96 research outputs found

    Coupled Poisson factorization integrated with user/item metadata for modeling popular and sparse ratings in scalable recommendation

    Full text link
    Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Modelling sparse and large data sets is highly in demand yet challenging in recommender systems. With the computation only on the non-zero ratings, Poisson Factorization (PF) enabled by variational inference has shown its high efficiency in scalable recommendation, e.g., modeling millions of ratings. However, as PF learns the ratings by individual users on items with the Gamma distribution, it cannot capture the coupling relations between users (items) and the rating popularity (i.e., favorable rating scores that are given to one item) and rating sparsity (i.e., those users (items) with many zero ratings) for one item (user). This work proposes Coupled Poisson Factorization (CPF) to learn the couplings between users (items), and the user/item attributes (i.e., metadata) are integrated into CPF to form the Metadata-integrated CPF (mCPF) to not only handle sparse but also popular ratings in very large-scale data. Our empirical results show that the proposed models significantly outperform PF and address the key limitations in PF for scalable recommendation

    Gamma-Poisson dynamic matrix factorization embedded with metadata influence

    Full text link
    © 2018 Curran Associates Inc.All rights reserved. A conjugate Gamma-Poisson model for Dynamic Matrix Factorization incorporated with metadata influence (mGDMF for short) is proposed to effectively and efficiently model massive, sparse and dynamic data in recommendations. Modeling recommendation problems with a massive number of ratings and very sparse or even no ratings on some users/items in a dynamic setting is very demanding and poses critical challenges to well-studied matrix factorization models due to the large-scale, sparse and dynamic nature of the data. Our proposed mGDMF tackles these challenges by introducing three strategies: (1) constructing a stable Gamma-Markov chain model that smoothly drifts over time by combining both static and dynamic latent features of data; (2) incorporating the user/item metadata into the model to tackle sparse ratings; and (3) undertaking stochastic variational inference to efficiently handle massive data. mGDMF is conjugate, dynamic and scalable. Experiments show that mGDMF significantly (both effectively and efficiently) outperforms the state-of-the-art static and dynamic models on large, sparse and dynamic data

    CoupledCF: Learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering

    Full text link
    © 2018 International Joint Conferences on Artificial Intelligence. All right reserved. Non-IID recommender system discloses the nature of recommendation and has shown its potential in improving recommendation quality and addressing issues such as sparsity and cold start. It leverages existing work that usually treats users/items as independent while ignoring the rich couplings within and between users and items, leading to limited performance improvement. In reality, users/items are related with various couplings existing within and between users and items, which may better explain how and why a user has personalized preference on an item. This work builds on non-IID learning to propose a neural user-item coupling learning for collaborative filtering, called CoupledCF. CoupledCF jointly learns explicit and implicit couplings within/between users and items w.r.t. user/item attributes and deep features for deep CF recommendation. Empirical results on two real-world large datasets show that CoupledCF significantly outperforms two latest neural recommenders: neural matrix factorization and Google's Wide&Deep network

    Scaling up Dynamic Edge Partition Models via Stochastic Gradient MCMC

    Full text link
    The edge partition model (EPM) is a generative model for extracting an overlapping community structure from static graph-structured data. In the EPM, the gamma process (GaP) prior is adopted to infer the appropriate number of latent communities, and each vertex is endowed with a gamma distributed positive memberships vector. Despite having many attractive properties, inference in the EPM is typically performed using Markov chain Monte Carlo (MCMC) methods that prevent it from being applied to massive network data. In this paper, we generalize the EPM to account for dynamic enviroment by representing each vertex with a positive memberships vector constructed using Dirichlet prior specification, and capturing the time-evolving behaviour of vertices via a Dirichlet Markov chain construction. A simple-to-implement Gibbs sampler is proposed to perform posterior computation using Negative- Binomial augmentation technique. For large network data, we propose a stochastic gradient Markov chain Monte Carlo (SG-MCMC) algorithm for scalable inference in the proposed model. The experimental results show that the novel methods achieve competitive performance in terms of link prediction, while being much faster

