

]T
(3.75)
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τ ′ =



0 0 0

1 0 0

l1m1 sin q1
2(m0+m1)

1 0

l1m1 sin q1
2(m0+m1)

0 1




F

τ ′a

τ ′m

 . (3.76)

The first two rows of (3.72) are extracted and form the translational equation

mT
d

dt
ṗC2 +mTS(ωy)ṗC2 +mTR

Tgv = Fv (3.77)

where ṗC2 = [ṗCx, ṗCz]
T, S(ωy) ∈ so(2) is skew-symmetric matrix in 2D space, R ∈

SO(2) represents a transformation from the aircraft body frame to the inertial frame,

Fv = [0, F ]T, and gv = [0, g]T. Since ṗC2 is a vector in the aircraft body frame, there

is

d

dt
ṗC2 =

d

dt

(
RTI ṗC2

)
= −S(ωy)R

TI ṗC2 +RTI p̈C2

= −S(ωy)ṗC2 +RTI p̈C2.

(3.78)

Substituting (3.78) into (3.77), and left-multiplying both sides by R, yields

mT
I p̈C2 +mTgv = RFv, (3.79)

which is equivalent to (2.21). Subtracting the fourth row of (3.72) from the third

row, yields

J0ω̇y = τ ′a − τ ′m. (3.80)
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Taking the fourth row out of (3.72), results in

(
J1 +

l21m0m1

4mT

)
(ωy + q̇1) =

l1m1 sin q1
2mT

F + τ ′m. (3.81)

Comparing the assignment of frames and definitions of variables in MOVADYN and

the manual derivation in Chapter 2, there are

I p̈C2 = p̈vg

τ ′a = −τ0,

τ ′m = −τ1,

ωy = −θ̇0,

q1 = −θ1 + π/2.

(3.82)

Thus, (3.79) is equivalent to

mT p̈vg +mTgv =

 − sin θ1

cos θ1

F, (3.83)

(3.80) can be rewritten as

J0θ̈0 = τ0 − τ1, (3.84)

and (3.81) can be transformed into

J̄1θ̈01 = τ1 −
l1m1 cos θ1

2mT

F, (3.85)

using the trigonometry identity sin q1 = sin(−θ1 + π/2) = cos θ1. It is concluded that

the dynamics equation output from MOVADYN is identical to that from manual

algebraic derivation because (3.83), (3.84) and (3.85) are identical to (2.21), (2.22)
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and (2.25), respectively.

3.5.2 Cross-validation with Numerical Dynamics Simulator

Another validation is performed via comparing the simulation result of the

derived dynamics equation and that of the same system with a numerical dynam-

ics simulator under identical excitation. Numerical multi-body dynamics simulation

software is used to provide ground truth. These software packages take kinematics

constraints and physical properties of the system as input and generate a numerical

representation of the dynamics system behavior under a certain initial condition and

input in the form of forces and torques.

The elements of the validation test are illustrated in Fig. 3.4. The test input

signal is fed into two different simulations, first of which is based on a numerical

dynamics simulation (I); the second is based on dynamics equation generated from

MOVADYN (II). By comparing the output of both simulations, fidelity of the derived

model can be evaluated. SimMechanics R© toolbox of Simulink R© was used as the

numerical dynamics simulator [21]. Position and pose of the end-effector in the inertial

frame is chosen as the output of the simulation. A rubric of comparison includes two

scalars: position error, which is the norm of end-effector position vector difference, and

the pose error, which is defined as the minimum rotation angle that is able to abridge

the discrepancy between pose of the end-effector in the two simulations. Small values

for both scalars after a sufficient period of simulation time indicates the closeness of

the simulation outputs, which signifies the correctness of the MOVADYN derivation

result. Note that although it is impossible to cover every input case and finally show

the correctness of the derivation result, conclusive results from a few distinct input

sequences will greatly improve the confidence in the MOVADYN output.
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Numerical dynamics 

simulation (I) 

Simulation using derived 

dynamics equation (II) 

Test input signal 
Output 

comparison 

Figure 3.4: Block diagram of dynamics validation test-bed.

The MOVA system used for validation has a 2DOF onboard manipulator (see

Fig. 3.6). The VTOL aircraft has mass m0 and moment of inertia J0. The first and

the second joints are co-located at the center of mass of the VTOL, leaving the first

link of the manipulator massless. Rotation axis of Joint 1 is aligned with the y-axis

of the VTOL aircraft and the rotation axis of Joint 2 is in line with x-axis of frame

B1. The second link of the manipulator is modeled as a long and thin cylinder with

uniform density with mass and moment of inertia as ma and J0, respectively. The

length of this link is noted as la. Pose of the manipulator link is pointing upward if

manipulator configuration vector q = [0, 0]T [rad]. Physical parameters values of this

MOVA system are listed in Table 3.3. Note that the mass and moment of inertia of

the VTOL aircraft body and the onboard manipulator are comparable.

The entire simulation is scaffolded in Simulink. The SimMechanics simulation

is one sub-system of the top level simulation diagram, and is shown in Fig. 3.5. The

sub-system representing the simulation using MOVADYN is directly generated from

the MOVADYN and its accessory program.

Among many input signal test cases simulated, results from three represen-

tative test case are presented. The initial condition is set as pc(0) = [0, 0]T [m],

R0(0) = I3 and q(0) = [π, 0]T [rad], i.e. the CM of the entire system is placed at the

origin, and VTOL aircraft remains level with the manipulator link pointing down,
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Table 3.3: Physical Parameters of the 3D MOVA system used for validation.
Parameter Value

m0 2 kg
J0 diag( 1

6
,1
6
,1
3
) kg ·m2

ma 1 kg
Ja diag( 1

48
, 1
48

, 1
800

) kg ·m2

la 0.5 m

la 

x 

y 

z m0, J0 

ma, Ja 

end-effector 

Joint 1 

Joint 2 

Figure 3.6: Illustration of a 3D MOVA system with 2DOF onboard manipulator.
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Figure 3.7: Plot of dynamics validation result with random input signals.

except for third case q(0) = [π
2
, 0]T [rad].

In the first test case, random noise signals were used as the input test signals.

All three input signals, F (t), τa(t), and τm(t), are piece-wise constant with values

determined by the corresponding discrete time signals, F [n], τa[n], and τm[n], with

sample time Ts = 0.1 sec,


F (t)

τa(t)

τm(t)

 =


F [n]

τa[n]

τm[n]

 (nTs ≤ t < (n+ 1)Ts) . (3.86)

Discrete time signals F [n] and elements of τa[n] and τm[n] follow uniform distributions

with zero means, F [n] ∼ U(0, 50) N, τai[n] ∼ U(−1, 1) and τmj[n] ∼ U(−0.2, 0.2),

where τai and τmj are elements of τa and τm, respectively, 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.

The simulation was run for 10 secs and the result is shown in Fig. 3.7. The position

error is on the order of of 1×10−9 [m] and the pose error is smaller than 1×10−8 [rad],

which is the smallest angle that can be identified by the minimum rotation angle

algorithm.
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Figure 3.8: Plot of dynamics validation result with the sine wave test input signal.

