
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Rimoldi, président du jury
Prof. M. Grossglauser, Dr M. Seeger, directeurs de thèse

Prof. T. Hofmann, rapporteur
Prof. J. Hensman, rapporteur

Prof. M. Jaggi, rapporteur

Applications of Approximate Learning and Inference
for Probabilistic Models

THÈSE NO 7637 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 2 MAI 2017

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 4

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Young Jun KO

To my family

Acknowledgements
First of all, I would like to thank my two advisors, Matthias Seeger and Matthias
Grossglauser. I am grateful to Matthias Seeger for giving me the opportunity to come to
EPFL and join his lab. I greatly benefited from the breadth and depth of his knowledge,
and much of this thesis is inspired by his prior work. I am especially grateful to Matthias
Grossglauser, whose generosity allowed me to complete my dissertation. He welcomed
me into his lab in the most unbureaucratic way. Thank you for your guidance, trust and
support.
Many thanks to James Hensman, Thomas Hofmann, Martin Jaggi, and Bixio Rimoldi for
instantly agreeing to join my thesis committee and to review the manuscript in spite of
their extremely busy schedules.
I would like to thank the IC doctoral school for a great program and for supporting my
transition. I am especially grateful to Corinne Degotte for patiently answering all my
questions and removing all obstacles on the road to my defense.
I was very fortunate to have been part of two groups, both outstanding in terms of
atmosphere and working conditions: IPG, comprising the labs headed by Michael Gastpar,
Bixio Rimoldi, Emre Telatar, and Rüdiger Urbanke, and LCA “3.5”, consisting of the
labs headed by Matthias Grossglauser and Patrick Thiran. I would like to express my
gratitude to the IPG family, to which the lab in which I started belonged as well. Thank
you very much for allowing me to stick around and making me feel at home, even after I
had to leave. A very special thanks to the IPG senior researchers Olivier Lévêque and
Nicolas Macris for their kindness and to the permanent staff of both groups, particularly
Muriel Bardet, Françoise Behn, Angela Devenoge, Patricia Hjelt and Damir Laurenzi,
for all the help over the years and for making even the most mundane administrative
matters, software updates, or travel arrangements a pleasant and hassle-free experience.
The great thing about this place is that the halls are populated with extraordinary
people, some of which I was fortunate to have as colleagues. Thank you, Akshat, Alberto,
Alla, Baker, Dan, Ehsan, Elie, Emti, Eren, Farid, Farnood, Hamed, Jean, Julien, Mani,
Mathias, Mine, Mohamed Kafsi, Mohamed Karzand, Nick, Nicu, Nikos, Pablo, Runwei,
Saeid, Serj, Sébastien, Vahid, Vassilis, Vincent, and William, for your company not only
at work, but also on group outings, during coffee breaks, and dramatic foosball matches.
Special thanks to Christina for the good spirit and the Greek lessons, Marc D. for taking
us climbing and ski touring, Marc V. for organizing an unforgettable trip to Zermatt,
Marco for the bike trips and great dinners, Rafah for all the laughs, Rajai for enlightening

i

Acknowledgements

lectures on various topics and for developing our theoretical carving skills, and Victor for
saving the planet.
I am greatly indebted to Lucas Maystre for countless helpful discussions, joint projects, and
for proofreading this thesis, among other things. To behold his commitment, perseverance,
attention to detail, and kindness was a constant source of inspiration.
Due to a very dear group of people I am now looking back on a wealth of great memories
of barbecues, bike trips, board-game/fondue/movie nights, hikes, skiing weekends, and
travels.
Thank you, Camila and Karol, for all your help and fun in and out of the office and the
best Caipirinhas.
Thank you, Genya and Stefano, for the artistic and musical element and your curiosity
and enthusiasm for finding new ways to have a great time together.
Thank you, Lyusya, Ivan, and Sasha, for all the joy, berry picking, dinners, and Russian
treats.
Thank you, Nastya and Adrian, for having me over so many times, picking my spirit
up with highly intellectual movies, Romanian specialties of various consistency, and
home-made sushi.
Thank you, Andrei, for being so generous with your time, knowledge, and help, no matter
the situation.
Thank you, Brunella, for your patience, encouragement, organizational skills, and for
seeing the good in people and the beauty in the world.
This work is dedicated to my family: my parents and my siblings Young-Eun, Young-In,
and Mark. Thank you for your unconditional love.

Lausanne, 06 Mars 2017 Y.-J. Ko

ii

Abstract
We develop approximate inference and learning methods for facilitating the use of
probabilistic modeling techniques motivated by applications in two different areas. First,
we consider the ill-posed inverse problem of recovering an image from an underdetermined
system of linear measurements corrupted by noise. Second, we consider the problem of
inferring user preferences for items from counts, pairwise comparisons and user activity
logs, instances of implicit feedback.
Plausible models for images and the noise, incurred when recording them, render posterior
inference intractable, while the scale of the inference problem makes sampling based
approximations ineffective. Therefore, we develop deterministic approximate inference
algorithms for two different augmentations of a typical sparse linear model: first, for the
rectified-linear Poisson likelihood, and second, for tree-structured super-Gaussian mixture
models.
The rectified-linear Poisson likelihood is an alternative noise model, applicable in as-
tronomical and biomedical imaging applications, that operate in intensity regimes in
which quantum effects lead to observations that are best described by counts of particles
arriving at a sensor, as well as in general Poisson regression problems arising in various
fields. In this context we show, that the model-specific computations for Expectation
Propagation can be robustly solved by a simple dynamic program.
Next, we develop a scalable approximate inference algorithm for structured mixture
models, that uses a discrete graphical model to represent dependencies between the latent
mixture components of a collection of mixture models. Specifically, we use tree-structured
mixtures of super-Gaussians to model the persistence across scales of large coefficients of
the Wavelet transform of an image for improved reconstruction.
In the second part on models of user preference, we consider two settings: the global
static and the contextual dynamic setting.
In the global static setting, we represent user-item preferences by a latent low-rank matrix.
Instead of using numeric ratings we develop methods to infer this latent representation
for two types of implicit feedback: aggregate counts of users interacting with a service
and the binary outcomes of pairwise comparisons.
We model count data using a latent Gaussian bilinear model with Poisson likelihoods.
For this model, we show that the Variational Gaussian approximation can be further
relaxed to be available in closed-form by adding additional constraints, leading to an
efficient inference algorithm.

iii

Acknowledgements

In the second implicit feedback scenario, we infer the latent preference matrix from pairwise
preference statements. We combine a low-rank bilinear model with non-parameteric item-
feature regression and develop a novel approximate variational Expectation Maximization
algorithm that mitigates the computational challenges due to latent couplings induced by
the pairwise comparisons.
Finally, in the contextual dynamic setting, we model sequences of user activity at the
granularity of single interaction events instead of aggregate counts. Routinely gathered in
the background at a large scale in many applications, such sequences can reveal temporal
and contextual aspects of user behavior through recurrent patterns. To describe such data,
we propose a generic collaborative sequence model based on recurrent neural networks,
that combines ideas from collaborative filtering and language modeling.

Key words: Probabilistic models, generalized linear and bilinear models, recurrent neural
networks, approximate inference, image reconstruction, implicit feedback

iv

Zusammenfassung
Wir entwickeln approximative Inference- und Lernmethoden, um die Anwendung proba-
bilistischer Modellierungstechniken zu ermöglichen. Unsere Arbeit ist hierbei motiviert
durch Problemstellungen aus zwei verschiedenen Anwendungsgebieten.
Im ersten Teil beschäftigen wir uns mit dem inversen Problem der Bildrekonstruktion aus
unterdeterminierten und verrauschten linearen Messungen. Im zweiten Teil befassen wir
uns damit, die Präferenzen von Nutzern für Gegenstände aus einem unübersichtlichen
Angebot zu lernen, auf Grundlage von implizitem Feedback, wie etwa aggregierten sowie
detaillierten Interaktionsprofilen und Vergleichsergebnissen zwischen zwei Gegenständen.
Plausible Bild- und Akquisitionsmodelle machen exakte probabilistische Inferenzen in der
Regel unmöglich. Stichprobenbasierte Verfahren sind wegen der hohen Dimensionalität
ineffektiv. Wir entwickeln daher deterministische approximative Inferenzalgorithmen für
zwei Erweiterungen von dünnbesetzten linearen Modellen: erstens für eine sog. rektifiziert-
lineare Poisson Likelihood und zweitens für baumartig strukturierte Super-Gauss’sche
Mischverteilungen.
Die rektifiziert-lineare Poisson Likelihood ist ein alternatives Rauschmodell, sowohl
relevant für Bildgebungsverfahren in der Astronomie und Biomedizin, die in Intensitäts-
bereichen operieren, in denen Quanteneffekte zu Beobachtungen führen, die durch die
Anzahl von Partikeln, die auf einen Sensor treffen, bestimmt sind, als auch für allgemei-
ne Poisson-Regressionsprobleme, die in verschiedenen Bereichen auftreten. Wir zeigen,
dass die modellspezifischen Berechnungen für den Expectation Propagation Algorithmus
effizient durch ein einfaches dynamisches Programm gelöst werden können.
Danach beschreiben wir einen skalierbaren approximativen Inferenzalgorithmus für struk-
turierte Mischverteilungen, die ein diskretes grafisches Modell verwenden um Abhän-
gigkeiten zwischen latenten Mischkomponenten einer Menge von Mischverteilungen zu
repräsentieren. Wir betrachten insbesondere baumartige Super-Gauss’sche Mischver-
teilungen, die wir dazu verwenden, die Persistenzeigenschaft grosser Koeffizienten der
Wavelet-Transformation über Skalen hinweg zu berücksichtigen.
Im zweiten Teil, über Präferenzmodelle für Nutzer, betrachten wir zwei Szenarien: das
global-statische und das kontextuell-dynamische Szenario.
Im global-statischen Szenario repräsentieren wir Nutzerpräferenzen numerisch durch
eine niedrig-rang Matrix. Anstatt auf expliziten Bewertungen basieren unsere Metho-
den auf zwei Arten von implizitem Feedback der Nutzer: Aggregierte Statistiken über
Nutzerinteraktionen und binäre Vergleichsergebnisse.

v

Acknowledgements

Für die aggregierten Statistiken verwenden wir bilineare Modelle mit Poisson Likelihood.
Für dieses Modell schwächen wir die Gauss’sche Variationsapproximationsschranke durch
zusätzliche Bedingungen kann und zeigen, dass sie dadurch eine geschlossene Form erhält,
die effizient berechnet werden kann.
Im zweiten Fall, dem global-statischen Szenario, nutzen wir Vergleichsergebnisse zwischen
zwei Gegenständen um auf die Vorlieben der Nutzer zu schließen. We kombinieren ein
bilineares Modell niedrigen Rangs mit einer nicht-parametrischen Regressionskomponente
und entwickeln einen neuen approximativen Expectation Maximization Algorithmus, der
die Schwierigkeiten, verursacht durch die Abhängigkeiten zwischen den latenten Variablen,
abmildert.
Im kontextuell-dynamischen Szenario modellieren wir Benutzeraktivitätssequenzen. Solche
Sequenzen werden in vielen Applikationen routinemäßig im Hintergrund aufgezeichnet
und können zeitliche und kontextuelle Aspekte des Nutzerverhaltens durch wiederkeh-
rende Muster offenbaren. Wir präsentieren ein generisches kollaboratives Sequenzmodell,
basierend auf rekurrenten neuralen Netzwerken, das Aspekte des kollaborativen Filtern
mit denen von Sprachmodellen vereint.

Stichwörter: Probabilistische Modelle, generalisierte lineare und bilineare Modelle, rekur-
rente neurale Netzwerke, approximative Inferenz, Bildrekonstruktion, implizites Feedback

vi

Contents
Acknowledgements i

Abstract (English/Deutsch) iii

Notation 1

1 Introduction 3
1.1 Outline and Contributions . 6
1.2 Models and Methods . 8

1.2.1 Generalized Linear and Bilinear Models. 8
1.2.1.1 Sparse Linear Models . 10
1.2.1.2 Latent Gaussian Models 11

1.2.2 Sequence Modeling . 12
1.2.3 Methods of Variational Inference 13

1.2.3.1 The Variational Gaussian Approximation 16
1.2.3.2 Convexity-based Direct Site Bounding 17
1.2.3.3 Expectation Propagation 18

2 Inference for Generalized Linear Models 21
2.1 Rectified-Linear Poisson Regression . 23

2.1.1 Overview and Related Work . 23
2.1.2 Inference for the Poisson Likelihood Model 25

2.1.2.1 Expectation Propagation 28
2.1.3 Tractable EP Updates for the Rectified-Linear Function 30

2.1.3.1 Implementation Details 34
2.1.4 Experiments . 35

2.1.4.1 Synthetic Data . 35
2.1.4.2 Cox Processes: Coal Mining Disaster Data 35
2.1.4.3 Sparse Linear Models . 37

2.1.5 Discussion . 38
2.2 Tree-Structured Scale Mixtures . 40

2.2.1 Overview and Related Work . 40
2.2.2 Approximate Inference for Tree-Structured Scale Mixtures 42

2.2.2.1 Preliminaries . 42

vii

Contents

2.2.2.2 Algorithm of Seeger and Nickisch [2011a] 46
2.2.2.3 Inference Algorithm for Structured Scale Mixtures 50
2.2.2.4 Parameter Learning. 54

2.2.3 Experiments . 56
2.2.3.1 Denoising . 57
2.2.3.2 Inpainting . 58

2.2.4 Discussion . 59

3 Models of Implicit Feedback 63
3.1 Poisson Matrix Factorization . 66

3.1.1 Overview and Related Work . 66
3.1.2 Variational Gaussian Inference . 67
3.1.3 Experiments . 72

3.1.3.1 Methods . 72
3.1.3.2 Results . 73

3.1.4 Discussion . 75
3.2 Pairwise Preferences . 78

3.2.1 Overview and Related Work . 78
3.2.2 Inference and Learning for Collaborative Preference Learning . . . 80

3.2.2.1 Preliminaries . 80
3.2.2.2 PPCA for Coupled Likelihoods 81
3.2.2.3 Our Approach: EM Algorithm under Reparameterization 84
3.2.2.4 M-Step . 86
3.2.2.5 E-Step . 89
3.2.2.6 Implementation Details 91

3.2.3 Experiments . 92
3.2.3.1 Preliminaries . 92
3.2.3.2 Comparison to Alternative Utility Models 93
3.2.3.3 Movielens Datasets . 95
3.2.3.4 Visualization of Results 97

3.2.4 Discussion . 98
3.3 Collaborative Recurrent Neural Networks 100

3.3.1 Overview and Related Work . 100
3.3.2 Preliminaries . 102
3.3.3 Baseline Models . 103
3.3.4 The Collaborative Recurrent Neural Network Model 105

3.3.4.1 Processing a Single Sequence 106
3.3.4.2 The Collaborative Recurrent Neural Network (C-RNN) . 109
3.3.4.3 Variants . 110
3.3.4.4 Implementation Details 111

3.3.5 Empirical Evaluation . 111
3.3.5.1 Datasets . 111

viii

Contents

3.3.5.2 Comparison of RNN Variants 112
3.3.5.3 Baseline Comparison . 113
3.3.5.4 Characterization of Error 113

3.3.6 Discussion . 114

4 Concluding Remarks 117

Bibliography 119

Curriculum Vitae 131

ix

Notation

u, y Lowercase letters denote scalars

y,u Bold lowercase letters denote column vectors

X ,U Bold uppercase letters denote matrices

yj Scalar entry of corresponding vector, 1-based indices

uij Scalar entry of corresponding matrix, 1-based indices

Y Data domain, e.g. R

O,U, I Sets of indices

I , IM , IO Identity matrix, of dimension M , restricted to rows indexed by O

1 Constant one vector

[N] Range of integers {1, . . . , N}
{xi}i∈O Set formation from indexed elements

[xi]i∈O Vector formation from indexed elements

�(x) Indicator function �(x) = 1 if x is true, else 0

δk One-hot/indicator vector, [�(j = k)]j∈[N]

vecr (V) Row-major vectorization of V

vecc (V) Column-major vectorization of V

diag (V) Diagonal vector of V

diag (v) Diagonal matrix with diagonal v

[v,u] Horizontal concatenation of vectors/matrices

[v;u] Vertical concatenation of vectors/matrices

|v| Length of a vector

|X | Determinant of a matrix

1

Contents

A � 0 A is positive-definite

⊗ Kronecker product

◦ Element-wise product

∗ Convolution
.
= Equality up to a constant

∝ Proportionality

log Natural logarithm

∼ Distributed as, drawn from

N (x | μ,Σ),N (μ,Σ) Gaussian density. The random variable may be dropped

P (·) Probability mass or density function

Q(·) Approximate posterior

μ,Σ Typically prior mean and covariance

ξ,Ξ (Approximate) posterior mean and covariance

DKL [P‖Q] Kullback-Leibler Divergence

2

1 Introduction

The language of probability is exceptionally well suited for the task of modeling the
corrupted, incomplete datasets routinely encountered in real-world applications. Not
only does it let us specify the visible variables we can observe, latent variables we cannot
observe, and the relationship between them. It also lets us represent and precisely
quantify our uncertainty about the unknown variables using (conditional) probability
distributions. Crucially, it equips us with conceptually simple rules to perform such
probabilistic inferences about the unknowns conditioned on the data. Modeling data
probabilistically, i.e. declaratively specifying a process that offers an explanation of how
the observed data might have been generated, and then assessing its plausibility in
the light of our observations by quantifying the uncertainty of the model about the
data and, consequently, of the predictions and decisions we derive from the model, is a
powerful formalism underlying many approaches to robustly address challenging problems
in machine learning and related fields [MacKay, 1992, Ghahramani, 2015]. In fact, the
language of probability is so expressive that it offers a unified perspective on many methods
for analyzing data developed over the years [Bishop, 2006, Murphy, 2012, Barber, 2012].
Using probabilistic models in practice, however, can be challenging due to the asymmetry
in the relative ease of model specification compared to tractably performing inference.
We are therefore faced with a trade-off situation to achieve computational tractability
in practice: Since models necessarily are abstractions, simplifications and reflections of
the modeler’s biases, one may be willing to make compromises by imposing additional
assumptions to facilitate inference and learning. Alternatively, one may try to impose fewer
restrictions on the model and deal with the complexity of the resulting inference problem
directly. The majority of work presented in this dissertation is of the latter type, where
we are in particular interested in approximating posterior inference in high-dimensional,
non-conjugate latent variable models. We use the former approach only in the last part on
time-series, where we sacrifice a possibly beneficial probabilistic description of a complex
model for the ability to tractably learn variable-length dependencies on large time-series
datasets.

3

Chapter 1. Introduction

Throughout this dissertation, we consider parametric probabilistic models, for which
we will adopt notation inspired by [Gelman et al., 1995]. The dataset is the particular
realization of observable variables, to which we have access, and is denoted by y. We
denote by P (·) probability densities or mass functions that we will generally refer to as
distributions. We focus on parametric models, i.e. joint distributions of the variables
involved that are parameterized by a fixed-size parameter vector θ. When it is clear from
the context, the explicit dependence of the model on θ may be dropped. Learning a
model then becomes the task of finding particular values of the parameters that explain
an observed dataset y well. We therefore approach the learning problem as a maximum
likelihood (ML) problem

max
θ

P (y | θ). (1.1)

Introducing latent variables greatly enhances our ability to describe complex distributions
of the data by specifying the generative process of the data in a hierarchical manner.
Due to this expressiveness, however, learning latent variable models can be challenging in
practice: In many interesting applications, and particularly in the ones considered in this
dissertation, we are dealing with a high-dimensional real-valued latent variable vector f .
We specify the model by the joint distribution and can decompose it using the product
rule into likelihood and prior :

P (y,f | θ) = P (y | f ,θ)P (f | θ) (1.2)

We obtain the marginal likelihood, the objective in (1.1), often referred to as the partition
function Z, from (1.2) by the sum rule

P (y | θ) =
∫

P (y,f | θ) df (1.3)

and the posterior distribution using Bayes’ rule by normalizing (1.2)

P (f | y,θ) = P (y,f | θ)
P (y | θ) (1.4)

The posterior concisely summarizes the current state of our knowledge about f including
the remaining uncertainty. Probabilistic inference amounts to computing posterior
expectations. Its first two moments are useful for estimating a plausible f , and for
quantifying uncertainties in and correlations between variables, respectively. Assessing
predictive distributions for supervised learning requires posterior expectations of data
likelihoods, thereby guarding against overfitting. For estimating θ, algorithms for solving
(1.1) may require posterior expectations of the log joint model [Dempster et al., 1977].

Note, that in a consistently Bayesian approach, θ would be considered a random variable

4

as well. In contrast, we pursue a more pragmatic, empirical Bayesian strategy [MacKay,
1992, Seeger, 2000] by assuming that θ is readily estimated from the available data
after integrating out the high-dimensional latent variable f . Unfortunately, even in this
simplified setting, the integral in (1.3) is rarely available in closed form. Restricting
the model to use conjugate priors might fail to capture the characteristics of interest
exhibited by the data and does not resolve this issue in cases where, e.g., complex
dependencies between latent variables are the cause for intractability. Therefore, methods
for approximate inference are central for using probabilistic models in practice. Though
most accurate, sampling-based approximations are difficult to scale to high-dimensional
problems and large datasets and are not considered here. Instead, we focus on deterministic
approximations, in particular variational methods [Saul et al., 1996, Jordan et al., 1997,
Attias, 2000], developed in the context of probabilistic graphical models. Variational
methods cast the inference problem into an optimization problem and subsequently
simplify the problem by making assumptions on the form of the posterior in (1.4), e.g. by
imposing factorizations or by restricting it to lie within a tractable subset of distributions,
such as Gaussians, resulting in a much more compact and efficient representation of the
posterior than with samples. The models considered here, typically do not exhibit useful
graphical model structure amenable for approximation algorithms based on message
passing. Instead, we rely on alternating optimization schemes similar to Expectation
Maximization, continuous function optimization and certain fixed point algorithms. Such
methods typically behave much more predictably in terms of running time and are easier
to diagnose in terms of convergence compared to sampling-based methods and often reach
a satisfactory solution orders of magnitude faster than sophisticated sampling methods
[Kucukelbir et al., 2015], at the same time being generally more suitable to be scaled to
very large datasets [Hoffman et al., 2013, Broderick et al., 2013], an attractive feature in
the light of the exponentially growing rate of data collection we are witnessing.

Although a separation of concerns between modeling and inference algorithms is highly
desirable, finding an efficient variational approximation algorithm is intimately tied to the
characteristics of the model. Even methods for automatic variational inference, an active
area of research dating back to Bishop et al. [2002], are rather trying to find the right level
of abstraction that makes them applicable for a wide variety of problems. In doing so
they have to make compromises as concessions to the variety of models that we would like
to express: They often require sampling or numerical integration as a sub-routine, albeit
typically only in dimensions lower than the original latent dimensionality [Ranganath
et al., 2014], require differentiability with respect to all latent variables [Kucukelbir et al.,
2015], a property violated in several models of interest here, and often employ a mean-field
assumption that neglects posterior covariance.