    Applications of Approximate Learning and Inference for Probabilistic Models

    Get PDF
    We develop approximate inference and learning methods for facilitating the use of probabilistic modeling techniques motivated by applications in two different areas. First, we consider the ill-posed inverse problem of recovering an image from an underdetermined system of linear measurements corrupted by noise. Second, we consider the problem of inferring user preferences for items from counts, pairwise comparisons and user activity logs, instances of implicit feedback. Plausible models for images and the noise, incurred when recording them, render posterior inference intractable, while the scale of the inference problem makes sampling based approximations ineffective. Therefore, we develop deterministic approximate inference algorithms for two different augmentations of a typical sparse linear model: first, for the rectified-linear Poisson likelihood, and second, for tree-structured super-Gaussian mixture models. The rectified-linear Poisson likelihood is an alternative noise model, applicable in astronomical and biomedical imaging applications, that operate in intensity regimes in which quantum effects lead to observations that are best described by counts of particles arriving at a sensor, as well as in general Poisson regression problems arising in various fields. In this context we show, that the model-specific computations for Expectation Propagation can be robustly solved by a simple dynamic program. Next, we develop a scalable approximate inference algorithm for structured mixture models, that uses a discrete graphical model to represent dependencies between the latent mixture components of a collection of mixture models. Specifically, we use tree-structured mixtures of super-Gaussians to model the persistence across scales of large coefficients of the Wavelet transform of an image for improved reconstruction. In the second part on models of user preference, we consider two settings: the global static and the contextual dynamic setting. In the global static setting, we represent user-item preferences by a latent low-rank matrix. Instead of using numeric ratings we develop methods to infer this latent representation for two types of implicit feedback: aggregate counts of users interacting with a service and the binary outcomes of pairwise comparisons. We model count data using a latent Gaussian bilinear model with Poisson likelihoods. For this model, we show that the Variational Gaussian approximation can be further relaxed to be available in closed-form by adding additional constraints, leading to an efficient inference algorithm. In the second implicit feedback scenario, we infer the latent preference matrix from pairwise preference statements. We combine a low-rank bilinear model with non-parameteric item- feature regression and develop a novel approximate variational Expectation Maximization algorithm that mitigates the computational challenges due to latent couplings induced by the pairwise comparisons. Finally, in the contextual dynamic setting, we model sequences of user activity at the granularity of single interaction events instead of aggregate counts. Routinely gathered in the background at a large scale in many applications, such sequences can reveal temporal and contextual aspects of user behavior through recurrent patterns. To describe such data, we propose a generic collaborative sequence model based on recurrent neural networks, that combines ideas from collaborative filtering and language modeling

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Shallow Representations, Profound Discoveries : A methodological study of game culture in social media

    Get PDF
    This thesis explores the potential of representation learning techniques in game studies, highlighting their effectiveness and addressing challenges in data analysis. The primary focus of this thesis is shallow representation learning, which utilizes simpler model architectures but is able to yield effective modeling results. This thesis investigates the following research objectives: disentangling the dependencies of data, modeling temporal dynamics, learning multiple representations, and learning from heterogeneous data. The contributions of this thesis are made from two perspectives: empirical analysis and methodology development, to address these objectives. Chapters 1 and 2 provide a thorough introduction, motivation, and necessary background information for the thesis, framing the research and setting the stage for subsequent publications. Chapters 3 to 5 summarize the contribution of the 6 publications, each of which contributes to demonstrating the effectiveness of representation learning techniques in addressing various analytical challenges. In Chapter 1 and 2, the research objects and questions are also motivated and described. In particular, Introduction to the primary application field game studies is provided and the connections of data analysis and game culture is highlighted. Basic notion of representation learning, and canonical techniques such as probabilistic principal component analysis, topic modeling, and embedding models are described. Analytical challenges and data types are also described to motivate the research of this thesis. Chapter 3 presents two empirical analyses conducted in Publication I and II that present empirical data analysis on player typologies and temporal dynamics of player perceptions. The first empirical analysis takes the advantage of a factor model to offer a flexible player typology analysis. Results and analytical framework are particularly useful for personalized gamification. The Second empirical analysis uses topic modeling to analyze the temporal dynamic of player perceptions of the game No Man’s Sky in relation to game changes. The results reflect a variety of player perceptions including general gaming activities, game mechanic. Moreover, a set of underlying topics that are directly related to game updates and changes are extracted and the temporal dynamics of them have reflected that players responds differently to different updates and changes. Chapter 4 presents two method developments that are related to factor models. The first method, DNBGFA, developed in Publication III, is a matrix factorization model for modeling the temporal dynamics of non-negative matrices from multiple sources. The second mothod, CFTM, developed in Publication IV introduces a factor model to a topic model to handle sophisticated document-level covariates. The develeopd methods in Chapter 4 are also demonstrated for analyzing text data. Chapter 5 summarizes Publication V and Publication VI that develop embedding models. Publication V introduces Bayesian non-parametric to a graph embedding model to learn multiple representations for nodes. Publication VI utilizes a Gaussian copula model to deal with heterogeneous data in representation learning. The develeopd methods in Chapter 5 are also demonstrated for data analysis tasks in the context of online communities. Lastly, Chapter 6 renders discussions and conclusions. Contributions of this thesis are highlighted, limitations, ongoing challenges, and potential future research directions are discussed

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    • …
    corecore