In the second case, sinusoidal input signals are fed into the simulations. The

input signals, F (t), τa(t), and τm(t), are generated according to

F (t) = mTg + 5 sinπt N

τa(t) =


0.1 sinπt

0.5 sin(2πt+ 1
2
π)

−0.5 sin(πt+ 1
3
π)

N ·m

τm(t) =

 0.5 sin(2πt+ 1
2
π)

0.1 sinπt

N ·m

(3.87)

The simulation was run for 10 sec and the simulation error is shown in 3.8. As the

plot of result shows, the position error remains small on the order of 1× 10−9 m and

the pose error is smaller than the minimal threshold (1×10−8 rad) for the conversion

algorithm to detect.
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Figure 3.9: Plot of dynamics validation result with the constant test input signal.

In the third case, the input signals are kept constant. Input signals, τa(t),

and τm(t) are set to zero and input F (t) = mTg [N] perfectly balances the gravity

force. Thus, the center of mass of the entire system is expected remain at the same

location. The manipulator link oscillates with constant amplitude like a pendulum

because the simulation starts with q = [π
2
, 0]T [rad], a condition away from the stable

equilibrium point, and the joint natural damping is zero. The simulation was run

for 10 sec and the simulation error shown in Fig. 3.9. Coordinate of the end-effector,

pE, from the MOVADYN model simulation is shown in Fig. 3.10, in which constant

amplitude oscillation in both x and z coordinates is observed. The coupled movement

of the VTOL in the x-direction in response to arm motions highlights the need for

control of the full-order, coupled MOVA system.

From all three validation cases, simulation errors and relative simulation er-

rors remain small, which indicates that the derived dynamic models are close to the

assumed ground truth and the two derived model are close to each other. Although
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Figure 3.10: Plot of end-effector position pE from MOVADYN derived model with
the constant test input signal.

non-zero, the error is small enough to conclude that the derived models capture the

system behavior and are suitable for the following model-based controller design. The

constant input case also shows the system heuristically behaves as expected.

3.6 Conclusion

In summation, a framework for systematic derivation of the general MOVA

system dynamics model was demonstrated. Derivation steps are presented purely

with matrices and vectors to ensure conciseness of the intermediate and final results.

The resulting dynamics equation is represented abstractly in the standard robotic

form and is proved to have the skew-symmetric property, which is a useful prop-

erty for control derivation. A program called MOVADYN was developed to achieve

automatic derivation of the MOVA system dynamics for a specific aircraft and ma-

nipulator. Accessory tools are also designed to accomplish a tool chain that takes a
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3D mechanical design file from Autodesk Inventor and generates code ready for use in

MATLAB and Simulink for dynamics simulation or controller implementation. The

dynamics equations derived using MOVADYN were validated through two different

approaches. A previous manual algebraic derivation result in closed-form for a planar

MOVA system was compared with the output of MOVADYN.to show term-by-term

correctness of the MOVADYN result. For a more complicated MOVA system in 3D

space, numerical simulation of dynamics equations generated from MOVADYN and

the result of numerical dynamics simulator (SimMechanics) were compared. The

results suggests correctness of the dynamics equation derived from the MOVADYN

program and thus the validity of the dynamics derivation approach proposed. It is

believed that the systematic derivation approach presented here will facilitate the

further development and control of integrated manipulator + VTOL systems.
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Chapter 4

Trajectory Tracking Control of the

MOVA System

4.1 Introduction

The MOVA system is a composite system of a VTOL aircraft and onboard ma-

nipulator. It is designed to be treated as a manipulator with unrestrained workspace;

as such, the low-level control details should be transparent to end users who care about

performing desired application tasks at an abstracted level. A trajectory tracking con-

troller for the end-effector of the MOVA allows the end-effector to follow a reference

position and orientation trajectory, predefined or generated online, and will serve as

a solid inner-loop for higher-level task control. That is, the low-level control becomes

a platform for further development of MOVA system application.

Previously, it was concluded that controlling the MOVA system using sepa-

rately designed controllers for aircraft and manipulator will likely to result in degraded

performance or even instability, which was demonstrated by previous planar MOVA

test-bed experiments in Sec. 2.5.2. Thus, for the designing of this full 3D MOVA
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trajectory tracking controller, the integrated control strategy promulgated in control-

ling, the planar MOVA system in Sec.2.4 will be pursued. However, it is not trivial to

extend the controller for the planar case to a general 3D MOVA system: the dynamics

of the general MOVA system have been shown to be much more intricate(Chap. 3)

than that of the planar system, which is primarily attributable to increased number

of degrees-of-freedom in three-dimensional system.

The mathematical model of the general MOVA system dynamics performed in

Chap. 3 reveals th salient characteristics of the multi-body dynamics of the MOVA

system. Albeit the dynamics are quite complex, an obvious feature is that the 3DOF

dynamics of position of overall MOVA system center of mass is underactuated with

one independent control input F , which represents the body-fixed thrust force vector

from the rotors (or other mean of force generator) mounted on the VTOL aircraft.

Linear analysis of this portion of the dynamics will indicate that the system is not

controllable; however, a broader perspective suggests that the position can be con-

trolled via rotation of the aircraft body, which re-orients the thrust force vector.

Back-stepping control design technique, as demonstrated in controllers designed for

VTOL aircraft, is suitable for addressing this sort of dynamics structure [4, 29, 5].

Another property that is worth noting in the dynamics equation of the general MOVA

system is that the dynamics of center of mass of the entire MOVA and the rest, which

includes rotation dynamics of aircraft body and that of links of onboard manipulator,

are largely decoupled due to appropriate choice of system state collection. This opens

up the possibility for approaching the controller design in two steps: first applying

back-stepping control design technique to the underactuated translational dynamics

of MOVA system center of mass, and then control the rest of dynamics involving

rotation of the VTOL aircraft and manipulator using a separate equation. Moreover,

rotation in three dimensional space is a nonholonomic, and there does not exist a
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trivial simplification as was used in the 2D case (where the rotation angle was de-

scribed by a scalar) without introduction singularity. Such system requires special

treatment in controller design since no time-invariant smooth controller is able to

achieve stability (Brockett’s condition for stabilization) [45].

4.1.1 Previous Work

Back-stepping technique is a controller design method suitable for systems

exhibiting strict-feedback. By systematically and recursively applying back-stepping,

each layer of dynamics of a system is stabilized until the outermost layer. This

technique has been successfully adopted in designing of VTOL aircraft controllers and

our previous attempt for a planar MOVA system. Lee et al. designed an adaptive

tracking controller with full state feedback for underactuated VTOL aircraft using

integrator back-stepping approach and demonstrated validity of the design using both

Lyapunov-type stability analysis and numerical simulation [4]. Bouabdallah et al.

presented their results for quadrotor control with back-stepping and sliding-mode

controller [29] and showed that back-stepping controller yields a more smooth control

input than that from the sliding-mode controller. The previous study about the planar

MOVA system end-effector tracking control demonstrated GUUB stability result with

a controller designed with back-stepping technique [46].

Quaternion based controller derivation has been used in in satellite attitude

control in order to avoid singularity issues inherited from Eular angle representation

of the dynamics. Work of Joshi et al. presented a robust controller using quaternion

derivation that achieves three-axis attitude stabilization of a rigid spacecraft [32].