The work on approximate inference, that we present in this dissertation acknowledges
these ties and seeks to contribute both in devising new models accompanied by efficient
inference and learning algorithms as well as present novel algorithms for existing models.
While in general the algorithms we develop are necessarily iterative in nature, we strive

5

Chapter 1. Introduction

to find closed form updates or sub-problems that can be computed using well-understood
numerical primitives.

The work presented here is motivated by and organized according to two applications:
image reconstruction in Chapter 2 and models of user preference, useful for recommender
systems in Chapter 3. Apart from these running examples, the models are applicable also
in other domains which we point out in the corresponding chapters.

The remainder of this chapter consists of an outline of the dissertation in Section 1.1,
summarizing the contributions presented in each part together with the publications in
which they appeared. This is followed in Section 1.2 by an overview of the different types
of models and methods used in the remaining chapters, categorized by application.

1.1 Outline and Contributions

This dissertation is organized in two chapters according to the applications motivating
our work.

In Chapter 2, we consider the ill-posed inverse problem of recovering an image from an
underdetermined system of linear measurements that are corrupted by noise. This part
consists of the following sections:

• In Section 2.1 we consider a Poisson likelihood model with the rectified-linear
function as non-linearity. This model can be used as an alternative to the stan-
dard additive white Gaussian noise model, e.g. describing physically plausibly the
stochastic arrival process of photons or other particles at a detector. To address the
intractable inference problem for such models, we present an efficient and robust
Expectation Propagation algorithm entirely based on analytically tractable compu-
tations operating reliably in regimes where quadrature based implementations can
fail. Furthermore, we discuss the rectified-linear function in the context of Poisson
regression problems where it can serve as a robust alternative to other common
non-linearities. This work was published in [Ko and Seeger, 2015].

• In Section 2.2 we model the hierarchical correlations between the coefficients of
an orthonormal multi-scale Wavelet transform using tree-structured mixtures of
super-Gaussians. We use this model as an image prior for denoising and inpainting
tasks. We derive a scalable inference algorithm to approximately compute the
posterior over the latent image as well as the discrete mixture components, that
maintains a full covariance representation between the pixels. We provide empirical
evidence for the benefits of using this augmented prior over a model that ignores
this structure in highly ill-posed problems. This work was published in [Ko and
Seeger, 2012].

6

1.1. Outline and Contributions

In Chapter 3, we consider the problem of inferring user preferences for items from various
types of implicit feedback. We consider two settings: the global static and the contextual
dynamic setting. In the global static setting, we represent preferences of users for items by
a latent real-valued matrix with low-rank structure. Instead of using numeric ratings we
develop methods to infer this latent representation given two types of implicit feedback:
aggregate counts of users interacting with a service and the binary outcomes of pairwise
comparisons.

• In Section 3.1 we model count data using a latent Gaussian bi-linear model with
Poisson likelihood. For this model, we develop an approximate inference algorithm
based on the variational Gaussian lower-bounding technique and derive a closed-
form variational objective under additional constraints. We show that the objective
is bi-concave, not only for Poisson but for any log-concave likelihood, which suggests
an alternating optimization scheme. We compare different approximating families
and empirically find that a mean-field approximation achieves a good balance
between running time and predictive performance. This work was published in [Ko
and Khan, 2014].

• In Section 3.2, we seek to infer the user preferences from the binary outcomes
of pairwise preference statements. We combine a low-rank bi-linear model with
non-parameteric item-feature regression to address the cold-start problem. We
develop a novel approximate variational Expectation Maximization algorithm that
mitigates the computational challenges due to couplings between entries in the
latent preference matrix introduced by the pairwise comparisons. This work was
published in [Khan, Ko, and Seeger, 2014].

In the contextual dynamic setting, we consider a different form of implicit feedback data
by taking into account the dynamics of user behavior. Methodologically, we embark on a
tangent by using recurrent neural networks. Although it is a generative sequence model
and can be trained using maximum likelihood, neither the network weights nor the hidden
states are considered latent random variables. Therefore, this model does not explain
noise or represent uncertainty, but rather relies on abundantly available data as well as
other forms of regularization, as is typical for neural-network-based methods.

• In Section 3.3, we model sequences of user activity at the granularity of single
interaction events in contrast to the aggregate perspective assumed in our work on
count data. Such activity logs are already routinely gathered in the background at
a large scale in many applications. Taking into account temporal and contextual
aspects of user behavior revealed by recurrent patterns could potentially lead to
more accurate user models. By combining ideas from latent factor models for
collaborative filtering and language models, we propose a collaborative sequence
model based on recurrent neural networks. The model is designed to capture a

7

Chapter 1. Introduction

user’s contextual state as a personalized hidden vector by summarizing cues from
a variable number of past time steps, while representing items by a global, real-
valued embedding. We demonstrate the versatility of our model by applying it
to two different tasks: music recommendation and mobility prediction. We show
empirically that our model efficiently exploits the inherent structure of the data
and consistently outperforms static and non-collaborative baseline methods. This
work was published in [Ko, Maystre, and Grossglauser, 2016].

1.2 Models and Methods

In this part we introduce the models and methods that are the foundation upon which
the work in this dissertation is built. We begin by introducing generalized linear and
bilinear models in Section 1.2.1. In Section 1.2.2 we introduce recurrent neural networks
to model sequential data. Finally, in Section 1.2.3 we introduce the different methods for
approximate inference, that we will encounter in this dissertation.

1.2.1 Generalized Linear and Bilinear Models.

The models that we consider in Sections 2.1 and 2.2, are related to generalized linear
models [McCullach and Nelder, 1983], while the models in Sections 3.1 and 3.2 are
generalized bi-linear models [Lee and Seung, 1999, Collins et al., 2002, Mohamed et al.,
2008, Salakhutdinov and Mnih, 2008a], both widely used in machine learning, signal
processing and statistics. The linear and bilinear models of interest are latent variable
models of the following form:

Observations are denoted by a vector y ∈ YM , where Y ∈ {R, {0, 1} ,N}, depending
on the application. We assume that the elements of y, denoted by yj , are independent
samples of a likelihood given the entries fj of a latent vector f ∈ R

M :

P (y | f) =
M∏
j=1

P (yj | fj). (1.5)

This formulation allows us to conveniently generalize the model to different types of data
or noise by choosing appropriate likelihoods.

The latent vector f has the following representation:

f = Xu (1.6)

where X ∈ R
M×N and u ∈ R

N . In cases where Equation (1.6) can be interpreted as a
Matrix-Matrix multiplication, i.e. when N = UD and X = IU ⊗ V for some V ∈ R

I×D,

8

1.2. Models and Methods

we may, for ease of indexing, rewrite the likelihood (1.5) in terms of a latent matrix

F = V UT (1.7)

where U ∈ R
U×D is the row-major matrix representation of u, and consequently

F ∈ R
I×U . Then, (column) vectors vi and uu represent rows of V and U , respec-

tively, so that fiu = vT
i uu.

In this setting, we define linear models as distributions

P (y,u | X), (1.8)

i.e. we assume X to be known. While in linear models for supervised learning, i.e. re-
gression and classification problems, X is typically a tall matrix of input features, we
predominantly focus on the overcomplete or underdetermined case, commonly encountered
in inverse problems in image or signal processing. Examples for reconstruction problems
that can be represented in this framework together with the corresponding linear operator
X include the following applications:

• Image deconvolution [e.g. Levin et al., 2011]: the linear operator X is a convolution
with a known blur kernel k, i.e. X = (k ∗).

• Image inpainting [Bertalmio et al., 2000]: X = IO, consists of rows of the identity
matrix indexed by the set of observed pixels O.

• Cartesian MRI reconstruction [e.g. Seeger and Nickisch, 2011a]: X = IOF consists
of rows of the discrete Fourier transform.

On the other hand, we define bilinear models as

P (y,u,X), (1.9)

i.e. X is considered unknown. Such models are typical for unsupervised learning or
dimensionality reduction and use the representation in Equation (1.7) while assuming F

be of low rank, i.e. D
 min {I, U}.

There are two ways to interpret the unknown X in bilinear models: The first variant is
similar to probabilistic PCA (PPCA) [Tipping and Bishop, 1998] in that X is treated as
a parameter, that is learned by maximizing the marginal likelihood P (y | X), which is
why learning in this setting is closely related to inference in linear models. The second
variant treats X as a random variable as well and the goal is to infer a joint posterior over
X and u. For our purposes, we refer to this variant as probabilistic matrix factorization
(PMF) [Salakhutdinov and Mnih, 2008a].

9

Chapter 1. Introduction

We encounter generalized bilinear models in many areas:

• In image and signal processing, e.g. in blind deconvolution [Levin et al., 2011], where
both the unknown image u as well as the blur kernel k are unknown, or for sparse
coding [Olshausen and Field, 1997], where X represents an overcomplete dictionary
of low-level features from which a corpus of images y can be reconstructed by linear
combinations of dictionary elements with weights from a sparse matrix u.

• In topic modeling, y is a bag-of-words representations of a corpus of documents.
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] can be written as a bi-linear
model where X are the word distributions per topic and u the topic distribution
per document by summing over the latent topic variables [Buntine, 2002]. Blei et al.
[2003] propose both, a version that treats X as a parameters as well as a smoothed
version that treats X as a random variable.

• Finally, in the area of recommender systems, bi-linear models are successfully used
to impute entries in the matrix of ratings of items given by users by decomposing it
into a product of latent factors [Koren et al., 2009, Salakhutdinov and Mnih, 2008a,
Ilin and Raiko, 2010].

To complete the specification of the joint model of data and unknowns in Equations (1.8)
and (1.9), we consider sparse linear and latent Gaussian models for the latent variables.

1.2.1.1 Sparse Linear Models

For linear models we are primarily interested in heavy-tailed priors, known to better
describe statistics of natural images [Seeger and Nickisch, 2011a]. Reconstructing u in
(1.6) from observations drawn according to (1.5) is typically considered ill-posed: without
additional assumptions we cannot hope to meaningfully determine u from y. One such
assumption, particularly fruitful due to its wide applicability, is that the image can be
represented as a linear combination of a few atoms from an appropriately chosen basis
or dictionary, meaning that the actual effective number of degrees of freedom is much
lower than it is apparent from a canonical signal representation such that the information
contained in the measurements are sufficient for a good estimation of u [Tibshirani, 1996,
Olshausen and Field, 1996, Donoho, 2006, Candès et al., 2006]. For natural images,
modeling statistically the occurrence of edges as their most salient features, can lead to
such sparse descriptions, e.g. by using high-pass filter responses [Portilla et al., 2003]. Let
s = Bu be coefficients in a appropriately chosen linear transform domain, in which they
are (approximately) sparse. Examples for B are derivative filters (Section 2.1) or the
Wavelet transform (Section 2.2). The distributions of these transform coefficients are

10

1.2. Models and Methods

then described by non-Gaussian, heavy-tailed distributions, combined as follows:

P (u) ∝
∏
j

t(sj) (1.10)

Examples include the popular Laplace prior, for which t(s) = e−τ |s|. From a regularized
estimation point of view this prior can be seen as a convex surrogate of the �0 pseudo-
norm. Point estimation under this prior for a Gaussian likelihood is well understood
and can be theoretically characterized in terms of properties of X and B [Donoho, 2006,
Candès et al., 2006]. While from a probabilistic point of view, to model exact sparsity, a
distribution that assigns non-zero probability to the event s = 0, such as spike and slab,
would be more appropriate [Titsias and Lázaro-Gredilla, 2011], Laplace priors are often
used for its mathematical properties [Girolami, 2001, Seeger and Nickisch, 2011a]. We
will revisit sparse linear models in Section 2.1 and Section 2.2.

1.2.1.2 Latent Gaussian Models

In our setup, we can use Gaussian priors in various ways. For bilinear models F = V UT ,
the probabilistic matrix factorization model of Salakhutdinov and Mnih [2008a] places
Gaussian priors on the rows of V and U . We will revisit this setup in Section 3.1. A
probabilistic PCA prior [Tipping and Bishop, 1999] places an isotropic Gaussian on the
rows of U , while V is considered a parameter. We will encounter this formulation in
Section 3.1 and Section 3.2.

A particularly versatile approach to specify a latent Gaussian model in a supervised
setting, is to view the linear model (1.5) with (1.6) in terms of a function instead of
weights and to generalize it by describing the function non-parametrically using Gaussian
processes (GP) [Rasmussen and Williams, 2006]. Assuming a regression perspective, we
can consider rows of X as feature vectors xj and u a weight vector. The components of
f can therefore be interpreted as a (real-valued) function f(x) evaluated at xj , in this
case linear, i.e. fj = f(xj) = xT

j u. A Gaussian process prior can be used to model f(x)
in more general, non-linear terms. Importantly, f(x) is viewed as a random quantity.
Rasmussen and Williams [2006] introduce Gaussian processes as collections of, possibly
uncountably many, real random variables fj , any subset of which is jointly Gaussian.
Therefore, we can represent the co-domain of a function by this collection. To complete
the specification, we need to define how function values at different input locations xi,
xj correlate, which effectively specifies our smoothness assumptions on f(x). We provide
this assumption through a positive definite kernel k(xi,xj) [Schölkopf and Smola, 2002].
Additionally, we need to provide a mean function μ(x). From a probabilistic perspective,
the kernel function determines the covariance of the function values f(x). Specifically,
the kernel matrix K with entries Kij = k(xi,xj) is positive definite and serves as
the covariance matrix of the vector f . We write f ∼ GP(μ(x), k(x,x′)) to denote a

11

Chapter 1. Introduction

function distributed as specified by a GP. We will revisit GPs as priors in Section 2.1 and
Section 3.2.

1.2.2 Sequence Modeling

In Section 3.3 we will encounter a scenario where the observations consist of sequences
of events. Recurrent neural networks [RNN, Rumelhart et al., 1988, Werbos, 1990] are
conceptually simple, yet powerful and versatile sequence models. Although RNNs can
be used to specify the likelihood of a sequence, resulting in a generative sequence model,
typically neither the network weights nor the hidden states are considered random. This
simplifies training, which is reduced to maximum likelihood estimation. Inference for
neural networks is an active research topic, but still prohibitively expensive in practice
requiring sampling approximations for which back-propagation has to be run several
times more often to estimate gradients [Graves, 2011]. Therefore, other regularization
techniques are preferred in practice, some of which can be viewed as approximating model
averaging [Srivastava et al., 2014, Pham et al., 2014, Gal and Ghahramani, 2016].

For our purposes, we draw analogies to neural language models [Mikolov et al., 2010],
where a sequence y of length T with elements from a fixed alphabet or vocabulary of I
items I = [I] is observed. Given the ordering imposed by time, it is reasonable to choose
a factorization of the joint distribution over a sequence that respects that order:

P (y) =

T∏
t=1

P (yt | y<t), (1.11)

where y<t denotes all elements of y before index t. In order to capture long-range
dependencies, language models such as the RNN Language Model [RNNLM, Mikolov
et al., 2010] use a RNN to specify P (yt | y<t).

Generally, RNNs compute a mapping from the input sequence to a corresponding sequence
of real-valued hidden state vectors of dimension D:

RNN([y1, . . . , yT]) = [h1, . . . ,hT] , ht ∈ R
D. (1.12)

The hidden state ht is a flexible representation, meant to summarize the sequence, seen
up to time t, that enables us to use the network for different tasks by defining an
appropriate output layer. RNNs can be seen as non-linear dynamic systems that define
the computation of the hidden state recursively. In graphical terms, they generalize the
directed, acyclic graph structure of feed-forward networks by allowing cycles to represent
dependencies on the past state of the network. The RNNLM uses a simple network
architecture that goes back to Elman [1990] and expresses the dependency on the past

12

1.2. Models and Methods

through the following recursive definition of the hidden state vectors:

at = Whht−1 +Winδyt ,

ht = σ(at).
(1.13)

The matrices Wh ∈ R
D×D and Win ∈ R

D×I are parameters of the RNN and σ(·) is a
non-linear function that is applied element-wise to its input, such as the logistic sigmoid,
the hyperbolic tangent or, more recently, the rectified linear function. The input is
presented to the network as one-hot encoded vectors denoted by δyt , in which case the
corresponding matrix-vector product Winδyt reduces to projecting out the yt-th column of
Win. Note, that the network can be trivially extended to accept arbitrary side information
that characterizes the input at time t. The recurrence is initialized by a constant vector
h0 = ε1 with small ε ≥ 0. In practice, more sophisticated architectures implementing
(1.12) are in use [Hochreiter and Schmidhuber, 1997, Cho et al., 2014b], some of which
we will encounter in Section 3.3.

To obtain a distribution over the next item, we can linearly map the hidden state to R
I

using a matrix Wout ∈ R
I×D and pass the output vector zt ∈ R

I through the softmax
function σm(z , j) =

exp(zj)∑
k∈[I] exp(zk)

to obtain the probability for the next item to be j:

zt = Woutht,

P (yt | y<t) = σm(zt, yt)
(1.14)

This likelihood together with the recursion in (1.13) enables us to sample sequences, by
drawing from the multinomial (1.14) and presenting the sample as input to the network
for the next timestep.

The network is parameterized by θ = {Win,Wh,Wout} and can be trained using maximum
likelihood. Gradients are approximated using backpropagation through time [BPTT,
Williams and Zipser, 1995]. BPTT computes the gradient by unrolling the RNN in time
and by treating it as a multi-layer feed-forward neural network with parameters tied
across every layer and error signals and inputs at every layer. For computational reasons,
the sequence unrolling is truncated to a fixed size. In Section 3.3, we extend RNNs to
sequence modeling in a collaborative setting.

1.2.3 Methods of Variational Inference

Most parts of this dissertation develop or use approximations for intractable posterior
inference in latent variable models. Here, we focus on Gaussian approximations, that
can be obtained using different methods. In Section 2.1 and Section 3.2, we respectively
derive and use Expectation Propagation algorithms [EP, Minka, 2001b, Opper and
Winther, 2005]. In Section 2.2 and Section 3.1, we use variational bounding techniques to

13

Chapter 1. Introduction

approximate the log partition function [Opper and Archambeau, 2009, Girolami, 2001].
See Nickisch and Rasmussen [2008] for a comprehensive comparative study of Gaussian
approximation techniques for Gaussian process classification. This section provides a
brief introduction to the approximations we use.

For the purpose of this brief, conceptual introduction, consider the intractable posterior
distribution in a latent variable model

P (f | y) = P (y | f)P (f)

P (y)
(1.15)

To proceed, we first rewrite the posterior in (1.15) in a slightly more convenient way
by abstracting from the notions of prior and likelihood. We assume that our model
can be written as a product of positive, scalar functions tj(fj), that we will refer to as
potentials, and an optional coupled Gaussian factor t0(f) = N (f | μ,Σ) [Nickisch, 2010,
Rasmussen and Williams, 2006]:

P (f) = Z−1
M∏
j=1

tj(fj) t0(f) (1.16)

With this formulation we can express both models with non-Gaussian likelihoods, e.g. in
supervised classification tasks, and non-Gaussian priors, e.g. in sparse linear models for
images (1.10). Of particular interest are log-concave potentials, i.e. potentials t(f) such
that log t(f) is a concave function. Consequently, for a log concave model, MAP estimation
can be expressed as a convex minimization problem, which in turn implies uni-modality
of the posterior: a scenario in which a uni-modal Gaussian posterior approximation seems
appropriate. Furthermore, the convexity properties of log-concave models carry over, to
an extent, to variational approximate inference methods [Seeger and Nickisch, 2011a,
Challis and Barber, 2011] and lead to stable Expectation Propagation algorithms [Seeger,
2008]. The normalization constant Z corresponds to the marginal likelihood or partition
function Eq. (1.1). Assuming it exists, it is the central quantity for probabilistic inference,
computed implicitely or explicitely. We seek to approximate P (f) by a multivariate
Gaussian

Q(f) = N (f | ξ,Ξ). (1.17)

Gaussian approximations are often chosen for mathematical and algorithmic convenience,
but are especially appropriate for log-concave potentials, since the posterior then is
unimodal, as mentioned above.

Approximating P (f) in (1.16) raises the question of how to define proximity. A global
measure of dissimilarity between two distributions is the Kullback-Leibler divergence,

14

1.2. Models and Methods

which is non-negative and zero for identical distributions P (f) = Q(f):

DKL [Q(f)‖P (f)] = −
∫

Q(f) log
P (f)

Q(f)
df (1.18)

Its asymmetry with respect to the order of arguments suggests two criteria to minimize:

DKL [P (f)‖Q(f)] �= DKL [Q(f)‖P (f)] (1.19)

Minka [2005] introduces both as special cases of the famility of α-Divergence measures.
Since we minimize with respect to Q, DKL [Q‖P] forces Q to be zero where P is zero
to cancel the otherwise infinite divergence. On the other hand, DKL [P‖Q] forces Q

to be non-zero where P is non-zero with the same reasoning. Although, DKL [Q‖P]

might give more meaningful results in multi-modal settings, methods motivated by
minimizing DKL [P‖Q] are considered to be more accurate in uni-modal settings by better
capturing posterior mass, thereby not underestimating covariances, and producing far
more accurate approximations of the partition function [Nickisch and Rasmussen, 2008].
In practice, however, DKL [Q‖P] is an attractive method for several reasons. Minimizing
it is equivalent to maximizing a lower bound on logZ, which is conceptionally intuitive.
The objective can be considered easier to handle due to the expectation with respect to
Q instead of the, by assumption, intractable P . The resulting optimization problem can
therefore typically be solved by standard (gradient-based) algorithms. To see the difficulty
of minimizing DKL [P‖Q], consider the approximating Gaussian in its exponential family
representation Q(f) = Z(λ)−1 exp

(
λTφ(f)

)
, where λ are the natural parameters and

φ(f) the (vectorized) sufficient statistics. At a minimum of DKL [P‖Q], we have ∇λ = 0:

−∇λDKL [P‖Q]
.
= ∇λ

∫
P (f)

(
λTφ(f)

)
df −∇λ logZ(λ)

=

∫
P (f)φ(f) df − EQ [φ(f)]

= EP [φ(f)]− EQ [φ(f)]

(1.20)

The log partition function is convex [Wainwright and Jordan, 2008]. We therefore require
moment matching at the minimum:

EQ [φ(f)] = EP [φ(f)] (1.21)

Except in special cases, moment matching cannot be achieved directly. After all computing
P ’s moments are intractable.

The methods we consider are Expectation Propagation (EP) [Minka, 2001b, Opper
and Winther, 2005], which is based on the idea of moment matching, the variational
Gaussian (VG) approximation [Seeger, 2000, Opper and Archambeau, 2009, Challis and
Barber, 2011], minimizing DKL [Q‖P] and convexity based direct site bounding (DSB)
techniques [Jaakkola and Jordan, 1998, Girolami, 2001, Palmer et al., 2006, Seeger, 2008],

15

Chapter 1. Introduction

an alternative bounding technique.

VG and DSB methods approximate logZ by maximizing a lower bound with respect
to certain variational parameters, while the EP approximation is not a bound. For the
case of a class of linear models, Challis and Barber [2011] show that the two bounding
methods are related, but the VG bound can be tighter. In comparison, Nickisch and
Rasmussen [2008] show in a large empirical study that the EP approximation can be
superior in the case of Gaussian-process classification.