This controller is suitable for large-angle maneuvers of satellites. It is singularity free

derivation and mathematically proven to possess global asymptotic stability (GAS).
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Fragopoulos and Innocenti investigated the stability issues of a quaternion based 3D

attitude controller in [33], in which they adopted a discontinuous Lyapunov function

to obtain GAS result for an inherently discontinuous control law. Kristiansen et

al. also demonstrated an attitude controller using quaternion derivation for micro-

satellite applications in [34, 35]. It employed an integrator backstepping derivation

and obtained a controller that achieved asymptotical stability. Mayhew, Sanfelice

and Teel summarized previous results in quaternion-based attitude control research

and proposed a hybrid controller that introduces hysterisis to achieve robust attitude

tracking [47].

4.1.2 Overview of Controller

A unified end-effector trajectory tracking controller is designed for use in the

general MOVA system in three-dimensional space. GUUB stability of the proposed

controller is proven using Lyapunov-type analysis. Numerical simulations of the pro-

posed controller is also carried out to demonstrate its performance.

The control goal of achieving end-effector translational and rotational trajec-

tory tracking is divided into tracking of the center of mass trajectory while maintain-

ing the tracking of end-effector orientation. A trajectory of the center of mass of the

entire MOVA system is generated from the reference trajectory of the end-effector.

Stabilization of the translational dynamics of the center of mass is achieved

through specifying an appropriate thrust force. Since the translational dynamics are

underactuated, shifting part of the actuation burden in to the rotational dynamics

via backstepping control design framework. For reference trajectory tracking by the

end-effector, quaternion based derivation is used in order to avoid singularity issues.

Lyapunov-type stability analysis is performed on the proposed controller and Globally
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Uniformly Ultimately Bounded (GUUB) stability is achieved. Simulation testing of

the proposed controller is carried out in Simulink in order to demonstrate performance

of the controller designed. In addition to plots of important signals, a 3D virtual

reality scene is constructed to offer an animated intuitive view of system behavior.

4.2 Controller Design

This section captures the end-effector trajectory tracking controller design

steps for the MOVA system in 3D space. A reference trajectory, both translational

and rotational, is assumed to have adequate smoothness as derivatives of the trajec-

tory are used in controller synthesis and implementation. The design process is per-

formed on the 3D MOVA system with 2DOF onboard manipulator shown in Sec. 3.5.2

as this it has the minimum number of joints to achieve the trajectory tracking goal.

However, the derivation could be generalized to systems with higher number of joints

in the onboard manipulator. Additional joints offers opportunity for optimizing the

movement of the VTOL aircraft and onboard manipulator joints under certain appli-

cation specific criteria, which is left out of the discussion in this chapter.

4.2.1 Overview of Design Approach

The procedure for designing the MOVA controller is summarized as follows:

first, position and orientation reference trajectories are used for calculation of a ref-

erence trajectory of the entire system center of mass using the MOVA kinematics.

Then, this trajectory is used as the objective of a back-stepping controller design,

which yields thrust force control input and desired angular velocity of the VTOL

aircraft body. Together with the reference orientation trajectory of the end-effector,

desired joint velocity is found using quaternion based rotation error system. Both the
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desired aircraft body angular velocity and desired joint velocity are combined into

a composite vector which is used for calculation of appropriate torque control effort

based on the rotation dynamics. All resulting closed-loop dynamics are captured in

a Lyapunov function which enables stability analysis of the proposed controller as a

single entity. Unwanted cross terms reflected from final Lyapunov function deriva-

tive which are resulted from staged derivation are cancelled out. Note that that

multi-step derivation for this controller is fundamentally different from the control

strategy of separate control the VTOL aircraft and manipulator because here the

derived dynamics already infer the dynamic interaction between the VTOL aircraft

and the manipulator, and a controller designed based on the coupled model, though

accomplished in multiple steps, is able to compensate for the interaction.

4.2.2 Generation of System Center of Mass Translational

Trajectory

The reference trajectory consists of two parts, the reference trajectory of end-

effector position, IpEr(t), and that of the end-effector pose, IREr(t), both are assumed

to be sufficiently smooth. It is also assumed that IpEr(t) and IREr(t) can be used to

generate a reference trajectory for the position of point C, the center of mass of the

entire MOVA system, which is denoted pCr(t).

For the MOVA system with two-link onboard manipulator described in Sec. 3.5.2,

pCr(t) can be calculated from reference trajectory IpEr(t) and IREr(t) using the kine-

matics relationship in (3.10). First, the end-effector position

IpE = IpC + IR0
0pE/C

= IpC + IRE
ER0

0pE/C ,

(4.1)
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where

lVM , ER0
0pE/C = EpE/C =

(mT +m0)la
2mT

[0, 0, 1]T (4.2)

is a constant vector. Thus, there is

IpC = IpE − IRElVM , (4.3)

from which the reference trajectory of point C can be calculated as

IpCr(t) = IpEr(t)− IREr(t)lVM . (4.4)

This one-to-one mapping from IpEr to IpCr with IREr specifically means that IpC

tracking a trajectory of IpCr(t) is equivalent to IpE tracking IpEr.

4.2.3 Backstepping Control of System Center of Mass Posi-

tion

Backstepping technique is utilized to facilitate control of the underactuated

dynamics of position of point C, i.e. the system center of mass, and force IpC(t) to

track the reference trajectory IpCr(t).

The general MOVA dynamics in (3.65) is split into two equations, one describ-

ing the dynamics of pC

mtI3p̈c +mtI3S(ω)ṗc +RTmtgv = Fv (4.5)

and the other describing dynamics of ω and q

MRγ̇ + CRγ = τam +BFFv (4.6)
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where

τam = [τTa , τ
T
m]T,

Fv = [0 0 F ]T,

γ , [ωT, q̇T]T,

BF =

[
Jω0Jq0

]T

MR =

 Mωω Mωq

Mωq Mqq

 ,
CR =

 Cωω Cωq

Cωq Cqq

 .

(4.7)

The backstepping controller design approach will be applied to (4.5) in order to make

it track the reference trajectory. First, the position error ep is defined intuitively in

frame B0 as

ep , RT
(
IpC − IpCr

)
. (4.8)

Similarly, the velocity error ev is defined as

ev ,R
T
(
I ṗC − I ṗCr

)
=0ṗC −RTI ṗCr.

(4.9)

The overall filtered tracking error r is a linear combination of ep, er and a constant

vector δ

r , αep + ev + δ, (4.10)

where δ = [0, 0, δ3]
T is added in the effort to connect the VTOL aircraft body rotation

dynamics with the pC dynamics and δ3, α ∈ R+ are two control gains.
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Towards building the error system dynamics, derivative is taken on ep, ev and

r with respect to time. Time derivative of ep is

ėp = −S(ω)RT
(
IpC − IpCr +RT

(
I ṗC − I ṗCr

))
= −S(ω)ep + ev.

(4.11)

Taking the derivative of ev and substituting (4.5) for 0p̈c yields

ėv = 0p̈c + S(ω)RTI ṗCr −RTI p̈Cr

= m−1t Fv −RT
(
gv + I p̈Cr

)
− S(ω)ev.