These different approximations of the marginal likelihood come with different algorithmic
strategies to optimize the variational parameters. A common feature and the major
challenge is the cubic scaling in the number of latent variables if a full covariance matrix
is to be represented.

1.2.3.1 The Variational Gaussian Approximation

The most common way to derive a variational approximation resembles the derivation
of the EM algorithm. We introduce a variational distribution Q and bound logZ using
Jensen’s inequality:

logZ = log

∫ M∏
j=1

tj(fj) t0(f) df

= log

∫
Q(f)

∏M
j=1 tj(fj) t0(f)

Q(f)
df

≥
∫

Q(f) log

∏M
j=1 tj(fj) t0(f)

Q(f)
df

= EQ(f)

[
log

∏M
j=1 tj(fj) t0(f)

Q(f)

]

=
∑
j

EQ(fj) [log tj(fj)]−DKL [Q(f)‖t0(f)]

=: LVG(Q)

(1.22)

While the inequality would be tight at the intractable true posterior Q(f) = P (f | y), we
approximate the problem by restricting Q to lie within a tractable family of distributions
F . For the Variational Gaussian (VG) approximation, F = {N (ξ,Ξ)}. We can further
simplify the approximation by restricting the covariance, e.g. to be diagonal Ξ = diag(γ).
Maximizing the lower bound LVG(Q) with respect to the variational parameters ξ and
Ξ yields an approximation to the evidence as well as an approximate posterior Q that
minimizes DKL [Q(f)‖P (f | y)].

This approximation results in straight-forward optimization problems, amenable for off-the

16

1.2. Models and Methods

shelf solvers, if the expectations in (1.22) can be evaluated efficiently. Furthermore, it
is easy to impose further restrictions on the family of distributions, i.e. the structure
of the approximate covariance. Challis and Barber [2011] show, that for log concave
potentials the VG approximation results in a convex optimization problem. However, this
result depends on particular parameterization and does not hold, e.g. for the compact
reparameterization of Opper and Archambeau [2009]. We use this approximation for
latent Gaussian bilinear models of count data in Section 3.1.

1.2.3.2 Convexity-based Direct Site Bounding

Another way to arrive at a useful bound on logZ is to approximate each non-Gaussian
potential locally [Bishop, 2006]. A method to achieve this relies on a variational rep-
resentation of the class of super-Gaussian potentials [Jaakkola, 1997, Girolami, 2001,
Palmer et al., 2006]. As their name suggests, these potentials admit a representation as a
pointwise maximum over width-parameterized Gaussian functions. Using the notation of
Seeger and Nickisch [2011a], the representation is given by:

tj(fj) = max
γj

e−f2
j /(2γj)e−hj(γj)/2. (1.23)

The condition, a potential tj(fj) has to fulfill to admit this representation, is log-convexity
in f2

j , i.e. g(xj) := log tj(
√
xj) is convex, with xj ≥ 0. Then (1.23) follows from convex

conjugacy [Rockafellar, 1970]. For a concise, characterization, see e.g. Palmer et al. [2006],
where also a connection to the class of Gaussian scale-mixture distributions is shown. We
obtain a parameterized Gaussian approximation to (2.6) by replacing each non-Gaussian
potential tj(fj) with the Gaussian function from (1.23). To set the variational parameters
γ , we optimize the resulting bound on logZ:

logZ = log

∫ M∏
j=1

tj(fj) t0(f) df

≥ −1

2

M∑
j=1

h(γj) + log

∫
e−

1
2
fT diag(γ)−1f t0(f) df

=: LDSB(γ)

(1.24)

For sparse linear models, [Seeger and Nickisch, 2011a] study this approximation in great
detail and make several contributions: they conduct a thorough convexity analysis and
find that the optimization problem (1.24) is convex if and only if the underlying MAP
estimation problem is convex, i.e. for super-Gaussian potentials that are additionally
log-concave. They remark that direct optimization of (1.24) even with first-order line-
search based methods is prohibitively expensive, with cubic cost per evaluation of the
objective function as well as the gradient. Instead, they reformulate the Gaussian integral

17

Chapter 1. Introduction

in (1.24) as an optimization and then use a convergent algorithm akin to the Convex
Concave Procedure [Yuille and Rangarajan, 2003] for optimizing (1.24) in a double-
loop manner, where the cubic operation is isolated in the outer loop and is therefore
required to be performed only a few times. Additionally, the expensive outer loop can
be run approximately based on numerical methods that can exploit additional structure
typically present in imaging applications. The resulting method can be scaled to problem
sizes appropriate for imaging applications by approximately maintaining an implicit
representation of the full posterior covariance matrix. In Section 2.2 we will extend the
algorithm of Seeger and Nickisch [2011a] to structured mixture models.

1.2.3.3 Expectation Propagation

For this introduction we adopt the perspective and the notation of and refer to the
book by Rasmussen and Williams [2006] for a more detailed introduction. EP [Minka,
2001b, Opper and Winther, 2005] approximates P (f) in Eq. (2.6) by approximating each
non-Gaussian potential tj(fj) using unnormalized Gaussians t̃j(fj) = Z̃j N (fj |μ̃j , σ̃

2
j) to

form a Gaussian approximation Q(f) following the same factorization:

Q(f) = Z−1
EP

M∏
j=1

t̃j(fj) t0(f) (1.25)

Correspondingly, the EP-approximation to the marginal likelihood is given by:

ZEP =

M∏
j=1

Z̃j

∫ M∏
j=1

N (fj |μ̃j , σ̃
2
j) t0(f) df (1.26)

EP was devised to address the shortcomings of the assumed density filtering (ADF) method
and can be motivated by, and in special cases shown, to minimize the KL-divergence
DKL [P (f) ||Q(f)] [Minka, 2001b]. Note the order of the arguments in contrast to
Eq. (1.22). Since this quantity is generally intractable, EP employs the following strategy
to determine the variational parameters μ̃j , σ̃

2
j .

We define the i-th marginal cavity distribution1 by removing the i-th approximate potential
t̃i(fi) from Q(f) and marginalizing over {fj : j �= i}, denoted as f\i:

Q−i(fi) = N (fi|μ−i, σ
2
−i

) ∝ ∫ ∏
j �=i

t̃j(fj) t0(f) df\i (1.27)

The so called tilted distribution replaces the approximate potential t̃i(fi) in Q(f) by the

1EP is much more general than we describe here. E.g. it applies to models with multi-variate potentials
or other exponential-family approximations.

18

1.2. Models and Methods

true non-Gaussian potential ti(fi) by multiplying it with the cavity marginal:

P̂ (fi) = Ẑ−1
i ti(fi)Q−i(fi) where Ẑi =

∫
ti(fi)Q−i(fi) dfi (1.28)

The criterion to minimize in order to update the parameters of t̃i is the KL-divergence
between the tilted- and the variational distribution DKL

[
P̂ (fj) ||Q(fj)

]
. As we have

seen in (1.21), we can solve this sub-problem by moment matching:

EQ [fi] = EP̂ [fi]

VarQ [fi] = VarP̂ [fi]
(1.29)

This time, however, we are dealing with moments of a one-dimensional marginal distribu-
tion that can be seen as a Gaussian expectation of a potential. This computation is often
analytically tractable, and if not, is amenable for numerical integration. The constant Z̃i

is chosen such that the normalization constants of P̂ (fi) and Q(fi) match, i.e. we solve:

Z̃i

∫
N (fi|μ̃i, σ̃

2
i)Q−(fi) dfi = Ẑi (1.30)

The EP update therefore consists of determining the first two moments and the normal-
ization constant of the tilted distribution.

Once the parameters of a single t̃i are changed, we can update the representation of
the full approximation Q(f), which consists of recomputing ξ and VarQ [f] = diag (Ξ).
This process is repeated until convergence, i.e. until a fixed point in terms of tilted and
approximate moments is reached.

The update of Q(f), in particular obtaining VarQ[f], dominates the algorithm compu-
tationally, due to cubic scaling in the latent dimensionality. The cost can be somewhat
reduced by doing a pass over all potentials before updating Q. This variant is referred to
as parallel EP [Gerven et al., 2010]. Convergence is not guaranteed in either case [Seeger
and Nickisch, 2011a]. But for log-concave models EP updates where shown to remain
valid, such that the algorithm converges reliably in practice [Seeger, 2008]. Although
there have been efforts to scale EP to larger problem sizes [Seeger and Nickisch, 2011b],
scalability remains an open problem, not least due to its sensitivity to inaccurate variance
estimates.

Opper and Winther [2005] derive EP from a different, more general perspective not
discussed here, that allows for more accurate, structured approximations. Furthermore,
they provide a more expensive algorithm for which convergence can be established.

19

2 Inference for Generalized Linear
Models

Probabilistic inference for generalized linear models is useful on several levels [MacKay,
1992]: in ill-posed, data-scarce and noisy scenarios, probabilistic methods can not only
deliver more robust estimates, but also quantify the uncertainty around them. This
is not only crucial for learning meaningful model parameters [Levin et al., 2011], but
also for making decisions, e.g. adaptive sampling and design optimization [Seeger and
Nickisch, 2011a]. Figure 2.1 depicts a generalized sparse linear model, as introduced in
Section 1.2.1, where the left plate constitutes the conditionally independent likelihood
given projections of the latent weights fj = xT

j u. The right plate represents the prior,
e.g. enforcing sparsity of sk = bTku in an appropriate domain.

u

fj

yj

xj sk bk

j ∈ [M]

k ∈ [K]

Figure 2.1 – Graphical model illustrating a Sparse Linear Model: The latent weights or
image u govern the generation of observations yj and are a priori assumed to result in
sparse coefficients sk when projected onto bk.

This chapter comprises two sections. In Section 2.1, we are concerned with modifications
of the likelihood (left) part of Figure 2.1, whereas Section 2.2 deals with extensions of the
prior (right) part of Figure 2.1.

In particular, in Section 2.1, we study a model of count data, which we refer to as rectified-
linear Poisson regression. The focus lies on studying the role of non-linear functions
used in doubly-stochastic inhomogeneous Poisson processes for mapping a real-valued

21

Chapter 2. Inference for Generalized Linear Models

latent variable to the positive reals to serve as the intensity of the Poisson process. Our
main result is a simple dynamic program to robustly compute exact moments of tilted
distributions (1.29) required for Expectation Propagation. Since only the likelihood in
Figure 2.1 is modified, this result extends immediately to non-parametric regression with
a Gaussian process prior, depicted in Figure 2.2, inspired by the illustration in Nickisch
and Rasmussen [2008]. Each data point is associated to a new latent variable that are
all correlated, symbolized by the bold line, governed by the kernel and its parameters as
introduced in Section 1.2.1.2.

f1 f2 . . . fM

y1 y2 yM

x1 x2 xM

θ

Figure 2.2 – Non-parametric Gaussian process regression: a latent function evaluated at
locations xj with corresponding observations yj . The function is modeled by a GP, so
that function values fj are jointly Gaussian, indicated by the thick line connecting them.

In Section 2.2, we extend the prior in Figure 2.1 to be structured as illustrated in
Figure 2.3: We augment the model with additional discrete latent variables to model the
sparse coefficients as mixtures of super-Gaussians and impose tree-structured dependencies
between mixture components. This model is useful to represent persistence of non-zero
patterns across scales of hierarchical transforms such as Wavelets. For scalable posterior
inference in this model, we extend the approximate inference algorithm of Seeger and
Nickisch [2011a].

u

fj

yj

xj s1 s2 . . . sK

δ1 δ2 . . . δK

b1 b2 bK

j ∈ [M]

Figure 2.3 – Structured priors: The prior in Figure 2.1 is augmented by a latent discrete
graphical model intended to model dependencies in the sparsity pattern of the sk.

22

2.1. Rectified-Linear Poisson Regression

2.1 Rectified-Linear Poisson Regression

2.1.1 Overview and Related Work

In this part, we are concerned with approximating intractable posterior inference for
sparse linear and latent Gaussian Poisson-regression models with the following likelihood.
We observe counts y = [yj]j∈[M] ∈ N

M
0 , that are conditionally iid. samples given the

intensity or rate parameters λ = [λj]j∈[M] ∈ R
M
≥0. Hence, we write the likelihood of the

data as

P (y | λ) =
M∏
i=1

1

yj !
λ
yj
j e−λj (2.1)

We model the intensities as λj = g(fj), where the fj ∈ R are real-valued latent variables
and g(f) is a non-linear function that ensures the non-negativity of λj . Thus, we write
the likelihood factors as potentials

ty(f) := P (y | λ(f)) = P (y | f) (2.2)

We denote by λ = g(f) = [g(fj)]j∈[M] the point-wise application of g(f) to the compo-
nents of f . Such models are used to describe counts of random phenomena in various
contexts. The likelihood in (2.1) arises, for example, when discretizing inhomogeneous
Poisson processes with stochastic intensities, also known as a Cox process, often used to
map the rate at which certain social, economical or ecological events occur in space and/or
time [Vanhatalo et al., 2010, Diggle et al., 2013]. In neuroscience, they are referred to as
the Linear-Nonlinear-Poisson cascade model, widely used to describe neural responses to
external stimuli [Pillow, 2007, Gerwinn et al., 2010, Park and Pillow, 2013, Park et al.,
2014]. Moreover, Poisson models have been applied to collaborative filtering tasks to
understand user preferences from implicit feedback [Seeger and Bouchard, 2012]. We will
revisit such models in Section 3.1. In image processing, the noise process in photon-limited
acquisition scenarios, typical for astronomical- and biomedical imaging, is Poisson [Starck
and Murtagh, 2002, Dupé et al., 2008, Carlavan and Blanc-Féraud, 2012], an observation
that e.g. the Richardson-Lucy model for deconvolution is based on [Richardson, 1972,
Lucy, 1974]. Finally, in particle physics, Poisson models are used to infer the spectra of
elementary particles generated in a particle accelerator [Kuusela and Panaretos, 2015].

In this work, we are primarily interested in the role of the non-linearity g(f) on posterior
inference. In Table 2.1, we list several alternatives for g(f) commonly found in the
literature [Pillow, 2007]. While clearly related, we avoid the terminology used for
generalized linear models [McCullach and Nelder, 1983] where the inverse mapping
λ = g−1(f) is referred to as the link function, because the RL function is not invertible.
Instead we refer to g(f) simply as non-linearity, similar to terminology used in neural
networks, where rectified-linear units as a replacement for sigmoidal non-linearities has

23

Chapter 2. Inference for Generalized Linear Models

sparked recent interest [Glorot et al., 2011, Zeiler et al., 2013, Maas et al., 2013]. In
particular, we focus on the rectified-linear (RL) function g(f) = max (0, f), motivated
by two reasons. First, RL is asymptotically equivalent to softplus g(f) = log

(
1 + ef

)
(SP) and can therefore serve as an alternative in scenarios in which SP is preferred over
exponential g(f) = ef (EXP) [Seeger and Bouchard, 2012, Park et al., 2014]. Second, RL
is essential for physically plausible models of particles (photons and others) arriving at a
sensor [Starck and Murtagh, 2002, Dupé et al., 2008, Carlavan and Blanc-Féraud, 2012,
Kuusela and Panaretos, 2015], making a broad range of methods developed for Gaussian
noise available. Here, the SP non-linearity might lead to instabilities: in order to achieve
a very low intensity λ, e.g. for dark pixels, we would require f → −∞.

Although image reconstruction problems are typically addressed by point estimation,
there are compelling arguments for full posterior inference: Apart from benefits such as
uncertainty quantification and a principled way for hyper-parameter learning, a practical
inference method may be necessary to tackle difficult high-level problems in this context,
such as blind deconvolution. For this severely ill-posed problem, where neither the
blur kernel nor the original image are known, Levin et al. [2011] show that joint MAP
estimation tends to lead to degenerate solutions which can be avoided by using the
marginal likelihood for learning.

A major issue in tackling approximate inference is the non-differentiability of the log-
posterior when using the RL function as well as due to the use of common image
priors [Seeger, 2008, Seeger and Nickisch, 2011a], making many popular gradient-based
methods such as Laplace’s method or Variational Bayes inconvenient or impossible to
apply [Gerwinn et al., 2008]. We therefore chose the Expectation Propagation algo-
rithm [Minka, 2001b, Opper and Winther, 2005], known to gracefully deal with a much
larger variety of models while delivering practical accuracy and performance [Kuss and
Rasmussen, 2005, Nickisch and Rasmussen, 2008]. Its greater generality however can come
at the cost of a numerically more challenging implementation. Meeting these challenges
is at the heart of our contributions presented here, which we summarize as follows.

Our main result is to provide a simple dynamic program to compute the moments of a
distribution

P̂ (f) ∝ ty(f)N (f | μ, σ2) (2.3)

with the RL non-linearity, a necessary step to run Expectation Propagation approximate
inference. We demonstrate, that in comparison to a generic quadrature-based implemen-
tation, our formulation (a) is more efficient to compute and (b) can operate in regimes
where quadrature experiences numerical instabilities. We conduct a series of experiments
that corroborate the utility of using this model: On the mining-disaster data set we show
that compared to the RL function, using the exponential function can be harmful in
terms of generalization performance. On a deconvolution problem of natural images with

24

2.1. Rectified-Linear Poisson Regression

Exponential Softplus Rectified-Linear

g(f) exp(f) log(1 + exp(f)) max (0, f)

Table 2.1 – Typical non-linearities in the context of Poisson likelihoods (see text).

Poisson noise, where the use of other non-linearities led to numerical instabilities and
convergence issues, we show that taking into account the correct noise model significantly
reduces the reconstruction error compared a Gaussian likelihood.

Related Work. Posterior inference of the latent variable f in our setting is intractable
and requires approximations due to the use of non-conjugate priors. Approximate inference
with RL has not been extensively studied, in contrast to its differentiable alternatives,
especially EXP [Vanhatalo et al., 2010, Gerwinn et al., 2010, Diggle et al., 2013, Ko and
Khan, 2014]. In their work on actively learning a model for neural spike trains from
stimuli, Park et al. [2014] use both SP and EXP and observe that EXP is much less
sensitive at lower rates. We qualitatively illustrate their observation, by showing effect of
the different non-linearities on the posterior mean intensity E [λ|y] in Figure (2.4), where
we fitted Model (2.1) with a Gaussian-process prior to the mining-disaster dataset [Jarrett,
1979]1. The dataset consists of records of accidents over time, each of which is represented
by a black line. Most notable is the different behavior in the high density area on the
left, to which the exponential non-linearity responds strongest. For their final method,
Park et al. [2014] use SP for its superior predictive performance. Seeger and Bouchard
[2012] use a Poisson likelihood with SP for a generalized probabilistic PCA model. They
chose SP over EXP to be less sensitive to outliers and to fulfill the technical conditions
to apply their approximation method. Kuusela and Panaretos [2015] use RL in their
forward model of a particle detector, but tackle the inference using MCMC.

2.1.2 Inference for the Poisson Likelihood Model

Before proceeding to discuss inference methods for the Poisson likelihood model, we
briefly revisit the relevant priors for the latent variable f . Here, we consider two classes
of prior distributions, that are commonly encountered in practice: Gaussian process (GP)
priors [Rasmussen and Williams, 2006] and sparse linear models (SLM) [Seeger, 2008,
Seeger and Nickisch, 2011a].

Gaussian Processes. GP priors prominently feature in applications of spatio-temporal
statistics to social or ecological questions [Vanhatalo et al., 2010, Diggle et al., 2013] or

1We took this example from [Vanhatalo et al., 2013], using the same setup, i.e. isotropic squared
exponential kernel function and constant mean. Inference is done using Expectation Propagation. Hyper-
parameters for mean and covariance function are learned. More information on the data can be found in
Section (2.1.4.2).

25

Chapter 2. Inference for Generalized Linear Models

1860 1880 1900 1920 1940 1960
0

0.5

1

1.5

2

2.5

3

3.5

4

Year

P
o

st
e

rio
r M

e
a

n
 In

te
n

sit
y

Coal Mining Disasters: Posterior Mean Intensity

Linear
Exponential
Logistic

Figure 2.4 – Coal mining disaster data: posterior means of latent functions E [g(f)|y]. We
recognize the stronger peaking behavior of the exponential non-linearity in high-density regions,
while the other non-linearities are more sensitive in low density regions.

to the analysis of neural spike counts [Pillow, 2007, Park and Pillow, 2013, Park et al.,
2014] as the multivariate normal is well suited to represent dependencies and dynamics in
the input domain. We use the following notation: Let f : X �→ R be a latent function
distributed as f ∼ GP(m(x), k(x,x′)), where μ(x) and k(x,x′) denote the mean- and
covariance functions. For M inputs {xj ∈ X}j=[M] corresponding to the observations y ,
the prior over f can be written as a multi-variate normal distribution:

P (f) = N (μ,K) (2.4)

with mean vector μj = μ(xj) and covariance- or kernel matrix Ki,j = k(xi,xj), ∀i, j ∈
[M].

Sparse Linear Models. In SLMs f itself is defined as a linear function f = Xu of a
latent vector u, where u exposes non-Gaussian, heavy-tailed statistics in an appropriately
chosen linear transform domain s = Bu. SLMs are often encountered in the context of
inverse problems, e.g. in image processing, where the prior belief that image gradients
or Wavelet coefficients of natural images are sparse [Simoncelli, 1999], has become
a popular strategy to regularize ill-posed reconstruction problems. For example, for
the deconvolution problem we define the linear operator X such that multiplying it
with a vectorized image u amounts to convolving the image with a blur kernel k,
i.e. f = k ∗u = Xu. Assuming that u is well described by piecewise constant functions,

26

2.1. Rectified-Linear Poisson Regression

g(f) Prior Laplace VB EP

exp (f)
GP Tract. Tract. Approx.SLM N/A

log (1 + exp (f))
GP Tract. Approx. Approx.SLM N/A

max (0, f)
GP N/A. N/A Tract. (New)SLM N/A

Table 2.2 – Variational Inference methods for different non-linearities. We use the following
abbreviations: Tract.: Computations are analytically Tractable (i.e. gradients/updates available
in closed form). Approx.: Computations require additional Approximations, such as bounding
techniques or numerical integration.

one could be interested in penalizing the total variation of u, such that B = [∇x;∇y]

consists of the horizontal and vertical gradient operators. We model sparsity for s

independently for each transform coefficient:

P (u) ∝
M∏
j

ts(sj) (2.5)

For simplicity we consider the Laplace potential ts(sj) = e−τ |sj | [Gerwinn et al., 2008,
Seeger, 2008, Seeger and Nickisch, 2011a].

Before we begin the discussion of methods for approximate inference, we unify our notation.
We would like to approximate an intractable distribution of the following form:

P (f) = Z−1
M∏
j=1

tj(fj) t0(f) (2.6)

For GPs the optional coupled potential t0(f) is the prior defined in (2.4), and we have a
product of the M = N likelihood potentials tj(fj) = P (yj | λj). For SLMs t0(f) = 1, and
we redefine f = [X ; B]u. The potentials are tj(fj) = P (yj | fj) = tyj (fj) for j ≤ M

and tj(fj) = ts(fj) for j > M . We denote the approximation to P (f) by Q(f) and
choose it to be a multivariate normal distribution Q(f) = N (f | ξ,Ξ). This is justified
by the fact that the likelihood for all non-linearities in Table 2.1 as well as the priors
mentioned here are log-concave in f , as well as the priors considered here. Therefore, the
posterior is unimodal [Paninski, 2004].

In Table 2.2, we list common approximate inference techniques to find the parameters
of the approximation. While Laplace’s method is often used in the GP setting [Diggle
et al., 2013, Park and Pillow, 2013, Park et al., 2014], it cannot be applied to SLMs,
because by design we expect many transform coefficients to be zero, where the Laplace

27

Chapter 2. Inference for Generalized Linear Models

potential is not differentiable. Another popular variational Bayesian (VB) technique is
referred to as Variational Gaussian approximation [Opper and Archambeau, 2009] or
KL method [Nickisch and Rasmussen, 2008, Challis and Barber, 2011]. It is analytically
tractable for the exponential function [Ko and Khan, 2014], whereas the softplus function
requires approximations, e.g. quadrature or bounding techniques, as shown in [Seeger
and Bouchard, 2012]. For the RL function, however, this method is not even defined.
This can be seen by examining the VB objective which is the following Kullback-Leibler
divergence:

min
ξ,Ξ

DKL [Q(f)‖P (f)] (2.7)

Expanding it, here in the GP case, gives

DKL [Q(f)‖P (f)] = EQ

[
log

Q(f)

t0(f)

]
−

M∑
j=1

EQ

[
log tyj (fj)

]
(2.8)

This reveals that the logarithm of Eq. (2.1) needs to be integrated over the real line,
which is infinite in case of the RL function:

EQ [logP (y | f)] .
= y

∫
Q(f) log (max (0, f)) df = −∞ (2.9)

A simple fix would be to slightly modify the RL function to be non-zero max (ε, f) for
ε > 0. As we will see next, Expectation Propagation approximate inference does not
require such modifications and deals much more gracefully with non-differentiability.

2.1.2.1 Expectation Propagation

We briefly recapitulate our exposition of EP from Section 1.2.3.3. EP [Minka, 2001a,
Opper and Winther, 2005] approximates P (f) in Eq. (2.6) by approximating each non-
Gaussian potential tj(fj) using unnormalized Gaussians t̃j(fj) = Z̃j N (fj |μ̃j , σ̃

2
j) to form

a Gaussian approximation Q(f) following the same factorization:

Q(f) = Z−1
EP

M∏
j=1

t̃j(fj) t0(f) (2.10)

The EP-approximation to the marginal likelihood is given by:

ZEP =
M∏
j=1

Z̃j

∫ M∏
j=1

N (fj |μ̃j , σ̃
2
j) t0(f) df (2.11)

EP employs the following strategy to determine the variational parameters μ̃j , σ̃
2
j .

We define the i-th marginal cavity distribution by removing the i-th approximate potential

28

2.1. Rectified-Linear Poisson Regression

t̃i(fi) from Q(f) and marginalizing over f\i := {fj : j �= i}, denoted as :

Q−i(fi) = N (fi|μ−i, σ
2
−i

) ∝ ∫ ∏
j �=i

t̃j(fj) t0(f) df\i (2.12)

The so called tilted distribution replaces the approximate potential t̃i(fi) in Q(f) by the
true non-Gaussian potential ti(fi) by multiplying it with the cavity marginal:

P̂ (fi) = Ẑ−1
i ti(fi)Q−i(fi) where Ẑi =

∫
ti(fi)Q−i(fi) dfi (2.13)

The criterion to minimize in order to update the parameters of t̃i is the KL-divergence
between the tilted- and the variational distribution DKL

[
P̂ (fi)‖Q(fi)

]
and can be solved

using moment matching:

EQ [fi] = EP̂ [fi]

VarQ [fi] = VarP̂ [fi]
(2.14)

The constant Z̃i is chosen such that the normalization constants of P̂ (fi) and Q(fi) match,
i.e. we solve:

Z̃i

∫
N (fi|μ̃i, σ̃

2
i)Q−(fi) dfi = Ẑi (2.15)

The EP update therefore consists of determining the first two moments and the normal-
ization constant of the tilted distribution.

Once the parameters of a single t̃i are changed, we can update the representation of
the full approximation Q(f), which consists of recomputing ξ and VarQ [f] = diag (Ξ).
This process is repeated until convergence, i.e. until a fixed point in terms of tilted and
approximate moments is reached.

To the best of our knowledge, tilted moments for the exponential- and softplus functions
are not available in closed form. Implementations based on quadrature are commonly
found in the context of Gaussian processes [Rasmussen and Nickisch, 2010, Vanhatalo
et al., 2013].

Computing tilted marginals is not a trivial task. E.g. plugging (3.1) into (2.13) shows
that this quantity depends exponentially both on y and f . In Section 2.1.4 we illustrate
that evaluating this expression directly using quadrature can lead to numerical problems.

So far, we have seen that popular methods, such as Laplace and VB approximations, are
not particularly suitable for the RL function in contrast to EP, which in turn depends
on the tractability of tilted moments. Next, we show that for the RL function these
computations are indeed analytically tractable.

29

Chapter 2. Inference for Generalized Linear Models

2.1.3 Tractable EP Updates for the Rectified-Linear Function

We drop indices and consider the update of a single approximate potential t̃(s) =

Z̃N (μ̃, σ̃2
)
. To obtain the first and second moments, it suffices to compute log Ẑ,

α := ∂
∂μ-

log Ẑ and β := − d2

dμ2
-
log Ẑ since log Ẑ is related to the moment generating

function. From these quantities, we can directly update the parameters of the approximate
potential. Rasmussen and Williams [2006] show that the parameters of the approximate
potential depend on α and β in the following way:

σ̃2 =
1− βσ2−

β
μ̃ = σ̃2α+ βμ−

1− βσ2−
(2.16)

Our main result constructively shows how to compute Ẑ.

First, we rewrite the rectified-linear Poisson potential in order to explicitly take into
account the edge case resulting from the latent variable taking on a negative value.
Consider the likelihood potential ty(f) = 1

y!λ
ye−λ for λ = max {0, f}. Then, for f ≤ 0,

λ = 0, in which case the Poisson distribution degenerates in the sense that all mass is
put on y = 0. For convenience, we rewrite ty(f) as follows:

ty(f) = (y!)−1 fye−f
�(f > 0)︸ ︷︷ ︸

=:t+y (f)

+�(y = 0)�(f ≤ 0)︸ ︷︷ ︸
=:t−y (f)

(2.17)

= t+y (f) + t−y (f) (2.18)

Thus, by linearity, we can decompose the tilted partition function into two parts:

Ẑ =

∫
ty(f)N (f | μ−, σ2

−) df (2.19)

=

∫ (
t+y (f) + t−y (f)

)N (f | μ−, σ2
−) df (2.20)

=

∫
t+y (f)N (f | μ−, σ2

−) df︸ ︷︷ ︸
=:Ẑ+

+

∫
t−y (f)N (f | μ−, σ2

−) df︸ ︷︷ ︸
=:Ẑ−

(2.21)

= Ẑ+ + Ẑ− (2.22)

Our goal will be to compute log Ẑ+ and, if y = 0, log Ẑ−, in which case we can obtain
log Ẑ as log Ẑ = log Ẑ+ + log

(
1 + exp

(
log Ẑ− − log Ẑ+

))
and derivatives

∂

∂μ−
log Ẑ = Ẑ−1

(
∂

∂μ−
Ẑ+ +

∂

∂μ−
Ẑ−
)

(2.23)

∂2

∂μ−2
log Ẑ = −Ẑ−2

(
∂

∂μ−
Ẑ+ +

∂

∂μ−
Ẑ−
)2

+ Ẑ−1

(
∂2

∂μ−2
Ẑ+ +

∂2

∂μ−2
Ẑ−
)

(2.24)

30

2.1. Rectified-Linear Poisson Regression

We obtain ∂
∂μ− Ẑ+ from ∂

∂μ− log Ẑ+ by using

∂

∂μ−
log Ẑ+ = Ẑ−1

+

∂

∂μ−
Ẑ+ ⇒ ∂

∂μ−
Ẑ+ = Ẑ+

∂

∂μ−
log Ẑ+ (2.25)

and ∂2

∂μ−2 Ẑ+ from ∂2

∂μ−2 log Ẑ+

∂2

∂μ−2
log Ẑ+ = −Ẑ−2

+

(
∂

∂μ−
Ẑ+

)2

+ Ẑ−1
+

∂2

∂μ−2
Ẑ+

⇒ ∂2

∂μ−2
Ẑ+ = Ẑ−1

+

(
∂

∂μ−
Ẑ+

)2

+ Ẑ+

(
∂

∂μ−
log Ẑ+

)2
(2.26)

The term Ẑ− is straight-forward to deal with. Assuming y = 0, we have

Ẑ− =

∫
�(f ≤ 0)N (f | μ−, σ2

−
)
df (2.27)

=

∫ 0

−∞
N (f | μ−, σ2

−
)
df (2.28)

= Φ(z), z := −μ−
σ−

(2.29)

and derivatives

∂

∂μ−
log Ẑ− = − φ(z)

σ−Ẑ−
(2.30)

∂2

∂μ−2
log Ẑ− = −

(
φ(z)

σ−Ẑ−

)2

+
zφ(z)

σ2−Ẑ−
(2.31)

The term Ẑ+ requires some more work. The following proposition states our main result,
which we show constructively by developing a simple dynamic program to compute Ẑ+

in time linear in y.

Proposition 1. The tilted partition function Ẑ+ can be computed in O(y).

Proof. We can write the partition function of the tilted distribution as

Ẑ+ =
1

y!

∫ ∞

0
fye−fN (f |μ−, σ2

−) df (2.32)

The exponential term results in a shift of the cavity mean and a constant factor:

Ẑ+ =
1

y!
e

1
2
σ2
−−μ−

∫ ∞

0
fyN (f |μ− − σ2

−, σ
2
−) df (2.33)

31

Chapter 2. Inference for Generalized Linear Models

Thus, computing Ẑ+ boils down to computing the y-th moment of a truncated Gaussian.
Define m = μ−−σ2−, v = σ2−, and κ = − m√

v
. Let Iy =

∫∞
0 fyN (f |m, v) df . For y ∈ {0, 1}

the integral Iy is readily evaluated as

I0 = 1− Φ(κ) I1 = mI0 +
√
vφ(κ) (2.34)

where φ(x) is the standard normal density and Φ(x) its CDF. For y > 1 the application
of integration by parts results in a recursion over y :

Iy =

∫ ∞

0
fy−1fN (f |m, v) df = mIy−1 + v(y − 1)Iy−2 (2.35)

where we have used that

fN (f |m, v) = mN (f |m, v)− v
∂

∂f
N (f |m, v) (2.36)

For a potentially more robust implementation, we we express Ẑ+ in terms of Ly :=
∂
∂m log Iy, which can be written recursively as well. We begin by writing Ly = ∂

∂m log Iy =

I−1
y

∂
∂mIy. By using symmetry, we note that ∂

∂mN (f |m, v) = − ∂
∂fN (f |m, v). Thus, for

y > 0, we get

∂

∂m
Iy =

∫ ∞

0
fy ∂

∂m
N (f |m, v) df (2.37)

= −
∫ ∞

0
fy ∂

∂f
N (f |m, v) df (2.38)

= [fyN (f |m, v)]∞0 + y

∫ ∞

0
fy−1N (f |m, v) df (2.39)

= yIy−1 (2.40)

where we have used integration by parts and Ly =
yIy−1

Iy
. Using this and (2.35), we can

write

Ly =
yIy−1

Iy
=

yIy−1

mIy−1 + vIy−2
=

y

m+ vLy−1
(2.41)

where the base cases are

L0 = φ(κ)/(σ−(1− Φ(κ))) L1 = I0/I1 (2.42)

Then, we can accumulate Iy recursively in the log-domain:

log Iy = −
y∑

r=1

logLr + log I0 + log(y!) (2.43)

32

2.1. Rectified-Linear Poisson Regression

such that finally

log Ẑ+ = log Iy − log(y!) +
1

2
σ2
− − μ− (2.44)

Since ∂
∂m log Ẑ+ = ∂

∂μ-
log Ẑ+, we arrive at α = Ly − 1.

Similarly, we can show that β = Ly(Ly − Ly−1). We have β = − ∂
∂mα = − ∂

∂mLy. For
convenience, we denote ∂

∂m · by (·)′. Then,

L′
y =

(
I ′y
Iy

)′
(2.45)

=
I ′′y
Iy

−
(
I ′y
Iy

)2

(2.46)

=
y(y − 1)Iy−2

Iy
− (Ly)

2 (2.47)

=
y(y − 1)Iy−2

mIy−1 + v(y − 1)Iy−2
− (Ly)

2 (2.48)

=
yLy−1

m+ vLy−1
− (Ly)

2 (2.49)

= LyLy−1 − (Ly)
2 (2.50)

= −Ly (Ly − Ly−1) (2.51)

In (2.48) we used the recursion for Iy (2.35) and in (2.50) the recursion for Ly (2.41).
Therefore, we have β = Ly(Ly −Ly−1), such that all relevant quantities can be computed
based on Ly.

An alternative way to characterize moments of P̂ , which allows us to compute them to
higher order is the following

Corrolary 1. The first k moments of P̂ (f) can be computed in O(y + k).

Proof. The k-th moment can be written as follows, where we index the partition functions
by y for clarity

EP̂

[
fk
]
=

1

Ẑ(y)

∫
fkty(f)Q−(f) df (2.52)

=
1

Ẑ(y)

(∫ ∞

0

1

y!
fy+ke−fQ−(f) df + �(y = 0)

∫ 0

−∞
fkQ−(f) df

)
(2.53)

=
1

Ẑ(y)

(
(y + k)!

y!
Ẑ+(y + k) + �(y = 0)

∫ 0

−∞
fkQ−(f) df

)
(2.54)

33

Chapter 2. Inference for Generalized Linear Models

Thus, Ẑ+(y + k) can be computed using our previous result by running the recursion
for y + k steps. To compute the remaining integral in case of y = 0, we again need to
compute moments of a truncated normal, which can be done using a similar recursion as
in (2.35) in O(k) steps.

Having access to all moments allows us to compute higher-order cumulants as well. Thus,
for GP priors the techniques to correct the EP approximation described in Opper et al.
[2013] directly apply to this likelihood.

2.1.3.1 Implementation Details

We implemented the EP updates in C/C++ and used the GPML MATLAB toolbox for
experiments [Rasmussen and Nickisch, 2010]. We use parallel updating EP with the option
of fractional updates [Seeger, 2008], which turned out to be unnecessary as EP converged
reliably within 15 to 20 iterations. We used MATLAB’s Parallel Computing Toolbox to
compute variance for the SLM experiments with up to 214 variables on NVIDIA Tesla
C2070 GPUs with 6 GB device memory built into a workstation equipped with dual
Intel Xeon X5670 CPUs (2.93 GHz), and 128 GB Memory. These computations were
performed in single precision resulting in a large speedup without a negative impact
on the convergence of EP, which can be quite sensitive to inaccurately approximated
variances [Papandreou and Yuille, 2011]. Thus, with minimal effort and without further
optimizations, we could run a single iteration of EP in about 30 seconds.

Numerical Stability of Quadrature

Cavity Variance
0.01 0.025 0.05 0.075 0.1 0.2 0.3 0.4 0.5 1 2.5

y

200

175

150

125

100

50

25

(a) Instability of Quadrature

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

y

R
u

n
n

in
g

 T
im

e
 (

se
c

o
n

d
s)

Running Time of EP Update

Quadrature
Closed Form

(b) Running Time

Figure 2.5 – Left: Transition diagram of numerical stability of EP update using
quadrature. Red shading indicates failure due to numerical instability at a setting. Quadrature
cannot handle large counts and is sensitive to small cavity variances. Our formulation works
reliably in this regime and beyond. Right: Running time. We compare the scaling behavior
of the running time of a single EP update using our formulation vs. adaptive quadrature as a
function of the count y. As shown in Figure (2.5a), quadrature up to the same counts as our
recursion.

34

2.1. Rectified-Linear Poisson Regression

2.1.4 Experiments

2.1.4.1 Synthetic Data

In the experiments on synthetic data, we investigated the following two aspects: computa-
tional performance and numerical stability of our formulation in contrast to quadrature.

First, we investigate the numerical stability of quadrature by examining the behavior for
a single EP update for the RL function2. We evaluate the unnormalized tilted density as
Ẑ P̂ (f) = elog t(f)+logQ−(f) and compute Ẑ for different values of y and different cavity
parameters. Since we can expect the cavity mean to be close to the observation, we set
μ− = y and vary the cavity variance. The outcome is shown in Figure (2.5a), where
red shading denotes failure of quadrature resulting in an output which is infinite or not
a number. In the green area the output matches our formulation. Our formulation
works reliably in all of these cases. Next, we compare the time to compute a single EP
update, i.e. Ẑ and the moments of P̂ (f), using our recursion versus adaptive quadrature.
Quadrature needs to be called three times to compute Ẑ and the first and second moments
of P̂ (f), whereas we need to run our recursion only once. Quadrature can certainly be
further optimized. But due to its complexity, this can be expected to be an error-prone
undertaking.

Since our recursion scales linearly in the count y, we plot the time against y in Figure (2.5b).
We see that our recursion is very efficient and runs robustly up to very large counts. As
seen before, for quadrature, the computations cannot be run for counts beyond the order
of 100. For the comparison, we performed 50 warm-up runs for both methods before
averaging the running time over 150 calls to the respective implementations of the EP
updates.

2.1.4.2 Cox Processes: Coal Mining Disaster Data

In this experiment we present a case where the use of exponentials hurts generalization
performance. We return to the introductory example of the coal mining disaster dataset
and setup a prediction task using 10-fold cross validation. The dataset consists of 191
accidents in the period between 1851 and 1962, which we discretized into 100 equidistant
bins. We compare inference for the three different non-linearities, using EP for all of them,
where the updates for the softplus and exponential are implemented using quadrature3.
As error measure, we report the average of the negative log-predictive probabilities of the
samples in the test fold, where the predictive probability for an unseen observation y∗

2We use MATLAB’s integral routine.
3The Laplace approximation for the softplus and exponential yielded similar results, so that we do

not report them here.

35

Chapter 2. Inference for Generalized Linear Models

CV Error
1.58 1.59 1.6 1.61 1.62 1.63 1.64 1.65

C
V

 E
rr

or
 (R

ec
t.L

in
ea

r)

1.58

1.59

1.6

1.61

1.62

1.63

1.64

1.65
Coal: CV Error by Seed vs. Rect. Linear

Softplus
Exponential

Figure 2.6 – Coal Mining Disaster Data: Cross validation errors for different draws of folds.
We show errors of Softplus vs. RL and Exponential vs. RL.

given training data y is approximated as:

P (y∗ | y) ≈
∫

P (y∗ | g(f∗))Q(f∗,f | y) df df∗ (2.55)

This quantity can be computed approximately as described in Rasmussen and Williams
[2006] and computationally amounts to evaluating Ẑ.

As in the demo by Vanhatalo et al. [2013], we use a GP prior with a isotropic squared-
exponential covariance function and a constant mean. We learn the kernel parameters
as well as the mean by maximizing the marginal likelihood on the training fold. We
repeatedly ran this experiment for 5 draws of the test folds. We report the cross validation
errors in Table 2.3. This is an example where (asymptotically) linear behaviour seems to

Exponential Softplus Rect. Linear

CV Error 1.63(±0.01) 1.61(±0.01) 1.60(±0.02)

Table 2.3 – Coal Mining Disaster Data: Cross Validation Results

lead to (slightly) better predictive performance. Softplus- and RL functions perform very
similarly in this example, but better than exponential, consistently across different draws

36

2.1. Rectified-Linear Poisson Regression

of the cross validation folds (Figure 2.6).

2.1.4.3 Sparse Linear Models

In this experiment, we consider a deconvolution problem of natural images under Poisson
noise as described in Section 2.1.2. We generate noisy versions of the input as follows: We
rescale the maximum intensity of the input image u to a value umax ∈ {10, 20, 30}. We
apply Gaussian blur to the image using a 3× 3 blur kernel h with standard deviation 0.3

to obtain f = h ∗u and draw observations from P (y | g(f)) for 5 different initializations
of the random number generator. For reconstruction, we use a total-variation prior with
B = [∇x;∇y] and Laplace potentials ts(s) = e−τ |s|.

Here, we focus on comparing the correct Poisson noise model against a Gaussian noise
assumption, which is often chosen based on convenience and familiarity. We use parallel
EP for both models to infer the posterior mean as reconstruction. We used grid search
to determine hyper-parameters using the marginal likelihood as criterion. We also tried
to apply the SP and EXP non-linearities, but experienced numerical instability and
convergence issues for a wide range of hyper-parameters.

We report relative �1 errors 4 of the reconstructions û = EQ [u | y] in Table 2.4. At lower
intensities, the signal is much weaker leading generally to a higher error. It is this regime,
where the correct likelihood yields the greatest improvements. As the intensity and thus
the photon counts increase, the noise is better approximated by a Gaussian, such that
both models perform similarly, as expected.

Image umax Gauss Poisson RL

Face 32× 32
10 0.488(±0.005) 0.317(±0.007)
20 0.282(±0.008) 0.248(±0.026)
30 0.245(±0.007) 0.207(±0.011)

C-Man 128× 128
10 0.182(±0.002) 0.124(±0.001)
20 0.113(±0.001) 0.094(±0.001)
30 0.092(±0.001) 0.084(±0.001)

Lena 128× 128
10 0.224(±0.002) 0.154(±0.003)
20 0.128(±0.001) 0.111(±0.001)
30 0.103(±0.001) 0.095(±0.001)

Table 2.4 – Relative �1 errors for deconvolution with different likelihoods.

Apart from mere reconstruction errors, it is instructive to visually inspect the reconstruc-
tions for both models. We present exemplary reconstructions of the different input images
in Figure 2.7 and Figure 2.8. In Figure 2.7 each row corresponds to a different intensity

4The relative �1 error of a reconstruction û of an image u is defined as �u(û) = ‖û − u‖1/‖u‖1

37

Chapter 2. Inference for Generalized Linear Models

level. We denote the reconstruction by ûG and ûP , where a subscript “G” denotes the
Gaussian likelihood and “P” the Poisson likelihood.

Poisson noise is difficult to deal with, especially for natural images such as in Figure 2.7b,
since fine details become very hard to distinguish from noise. The Gaussian noise model
explains the data at very low intensities by an overly smooth image. Noise is removed,
but so is also much of the high-frequency content which is crucial for recognizing details.
Thus, fine structures tend to be blurred and contrast diminished. Using the Poisson
likelihood instead captures edges much better. We illustrate this effect by showing a cross
section of Figure 2.8a in Figure 2.9 and magnified sub-images in Figure 2.8b.

u y ûG ûP

u
m
a
x
=

10
u
m
a
x
=

20
u
m
a
x
=

30

(a)

u y ûG ûP

u
m
a
x
=

10
u
m
a
x
=

20
u
m
a
x
=

30

(b)

Figure 2.7 – Denoising results at different maximum intensity levels. u: input image. y : noisy
image. ûG: Gaussian likelihood. ûP : Poisson likelihood. Left: Cameraman 128× 128. Right:
Lena 128× 128.