(4.12)

The the derivative ṙ is found by substituting ėp and ėv into ṙ = αėp + ėv,

ṙ = −αS(ω)ep + αev − S(ω)ev +m−1t Fv −RT
(
gv + I p̈Cr

)
. (4.13)

From definition of r, αep = r − ev − δ, which leads to

−αS(ω)ep = −S(ω)r + S(ω)ev + S(ω)δ. (4.14)

Substituting (4.14) for −αS(ω)ep in (4.13) yields

ṙ = −S(ω)r + αev +m−1t + S(w)δ −RT
(
gv
I p̈Cr

)
. (4.15)

Grouping terms that do not belong to the autonomy portion of the pC dynamics
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reveals terms that can be seem as input at this stage

ṙ = −S(ω)r + αev −RT
(
gv + I p̈Cr

)
+

 −S(δ)


0

0

m−1t



 ω

F


= −S(ω)r + ξ2 +Bµµ,

(4.16)

where ξ2 = αev − RT
(
gv + I p̈Cr

)
, intermediate input vector µ = [ωT, F ]T ∈ R4 and

intermediate input matrix Bµ ∈ R3×4 is defined as

Bµ =


0 δ3 0 0

−δ3 0 0 0

0 0 0 m−1t

 . (4.17)

Since it is known that ω has its own dynamics, described by (4.6), it is not appropriate

to specify µ arbitrarily as if it is a real input to the system. However, a desired

intermediate input, µd = [ωT
d , Fd]

T, that may stabilize the system can be found and

the discrepancy between the desired and real intermediate input vector is defined as

µe = µ− µd =

 ωe

Fe

 . (4.18)

The desired input µd is found by introducing stabilizing terms, a few terms motivated

by the stability proof, and canceling terms that adversely affect of stability to yield

µd = B†µ (−krr − ξ2 − ep) +
(
I4 −B†µBµ

)
µa, (4.19)

where kr = diag ([kr1, kr2, kr3]), kr1, kr2, kr3 ∈ R+, is a control gain matrix, I4 ∈ R4 is
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an identity matrix, µa is an extra input term that can be freely designed in order to

fit later requirements imposed during the stability analysis, and B†µ is right pseudo

inverse of Bµ, which is expanded as

B†µ = BT
µ

(
BµB

T
µ

)−1

=


0 −δ3 0 0

δ3 0 0 0

0 0 0 mt

 .
(4.20)

Thus, the matrices I4 − B†µBµ = diag ([0, 0, 1, 0]), which means
(
I4 −B†µBµ

)
µa =

[0, 0, µa3, 0]T assuming µa = [µa1, µa3, µa3, µa4]
T. Notice that this matrix maps µa into

the nullspace of Bµ so that design of µa can be postponed as it will have no effect on

the dynamics of r.

Substituting µd from (4.19) into the r-dynamics in (4.16) via µ = µe + µd

yields the closed-loop dynamics of r,

ṙ = −krr − S(ω)r − ep − S(δ)ωe, (4.21)

where Bµµe = −S(δ)ωe because input F is a real input and F ≡ Fd which leads to

Fe ≡ 0. The term S(δ)ωe is regarded as a disturbance to this part of the system

dynamics and |S(δ)ωe| should be minimized in a secondary controller.

4.2.4 Control of Rotation Dynamics of Aircraft and Manip-

ulator

Dynamics of state vector γ in (4.6) describes composite rotation dynamics of

the VTOL aircraft and that of the onboard manipulator. In (4.19), the desired VTOL
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aircraft body angular velocity is specified as a part of µd. The desired joint velocity q̇d

is assumed to be known at this point in derivation, the generation of q̇d from system

state and reference trajectory REr(t) is covered in next section.

The joint velocity error is defined as

q̇e , q̇ − q̇d. (4.22)

Concatenating q̇d and ωd, γd ∈ R3+N is defined as

γd ,

 ωd

q̇d

 . (4.23)

The error of the composite vector, γe, is thus

γe = γ − γd =

 ωe

q̇e

 , (4.24)

which provides another representation of γ in the form

γ = γe + γd. (4.25)

Substituting (4.25) into (4.6), yields

MRγ̇e +MRγ̇d + CRγ = τam +BFFv, (4.26)
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which is reorganized into

MRγ̇e = τam +BFFv − CRγ −MRγ̇d

= τam − ξ3,
(4.27)

where short-hand notation ξ3 = −BFFv + CRγ +MRγ̇d was introduced.

Control of dynamics of error γe in (4.27) is designed for τam as

τam = −kγγe + ξ3 +

 S(δ)r

0

+ τc, (4.28)

where kγ = diag([kγ1, kγ2, kγ3, kγ4, kγ5]), (kγi ∈ R+, 1 ≤ i ≤ 5, is a control gain matrix

and τc ∈ R5 is a cross term added based on the ensuing stability proof after joint

velocity vector vector is introduced. The close-loop dynamics of γe is thus

MRγe = −kγγe − CRγe +

 S(δ)r

0

+ τc. (4.29)

4.2.5 Desired Joint Velocity of End-effector

Explicit description of the desired joint velocity q̇d is so far missing in the

development of the rotation dynamics control law, it will be provided in this section.

The desired joint velocity developed using a quaternion representation of rotation

in order to avoid singularities in the controller. To prevent overloading the symbol

q, which has already been assigned to the onboard manipulator joint configuration

vector, Q is used to denote a quaternion (rather than following the more popular

choice q). A quaternion Q ∈ R4 can be separated into a scalar part η and a vector
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part ε ∈ R3:

Q ,

 η

ε


T

. (4.30)

By definition, ‖Q‖ = 1 and Q ≡ −Q when Q is used to represent a rotation in

three-dimensional space. Disregarding the sign ambiguity, it is easy to form a map-

ping between a rotation matrix R, also called the directional cosine matrix, to Q. To

maintain compatibility with the previous dynamics derivation for the MOVA system

that uses the rotation matrix, a quaternion Q will be denoted using the same deco-

ration system, i.e. rotation matrix bRa is equivalent to quaternion bQa, in terms of

the rotation they denote, where a is the placeholder for the frame of origination and

b is the destination. Rotation dynamics described using rotation matrix is

d

dt
bRa = S(bωa/b)

bRa (4.31)

which represented using quaternion is

d

dt
aQb =

 η̇

ε̇

 =

 −1
2
εTaωa/b

1
2

[ηI3 + S(ε)] aωa/b

 =
1

2

 −εT

ηI3 + S(ε)

 bωa/b, (4.32)

while aQb = [η, εT]T.

Let a rotation matrix R denote the current orientation and Rr to denote the

reference orientation, and the error between the two, Rerr, satisfies RrRerr = R, which

leads to Rerr = RT
rR. In the quaternion representation, where Q is equivalent to R

and Qr is equivalent to Rr, the error Q̃ is

Q̃ = Q̄r ⊗Q, (4.33)
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where Q̄ = [η,−εT]T is the quaternion conjugate of Q = [η, εT]T (note that Q̄⊗Q =

Q⊗ Q̄ = QI , QI = [1, 0, 0, 0]T is the identity quaternion), and the operator ⊗ denotes

a quaternion product. Expanding the quaternion product, Q̃ is

Q̃ =

 η̃

ε̃

 =

 ηrη + εTr η

ηεr + ηrε− S(εr)ε

 , (4.34)

where Qr = [ηr, ε
T
r ]T. Further reorganization of terms in (4.34) can be done to yield

representations of Q̃ that are linear with respect to either Q or Qr

Q̃ =

 ηr εTr

−εr ηrI3 − S(ηr)

Q =

 η εT

ε −ηI3 + S(ε)

Qr (4.35)

The time derivative of Q̃ is obtained using the chain-rule,

d

dt
Q̃ =

∂Q̃

∂Q

d

dt
Q+

∂Q̃

∂Qr

d

dt
Qr

=

 ηr εTr

−εr ηrI3 − S(ηr)

 d

dt
Q+

 η εT

ε −ηI3 + S(ε)

 d

dt
Qr.