2.1.5 Discussion

We studied inference in Poisson models using the rectified-linear function as non-linearity.
This function imposes a hard positivity constraint on the underlying latent variable. This
function is the natural and physically plausible choice for models of Poisson noise in
image processing, but is challenging to deal with in practice.

Here, we derived an analytically tractable Expectation Propagation algorithm for approx-
imate inference in Poisson likelihood models using the RL function. We showed that in
contrast to quadrature, computations required by our formulation are more efficient and
numerically stable.

Equipped with this method, we demonstrated that the RL function is useful as an
alternative to other non-linearities and that taking into account non-Gaussian noise
statistics in a Poisson deconvolution problem leads to superior performance at no extra

38

2.1. Rectified-Linear Poisson Regression

u y ûG ûP

u
m
a
x
=

1
0

u
m
a
x
=

2
0

u
m
a
x
=

30

(a)

u y ûG ûP

(b)

Figure 2.8 – Left: Denoising results on high-resolution 32× 32 sub-image at different maximum
intensity levels. Right: Zoom-in comparison at umax = 20 for Cameraman 128× 128. u: input
image. y : noisy image. ûG: Gaussian likelihood. ûP : Poisson likelihood. The correct noise
model helps to recover contrast and distinguish image features from noise.

5 10 15 20 25 30
0

2

4

6

8

10

12

14

Pixel

P
ix

e
l I

n
te

n
sit

y

Example Line of Reconstruction Problem

True
Gauss
Poisson
Data

Figure 2.9 – Cameraman Face: Example cross section of u,y , ûG and ûP . We see that modeling
the Poisson noise correctly helps recovering contrast and edges, which is crucial for image quality.

cost.

Scalability of the method, however, is limited. Although in our experiments, parallel EP
converged within a few iterations, the cost of each iteration scales cubically in the latent
dimensionality. Another shortcoming of this study is the lack of a real application, since
all experiments were synthetic. An interesting experiment would be to compare an EM
algorithm with RL EP with the algorithm of Seeger and Bouchard [2012].

39

Chapter 2. Inference for Generalized Linear Models

2.2 Tree-Structured Scale Mixtures

2.2.1 Overview and Related Work

We consider structured mixture models, i.e. mixture models of continuous variables, the
discrete latent mixture components of which are interrelated by a given graphical model
[Koller and Friedman, 2009]. In particular, the motivating application are ill-posed linear
inverse problems, common in image restoration, such as denoising, deblurring [Levin
et al., 2009] and inpainting [Bertalmio et al., 2000], or compressive sensing tasks [Donoho,
2006, Candès et al., 2006], using sparsity in the Wavelet domain [Portilla et al., 2003] as
prior information.

Consider a linear model, where we observe M linear measurements y ∈ R
M of an unknown

image u ∈ R
N with M ≤ N corrupted by white Gaussian noise

y = Xu + ε, ε ∼ N (0, σ2I
)

(2.56)

Recovering u from y is not possible without additional assumptions. One such assumption,
particularly fruitful due to its wide applicability, is that the image can be represented as
a linear combination of a few atoms from an appropriately chosen basis or dictionary,
meaning that the actual effective number of degrees of freedom is much lower than it is
apparent from the canonical signal representation such that the information contained in
the measurements are sufficient for recovery, or at least a good estimate, of u [Tibshirani,
1996, Olshausen and Field, 1996, Donoho, 2006, Candès et al., 2006]. For natural
images, modeling statistically the occurrence of edges as their most salient features, can
lead to such sparse descriptions by modeling high-pass filter responses [Portilla et al.,
2003]. The Wavelet transform can be seen as applying such edge detection filters with
different orientations on multiple rescaled versions of the image leading to a hierarchical
decomposition [Mallat, 1999]. Computationally, one step of the discrete Wavelet transform
(DWT) consists of filtering with all combinations of 1D low-pass and high-pass filters in all
dimensions followed by decimating every second coefficient in all dimensions. The outputs
of the different combinations of filters are grouped together according to the orientation of
the filter. In 2D the combinations of 1D filters therefore are low-low, low-high, high-low,
high-high. Then, the transform recurses on the low-low band, thus proceeding from finer
to coarser scales. See Figure 2.10 for an example.

Here, we consider orthonormal Wavelet transforms, that we denote by the linear operator
W . Importantly, for many types of Wavelets there exist efficient algorithms that can
apply W and W T in O(N). Let s = Wu denote Wavelet coefficients. Then, we can
impose sparsity on s by using a prior

P (u) ∝
N∏
j=1

t(sj) (2.57)

40

2.2. Tree-Structured Scale Mixtures

where t(·) is a sparsity-promoting distribution. This product form, however, neglects
structure in the sparsity pattern of the Wavelet coefficients stemming from the hierarchical
nature of the operator apparent from its recursive description given above. Figure 2.10
shows, that larger coefficients can persist across scales. Moreover, the relationship of
the location of the large coefficients between scales is tree-like, owing to the operations
involved in the transform as described above. Specifically, due to the elimination step,
it is sensible to relate a coefficient to four children on the next finer scale in the same
band. Thus, the persistence structure of non-zeros can be conveniently modeled by a
forest of quad trees. Each node in the tree corresponds to a coefficient and is a discrete
variable indicating whether the corresponding coefficient has a value close to zero or not.
We refer to these states as low (close to zero) and high. An indicator’s state depends on
the parent’s: the children’s state should be more likely aligned with the parent’s. These
notions are the basis for the hidden Markov tree (HMT) model, which was first proposed
by Crouse et al. [1998]. We introduce this model in more detail in Section 2.2.2.1.

In the following, we describe our work on developing a scalable variational inference
algorithm for this image model. Our algorithm combines the double loop algorithm
of Seeger and Nickisch [2011a] with the sum-product belief propagation algorithm for
trees [Pearl, 1988]. The resulting method applies to models using Gaussian scale-mixture
potentials, relevant examples of which are shown in Table 2.5, as the algorithm of Seeger
and Nickisch [2011a] optimizes the direct site bounding approximation introduced in
Section 1.2.3. Thus, we benefit from the scalability properties of the algorithm by Seeger
and Nickisch [2011a], which the authors show to have the same complexity as the MAP
estimation problem in the same model, while maintaining a representation of the full
posterior covariance. The cubic cost in N due to inverting the natural parameterization
of the covariance is mitigated by low rank approximations or, in our case, a Monte Carlo
estimate using exact posterior sampling that exploits the special structure of the linear
operators involved [Papandreou and Yuille, 2011].

Density t(s) Comments

Laplace 1
2τe

−τ |s| τ > 0 Log-concave, not differentiable at s = 0.
Student’s T C(ν)(1 + s2

ν)
− ν+1

2 ν > 0 Not log-concave. C(ν) = Γ(ν+1
2)/(

√
πνΓ(ν2))

Table 2.5 – Two examples of super-Gaussian potentials, used in sparse priors.

Related work. Since its first description for modeling Wavelet coefficients by Crouse
et al. [1998], the HMT model has been used for various applications including denoising
[Portilla et al., 2003], inpainting [Papandreou et al., 2008], MRI reconstruction [Chen and
Huang, 2012] and compressed sensing [Duarte et al., 2008, He and Carin, 2009, He et al.,
2010, Som and Schniter, 2012].

Methodological most relevant to our work are the methods developed in the context of

41

Chapter 2. Inference for Generalized Linear Models

(a) Image domain (b) Wavelet domain

Figure 2.10 – Wavelet transform of an image, demonstrating persistence of non-zeros
across scales. Sparsity in the Wavelet domain is structured. Coarser scales are less sparse.

compressed sensing. There, it was established empirically that probabilistic methods
integrating over both, the HMT as well as the latent image can lead to superior performance
[He and Carin, 2009, He et al., 2010, Som and Schniter, 2012]. He et al. [2010] show
that a mean-field variational Bayesian approximation is an order of magnitude faster
than their Gibbs sampler with comparable reconstruction error. More recently, Som and
Schniter [2012] develop an approximate inference scheme based on Approximate Message
Passing [Donoho et al., 2009], an algorithm that can be seen as an approximation of Belief
Propagation and Expectation Propagation [Meng et al., 2015]. The resulting algorithm
is both much faster than VB of He et al. [2010] and more accurate than the sampling
approximation of He and Carin [2009]. In contrast to those methods, that use mixtures of
Gaussians or spike and slab priors, our inference scheme generalizes to arbitrary mixtures
of Gaussian scale-mixture distributions [Nickisch, 2010]. Furthermore, our method stands
alone in supporting full posterior covariances over the image, that could unlock a range
of applications beyond reconstruction.

2.2.2 Approximate Inference for Tree-Structured Scale Mixtures

2.2.2.1 Preliminaries

Super-Gaussian distributions. Gaussian linear models, while analytically tractable,
are not suitable to model natural image statistics, which are much better characterized
by heavy-tailed or leptokurtic distributions, such as the Laplace5. In particular, we
are interested in symmetric distributions, centered at 0 that admit the following super-

5MAP estimation under Laplace prior is equivalent to �1 regularization.

42

2.2. Tree-Structured Scale Mixtures

Gaussian representation:

t(s) = max
γ>0

e
− s2

2γ e−
1
2
h(γ), (2.58)

i.e. they can be represented as a point-wise maximum over Gaussian functions. In the
context of variational methods, this is particularly convenient, as we obtain a bound in
terms of Gaussians with variational parameters γ to adjust [Jaakkola, 1997, Girolami,
2001, Palmer et al., 2006]. Palmer et al. [2006] show that all Gaussian scale-mixtures
admit such a representation, which includes Laplace and Student’s T. See Nickisch [2010]
for more examples.

We use the notation of Seeger and Nickisch [2011a]. The super-Gaussian representation is a
consequence of the convexity of g(x) := log t(

√
x), x > 0, and can be seen by using convex

conjugation g(x) = maxz zx− g∗(z) [Rockafellar, 1970]. Seeger and Nickisch [2011a] show
that (2.58) can be obtained by substituting γ = − 1

2z > 0 and h(γ) = 2g∗(− 1
2γ). The

maximum in (2.58) can therefore be obtained as

z∗ = ∂xg(x) = ∂x log t
(√

x
)⇒ γ∗ = − (2∂x log t (√x

))−1 (2.59)

Hidden Markov Trees. Next, we introduce the HMT model [Crouse et al., 1998] in
more detail and the necessary notation. Let u ∈ R

N be the column-major vectorization
of an image with R rows and C columns. Let

ωR : [N] �→ {0, . . . , R− 1} × {0, . . . , C − 1}
ωR(j) = (div(j − 1, R),mod(j − 1, R))

(2.60)

be the function that maps a linear index j back to coordinates in the image and

ω−1
R : {0, . . . , R− 1} × {0, . . . , C − 1} �→ [N]

ω−1
R (r, c) = cR+ r + 1

(2.61)

the mapping from image coordinates to linear index. Here, we index pixels and correspond-
ing transform coefficients starting in the upper left corner from (0, 0) to

(
2L − 1, 2L − 1

)
in the lower right corner. For simplicity, we assume u to be a square image with width and
height equal to R = C = 2L and hence, N = 22L. This allows us to compute the DWT
for L levels in both dimensions6. After l steps, we are left with NS := 22(L−l) coefficients
in the LL band (upper left corner in Figure 2.10b), called scaling or approximation
coefficients [He and Carin, 2009, Som and Schniter, 2012], which are the inputs to the
next step of the Wavelet transform. We will refer to the NW := N −NS coefficients in
the other bands as the Wavelet coefficients. We pair each transform coefficient sj with a

6It is typically sufficient to use an incomplete transformation with much less levels [Som and Schniter,
2012]. Moreover, in some of the literature, the problem is simplified by assuming access to the coarse-level
coefficients, which simplifies the problem [He and Carin, 2009].

43

Chapter 2. Inference for Generalized Linear Models

latent binary indicator variable δj . Modeling sj consists of two components. First, sj
is drawn from a mixture P (sj | δj) controlled by δj . Second, the δj corresponding to
Wavelet coefficients are organized in a forest of quad-trees (Figure 2.11). The roots of
these quad-trees are the Wavelet coefficients on the coarsest scale. After l steps of the
DWT, there are 3 · 22(L−l) such quad-trees of height l − 1. We denote by ρ(j) the parent
of the indicator of a Wavelet coefficient j and by ζ(j, c) its c-th child coefficient, if either
exist. By �(j) we denote j’s level in the tree where a leaf node’s level is 1. Let K denote
the actual number of steps to which we restrict the DWT.

� = l

� = l + 1

� = l − 1

ρ(·) ζ(·, ·)

Figure 2.11 – Latent quad-tree-structure of indicator variables. Functions ρ(j) and ζ(j, c)
return the indices of the parent and the c-th child of node j. Furthermore, �(j) returns
the level of node j.

In Figure 2.12a we show as an example the coefficients of a band. Using colors, we
distinguish between four quad-trees rooted at the top four coefficients, the members of
which appear in the same color. This illustration reveals the heap-like organization of the
coefficients, which allows us to efficiently implement the operations ρ(·) and ζ(·, ·):

ρ(j) = ω−1
R (�ωR(j)/2�) (2.62)

ζ(j, c) = ω−1
R (2ωR(j) + ω2(c)) (2.63)

where operations on and between tuples are performed element-wise and the four children
identified by c ∈ [4] are mapped to tuples in {0, 1} × {0, 1} by ω2(·).

Figure 2.12b illustrates in a graphical model the relationship of an indicator node δj with
its neighbors: parent ρ (j) children ζ(j, c) and corresponding transform coefficient sj .

44

2.2. Tree-Structured Scale Mixtures

� = l

� = l + 1

� = l − 1

(a) Visualization of quad-tree member-
ship, indicated by color, of coefficients
of an example band.

δζ(j,c)

δj

δρ(j)

sζ(j,c)

sj

sρ(j)

c ∈ [4]

(b) Graphical model from the perspec-
tive of node j.

Next, we denote the set indexing the scaling coefficients after l transform steps7 as

Sl :=
{
j ∈ [N] : x < 2L−l ∧ y < 2L−l, (x, y) = ωR(j)

}
(2.64)

and the set of wavelet coefficients after l transform steps as

Wl :=
{
j ∈ [N] : x < 2L−l+1 ∧ y < 2L−l+1 ∧ j �∈ Sl, (x, y) = ωR(j)

}
(2.65)

Therefore, the indices of the roots of the quad-trees, Wavelet coefficients on the coarsest
scale, are WK .

Using this notation, we can write the joint distribution of P (s, δ) as follows:

P (s, δ) = P (s | δ)P (δ)

=

N∏
j=1

P (sj | δj)
∏

i �∈SK∪WK

P (δi | δρ(i))
∏

k∈SK∪WK

P (δk)
(2.66)

The distributions emitting the coefficients sj are two-component mixtures:

P (sj | δj) = t0(sj)
1−δj t1(sj)

δj =: t̃(sj | δj) (2.67)

In a slight abuse of notation, we will interpret t̃(s | δ) as a function with a relaxed domain
that accepts as δ a value from the real interval8 [0, 1]: t̃ : R × [0, 1] �→ R. Thus, as
indicated in Figure 2.12b, the joint distribution decomposes into the following types of
factors:

7If the transform continues beyond l steps, Sl indexes coefficients on the coarser scales.
8We will later need to evaluate t̃(s | E[δj]).

45

Chapter 2. Inference for Generalized Linear Models

• Single node factors P (δk) with one parameter P (δk = 1). We use two parameters
θs for k ∈ SK and θr for k ∈ WK .

• Discrete two-node factors P (δi | δρ(i)) with two parameters P (δi | δρ(i) = 0) and
P (δi | δρ(i) = 1). We use the same parameters per level: P (δi | δρ(i) = d) = θd,l, ∀i :
�(i) = l.

• Mixed two-node factors P (sj | δj) parameterized by the parameters of t0 and t1.
Again we tie them together over levels: θt,l = {θt0,l, θt1,l}.

We collect all hyper-parameters in θ = {θs, θr, θd,l,θt,l} for a total of parameters in
O(logN). For convenience, we drop the dependence on θ in P (s, δ | θ), until we discuss
learning them Section 2.2.2.4.

2.2.2.2 Algorithm of Seeger and Nickisch [2011a]

We begin by briefly introducing the scalable inference algorithm of Seeger and Nickisch
[2011a] for sparse linear models with factorial super-Gaussian priors, on which our method
is based. For the moment, we assume log-concave prior potentials to facilitate the
introduction. At the end of this introduction, we will have described the tools to deal
with non log-concave potentials and therefore defer the discussion.

The method described here, is a solver for the variational inference relaxation described
in Section 1.2.3.2 [Jaakkola, 1997, Girolami, 2001, Palmer et al., 2006]. For SLMs, the
bound is given by

logZ = log

∫
P (y | u)

N∏
j=1

tj(sj) du (2.68)

= log

∫
N (y | Xu, σ2I

) N∏
j=1

tj(sj) du (2.69)

≥ log

∫
N (y | Xu, σ2I

)
e−

1
2
sT diag(π)s du − 1

2

N∑
j=1

h(γj) (2.70)

=: LDSB(γ) (2.71)

where we used super-Gaussianity tj(fj) ≥ e−s2j/(2γj)e−hj(γj)/2 and defined π := γ−1.

The approximate posterior is given by the likelihood and the potential-wise Gaussian
approximations and therefore is itself Gaussian:

Q(u | y) = Z−1
Q N (y | Xu, σ2I

)
e−

1
2
sT diag(π)s (2.72)

= N (u | ξ,Ξ) (2.73)

46

2.2. Tree-Structured Scale Mixtures

The posterior approximation has parameters that are functions of the variational parame-
ters γ :

ξ = σ−2ΞXTy (2.74)

A := Ξ−1 = σ−2XTX +W T diag (π)W (2.75)

and normalization constant ZQ =
∫ N (y | Xu, σ2I

)
e−

1
2
sT diag(π)s du, i.e. the Gaussian

integral in (2.71). The authors then use a variational characterization of ZQ by using
that mean and mode of a Gaussian coincide, so that maxu Q(u | y) = Q(u = ξ | y) =
|2πΞ|− 1

2 :

logZQ = logZQ (2.76)

= log

(
ZQ |2πΞ| 12 max

u
Q(u | y)

)
(2.77)

= log

(
|2πΞ| 12 max

u
N (y | Xu, σ2I

)
e−

1
2
sT diag(π)s

)
(2.78)

.
= −1

2

(
log |A|+M log σ2 +min

u
σ−2‖y −Xu‖2 + sT diag (π) s

)
(2.79)

Plugging this expression into (2.71) yields the following objective to minimize with respect
to γ :

φ(γ) =

N∑
j=1

h(γj) + log |A|+min
u

σ−2‖y −Xu‖2 + sT diag (π) s (2.80)

= min
u

φ(γ ,u) (2.81)

For log-concave potentials, the authors show that φ(γ ,u) is jointly convex. This insight,
however, does not lead to a scalable algorithm as computing gradients of log |A| as
well as evaluating (2.80) several times during line search costs O(N3): intractable for
realistic image sizes. In order to overcome this issue, they employ a different strategy
to optimize (2.80). Using another result, namely the concavity of π �→ log |A|, they
apply a fixed-point method inspired by the Convex Concave Procedure [CCCP, Yuille
and Rangarajan, 2003], that replaces the concave part by the tight linear upper bound
using its concave conjugate [Rockafellar, 1970]

log |A(π)| ≤ zTπ − g∗(z) (2.82)

which is tight at π for the minimizer z∗ = argminz zTπ − g∗(z) given by the tangent at
that point, i.e. z∗ = ∇π log |A|. Plugging this into (2.80) weakens the bound, but, given
z , simplifies it considerably as the objective decouples additively over the components of

47

Chapter 2. Inference for Generalized Linear Models

γ :

φ(γ ,u, z) =

N∑
j=1

h(γj) + zTπ − g∗(z) + σ−2‖y −Xu‖2 + sT diag (π) s (2.83)

=
N∑
j=1

(
h(γj) +

zj + s2j
γj

)
− g∗(z) + σ−2‖y −Xu‖2 (2.84)

≥ φ(γ ,u) (2.85)

≥ φ(γ) (2.86)

CCCP prescribes to alternatingly solve for z and (γ ,u), resulting in a method that
provably converges to a stationary point, the gist of which is shown in Algorithm 1.

Algorithm 1 Double loop algorithm of Seeger and Nickisch [2011a]
1: repeat
2: // Outer Loop
3: z ← argminz φ(z | u,γ)
4: // Inner Loop
5: u,γ ← argminu,γ φ(u,γ | z)
6: until Convergence

Inner Loop Problem. Due to joint convexity, the order of minimization is interchange-
able. This enables us to revert the super-Gaussian representation (1.23) back to the
potential form recovering a problem corresponding to a MAP estimation smoothed by
the current estimate of posterior variances:

min
u

min
γ

N∑
j=1

(
h(γj) +

zj + s2j
γj

)
+ σ−2‖y −Xu‖2 (2.87)

=min
u

min
γ

−2

N∑
j=1

(
−1

2
h(γj)− 1

2

zj + s2j
γj

)
+ σ−2‖y −Xu‖2 (2.88)

=min
u

−2
N∑
j=1

log tj

(√
zj + s2j

)
+ σ−2‖y −Xu‖2 (2.89)

This penalized-least-squares (PLS) problem can be solved by various first- and second
order methods such as non-linear Conjugate Gradients (nCG), L-BFGS or IRLS.

48

2.2. Tree-Structured Scale Mixtures

Outer Loop Problem. Using standard results, we see that this operation requires the
computation of marginal variances:

z∗(π) = ∇π log |A(π)| = diag
(
WΞ(π)W T

)
= Var [s | y] (2.90)

This is the costly part of the algorithm. Direct computation requires cubic cost to
convert natural parameters into moments A �→ Ξ. Seeger and Nickisch [2011a] use a
low-rank approximation of Ξ by a few of its leading eigenvectors, obtained iteratively
using the Lanczos method, that requires a matrix-vector multiplication with A per round.
Alternatively, Papandreou and Yuille [2010] describe a simple scheme to draw exact
posterior samples in Gaussian linear models that can be used to estimate Var [u | y]. The
method is sketched in Algorithm 2.

Algorithm 2 Perturb and MAP procedure [Papandreou and Yuille, 2010] for marginal
variances
Require: σ2,X ,W ,π, NSamples

Ensure: Approximate marginal variances z := VarQ(u) [s]

1: z ← 0

2: for k = 1, . . . , NSamples do
3: a ∼ N (0, I)

4: b ∼ N (0, I)

5: ã ← σ−1XTa ⇒ ã ∼ N (0, σ−2XTX
)

6: b̃ ← W T
(
π

1
2 ◦ b

)
⇒ b̃ ∼ N (0,W T diag (π)W

)
7: c ← A−1

(
ã + b̃

)
⇒ c ∼ N (0,Ξ)

8: z ← z + c2

9: end for
10: return 1

NSamples
z

Systems with A can be solved iteratively using (linear) Conjugate Gradients (CG).
Therefore, both, the low-rank approximation, as well as the sampling approximation, can
be reduced to multiplication with A that is typically highly structured. For example, in
the imaging applications, we consider here, a multiplication can be performed in linear
time.

Non Log-concave Potentials. Super-Gaussian potentials, that are not log-concave,
compromise the convexity properties of the algorithm, i.e. the potential-specific term h(γj)

is not convex. To overcome this issue, Seeger and Nickisch [2011a] propose to decompose
h(γj) into a sum of a convex and concave function9. The extra term for the concave

9This is possible for functions with bounded second derivative, which can be seen by adding and
subtracting a convex function with a second derivative that dominates the original one [Yuille and

49

Chapter 2. Inference for Generalized Linear Models

part is dealt with in the same way as with log |A|, by upper-bounding and an additional
tightening step in the outer loop. The convex part is used in the inner loop, as before.

2.2.2.3 Inference Algorithm for Structured Scale Mixtures

Extending the method described in Section 2.2.2.2 to the structured prior (2.66) is
straightforward, using the following observation about the conditionals in (2.67):

log t̃(sj | δj) = (1− δj) log t0(sj) + δj log t1(sj) (2.91)

≥ (1− δj)

(
− s2j
2γ0,j

− 1

2
h0(γ0,j)

)
+ δj

(
− s2j
2γ1,j

− 1

2
h1(γ1,j)

)
(2.92)

= −1

2
s2j π̃j −

1

2
h̃j (2.93)

where π̃j = (1− δj)γ
−1
0,j + δjγ

−1
1,j and h̃j = (1− δj)h0(γ0,j) + δjh1(γ1,j). We see that the

effective potential inherits log-concavity from its constituents and is log-linear in δj .

Next, we derive the bound on the log partition function in two steps. First, we use (2.91)
as in (2.71) and second, we use a standard variational bound similar to (1.22) introducing
the factorizing variational distribution Q(u, δ) = Q(u)Q(δ), where Q(u) = N (u | ξ,Ξ)

and Q(δ) will turn out to be a discrete ditribution following the same graphical structure
as the prior P (δ). In the following derivations, we will denote by 〈·〉 the expectation
EQ(δ) [·].

logZ = log
∑
δ

∫
P (y | u)P (u | δ)P (δ) du (2.94)

= log
∑
δ

∫
P (y | u)

N∏
j=1

P (sj | δj)P (δ) du (2.95)

≥ log
∑
δ

∫
N (y | Xu, σ2I

)
e−

1
2
sT diag(π̃)sP (δ)e−

1
2

∑N
j=1 h̃j du (2.96)

≥ EQ

[
log

N (y | Xu, σ2I
)
e−

1
2
sT diag(π̃)sP (δ)

Q(u)Q(δ)

]
− 1

2

N∑
j=1

〈
h̃j

〉
(2.97)

Thus, we need to maximize the bound with respect to three different objects: the
variational parameters γ̃ := {(γ0,j , γ1,j)}j∈[N] and the variational distributions Q(u)

and Q(δ). Using an alternating structured mean-field algorithm and re-arranging the
computations, we will recover an algorithm which is very similar to the one described
in Section 2.2.2.2, with an additional step for optimizing with respect to Q(δ) folded in.
Crucially, we exploit that the coupling between u and δ is weak through the quadratic
we obtained from the potential bounds. We begin with the update of γ̃ and Q(u) and

Rangarajan, 2003].

50

2.2. Tree-Structured Scale Mixtures

determine the statistics we need from an update of Q(δ).

Update of γ̃ and Q(u). Keeping the other variational parameters fixed, we can read
off the optimal Q(u) by gathering all terms in the numerator depending on u, taking the
geometric mean with respect to Q(δ) and normalizing:

Q(u) = Z−1
Q N (y | Xu, σ2I

)
e−

1
2
sT diag(〈π̃〉)s (2.98)

From the definition of π̃j , we see that 〈π̃j〉 = (1 − 〈δj〉)γ−1
0,j + 〈δj〉 γ−1

1,j . Thus, the
statistics we require from the update of Q(δ) are posterior marginal probabilities, since
〈δj〉 = Q(δj = 1).

Plugging (2.98) back into the bound (2.94), we obtain

logZ ≥ logZQ(〈π̃〉)− 1

2

N∑
j=1

〈
h̃j

〉
−DKL [Q(δ)‖P (δ)] . (2.99)

Since the KL-term does not depend on γ̃ , we recover (2.79). Using the linear bound on
the log-determinant for the argument 〈π̃〉, we obtain the inner loop objective of (2.83).

φ(γ̃ ,u, z | Q(δ)) =

N∑
j=1

(
h̃j

)
+ zT 〈π̃〉 − g∗(z) + σ−2‖y −Xu‖2 + sT diag (〈π̃〉) s

=
N∑
j=1

(〈
h̃j

〉
+
(
zj + s2j

) 〈π̃j〉)− g∗(z) + σ−2‖y −Xu‖2

(2.100)

To finally recover the analog of (2.87), we show that the super-Gaussian representation
can be reverted individually due to the additive structure of the log-potential. First, we
note that the objective remains decoupled for individual coefficients j.

51

Chapter 2. Inference for Generalized Linear Models

Thus, for a single j, we need to solve

max
γ̃j

−1

2

〈
h̃j

〉
− 1

2

(
zj + s2j

) 〈π̃j〉 (2.101)

=max
γ0,j

max
γ1,j

−1

2

〈
h̃j

〉
− 1

2

(
zj + s2j

) 〈π̃j〉 (2.102)

=(1− 〈δj〉)max
γ0,j

−1

2

(
h0(γ0,j) +

zj + s2j
γ0,j

)
(2.103)

+ 〈δj〉max
γ1,j

−1

2

(
h1(γ1,j) +

zj + s2j
γ1,j

)
(2.104)

=(1− 〈δj〉) log t0(
√
zj + s2j) + 〈δj〉 log t1(

√
zj + s2j) (2.105)

= log t̃
(√

zj + s2j | 〈δj〉
)

(2.106)

We recover the penalized least squares inner loop in (2.87) with a not only smoothed but
also weighted regularizer, where the uncertainty in the state of the indicator δj controls
the regularization strength.

Finally, we explicitly recompute γ̃ using (2.59)

γd,j = −
(
2∂x log td

(√
zj + s2j

))−1

(2.107)

Update of Q(δ). We can read off the form of Q(δ) in the same way as for Q(u) by
gathering all terms depending on δ and taking the geometric mean of the term depending
on u with respect to Q(u). From (2.94) we obtain

Q(δ) ∝ exp

⎛
⎝−1

2
EQ(u)

[
sT diag (π̃) s

]− 1

2

N∑
j=1

h̃j

⎞
⎠P (δ) (2.108)

= exp

⎛
⎝−1

2
EQ(u)

[
tr
(
ssT diag (π̃)

)]− 1

2

N∑
j=1

h̃j

⎞
⎠P (δ) (2.109)

= exp

⎛
⎝−1

2
tr
(
EQ(u)

[
ssT
]
diag (π̃)

)− 1

2

N∑
j=1

h̃j

⎞
⎠P (δ) (2.110)

= exp

⎛
⎝−1

2
tr
(
CovQ(u) [s] diag (π̃)

)− 1

2

N∑
j=1

h̃j

⎞
⎠P (δ) (2.111)

= exp

⎛
⎝−1

2

N∑
j=1

(
VarQ(s) [sj] + EQ(s) [sj]

)
π̃j + h̃j

⎞
⎠P (δ) (2.112)

52

2.2. Tree-Structured Scale Mixtures

where we have used s = Wu. Tightening the potential bounds by setting γ̃ ={(
∂xj log t0(sj), ∂xj log t1(sj)

)}
j∈[N]

, where xj := s2j and the derivatives are evaluated at
xj = zj + s2j , we can revert the convex conjugation and plug in the current estimates of
the marginal moments of Q(u). Hence, we see that the prior tree structure is preserved
as only emission probabilities are changed to reflect our current estimate of Q(u) and γ̃ :

Q(δ) ∝ exp

⎛
⎝−1

2

N∑
j=1

(
VarQ(s) [sj] + EQ(s) [sj]

)
π̃j + h̃j

⎞
⎠P (δ) (2.113)

= exp

⎛
⎝ N∑

j=1

log t̃
(√

zj + s2j

)⎞⎠P (δ) (2.114)

=

N∏
j=1

t̃
(√

zj + s2j | δj
)
P (δ) (2.115)

Therefore, posterior marginals of Q(δ) can be obtained in time linear in N using sum-
product belief propagation [Pearl, 1988].

Algorithm 3 Approximate inference algorithm for Tree-structured scale mixtures
Require: y,X

Ensure: Updated parameters θ

1: // Initialization
2: repeat
3: // Outer Loop update
4: Estimate z using 〈π̃〉 using Algorithm 2
5: // Inner Loop
6: for k do
7: // Posterior mean
8: u ← argminu σ−2‖y −Xu‖2 − 2

∑N
j=1 log t̃

(√
zj + s2j | 〈δj〉

)
9: s ← Wu

10: // Update node potentials
11: Q(δ) ∝∏N

j=1 t̃
(√

zj + s2j | δj
)
P (δ)

12: // Compute marginals
13: 〈δ〉 ← sumProduct(Q(δ))

14: end for
15: Recompute γ̃ using Eq. 2.107 with s, z
16: Recompute 〈π̃〉 using γ̃ , 〈δ〉
17: until Convergence

Final Algorithm. As we have seen, the techniques of Seeger and Nickisch [2011a]
immediately apply with only minor modifications. Following their recipe for scalability,

53

Chapter 2. Inference for Generalized Linear Models

we maintain their double loop structure and modify the inner loop to iterate between
updates of (Q(u), γ̃) and Q(δ) before refitting the log-determinant bound in the outer
loop. Algorithm 3 summarizes our algorithm.

Algorithmic Complexity. The dominating computations of Algorithm 3 are

• In the worst case O(NSamplesN) multiplications with A in Algorithm 2:

A = σ−2XTX +W T diag (〈π̃〉)W (2.116)

• Evaluating gradients of the PLS problem:

1

2
∇u = σ−2

(
XTXu −XTy

)−W T

⎡
⎣ t̃′
(√

zj + s2j | 〈δj〉
)

t̃
(√

zj + s2j | 〈δj〉
)
⎤
⎦
j∈[N]

(2.117)

Thus, the complexity hinges on the concrete W and X . The DWT W and its transpose
cost O(N). In denoising and inpainting applications, which we consider in our experiments,
X is the (row-deficient) identity matrix, therefore also applicable in linear time.

Algorithmic Variants. There are two orthogonal dimensions along which we can
modify our method: MAP estimation versus posterior inference for u and structured
versus unstructured prior. Algorithm 3 subsumes all these special cases. As described in
Seeger and Nickisch [2011a], the discerning factor between MAP and posterior inference is
the outer loop. Disabling it and setting z = 0 results in MAP estimation of u. Enabling
inference over δ thus amounts to an EM algorithm for estimating u by maximizing the
marginal posterior Q(u | y) =∑δ Q(u, δ | y). Fixing δ = 1 and disabling the update of
Q(δ) recovers inference and MAP estimation for factorial priors.

2.2.2.4 Parameter Learning.

The prior hyper-parameters reside in the term P (s, δ | θ) (2.66) and consist of the
transition probabilities of the HMT and the parameters of the emission probabilities,
which we introduced as θ = {θs, θr, θd,l,θt,l}. To compute an M-Step, the relevant part
of the bound on logZ(θ) is given by

EQ(u)Q(δ) [logP (s, δ)] = EQ(u)Q(δ) [logP (s | δ)P (δ)] (2.118)

=
N∑
j=1

log t̃
(√

zj + s2j | 〈δj〉
)
+ 〈logP (δ)〉 (2.119)

(2.120)

54

2.2. Tree-Structured Scale Mixtures

The first term of (2.119) depends on the θt,l and the second part on the rest of θ. We
denote the objective to be minimized by

φ(θ) = −EQ(u)Q(δ) [logP (s, δ | θ)] (2.121)

Update of Tree Parameters θs, θr and θd,l. Using the tree-structured factorization
(2.66) and grouping terms on the same level, we obtain

φ({θs, θr,θd,l}) .
= 〈logP (δ)〉 (2.122)

=
∑

j∈WK

(Q(δj = 1) log θr +Q(δj = 0) log(1− θr)) (2.123)

+
∑
j∈SK

(Q(δj = 1) log θs +Q(δj = 0) log(1− θs)) (2.124)

+

K−1∑
l=1

∑
d∈{0,1}

∑
j∈Wl

[
Q(δj = 1, δρ(j) = d) log θd,l

+ Q(δj = 0, δρ(j) = d) log(1− θd,l)
] (2.125)

Let qd(O) :=
∑

j∈OQ(δj = d). Then, setting the derivatives with respect to each of the
parameters to zero, we obtain update equations

θs ← q1(SK)

q1(SK) + q0(SK)
(2.126)

θr ← q1(WK)

q1(WK) + q0(WK)
(2.127)

θd,l ← qd,l,1
qd,l,1 + qd,l,0

(2.128)

with

qd,l,1 =
∑
j∈Wl

Q(δj = 1, δρ(j) = d) qd,l,0 =
∑
j∈Wl

Q(δj = 0, δρ(j) = d) (2.129)

55

Chapter 2. Inference for Generalized Linear Models

Update of Emission Parameters. Again, we partition the sum to group together
terms belonging to a certain level

φ({θt,l}) .
=

N∑
j=1

log t̃
(√

zj + s2j | 〈δj〉
)

(2.130)

=
∑
j∈SK

log t̃
(√

zj + s2j | 〈δj〉
)

(2.131)

+

K∑
l=1

∑
j∈Wl

log t̃
(√

zj + s2j | 〈δj〉
)

(2.132)

which decomposes additively into terms

φ(θtd,−1)
.
=
∑
j∈SK

Q(δj = d) log td(
√

zj + s2j | θtd,−1) (2.133)

φ(θtd,l)
.
=
∑
j∈Wl

Q(δj = d) log td(
√
zj + s2j | θtd,l) (2.134)

where we denoted the level of the scaling coefficients as l = −1. The concrete update
depends on the potentials used. E.g. for Laplace potentials, log td(s) ∝ log τd − τd |s|, we
obtain

τd,l ← qd(Wl)∑
j∈Wl

Q(δj = d)
√
zj + s2j

(2.135)

For Gaussian potentials log td(s) ∝ log τd − τds
2, we obtain essentially the same update:

τd,l ← qd(Wl)∑
j∈Wl

Q(δj = d)
(
zj + s2j

) (2.136)

For potentials that are not log-concave, e.g. Student’s T, the update needs to be per-
formed at the end of the outer loop, after tightening the bound on the convex-concave
decomposition of the potential. Here, we do not have a convenient closed-form update,
but need to perform iterative optimization in one-dimension.

2.2.3 Experiments

We present experiments on a range of denoising and inpainting problems, comparing
variational inference and MAP estimation for different models. Inpainting problems can
be considered to be more challenging, due to severe loss of information. We use peak
signal-to-noise ratio (PSNR), a standard measure in the field, to assess performance.

56

2.2. Tree-Structured Scale Mixtures

Denoting u as the latent image and û its estimate, PSNR is defined as

PSNR(u, û) = 10 · log (max(u))2

1
N ‖u − û‖2 (2.137)

Since the intensities of the images we used were already normalized to [0, 1], the maxiumum
pixel intensity max(u) = 1, and we measure the negative log of the mean squared
reconstruction error. Therefore, higher values are better.

We use a dataset of 77 images from Seeger and Nickisch [2008]10. All images are greyscale
of size 256×256, thus N = 65536. Our implementation is based on the glm-ie toolbox 11,
that implements the double loop algorithm of Seeger and Nickisch [2011a]. We compare
eight methods: MAP estimation (MAP) vs. variational inference (VB), factorizing prior
(fact) vs. latent tree scale mixture prior (tree), and Laplacian (Lap) vs. Student’s t
potentials (T). The Lap-tree model uses two Laplace potentials t0j(sj), t1j(sj) (see
Table 2.5) with different hyperparameters τ0,l, τ1,l per level. The T-tree model employs
Gaussian N (sj |0, τ−1

0,l) for the low, Student’s t potentials for the high state (Table 2.5),
with a pair of hyperparameters (τ0,l, τ1,l) at each level. We use 2L hyperparameters in the
tree, L (namely, {τl}) in the fact setups. The Student’s T shape parameter ν is fixed to 2.1.
For each run, we initialize hyperparameters θ as in Crouse et al. [1998], by maximizing
the prior probability of the raw12 data y (for the tree cases, this involves a few steps of
expectation maximization), then optimize them by maximizing our approximation to
logZ. We update hyperparameters once per outer loop iteration.

We run VB with up to 15 outer loop (OL) iterations. In the outer loop, we run
Algorithm 2 for estimating z , required for inpainting only, with NSamples = 30 and 70
conjugate gradients (CG) iterations. For denoising (X = I), z can be computed exactly
in linear time (see below). We did three belief-propagation and PLS calls per outer loop
for tree setups, PLS ran up to 150 iterations of nonlinear CG. Each iteration of CG
requires two matrix-vector multiplications with W and X . We did not exhaustively
optimize these algorithmic tuning parameters.

2.2.3.1 Denoising

We add Gaussian random noise of variance σ2 = 0.01 to each image (with pixel values
ui ∈ [0, 1]). All methods use the correct value of σ2 in their likelihood. Notice that
in this case, Gaussian variances z can be computed exactly at no cost: with A(π) =

σ−2I + W T diag (π)W and W TW = WW T = I we obtain, using the Woodbury

10 Thanks to H. Nickisch for kindly providing the data consisting of 75 images. We added two images.
11www.mloss.org/software/view/269/
12 For inpainting, the missing pixels are initialized to mean(yi).

57

Chapter 2. Inference for Generalized Linear Models

identity:

z = diag
(
WA(π)−1W T

)
= (σ−21+ π)−1.

Therefore, approximating variances, the dominating cost for VB in general, is not required:
we can optimize the bound in linear time. Results are shown in Table 2.6. For this
application, differences between MAP and VB reconstruction are not significant. On the
other hand, the structured prior improves PSNR somewhat. Hyperparameter learning
improves VB performance, especially when Student’s t potentials are used. In contrast,
we observe that it does not help13 (and can even hurt) MAP performance.

VB MAP
Model Init θ Learned θ Init θ Learned θ

Lap-fact 24.5± 0.7 24.7± 0.9 24.5± 1.4 23.2± 1.6
T-fact 20.8± 0.0 23.3± 0.5 24.9± 1.1 24.7± 1.6

Lap-tree 24.3± 0.7 25.0± 1.0 25.1± 1.3 25.0± 1.6
T-tree 21.1± 0.1 25.2 ± 1.3 24.3± 1.0 24.3± 1.6

Table 2.6 – Denoising experiments (σ2 = 0.01). Shown is PSNR w.r.t. noise-free ground
truth (mean and std.dev. over 77 images).

2.2.3.2 Inpainting

We remove 75% of pixels at random, using the same mask O ⊂ {1, . . . , N} for all images.
The design matrix is X = IO, the noise variance was fixed to σ2 = 10−5. Results are
shown in Table 2.7. As PSNR does not always correlate well with visual quality, we also
show example images in Figure 2.13 and Figure 2.14.

VB MAP
Model Init θ Learned θ Init θ Learned θ

Lap-fact 23.0± 2.1 23.3± 2.1 15.1± 3.8 20.0± 2.3
T-fact 21.0± 1.7 20.1± 1.7 20.6± 2.2 20.0± 2.2

Lap-tree 22.2± 2.0 23.5± 2.2 19.8± 2.5 19.7± 2.6
T-tree 21.2± 1.8 23.6 ± 2.2 19.0± 2.3 19.8± 2.5

Table 2.7 – Inpainting experiments (75% pixels removed). Shown is PSNR w.r.t. ground
truth (mean and std.dev. over 77 images).

In the inpainting scenario, VB posterior mean predictions appear to be superior to MAP

13 There is no justification for maximizing the posterior w.r.t. θ . We include these results only for the
fact that “alternating MAP” learning is frequently done in practice.

58

2.2. Tree-Structured Scale Mixtures

reconstruction, and VB with non-factorial latent tree prior performs best. While VB
with a factorial Laplace prior (Lap-fact) shows similar PSNR values to VB-Lap-tree, the
visual appearance of results seem to suffer from less artefacts. The additional runtime
compared to MAP estimation, mainly due to the estimation of variances z , pays off for
these problems.

2.2.4 Discussion

In this part, we extended the approximate inference algorithm of Seeger and Nickisch
[2011a] to structured scale-mixture priors for images in the Wavelet domain, resulting
in a scalable inference algorithm representing full posterior covariances at an acceptable
additional cost over MAP. We experimentally corroborated the robustness of the posterior
mean estimator over the posterior mode in highly ill-posed inpainting problems.

The experimental evaluation can be extended along three axes: additional benchmark
applications, such as compressed sensing, different combinations of potentials, such as
spike and slab and other inference approximations, such as VG and EP. Expectation
Propagation might work well in this context as indicated by the results of Som and
Schniter [2012], but might be harder to run reliably at this scale [Seeger and Nickisch,
2011a]. Scaling could also be an issue for applying the Variational Gaussian method
except for a fully factorized posterior approximation.

59

Chapter 2. Inference for Generalized Linear Models

Figure 2.13 – Example results for inpainting "Bridge": a: Truth. b: VB-Lap-tree. c:
MAP-Lap-tree. d: VB-Lap-fact. e: y (Input: 25% of a). f: |c− a|. g: |d− a|. h: |b− a|.

60

2.2. Tree-Structured Scale Mixtures

Figure 2.14 – Example results for inpainting "Lena" a: Truth. b: VB-Lap-tree. c:
MAP-Lap-tree. d: VB-Lap-fact. e: y (Input: 25% of a). f: |c− a|. g: |d− a|. h: |b− a|.

61

3 Models of Implicit Feedback

Recommender systems have become a crucial element for the success of providers of
digital goods and services. As product catalogs, audiences and their respective diversities
grow, companies are faced with the challenge to keep users engaged by helping them to
effectively discover relevant items. Thus, the problem of recommending items to users is
one of modeling the tastes or preferences of individuals or groups of individuals for the
items on offer, e.g. by inferring personalized rankings over or utilities for the items. The
problem of representing and learning such utilities is often posed in terms of a rating
prediction problem: For a set of U users indexed by U = [U] and I items indexed by
I = [I], we target a k-star rating matrix Y ∈ {1, . . . , k}I×U where Y iu represents the
rating of user u for item i. This matrix is typically only sparsely observed: we only have
access to a relatively small set of entries O ⊂ I× U. A crucial aspect in this setting is
therefore to exploit dependencies between users and their rating behavior. A particularly
successful approach is to treat the observations as real values and to compute a low-rank
decomposition of Y ≈ V UT , e.g. by performing an SVD, i.e. minimizing the squared loss.
The matrices U and V can be interpreted as latent feature matrices describing users and
items respectively such that users with similar features produce a similar rating for the
same item [Koren et al., 2009]. While the availability of publicly available benchmark data
has facilitated the development and adoption of these methods, it has been recognized
that there are downsides to the explicit rating prediction paradigm. For example, Rendle
et al. [2009] argue, that a major hurdle is data acquisition. It seems difficult to reliably
collect large amounts of high-quality ratings without considerable effort or, most ironically,
diminishing user experience. Moreover, depending on the metrics a service provider cares
about, rating prediction could even be considered but a proxy problem, in that rating an
item might be an atypical event, somewhat disconnected from the actual user behavior.
An alternative, potentially much more scalable approach is to leverage sources of implicit
feedback, i.e. data gathered by passively observing user behavior interacting with the
service. Confidently drawing conclusions from implicit feedback, however, is difficult
due to the uncalibrated nature of the data: the frequency of interacting with services
can vary significantly between users depending on a wide range of circumstantial factors.