(4.36)

If quaternions Q, Qr represents actual or reference orientation trajectory of an object,

they conform to dynamics equations

d

dt
Q =

 η̇

ε̇

 =
1

2

 −εT

ηI3 + S(ε)

ω (4.37)

and

d

dt
Qr =

 η̇r

ε̇r

 =
1

2

 −εTr

ηrI3 + S(εr)

ωr. (4.38)
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Substituting (4.37) and (4.38) into (4.36) yields

˙̃Q =
1

2

 −ε̃T

η̃I3 + S(ε̃)

 (ω − ωr) +

 0

S(ε̃)

ωr. (4.39)

An error system is to be designed to reach zero when Q̃ reaches identity,

which is equivalent to Rerr = I3. Notice Q ≡ −Q, so that reaching identity means

Q̃ = [1, 0, 0, 0]T or Q̃ = [−1, 0, 0, 0]T. To satisfy this requirement, attitude error z1 is

defined as a function of Q̃

z1 =

 1− |η̃|

ε̃

 . (4.40)

The time derivative of z1 can be obtained as a function of Q̃ and ˙̃Q

ż1 =

 − sgn(η̃) ˙̃η

˙̃ε

 =

 − sgn(η̃) 0

0 I3

 ˙̃Q. (4.41)

Substituting (4.39) into ż1, yields

ż1 =
1

2

 sgn(η̃)ε̃T

η̃I3 + S(η̃)

 (ω − ωr) +

 0

S(ε̃)

ωr
=

1

2
GTω +


 0

S(ε̃)

− 1

2
GT

ωr,

(4.42)

where

G =

 sgn(η̃)ε̃T

η̃I3 + S(ε̃)


T

. (4.43)

To facilitate for orientation tracking, it will be desirable to have z1 = 0 initially
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and then ω follows ωr exactly to maintain z1 = 0. However, these assumptions about

both the initial condition and the ability to maintain ωr = ω are not realistic. Even

if ω tracks ωr, but z1 is not zero, the error will at least be maintained. f z1 is not

zero, continue to let A desired angular velocity ωd is designed to shrink the attitude

zero

ωd = −KzGz1 + ωr, (4.44)

where Kz = [kz1, kz2, kz3](kz1, kz2, kz3 ∈ R+) is a control gain matrix. Substituting

this control law into (4.41), yields the close-loop dynamics of z1

ż1 = −1

2
GTKzGz1 −

1

2
GTωe +

 0

S(ε̃)

ωr, (4.45)

where intermediate error ωe = ωd − ω was introduced.

In the case of generating a desired angular velocity for the end-effector, Q rep-

resents the actual orientation of end-effector, Qr represents the reference orientation

of end-effector, which is specified as part of the reference trajectory. The term ω will

use end-effector angular velocity EωE in the end-effector fixed frame, which can be

found using kinematics in Sec. 3.2 as

EωE = ER0
0ωE = ER0 (ω + JωE q̇) . (4.46)

The term ωr is the reference angular velocity of the end-effector in the end-effector

fixed frame that satisfies (4.36). The resulting ωd from (4.44) indicate the desired

end-effector angular velocity in the end-effector fixed frame, or EωEd, which satisfies

0RE
EωEd = 0ωEd = ωd + JωE q̇d =

[
I3 JωE

]
γ̇d. (4.47)
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From the definition of γd in (4.23),

 1 0 0 0 0

0 1 0 0 0

 γd =

 1 0 0 0

0 1 0 0

µd|µa=0. (4.48)

Together, it is possible to form an linear equation to solve for γd, which is assumed

to be known in Sec. 3.2

γd =


1 0 0 0 0

0 1 0 0 0

I3 JωE


−1 

 1 0 0 0

0 1 0 0

µd|µa=0

0RE
EωEd


= Γ−1d1 Γd2,

(4.49)

where Γd1 and Γd2 are short-hand notations for the two matrices on the right-hand

side of (4.49), from left to right, respectively. The Γd1 is invertible if JωE is full rank.

For the MOVA system described in Sec. 3.5.2, this is obtained if q1 6= 2kπ ± π/2.

The auxiliary input µa is derived from (4.49) and (4.19)

µa = [0, 0, µa3, 0]T = diag([0, 0, 1, 0, 0])γd − diag([0, 0, 1, 0])µd|µa=0. (4.50)

The additional input τc in (4.28) is designed to be

τc =

 Gz1

0

 , (4.51)

based on the role of ż1 in the stability analysis.
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4.3 Stability Analysis

In this section, stability of the proposed controller is analyzed with a Lyapunov-

type approach. The controller is proven to provide Globally Uniformly Ultimately

Bounded (GUUB) tracking of the desired position and orientation trajectories.

A positive definite, radially unbounded function V is proposed fro the stability

analysis as

V =
1

2
eTp ep +

1

2
rTr +

1

2
γTeMRγe +

1

2
zT1 z1. (4.52)

The time derivative of (4.52) is

V̇ = eTp ėp + rTṙ + γTeMRγ̇e +
1

2
γTe

d

dt
(MR)γe + zT1 ż1. (4.53)

Substituting the dynamics of ep from (4.11) and the closed-loop dynamics of r, γe

and z1 in (4.21), (4.29), (4.45) into (4.53), yields

V̇ =eTp (−S(ω)ep + ev) +

rT (−S(ω)r − krr − ep − S(δ)ωe) +

γTe

−kγγe − CRγe +

 S(δ)r +Gz1

0


+

1

2
γTe

d

dt
(MR)γe+

zT1
(
GTk1Gz1 −Gωe

)
.

(4.54)

Expanding all terms, V̇ can be rewritten as

V̇ =eTp ev − rTkrr − rTep − rTS(δ)ωe − γTe kγγe + ωT
e G

Tz1 + ωT
e S(δ)γe

− γeCRγe +
1

2
γTe

d

dt
(MR)γe − zT1GTkzGz1 − zT1Gωe,

(4.55)

where skew-symmetric matrix property of S(ω) is invoked to get eTpS(ω)ep = 0 and
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rTS(ω)r = 0 and

γTe

 S(δ)r +Gz1

0

 = ωT
e G

Tz1 + ωT
e S(δ)γe. (4.56)

Terms that cancel each other in (4.55) include −rTS(δ)ωe +ωT
e S(δ)γe = 0, ωT

e G
Tz1−

zT1Gωe = 0 which is a direct result from the fact that they are scalars; moreover, there

is eTp ev−rTep = −αeTp ep−eTp δ from (2.37). Applying these identities into (4.55), yields

V̇ = −αeTp ep−rTkrr−γTe kγγe−zT1GTkzGz1−eTp δ+γTe

(
1

2

d

dt
(MR)− CR

)
γe. (4.57)

Moreover, according to Sec. 3.3.6, 1
2
d
dt
M −C is skew-symmetric. It then follows that

a submatrix symmetric to the diagonal, 1
2
d
dt
MR − CR, is also skew-symmetric. Thus,

γTe
(
1
2
d
dt

(MR)− CR
)
γe = 0 and

V̇ = −αeTp ep − rTkrr − γTe kγγe − zT1GTKzGz1 − eTp δ, (4.58)

of which first four quadratic terms are identified as stabilizing terms for the error

dynamics.