63

Chapter 3. Models of Implicit Feedback

Furthermore, there is typically no concept of negative examples: Not choosing an item
could be due to unfamiliarity. While the signal contained in this type of feedback is
therefore much weaker compared to explicit ratings, it is typically much more abundant
and may lead to valuable insights when mined over a large user base in conjunction with
appropriate assumptions [Rendle et al., 2009].

A prime example for the transition towards implicit feedback from the private sector is
Netflix1, who is often associated with pioneering the rating prediction paradigm. With
the transformation from a DVD rental to an online media streaming service, the company
gained access to fine-grained, but implicit, user feedback, quasi in real time, enabling
them to implement a much tighter feedback loop and to even discover patterns in plot
preferences that they successfully used to produce original content.

A major challenge to deal with implicit feedback is its diversity: user behavior is often
recorded as sequences of choices from an item catalog, aggregated as counts or encoded
into binary form. Different types of data and the scale of the problems pose immense
challenges for developing and deploying probabilistic models in practice. We address
such problems arising in two different settings: a global static setting and a contextual
dynamic setting.

In the global static setting, we follow the line of work that extends models with bi-linear
latent variable structure to observations appropriate to represent implicit feedback. While
probabilistic models excel at hierarchically combining discrete and continuous variables,
inference in the models of interest here is intractable, even for a Gaussian likelihood,
due to the product of Gaussian latent variables [Ilin and Raiko, 2010]. In the context of
bi-linear models, Bayesian estimators have proven to be more robust against overfitting
compared to point estimates [Blei et al., 2003, Salakhutdinov and Mnih, 2008b, Ilin and
Raiko, 2010]. In Section 3.1, we study the posterior inference problem for bi-linear latent
Gaussian models for count data. We model the counts using a latent Gaussian bi-linear
model with Poisson likelihood. For this model, we develop an approximate inference
algorithm based on the variational Gaussian lower-bounding technique and derive a
closed-form variational objective under additional constraints. We show that the objective
is bi-concave, not only for Poisson but for any log-concave likelihood, suggesting an
alternating optimization scheme. In Section 3.2, we devise a method to process pairwise
preference statements in a scalable way. There, we combine a low-rank bi-linear model
with non-parametric item-feature regression. We develop a novel approximate variational
Expectation Maximization algorithm that mitigates the computational challenges due
to couplings between entries in the latent preference matrix introduced by the pairwise
comparisons of items.

In the contextual dynamic setting, we consider implicit feedback at a different, much finer
granularity by looking at logs of individual user activity events. In order to deal with the

1http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

64

abundant availability of such data, in Section 3.3, we turn to recurrent neural networks,
as a highly flexible, but non-probabilistic sequence model, able to capture complex,
long-range dependencies in sequences. We combine the sequence learning capability of
RNNs with ideas from collaborative filtering and present a novel, generic collaborative
sequence model.

65

Chapter 3. Models of Implicit Feedback

3.1 Poisson Matrix Factorization

3.1.1 Overview and Related Work

In this part, we consider the posterior inference problem for the generalization of the
probabilistic matrix factorization model to count data. Let U = [U] and I = [I] denote
index sets representing users and items, respectively. We use u as user index and i as
item index. Here, we partially observe a matrix Y ∈ N

I×U for a subset O ⊂ I× U. We
refer to these observations as YO and individual entries as yiu. We assume these entries
to be drawn from a Poisson likelihood with intensity λiu > 0

P (yiu | λiu) =
1

yiu!
λyiu
iu e−λiu . (3.1)

We parameterize λiu = efiu and assume the matrix F = [fiu](i,u)∈I×U
to have a low rank

representation

F = V UT (3.2)

with matrices U ∈ R
U×D and V ∈ R

I×D and D
 min {I, U}. The vectors uu and vi

are D row vectors of of V and U . We consider the following likelihood:

P (YO | F) = P (YO | V ,U) =
∏

(i,u)∈O

1

yiu!
λ(fiu)

yiue−λ(fiu). (3.3)

The prior over the latent matrices decomposes as P (V ,U) = P (V)P (U) and further
factorizes over the rows of the matrices into centered Gaussians:

P (V) =
∏
i∈I

= N (vi | 0,Σv) (3.4)

P (U) =
∏
u∈U

= N (uu | 0,Σu) (3.5)

We derive a variational Gaussian lower bound on the marginal likelihood and show
that under additional constraints the lower bound can be efficiently evaluated in closed
form. We show that for a particular parameterization the bound maximization problem is
bi-concave. We demonstrate on real-world data that overfitting of point estimation (MAP)
and partially Bayesian methods can be avoided by probabilistic inference for prediction.
On these datasets, we show that fully factorized approximations are competitive in terms
of storage and computation with MAP, while enjoying the robustness and predictive
performance common to probabilistic methods. These findings are in line with e.g. [Ilin
and Raiko, 2010] for a Gaussian likelihood.

66

3.1. Poisson Matrix Factorization

Related Work. There is a rich body of work on models related to generalizing latent
bilinear models for different types of data. For a Gaussian likelihood P (y | f) = N (0, 1),
Bishop [1999] studies Bayesian inference for PCA and demonstrates that the latent
dimensionality can be recovered. In the recommender setting with sparse observations,
Lim and Teh [2007] propose a variational inference method while Salakhutdinov and Mnih
[2008a] propose a method based on sampling. Ilin and Raiko [2010] give a comprehensive
overview of inference and estimation in this model demonstrating the robustness of
Bayesian estimators and comparing different algorithmic strategies for variational inference.
In a series of publications, the authors of Nakajima et al. [2013] develop the theory of
variational inference approximations, characterizing optimal solutions of different methods
for complete data.

In a similar spirit to the work in this part are efforts to generalize the model to non-
Gaussian likelihoods. Seeger and Bouchard [2012] devise a scalable algorithm using the
results of Nakajima et al. [2013] for binary and count data. Their method involves an
additional bounding step, but is designed to overcome slow convergence of alternating
schemes. Klami [2014] uses auxiliary-variable reformulations to develop new approximate
inference schemes for logistic Bernoulli and negative binomial likelihoods.

Apart from the analysis of implicit feedback, count matrices frequently arise in neuroscience
[Buesing et al., 2012, Park and Pillow, 2013].

3.1.2 Variational Gaussian Inference

We approximate the intractable posterior P (V ,U | Y O) by a factorized Gaussian
Q(V ,U) = Q(V)Q(U) [Lim and Teh, 2007, Ilin and Raiko, 2010, Seeger and Bouchard,
2012, Nakajima et al., 2013, Klami, 2014]:

Q(V) =
∏
i∈I

N (vi | ξvi
,Ξvi) (3.6)

Q(U) =
∏
u∈U

N (uu | ξuu
,Ξuu) (3.7)

67

Chapter 3. Models of Implicit Feedback

The set of variational parameters is thus V =
{
ξuu

, ξvi
,Ξuu ,Ξvi : i ∈ I, u ∈ U

}
The

bound on the marginal log-likelihood is

logP (YO) = log

∫
V

∫
U

P (YO | V ,U)P (V)P (U)

Q(V)Q(U)
Q(V)Q(U) dU dV (3.8)

≥ EQ(V ,U)

[
log

P (YO | V ,U)P (V)P (U)

Q(V)Q(U)

]
(3.9)

=
∑

(i,u)∈O
EQ(vi)Q(uu) [logP (yin | fin)] (3.10)

−
∑
i∈I

DKL [Q(vi)‖P (vi)] (3.11)

−
∑
u∈U

DKL [Q(uu)‖P (uu)] (3.12)

=: LVG (V) (3.13)

The variational inference problem is then2

max
V

LVG (V)
s.t. Ξuu � 0 ∀u ∈ U

Ξvi � 0 ∀i ∈ I

In contrast to the KL terms, that are available in closed form, the terms involving the
non-Gaussian likelihood cannot be easily evaluated. Dropping indices, a single term reads

EQ(v)Q(u) [logP (y | f)] = yξTv ξu − EQ(v)Q(u)

[
ev

Tu
]
− log y! (3.14)

In linear models, or if V is a parameter, the likelihood-dependent term can often be
written as an expectation over a univariate Gaussian, simplifying the task of computing
it.

Our main result is to show that by introducing additional constraints, which effectively
loosen the bound, the expectations in (3.14) can be evaluated efficiently. Concretely, we
introduce generalized inequalities [Boyd and Vandenberghe, 2004]

Ξ−1
vi

� Ξuu∀(i, u) ∈ O (3.15)

establishing a link between the variational parameters, where A � B means A −B � 0.
The relationship is symmetric due the inherent symmetry in the model. The optimization

2The constraints can be avoided by reparameterizing the covariance matrices, e.g. Ξ = LLT , which
will be done later.

68

3.1. Poisson Matrix Factorization

problem we consider is thus the following:

max
V

LVG (V)
s.t. Ξuu � 0 ∀u ∈ U

Ξvi � 0 ∀i ∈ I

Ξ−1
vi

� Ξuu ∀(i, u) ∈ O

Proposition 2. Let v and u be independent and distributed as v ∼ N (ξv ,Ξv) and
u ∼ N (ξu ,Ξu). Then, under the additional constraints (3.15)

Ξ−1
v � Ξu ,

the following identity holds for the expectation in (3.14)

E
[
ev

Tu
]
= |S |− 1

2 exp

(
1

2
tTB−1t − 1

2
ξTvΞ

−1
v ξv

)

where t := ξu +Ξ−1
v ξv , S := I −ΞvΞu and B := Ξ−1

v −Ξu .

Proof. We show the identity by first writing

EQ(v)Q(u)

[
ev

Tu
]
= EQ(v)

[
EQ(u)

[
ev

Tu
]]

(3.16)

The inner expectation is readily evaluated defining f = vTu, which, conditioned on
v, is distributed as f ∼ N (μ, σ2

)
, μ = vT ξu , σ2 = vTΞuv. The resulting uni-variate

expectation can be simliarly evaluated as in (2.33) as

E
[
ef
]
= e

1
2
σ2+μ = exp

(
1

2
vTΞuv + vT ξu

)
(3.17)

Next, we expand the outer expectation and examine the exponent in

E

[
exp

(
1

2
vTΞuv + vT ξu

)]
=

∫
N (v | ξv ,Ξv

)
exp

(
1

2
vTΞuv + vT ξu

)
dv

(3.18)

which is given and simplified by

− 1

2

((
v − ξv

)T
Ξ−1

v

(
v − ξv

)− 2ξTuv − vTΞuv
)

(3.19)

=− 1

2

(
vT
(
Ξ−1

v −Ξu

)
v − 2

(
ξu +Ξ−1

v ξv
)T

v + ξTvΞ
−1
v ξv

)
(3.20)

=− 1

2

(
vTBv − 2tTv + ξTvΞ

−1
v ξv

)
(3.21)

69

Chapter 3. Models of Implicit Feedback

where we replaced B =
(
Ξ−1

v −Ξu

)
and t = ξu + Ξ−1

v ξv . Defining m = B−1t, we
complete the square

=− 1

2

(
vTBv − 2mTBv +mTBm −mTBm + ξTvΞ

−1
v ξv

)
(3.22)

=− 1

2
(v −m)T B (v −m) +

1

2
tTB−1t − 1

2
ξTvΞ

−1
v ξv (3.23)

The additional constraints imply that B is positive definite, such that the quadratic in v

is a Gaussian function, and the integral can be evaluated as∫
exp

(
−1

2
(v −m)T B (v −m)

)
dv = |2πB−1| 12 (3.24)

Multiplying this with the the normalizing constant of Q(v), |2πΞv |− 1
2 , gives

|2πΞv |− 1
2 |2πB−1| 12 = |ΞvB |− 1

2 = |I −ΞvΞu |− 1
2 = |S |− 1

2 (3.25)

Combining this with the remaining terms of (3.23) yields the result

EQ(v)

[
eξ

T
uv+ 1

2
vTΞuv

]
= |S |− 1

2 exp

(
1

2
tTB−1t − 1

2
ξTvΞ

−1
v ξv

)
(3.26)

Putting everything together, using that KL-divergences between two multivariate Gaus-
sians is given by

DKL [N (ξ,Ξ)‖N (μ,Σ)] =
1

2

(
tr
(
Σ−1Ξ

)
+ (μ − ξ)T Σ−1 (μ − ξ) + log

|Σ|
|Ξ| −D

)
(3.27)

the lower bound up to constants not depending on V becomes

LVG(V) .
=
∑

(i,u)∈O
yiuξ

T
vi
ξuu

− |Siu|− 1
2 exp

(
1

2
tTiuB

−1
iu tiu − 1

2
ξTvi

Ξ−1
vi

ξvi

)
(3.28)

+
1

2

I∑
i=1

[
log |Ξvi | − tr(Σ−1

v Ξvi)− ξTvi
Σ−1

v ξvi

]
(3.29)

+
1

2

U∑
u=1

[
log |Ξuu | − tr(Σ−1

u Ξuu)− ξTuu
Σ−1

u ξuu

]
(3.30)

Note, that this formulation is symmetric under relabeling of u into v since the order in
(3.16) was chosen arbitrarily.

70

3.1. Poisson Matrix Factorization

While not jointly concave in all of V , we can easily establish biconcavity of LVG. First, we
reparameterize the covariance parameters by their respective lower-triangular Cholesky fac-
tors. We define VL =

{
ξuu

, ξvi
,Luu ,Lvi : i ∈ I, u ∈ U,Ξuu = LuuL

T
uu

,Ξvi = LviL
T
vi

}
.

Furthermore let VL(v) and VL(u) denote the parameters in VL parameterizing to Q(V)

and Q(U), respectively. Finally, let LVG(VL(u) | VL(v)) denote LVG as a function of
VL(u), i.e. VL(v) fixed.

Proposition 3. For any log-concave likelihood P (y | f), LVG(VL(u) | VL(v)) is jointly
concave in VL(u) and LVG(VL(v) | VL(u)) is jointly concave in VL(v).

Proof. We show the first part of the statement. The second part follows from symmetry.
The lower bound in (3.10) decouples additively over the uu, so that we can focus on all
terms belonging to a single index u. We denote by Ou all items observed by u. The
relevant part of LVG is therefore

LVG(VL(uu) | VL(v)) =
∑
i∈Ou

EQ(vi)Q(uu) [logP (yin | fin)]−DKL [Q(uu)‖P (uu)]

(3.31)

With fixed VL(v), this has the form of the VG approximation for a linear model. We
use the results of [Challis and Barber, 2011], who show that the bound is jointly concave
in ξuu

and Luu if EQ(vi)Q(uu) [logP (yin | fin)] is. We can easily extend their result that
log-concavity of P (y | f) in f implies concavity of EQ(uu) [logP (yin | fin)] by using that
non-negative weighted sums preserve concavity [Boyd and Vandenberghe, 2004].

Thus, we can use the standard convergent VB-EM algorithm [e.g. Beal, 2003]

VL(u)
(t+1) = argmax

VL(u)
LVG

(
VL(u) | VL(v)

(t)
)

s.t. Ξ−1
vi

� Ξuu ∀(i, u) ∈ O

(3.32)

VL(v)
(t+1) = argmax

VL(v)
LVG

(
VL(v) | VL(u)

(t+1)
)

s.t. Ξ−1
vi

� Ξuu ∀(i, u) ∈ O

(3.33)

that consists of concave maximzation problems as sub-routines.

Note, by using the Cholesky parameterization, positive (semi-) definiteness constraints
are implied. Furthermore, we note that the objective naturally incorporates a barrier
against infeasible solutions. Starting from a feasible set of parameters, consider the
formulation in Proposition 2 for a sequence of matrices B(t) where the smallest eigenvalue
λmin(B

(t)) → 0 as t → ∞, thus approaching the boundary of the feasible set. We see
that the objective function will go to −∞ exponentially due to the dependence on the
inverse of B in the exponent in (3.28). We therefore solve the subproblems in (3.32) and
(3.33) using methods for unconstrained problems.

71

Chapter 3. Models of Implicit Feedback

3.1.3 Experiments

3.1.3.1 Methods

In our experimental section, we compare four different methods to investigate the benefits
of probabilistic methods in this setting. Our comparison is similar to [Ilin and Raiko,
2010]. All the methods can be seen as variational Gaussian approximations differing
in the way the variational distributions (3.6) and (3.7) are defined. Thus, we use the
alternating algorithmic template of (3.32) for all of them. In this section we refer to
an approximation with full D ×D covariances Ξvi and Ξuu as the variational Bayesian
methods (VB). We refer to a fully factorized mean-field approximation with diagonal
covariances as mean-field (MF). Furthermore, we consider a PPCA-like approximation,
where one of the matrices is estimated as a parameter using Expectation Maximization
(EM) and maximum a-posteriori point estimate of both matrices (MAP). Note, that the
E-Step for the EM method is not exact. We employ a variational Gaussian approximation
as well, the bound of which can be computed in closed form as is evident from (3.17).
The latter two can be thought of as degenerate methods that do not take into account the
uncertainty about the parameter(s) that are estimated [Nakajima and Sugiyama, 2014].

For all non-linear optimization problems that arise, we use a quasi Newton L-BFGS
method [Bertsekas, 1999].

MAP MF EM VB

Storage O(D(I + U)) O(D(I + U)) O(DI +D2U) O(D2(I + U))
Computation O(DNobs) O(DNobs) O(D2Nobs) O(D3Nobs)

Table 3.1 – Complexity comparison. Complexity increases from left to right. MAP and
EM are existing methods, while MF and VB are proposed methods. Nobs = |O| denotes
the total number of observations.

Table (3.1) summarizes complexities of memory and computation of these methods.
There, the complexity increases from left to right. The storage complexity directly reflects
the amount of posterior uncertainty, that is represented. MAP only keeps track of a
point estimate of V ,U . MF additionally represents variances of all variables, effectively
doubling the memory requirement. VB represents covariances over all I+U latent factors,
requiring O(D2) memory per factor. EM lies in between MAP and VB, in that covariances
are only represented for one set of variables.

As all methods only require gradient information, computational complexity scales with
the number of data-likelihood terms Nobs, each of which being involved in the accumulation
of the gradient. The methods only differ in the cost per term, which is benign due to
the assumption that D is relatively small. For MAP, the contribution to the gradient of
a single likelihood term is linear in D. For EM, likelihoods contribute terms like (3.17).

72

3.1. Poisson Matrix Factorization

Thus, the gradient requires dense matrix-vector multiplication, that scales as O(D2).
The fully Bayesian methods deal with terms of the form presented in Proposition 2. For
VB, the dependence on matrix inverses leads to cubic scaling in D, while the mean-
field approximation greatly simplifies these expressions, reducing the cost back to linear.
Furthermore, the objective function decomposes additively over users and items such that
sub-problems can be solved independently in parallel as suggested in Algorithm (4).

Our implementation is written MATLAB, with some computationally demanding gradient-
computations in C++ using the Armadillo linear algebra library [Sanderson, 2010]. We
used a Linux server equipped with AMD Opteron 6380 CPUs and 512GB RAM.

Algorithm 4 Variational Gaussian Inference Algorithm

1: Initialize randomly VL(v)
(1)

2: t ← 1

3: repeat
4: for u = 1, . . . , U in parallel do
5: VL(uu)

(t+1) ← argmaxVL(uu) LVG

(VL(uu) | VL(v)
(t)
)

6: end for
7: for i = 1, . . . , I in parallel do
8: VL(vi)

(t+1) ← argmaxVL(vi) LVG

(VL(vi) | VL(u)
(t+1)

)
9: end for

10: t ← t+ 1

11: until Convergence

3.1.3.2 Results

We conduct a comparison on several real-world datasets. We focus on count datasets
arising in recommendation systems. We use the posterior-predictive probability as our
performance measure. Specifically, given a test observation y∗iu, we compute the (negative)
logarithm of the following predictive distribution:

− logP (y∗iu|Y) ≈ − log

∫
P (y∗iu|uu,vi)Q(uu)Q(vi) duu dvi (3.34)

Thus, lower values indicate better performances, i.e. the method, that assigns higher
probability to the value at a test location, incurs a lower error. Due to the log transform,
very low probabilities assigned to test samples are penalized strongly.

Since the above integral is intractable, we approximate it by a Monte Carlo estimate
using 105 samples, to ensure a reliable estimate. For MAP, the error measure reduces
to a simple plug-in estimates. We report the average of this quantity over all the test
examples.

73

Chapter 3. Models of Implicit Feedback

We compare methods on four real-world datasets summarized in Table 3.2. For each data
set, we randomly select 8000 observations, of which 25% are held out for testing. The
LastFM and Delicious datasets can be downloaded from [Grouplens, 2011]. The LastFM-
Tags and Million-Songs datasets can be obtained from [Lamere, 2008] and [Kaggle, 2012],
respectively. To avoid numerical instabilities caused by very large counts, we apply the
transformation y �→ �√y + 0.5� to LastFM and LastFM Tags. We treat zero counts as
missing data3.

Here we use zero-mean, isotropic normal priors as in [Seeger and Bouchard, 2012], i.e.
Σu = σ2

uI and Σv = σ2
vI . Diagonal prior covariances can be used for automatic relevance

determination, a mechanism for setting D by optimizing the marginal likelihood. We fix
σ2
u = 1 and select σ2

v and D using a validation set of size 1500 for each dataset. For EM,
which breaks the symmetry between V and U , we choose the parameter to be the matrix
with the smaller size.

Dataset I U Nobs Description

LastFM 17 632 1892 92 834 Listening counts of songs by user
LastFM Tags 20 907 100 784 952 707 Counts of tags assigned to artists
Delicious 38 603 1867 93 210 Counts of webpages bookmarked by user
Million Songs 163 206 110 000 1 450 933 Listening counts of songs by user

Table 3.2 – Datasets used for experiments

We present the effect of σ2
v in Fig. 3.1. The MAP estimate overfits, while Bayesian

approaches are more robust. These findings are consistent with the results of similar
studies in this domain [Salakhutdinov and Mnih, 2008a, Ilin and Raiko, 2010].

Fig. 3.2 shows the speed-accuracy trade-off between the methods. Accuracy is measured
using the error defined in Eq. (3.34), while speed is measured by the running time in
seconds. For this comparison, we set D to be the same for all the methods but large
enough to give a performance similar to the optimal setting determined on the validation
set. We show the results for 10 different test-train splits in Fig. 3.2, and summarize them
in Table 3.3 for clarity.

We observe that while VB exhibits the best performance overall, MF is a strong contender
due to its speed and competitive performance. It is in the same complexity class as MAP,
but slower due to a larger constant factor. Results consistent with ours were obtained for
other likelihoods [Ilin and Raiko, 2010, Klami, 2014].