The second last term in (4.58) is expanded as

zT1G
TKzGz1 =kz(Gz1)

TGz1

=kz ε̃
Tε̃

=kz(1− η̃2)

(4.59)
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since

Gz1 =

[
sgn(η̃)ε̃ η̃I3 + S(ε̃)

] 1− η̃

ε̃

 = sgn(η̃)ε̃. (4.60)

By definition of z1 in (4.40),

zT1 z1 =1− 2 |η̃|+ |η|2 + ε̃Tε̃

=2− 2 |η̃| ,
(4.61)

because |η|2 + ε̃Tε̃ = 1. As |η̃| ∈ [0, 1], there is

1

2
kzz

T
1 z1 ≤ zT1G

TKzGz1 ≤ kzz
T
1 z1 (4.62)

The upper bound of the last term −eTp δ in (4.58) is found using Cauchy-

Schwarz inequality

−eTp δ ≤‖ep‖ · ‖δ‖

≤1

2

(
λ1 ‖ep‖+

1

λ1
δ23

)
,

(4.63)

where λ1 ∈ R+. Therefore,

V̇ ≤−
(
α− λ1

2

)
eTp ep − rTkrr − γTe kγγe − zT1GTkzGz1 +

1

2λ1
δ23

≤− 2λ2V +
1

2λ1
δ23,

(4.64)

where a scalar λ2 ∈ R+ is given by

λ2 = min

{
α− λ1

2
, kri,

kγi
λmax(MR)

,
kz
2

}
, (4.65)

where λmax(·) denotes the largest eigenvalue of the matrix. Solving the differential
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inequality in (4.64) yields

V ≤ V0 · e−2λ2t +
δ23

4λ2λ1
(1− e−2λ2t), (4.66)

where V0 is V evaluated at the initial condition (t = 0).

A complete tracking error vector of the control system is defined as

Ω =
[
eTp , r

T,
√
MRγe, z1

]T
, (4.67)

which can be rewritten as

1

2
‖Ω‖2 = V. (4.68)

Substituting (4.68) into (4.66), multiplying by 2 and taking square root on both sides

yields,

‖Ω(t)‖ ≤
√
‖Ω0‖2 e−2λ2t +

1

2λ2λ1
δ22 (1− e−2λ2t), (4.69)

where Ω0 is η evaluated at t = 0. This result represents the steady state bound on

‖Ω(t)‖ as

lim
t→∞
‖Ω(t)‖ =

δ2√
2λ1λ2

. (4.70)

In other words, the norm of the complete tracking error, η(t), is Globally Uniformly

Ultimately Bounded (GUUB). From this results, all signals in this controller can be

shown bounded via signal tracing.

4.4 Simulation

Simulation of the proposed controller is shown in this section in an effort to

demonstrate controller validity. The 3D MOVA system with two-link onboard ma-
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nipulator (described in Sec. 3.5.2) is targeted for the simulation. Physical parameters

of the MOVA system remain as the same as in Sec. 3.5.2, which highlights the low

mass ratio between VTOL aircraft body and the manipulator link, a condition that

leads to deteriorated operation of a controller that uses “separate” control strategy

for the manipulator and aircraft. The goal of the simulation is to demonstrate that

the proposed controller achieves the objective of directing the end-effector of this

MOVA system to follow predefined position and orientation trajectory. Multiple test

reference trajectories with distinct characteristics are used to show the validity of the

controller under different conditions. Results of the simulation are shown as error

curves for analysis and also displayed in real simulation time in the form of syn-

thetic animated graphics for better illustration of system behavior in realtime (see

Fig. 4.1). The background scenery and a mock up of the MOVA system are specified

using VRML (Virtual Reality Modeling Language) using the Simulink Virtual Reality

Toolbox . Simulation signals are fed into the VRML viewer during runtime so that

the graphics rendered represent system motion.

Position trajectory of the center of mass of the overall MOVA system has to

be evaluated from composite position and orientation trajectory of the end-effector

using Equation (4.4). Both the resulting position trajectory of the center of mass

and the orientation trajectory for the end-effector are input into the controller as

required. In all simulations the end-effector operates above the aircraft body. The

initial condition for all testing is pC = [0, 0, 0]Tm, R = I3 and q = [0, 0]T rad.

The first test reference trajectory is movement from the origin to the single set

point specified as pE = [5, 5, 3]Tm and RE = Rzxz(
π
4
, π
8
, π
8
), where Rzxz denotes result-

ing rotation matrix associated with Euler angle using the common z-x-z convention.

Thus, RE is obtained from three successive rotations in the body frame: first, around

z-axis by π
4

rad/s; then, around x-axis by π
8

rad/s and finally, around the z-axis by π
8
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Figure 4.1: Screenshot of the VRML viewer during simulation.
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rad/s.

The set point equals a step input to the controller. In order to conform to the

assumption of smoothness of the reference trajectory, set point of both position and

orientation of end-effector is low-pass filtered to achieve adequate smoothness. For

the position reference trajectory, the coordinates of set point are filtered with

Tlp(s) =
4

s2 + 4s+ 4
, (4.71)

which is a critically-damped low-pass filter with natural frequency 2 rad/s. For the

orientation reference trajectory, the set point is converted into axis-angle representa-

tion and the amount of angle is low-pass filtered using the same filter as (4.71).

The result is shown in terms of error in end-effector position (see Fig. 4.2) and

orientation (see Fig. 4.3) . The end-effector position error is measured as the distance

between the reference and actual position (i.e. the 2-norm) while the orientation error

is measured as the minimum amount of rotation to gap the discrepancy between the

reference and actual orientation. At steady-state, the position error is about 0.002 m

and the orientation error is less than 0.002 rad.

To visualize how the actual trajectory converges to the reference, a three di-

mensional plot is displayed in Fig. 4.4 where both the reference trajectory of the

end-effector and the calculated reference trajectory of the center of mass (CM) of the

aircraft are shown along with the actual trajectories.

The second reference trajectory commands the end-effector position to go

through a composite curve, while the end-effector orientation trajectory enables the

tip of the end-effector to point to a fixed point in the inertial frame. A visualization
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Figure 4.2: Plot of of position error of end-effector norm.
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Figure 4.3: Plot of orientation error of end-effector in terms of minimum rotation
angle.
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of the trajectory is shown in Fig. 4.5. The trajectory for the end-effector position is

IpE =


Axy cos(ωxyt)

Axy sin(ωxyt)

z0 + Az sin(ωzt)

 [m], (4.72)

where t denotes simulation time, Axy = 5 m, ωxy = 0.2π rad/s, z0 = 2 m, Az = 0.2 m

and ωz = 1.6π rad/s. Projecting the trajectory to x-y plane in the inertial frame, it

forms a circle of radius Axy; at the time, the motion in the z-axis direction is sinusoidal

with amplitude of Az. The trajectory can be seen as a composite motion of going

along circle horizontally while moving up and down vertically. The orientation of the

end-effector is derived from the position trajectory and a fixed point pF = [0, 0, 5]Tm

in the inertial frame so that the end-effector always points to pF . A body-frame

affixed to the end-effector, with the z-axis pointing outward along the long direction

of the manipulator link, constrains the y-axis of the frame to remain parallel to the x-y

plane of the inertial frame at all time. This complex reference trajectory is visualized

in Fig. 4.5.

The result is demonstrated by plots of end-effector position and orientation

error in Fig.4.6 and 4.7, respectively. At steady-state, the position error is less than

0.02 m and the orientation error is less than 0.02 rad. Visualization of the actual and

reference trajectory of the end-effector is provided in Fig. 4.8.

For the third reference trajectory, the end-effector position remains at a fixed

point, while the end-effector orientation rotates back and forth. The position and

orientation trajectory of the end-effector are expressed by pE = [5, 5, 5]T and RE =

Rzxz (0, Ax sin(ωxt)), where Ax = 1 rad and ωx = 1 rad/s. This motion mimics the

physical movement of rotating a ratchet wrench for tightening or loosening a bolt
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Figure 4.6: Plot of position error of end-effector in term of distance.

(although the force and torque interaction with a real bolt is not considered in this

case).

Position and orientation error of the end-effector of the system is plotted in

Fig. 4.9 and Fig. 4.9, respectively. At steady-state, the position error is less than

0.003 m and the orientation error is less than 0.004 rad.

Simulation results of the proposed controller on a 3D MOVA system with two-

joint onboard manipulator was demonstrated. Under three reference trajectory with

distinct characteristics, the controller was able to regulate the error in the end-effector

position and orientation in a short period of time and maintain the error at low steady-

state level afterwards, which suggests that the proposed trajectory tracking controller

is effective.
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Figure 4.7: Plot of orientation error of end-effector in term of minimum rotation
angle.
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Figure 4.9: Plot of position error of end-effector in term of distance.

142



0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

O
ri

en
ta

tio
n 

E
rr

or
 (

ra
d)

Figure 4.10: Plot of orientation error of end-effector in term of minimum rotation
angle.
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4.5 Conclusion

In summation, a unified nonlinear control algorithm that controls the MOVA

system, including both the aircraft and the onboard manipulator, as single entity

is developed to achieve trajectory tracking of the MOVA end-effector position and

attitude. Reference trajectory of the end-effector is processed to yield equivalent

reference positional trajectory for system center of mass. Backstepping technique is

applied to connect the rotation dynamics of aircraft to the underactuated translational

dynamics of the overall system center of mass. End-effector orientation trajectory

is combined with attitude of aircraft in runtime to generate manipulator reference

trajectory in joint space, which is used in control effort calculation for joint torques.

The stability of proposed controller was proven using Lyapunov-type stability

analysis which resulted in Globally Uniformly Ultimately Bounded (GUUB) of the

states in the analysis function. All signals are shown bounded afterwards from this

result.

Simulation test-bed is also constructed to evaluate performance of the pro-

posed controller on a MOVA system with a two-link onboard manipulator. The

results are satisfying as the tracking error of the MOVA end-effector quickly reduced

to small values in simulations with three reference trajectories of different nature.

Moreover, a 3D virtual reality scene is built to offer an intuitive demonstration of

simulated MOVA system behavior controlled by the proposed controller in addition

to plots.
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Chapter 5

Conclusions

In this work, the Manipulator on VTOL Aircraft (MOVA) system, was intro-

duced as an innovative, highly efficient mobile manipulator. The MOVA system was

proposed to autonomously perform field tasks that have risks to human participation

such as height or hazardous material exposure. A significant constraint in UAV de-

sign is the stringent weight budget for a system that remains airborne for the whole

task period. The key aspect of the MOVA philosophy, to minimize the weight of the

MOVA through combining the VTOL and manipulator degrees-of-freedom to produce

a minimal kinematic design, was demonstrated. That is, the design approach uses

an onboard manipulator with minimum number of joints and “borrows” degrees-of-

freedom from the VTOL aircraft, which is also the base of the manipulator, to gain

the ability to place the end-effector at arbitrary 3D positions at any orientation.

Preliminary investigation of a planar MOVA system dynamics and controller

design was presented in preparation for developing the controller of the more com-

plex MOVA system in 3D space. Dynamics of the planar MOVA system was derived

using the Lagrangian approach and then transformed into a form that facilitates

controller design using the concept of a virtual manipulator. A MOVA end-effector
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trajectory tracking controller was designed with the transformed dynamics equation

using integrator backstepping control design approach. Validity of the controller was

shown via stability analysis, simulation results and results from a physical test-bed.

The experimental results showed the potential benefit of explicit compensation of the

manipulator-aircraft interaction compared to an approach with no direct compensa-

tion. The outcome of the planar MOVA system study demonstrated the feasibility

of extending the research to a general MOVA system in three-dimensional space and

helped define the more general technical approach.

A systematic approach was developed for the derivation of the 3D MOVA

system dynamics equations. Derivation steps were presented purely with matrices

and vectors to ensure conciseness of the intermediate and final results. The result-

ing dynamics equation is represented abstractly in the standard robotic form and is

proven to have the skew-symmetric property, which is a useful property for control

derivation. An open source Mathematica program, named MOVADYN, was devel-

oped to achieve automatic derivation of the MOVA system dynamics. Accessory tools

were also designed to accomplish a tool-chain starting with CAD modeling, using the

Mathematica system for dynamics derivation, and finishing with automatically gener-

ated Simulink diagram and MATLAB code for simulation and model-based controller

implementation. The dynamics equations derived using MOVADYN were successfully

validated through both analytical and numerical means so that they can be used in

controller development. The derivation approach and tool-chain can support other

researchers in this field.

Finally, a unified nonlinear algorithm that controls the 3D MOVA system,

including both the aircraft and the onboard manipulator as single entity, was devel-

oped to achieve trajectory tracking of the MOVA end-effector position and attitude

based on the explicit dynamics equation. Globally Uniformly Ultimately Bounded
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(GUUB) stability is proven for the controller using Lyapunov-type stability analysis.

Simulation testing was also performed in order to evaluate the performance of the

proposed controller on a MOVA systems with a two-link onboard manipulator, and

yields satisfying results. A 3D virtual reality scene was built to offer an intuitive

demonstration of simulated MOVA system behavior.

In summation, a novel VTOL aircraft-based manipulator, named MOVA (Ma-

nipulator on VTOL Aircraft), was introduced, and research about its dynamics and

control design was performed progressing from a planar case study to a general system

in 3D space. Validation of the work, both analytically and using numerical tools, was

provided at each step to ensure the correctness. The systematic dynamics derivation

steps along with the resulting derivation program are useful for developing of MOVA

system with different configurations or even systems that share similar features. The

proposed end-effector trajectory tracking controller is demonstrated to offer satisfy-

ing results. This controller can be used in future physical implementations of MOVA

systems or as the inner-loop of a higher-level task controller in MOVA application

research.

5.1 Future Work

There is a great potential in extending the work presented in this disserta-

tion since MOVA is still a new concept and the current results are promising. The

next step will be to perform physical experiments in a test-bed of the 3D MOVA

system. Innovation and optimization of the MOVA mechanical design can be done

with guidance from the results of the automatic dynamics derivation program and

the experimental test-bed. Extensions of the control algorithm can be performed on

the basis of of the proposed work: adaptive controller may be developed to accom-
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modate the presence of a payload; and a force control design will add compliance

with the environment. Trajectory generation for MOVA system with redundant or

multiple manipulators can be investigated for controller implementation. Teleoper-

ation related research is another direction for innovation in which investigation of

human-interface and haptics feedback for the operator take places. In order to en-

able in-the-field operation of MOVA system, navigation and vision sensor integration

should also be performed. The long term goal for MOVA research will be adoption of

MOVA systems in field applications that currently pose various types of hazards to

workers and tasks that have already been done by mobile manipulators or UAV but

suffer from limitations in maneuverability or ability to interact with the surrounding

world.

148



Appendices

149



Appendix

Appendix A Example Usage of MOVADYN and

Its Auxiliary Programs

A.1 Planar MOVA System Dynamics and Code Generation

This is an example of using MOVADYN program to derive the dynamics equa-

tion of the planar MOVA system described in Chapter 2. Basic definitions are declared

in the beginning (lines 4,5) to enhance the readability of the rest of code: “u0” is

zero vector; “ux”, “uy” and “uz” are unit vectors along x, y and z axis; “O3x3” is

3-by-3 zero matrix and “I3” is the 3-by-3 identity matrix. Variables Nlink, Ms, Is,

ls, rs, Rs, vs are initialized according to the design of the planar MOVA from line

6 to 19. Notice that symbols, such as g, la, m0, etc., are used in some parameters

and these symbols will appear in the output matrices and vectors. On line 20, the

dynamics derivation is performed and the result is store in Dyn. Line 25 to 29 shows

the method to retrieve separate matrix or vector from the result. The rest of the code

shows steps to invoke the MOVA code generator using derived dynamics.

1 (∗ import the package to use ∗)

2 << MOVADynamics‘;

3 (∗basic definition ∗)
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4 u0 = {0, 0, 0}; ux = {1, 0, 0}; uy = {0, 1, 0}; uz = {0, 0, 1};

5 O3x3 = ConstantArray[0, {3, 3}]; I3 = IdentityMatrix[3];

6 (∗ Identifier of the system ∗)

7 MOVAType = ”planar”;

8 (∗number of links, cannot be symbol ∗)

9 Nlink = 2;

10 (∗masses of links∗)

11 Ms = {m0, 0, ma};

12 (∗ moment of inertia of links ∗)

13 Is = { DiagonalMatrix[{I0x, I0y, I0z}], O3x3,

14 DiagonalMatrix[{Iax, Iay, Iaz}]};

15 (∗ r and l vectors ∗)

16 rs = {u0, u0, 1/2∗l1∗uz};

17 ls = {u0, u0, −1/2∗l1∗uz};

18 (∗ rotation axis , cannot be symbolic∗)

19 vs = {uy, ux};

20 (∗ Initial pose∗)

21 Rs = {I3, I3};

22 (∗ Derive dynamics and kinematics ∗)

23 Dyn = DeriveMovaDynamics[Nlink, Ms, Is, ls, rs, Rs, vs];

24 (∗ Retrieving result ∗)

25 H = Dyn[”H”];

26 Cp = Dyn[”Cp”];

27 Gb = Dyn[”Gb”];

28 Jp = Dyn[”Jp”];

29 FwdKin = Dyn[”FwdKin”];

30 (∗ Write out Dynamics and Kinematics MATLAB functions ∗)

31 WriteMovaDynamics[MOVAType, NotebookDirectory[], NotebookDirectory[], Dyn];

32 (∗ Write out Parameter MATLAB functions ∗)

33 WriteMovaParameterFunction[MOVAType, NotebookDirectory[], Dyn];

34 (∗ Write out Simulink block ∗)
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Figure A.1: 3D model of a MOVA system with a RRR onboard manipulator.

35 WriteMovaSimulinkBlock[MOVAType, NotebookDirectory[], NotebookDirectory[]];

A.2 Example of Parameter Exporter Usage

A hypothetical MOVA system with onboard manipulator consist of 3 links

in RRR configuration is shown in Fig. A.1 as an example for illustrating usage of

the physical parameter exporter. The blue object represents aircraft body and the

three golden cuboids represent the three links of the manipulator. The aircraft body

and three links are connected together with three “insert” constraints and relative

poses of them are set by extra constraints to form the appearance in Fig. A.1. After

execute the physical parameter exporter, a Mathematica script file is generated with

its content shown below. All necessary parameters needed for MOVADYN derivation

are populated according to the physical properties of the 3D model. Statements that

invoke MOVADYN and the MOVA code generator are appended at last, enables one

step code generation by executing this script in Mathmatica.

1 MOVAType =”TEST”;

2 Nlink = 3;
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3 Ms = {2.74496, 0.02152, 0.02152, 0.02152, 0};

4 Is = {DiagonalMatrix[{567.03497, 6.23781, 572.12637}],

5 DiagonalMatrix[{0.17125, 0.17125, 0.00821}],

6 DiagonalMatrix[{0.17125, 0.17125, 0.00821}],

7 DiagonalMatrix[{0.17125, 0.00821, 0.17125}],

8 DiagonalMatrix[{0,0,0}]}/10000;

9 ls = {{0, 0, 0},

10 {0.75000, 0, 4.50000},

11 {0, 0.75000, 4.50000},

12 {0, −4.50000, 0.75000},

13 {0,0,0}}/100;

14 rs = {{−0.24876, 0, −1.48568},

15 {0, −0.75000, −4.50000},

16 {0, 0, −5},

17 {0, 0, 0},

18 {0,0,0}}/100;

19 vs = {{−1, 0, 0},

20 {0, −1, 0},

21 {0, 0, −1},

22 {0, 0, 0},

23 {0,0,0}};

24 Rs = {

25 { {1, 0, 0},

26 {0, 1, 0},

27 {0, 0, 1}},

28 { {1, 0, 0},

29 {0, 1, 0},

30 {0, 0, 1}},

31 { {1, 0, 0},

32 {0, 1, 0},

33 {0, 0, 1}},
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34 { {1, 0, 0},

35 {0, 1, 0},

36 {0, 0, 1}},

37 { {0,0,0},{0,0,0},{0,0,0} } };

38

39 << MOVADynamics‘;

40 Dyn = DeriveMovaDynamics[Nlink, Ms[[1;;Nlink+1]], Is[[1;;Nlink+1]], ls [[1;; Nlink+1]],

rs [[1;; Nlink+1]], Rs [[1;; Nlink ]], vs [[1;; Nlink ]]];

41 WriteMovaDynamics[MOVAType, NotebookDirectory[], NotebookDirectory[], Dyn];

42 WriteMovaParameterFunction[MOVAType, NotebookDirectory[], Dyn];

43 WriteMovaSimulinkBlock[MOVAType, NotebookDirectory[], NotebookDirectory[]];
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