3Dealing with unobserved values is a major challenge of dealing with implicit feedback. We cannot
know whether a zero count is due to a conscious choice or due to ignorance. We make the common
assumption of treating zero counts as missing. We note that this is application specific, as one may
actually observe counts of zero, e.g. in neuroscience.

74

3.1. Poisson Matrix Factorization

Dataset MAP EM MF VB

LastFM Tags 2.19 (0.06) 2.02 (0.03) 1.99 (0.02) 1.97 (0.02)
LastFM 5.94 (0.24) 4.65 (0.18) 3.89 (0.08) 3.81 (0.07)
Delicious 3.17 (0.06) 2.62 (0.01) 2.60 (0.01) 2.56 (0.02)
Million Songs 3.54 (0.10) 2.69 (0.07) 2.31 (0.05) 2.28 (0.04)

Table 3.3 – Comparison of methods. We report the error measured by Eq. (3.34). The
error is averaged over all test examples for 10 different train-test splits. The standard
error is shown inside brackets. We clearly see that both of our methods, MF and VB,
achieve the lowest error values.

10
−4

10
−2

10
0

10
2

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4
LastFM: σ2 for best D

σ2

Er
ro

r

MAP (D=40)
EM (D=40)
MF (D=40)
VB (D=40)

(a) LastFM

10
−4

10
−2

10
0

10
2

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
LastFM Tags: σ2 for best D

σ2

Er
ro

r

MAP (D=15)
EM (D=15)
MF (D=15)
VB (D=15)

(b) LastFM Tags

10
−4

10
−2

10
0

10
2

2.5

2.6

2.7

2.8

2.9

3

3.1
Delicious: σ2 for best D

σ2

Er
ro

r

MAP (D=10)
EM (D=10)
MF (D=10)
VB (D=10)

(c) Delicious

10
−4

10
−2

10
0

10
2

2.4

2.6

2.8

3

3.2

3.4

3.6

Million Songs: σ2 for best D

σ2

Er
ro

r

MAP (D=20)
EM (D=20)
MF (D=20)
VB (D=20)

(d) Million Songs

Figure 3.1 – Effect of prior variance: Strong regularization is necessary for MAP. While
EM already benefits from the uncertainty regularization, it does not perform on par with
the fully Bayesian methods.

3.1.4 Discussion

In this part we studied the variational Gaussian approximation for bi-linear models of
count data under standard factorization assumptions. For the sake of efficiency, we

75

Chapter 3. Models of Implicit Feedback

0 0.5 1 1.5 2

x 10
4

4

4.5

5

5.5

6

LastFM: Running Time vs Error

Running Time (sec)

Er
ro

r

MAP (D=40, σ2=5−5)

EM (D=40, σ2=5−3)

MF (D=40, σ2=5−3)

VB (D=40, σ2=5−3)

(a) LastFM

200 400 600 800 1000 1200 1400 1600

1.95

2

2.05

2.1

2.15

2.2

2.25

LastFM Tags: Running Time vs Error

Running Time (sec)

Er
ro

r

MAP (D=15, σ2=5−3)

EM (D=15, σ2=5−1)

MF (D=15, σ2=5−1)

VB (D=15, σ2=5−1)

(b) LastFM Tags

0 500 1000 1500 2000 2500 3000 3500

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Delicious: Running Time vs Error

Running Time (sec)

Er
ro

r

MAP (D=10, σ2=5−7)

EM (D=10, σ2=5−2)

MF (D=10, σ2=5−2)

VB (D=10, σ2=5−2)

(c) Delicious

0 1000 2000 3000 4000 5000 6000
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Million Songs: Running Time vs Error

Running Time (sec)

Er
ro

r

MAP (D=20, σ2=5−4)

EM (D=20, σ2=5−3)

MF (D=20, σ2=5−3)

VB (D=20, σ2=5−3)

(d) Million Songs

Figure 3.2 – Running time vs. error for various datasets: We plot running time (X)
against error (Y) for different train-test splits. For both, lower is better. We set D to
be the same for all methods (see text). The MF approximation seems to strike a good
balance between speed and accuracy, which is consistent with the findings of Ilin and
Raiko [2010] for Gaussian likelihoods.

introduced additional constraints that relax the original variational problem, enabling
us to evaluate the bound in closed form. We demonstrated the benefits of probabilistic
inference for robustness against overfitting and showed that even a fully factorized method
enjoys this property at the same cost as point estimation.

A few open questions remain however: Algorithmically, we opted for an alternating
scheme motivated by convexity structure of the problem. [Ilin and Raiko, 2010] advocate
a gradient-based scheme with a different updating schedule as more effective, which, given
the similarity of the setup, promises to be applicable for the Poisson model as well.

Another very interesting algorithmic question concerns the work of [Seeger and Bouchard,

76

3.1. Poisson Matrix Factorization

2012] that develop a scalable algorithm based the analytic solution of the fully observed
Gaussian case. They, too, introduce an additional relaxation by introducing local Gaussian
approximations to the likelihoods. Their method, while iterative too, promises to be more
effective and less prone to get stuck in poor local minima than alternating schemes. Since
they also model count data, a comparison in terms of algorithmic convergence as well as
quality of approximation would be interesting. Unfortunately, they do not support the
exponential inverse link function, that our formulation uses.

Lastly, it would be interesting to compare a negative-binomial likelihood for overdispersed
counts to the Poisson likelihood on this data set, e.g. using the method described in
[Klami, 2014].

77

Chapter 3. Models of Implicit Feedback

3.2 Pairwise Preferences

3.2.1 Overview and Related Work

In this part we address the problem of inferring latent preferences of users in U = [U]

over a set of items I = [I] from the binary outcomes of pairwise comparisons. Such
preference data is commonly modeled probabilistically using a framework similar to
Gaussian Process classification [Chu and Ghahramani, 2005, Brochu et al., 2008, Birlutiu
et al., 2010, Bonilla et al., 2010, Salimans et al., 2012, Houlsby et al., 2012]. Let i �u j

denote the outcome of a comparison between items i, j ∈ I where user u preferred i over
j. For each user u ∈ U we observe a list of pairs Ou where for each pair (i, j) ∈ Ou it
holds that i, j ∈ I, i �= j, i �u j. Thus, we allow for repetitions and make no assumptions
about consistently representing a ranking over all items. We postulate a latent preference
matrix F ∈ R

I×U with a column fu representing the preferences or utilities of user u

for the items in I. Conditioned on the latent preferences, we model the outcome of a
comparison as follows:

P (i �u j | fu) = Φ(fiu − fju) (3.35)

Here, Φ(·) is the standard normal CDF Φ(x) =
∫ x
−∞N (z | 0, 1) dz, which is the likelihood

for probit regression, used e.g. for GP classification [Rasmussen and Williams, 2006].

Our utility model combines matrix factorization in the spirit of PPCA with a non-
parametric content-based regression component:

uu ∼ N (0, I) (3.36)

gu ∼ GP(0, k(·, ·)) (3.37)

fiu = vT
i uu + bi + σsgu(xi) (3.38)

V uu is the bilinear part, b is a bias term, shared across users, and gu(x) ∼ GP(0, k(·, ·))
is a random function drawn per user independently from uu from a Gaussian Process
with shared kernel function k(·, ·). We assume to have access to item meta-data in
the form of real-valued K dimensional vectors xi ∈ R

K for all i ∈ I and denote the
vector gu = [gu(xi)]i∈I, the matrix G = [gu]u∈U and the kernel matrix K with entries
kij = k(xi,xj). We consider θ = {V , b, σs} parameters of the model4 where σs balances
the influence of the two components.

The marginal likelihood of the observations O = {Ou}u∈U is

P (O | θ) =
∏
u∈U

∫ ∫ ∏
(i,j)∈Ou

P (i �u j | uu, gu,θ)P (uu)P (gu) duu dgu (3.39)

4While kernel parameters can be learned as well, we set them manually using cross validation.

78

3.2. Pairwise Preferences

which we would like to maximize with respect to θ.

We proceed by discussing the difficulties of learning the parameters of such a model
that arise due to the latent couplings induced by the likelihood. A straightforward EM
algorithm expensive due to excessive resource requirements for the M-Step. We mitigate
this problem by using ideas from Yu et al. [2009] that lead to a M-Step criterion akin
to PPCA allowing us to update the parameters in closed form. This leads to a method
that scales to much larger data sizes than most GP-based methods proposed in this area,
while delivering strong performance on real-world datasets. We end with a discussion of
the limitations of this method.

Related Work. As Brochu et al. [2008] mention, probabilistic models for discrete
choice, subsuming pairwise comparisons, have been extensively studied in various areas,
including sociology, psychology, economy and sports, as this formalism lends itself to
express various problems in those fields. A fundamental problem, that these models
address, is to aggregate such observations into global rankings of an underlying set of
items. This has immediate applications in the fields mentioned above but also more
recently in fields, such as in information retrieval [Liu, 2009]. Here, we see a convergence
of methodology, where increasingly techniques developed in the area of machine learning
[Burges et al., 2005, Chu and Ghahramani, 2005] are adopted due to the close relationship
to classification problems as remarked above, enabling us to use inferences in these models
to drive innovative applications [Herbrich et al., 2007, Brochu et al., 2008].

Gaussian processes have been previously used as a flexible model for the latent preferences
inferred from pairwise comparisons [Chu and Ghahramani, 2005, Brochu et al., 2008].
Departing from global rankings are efforts to incorporate personalization and to exploit
collaboration in the multi-user setting, a category into which our work falls as well. In
the collaborative setting, GP based models have also been used: Birlutiu et al. [2010]
use a utility model that only incorporates the GP part gu of our model. They use the
dual representation of the latent function parameterized by a vector of length I per
user, tied together by a joint hierarchical prior, whose parameters are learned using EM.
An E-Step therefore costs O(I3U). In order to establish the relationship between users
and items, Bonilla et al. [2010] model the whole matrix F using a GP using a kernel
with kronecker structure that multiplies together a user kernel with an item kernel. The
authors employ a Laplace approximation, finding the posterior mode using a Newton
method, that requires them to solve a dense IU × IU system, which costs O(I3U3).
Ignoring correlations between users, this model can be reduced to Birlutiu et al. [2010].
Houlsby et al. [2012] use an innovative formulation that combines ideas from bilinear
models with GPs. Instead of considering GP realizations per user, they target the bilinear
term V UT . They directly operate in the space of observed pairs which is of dimension
P = |∪u∈UOu| ≤

(
I
2

)
, i.e. they model f̃iju = fiu − fju. The implied utility over pairs is a

linear transformation of the original utility function over items, that in effect decouples

79

Chapter 3. Models of Implicit Feedback

the likelihood. Also, a GP prior on the columns of V implies a GP prior on the columns
of Ṽ = BV . Optionally, their method allows to impose GP priors over the columns of
U . They employ a fully factorized posterior approximation that is computed using a
VB/EP hybrid approach. The algorithm is involved and reportedly requires additional
measures for convergence while scaling5 as O(DP 3) and additionally O(DU3) with user
features, which can be reduced by additional approximations. Finally, [Salimans et al.,
2012] model utilities only using the matrix factorization term. They treat both matrices
as latent variables, but employ a fully factorized posterior approximation and require local
approximations of the non-Gaussian likelihoods. Our model can be seen as combining
aspects of [Salimans et al., 2012] with [Birlutiu et al., 2010]. As is, our model does not
support user features and estimates the matrix V . While opting against a mean-field
approximation, the complexity of our method is somewhat more benign and given by
O(
∑

u∈U |Ou|3) which in the worst case is equivalent to O(UP 3). We show, however, that
a stochastic version of our algorithm is effective, where we sample a maximum number of
pairs per user. Furthermore, the inference in our E-Step converges quickly and reliably
using standard parallel EP for GP classification.

3.2.2 Inference and Learning for Collaborative Preference Learning

In this part, we start by introducing learning in our setting as a variant of PPCA,
highlighting the computational challenges introduced by the couplings due to the pairwise
comparisons for the M-Step. With this motivation, we reformulate the generative model,
which leads to a decoupling of the likelihood and a shift of the parameters into a newly
defined pseudo-prior. This formulation greatly simplifies the M-Step, that can now be
performed more efficiently by noticing similarities to the analytic ML soluton of PPCA
in the fully observed case.

We begin by introducing additional notation.

3.2.2.1 Preliminaries

Let Pu = |Ou| denote the number of pairs observed for each user. We write differences
between entries of fu corresponding to multiple pairs in Ou using matrix notation as
follows. Let ωu : Ou �→ [Pu] be a bijection. Then we write

f̄u = Bufu (3.40)

where Bu is such for any (i, j) ∈ Ou, the k-th entry of f̄u is

f̄ωu(i,j) = fiu − fju = (δi − δj)
Tfu (3.41)

5According to the authors. Probably, this can be reduced to O(DI3)) due to the structure of the
problem.

80

3.2. Pairwise Preferences

where k = ωu(i, j). Hence, we can rewrite the probit likelihood

P (i �u j | fu) = Φ(fiu − fju) = Φ(f̄ku). (3.42)

From this perspective, and as mentioned e.g. by Houlsby et al. [2012], we recover a
standard linear probit-classification model, with pseudo-features Bu and weight vector
fu.

One way to represent the pseudo-features Bu is in form of a sparse matrix with 2Pu

non-zero entries. See Algorithm 5 for pseudo-code.

Algorithm 5 Construct Pseudo-feautres Bu

Require: Ou

Ensure: Returns Bu

1: rowIdx ← []

2: colIdx ← []

3: values ← []

4: r = 0

5: for (i, j) ∈ Ou do
6: append(rowIdx, r)
7: append(colIdx, i)
8: append(values, 1)
9: append(rowIdx, r)

10: append(colIdx, j)
11: append(values, -1)
12: r ← r + 1

13: end for
14: return sparse(rowIdx, colIdx, values)

3.2.2.2 PPCA for Coupled Likelihoods

To facilitate the discussion, we consider a simplified PPCA [Tipping and Bishop, 1999]
model.

In PPCA, data is assumed to be generated as

uu ∼ N (0, ID) (3.43)

ε ∼ N (0, II) (3.44)

yu = V uu + σε ⇒ P (yu | uu,θ) = N (yu | V uu, σ
2II) (3.45)

81

Chapter 3. Models of Implicit Feedback

with parameters θ =
{
V , σ2

}
. The ML objective is∑

u

logP (yu | θ) =
∑
u

logN (yu | 0,C) (3.46)

∝ − log |C | − tr
(
C−1Σ̂

)
(3.47)

where C = V V T + σ2II and Σ̂ is the empirical covariance. Tipping and Bishop [1999]
show that the maximum likelihood solution is given by

V ML = QD(diag (λD)− σ2ID)
1
2R (3.48)

σ2
ML =

1

I −D

I∑
i=D+1

λi (3.49)

where Σ̂ = Q diag (λ)QT , subscript D denotes the leading D eigenvectors and values
and R is an arbitrary orthonormal matrix.

For partially missing data, an iterative EM procedure is necessary. In a slight abuse of
notation, we override the index set of observed entries Ou ⊆ [I]. We focus on the M-Step
update of V , assuming for the moment σ2 to be known. Denote by Su = E

[
uuu

T
u

]
, Lu

its Cholesky factor, lud = Luδd and su = E [uu] the previously gathered E-Step statistics.
In the M-Step, we seek to minimize∑

u

E
[‖yOu

− IOuV uu‖2
] .
=
∑
u

E
[
uT
uV

T IT
Ou

IOuV uu

]− 2sTuV
T IT

Ou
yOu

(3.50)

=
∑
u

E
[
tr
(
V T IT

Ou
IOuV uuu

T
u

)]− 2sTuV
T IT

Ou
yOu

(3.51)

=
∑
u

tr
(
V T IT

Ou
IOuV Su

)− 2sTuV
T IT

Ou
yOu

(3.52)

This is a quadratic function in V , which becomes obvious by rewriting it in terms
of the row-major vectorization of V , v = vecr (V), and then applying the equality
V w =

(
II ⊗wT

)
v . Then the linear term is∑

u

sTuV
T IT

Ou
yOu

= vT
∑
u

(II ⊗ su) I
T
Ou

yOu
(3.53)

82

3.2. Pairwise Preferences

The quadratic term can be rewritten as∑
u

tr
(
V T IT

Ou
IOuV LuL

T
u

)
=
∑
u

tr
(
LT

uV
T IT

Ou
IOuV Lu

)
(3.54)

=
∑
u

D∑
d=1

(
δTdL

T
uV

T IT
Ou

IOuV Luδd
)

(3.55)

=
∑
u

D∑
d=1

(
lTudV

T IT
Ou

IOuV lud
)

(3.56)

=
∑
u

D∑
d=1

(
vT (II ⊗ lud) I

T
Ou

IOu

(
II ⊗ lTud

)
v
)

(3.57)

= vT

(∑
u

D∑
d=1

(
(II ⊗ lud) I

T
Ou

IOu

(
II ⊗ lTud

)))
v

(3.58)

= vT

(∑
u

D∑
d=1

(
IT
Ou

⊗ lud
) (

IOu ⊗ lTud
))

v (3.59)

= vT

(∑
u

D∑
d=1

(
IT
Ou

IOu ⊗ ludl
T
ud

))
v (3.60)

= vT

(∑
u

(
IT
Ou

IOu ⊗Lu

(
D∑

d=1

δdδ
T
d

)
LT

u

))
v

(3.61)

= vT

(∑
u

IT
Ou

IOu ⊗ Su

)
v (3.62)

The matrix in the middle has a block diagonal structure, that enables us to solve
independently for each row of V a D ×D linear system.

We return to the pairwise setting, where we can perform the same analysis for a coupled
likelihood, again for the sake of simplicity using Gaussian likelihoods. We essentially
obtain the derivation by substituting IOu with Bu. The system matrix therefore becomes(∑

u

BT
uBu ⊗ Su

)
(3.63)

As we have seen before, structure in this matrix, i.e. its block-sparsity pattern, leads to an
efficient M-Step. Based on the following proposition, we argue that due to the couplings
induced by the pairwise comparisons, it is unlikely to have a sparse linear system to work
with.

Proposition 4. The matrix BT
uBu has a off-diagonal non-zero entry at (i, j) for all

83

Chapter 3. Models of Implicit Feedback

(i, j) ∈ Ou.

Proof. From (3.41) we know that rows of Bu are differences of indicator vectors, i.e. for
each (i, j) ∈ Ou there is a row in Bu that is equal to (δi − δj)

T Therefore, wuk1 := Buδk1
will be a vector of length Pu, with a non-zero at every k = ωu(i, j) for all (i, j) ∈ Ou

where i = k1 or j = k1. Thus, for any k2 such that (k1, k2) ∈ Ou or (k2, k1) ∈ Ou, we
have wT

k1
wk2 �= 0. Moreover, these off-diagonal entries will be negative, since we have

differences of indicators, so that there will be no cancellation.

The non-zero pattern of (3.63) is thus data-dependent. Moreover, summing over all users
makes it unlikely for an useful sparsity pattern to emerge. Solving the resulting system
directly is difficult, since the system matrix is of size ID × ID. The same holds for
gradient-based methods as evaluating the gradient involves matrix-vector multiplications
with this matrix. Even coordinate descent methods, that apply due to strong convexity
of the objective, might be expensive involving repeated passes over all users to recompute
columns of the matrix. Similar insights in the context of non-probabilistic pairwise matrix
factorization were presented by Takács and Tikk [2012].

3.2.2.3 Our Approach: EM Algorithm under Reparameterization

We show the graphical model corresponding to our preference model in Figure 3.3. It
illustrates the coupling of the parameters through the likelihood. Next, we discuss the
implications of slightly reformulating the model. Recall the utility model in (3.36)

uu ∼ N (0, I) (3.64)

gu ∼ GP(0, k(·, ·)) (3.65)

fiu = vT
i uu + bi + σsgu(xi) (3.66)

yiju

uu gu

θ =
{
V , b, σ2

}
K

(i, j) ∈ Ou

u ∈ U

Figure 3.3 – Original Preference Model

Instead of working explicitly with uu and gu, we could introduce a pseudo-prior and work
directly with fu, which is Gaussian as well, distributed as

P (fu | θ) = N (fu | μ,Σ) (3.67)

84

3.2. Pairwise Preferences

with parameters

μ = b Σ = V V T + σ2K (3.68)

The corresponding graphical model is depicted in Figure 3.4 and corresponds to marginal-
izing out latent variables in PPCA setting [Tipping and Bishop, 1999]. In the remainder

yiju

fuθ =
{
V , b, σ2

}
K

(i, j) ∈ Ou

u ∈ U

Figure 3.4 – Reparameterized Preference Model

of this part we develop our modified EM algorithm, an overview of which can be found in
Algorithm 6. The algorithm can be summarized as follows:

E-Step Inference in the E-Step decomposes over the users and can be seen as independent
linear probit regression problems with pseudo-features Bu. Since fu is Gaussian,
this can be cast into standard GP classification [Rasmussen and Williams, 2006].
As can be seen in Line 14 of Algorithm 6, the inference problems are of size Pu. We
run parallel-updating Expectation Propagation, such that the dominating cost is
O(P 3

u) for a total of O(
∑

u∈U P 3
u). We gather statistics S , s as described in detail

below.

M-Step We show that in this formulation, the M-Step can be reduced to a PPCA M-Step
[Tipping and Bishop, 1999]. It requires the accumulation of E-Step statistics of size
O(I2). Instead of a direct eigendecomposition at cubic cost, we can use iterative
methods, that leads to a cost of O(DI2).

We proceed by first recovering PPCA in the M-Step in 3.2.2.4 and then describing which
statistics are necessary for the update in 3.2.2.5.

85

Chapter 3. Models of Implicit Feedback

Algorithm 6 EM for Collaborative Preference Learning
Require: K ,O = {Ou}
Ensure: Updated parameters θ

1: // Initialization
2: LK ← chol(K)

3: initialize V̄ , b, σ2

4: V ← LKV̄

5: S ← zeros(I, I)
6: s ← zeros(I)
7: // EM-Algorithm
8: repeat
9: // E-Step (Section 3.2.2.5)

10: for u ∈ U do
11: Bu ← pseudoFeatures(Ou) (Algorithm 5)
12: μ̄ ← Bub

13: Σ̄ ← BuV V TBT
u + σ2BuLKLT

KBT
u

14: [πu,βu] ← inferGP(μ̄, Σ̄, likelihood="probit") // Equation (3.88)
15: [Eu, eu] ← stats(πu,βu, μ̄, Σ̄) // Equations (3.94) and (3.101)
16: S ← S + 1

UB
T
u (Eu − eue

T
u)Bu // Equation (3.113)

17: s ← s + 1
UB

T
ueu // Equation (3.104)

18: end for
19: // M-Step (Section 3.2.2.4)
20:

[
V̄ , σ2

]← PPCAeigs(S , V̄ , σ2,LK)

21: b ← b + V
(
V Ts

)
+ σ2LK

(
LT

Ks
)

22: V ← LKV̄

23: until Convergence

3.2.2.4 M-Step

At the end of the E-Step, we have computed an approximate Gaussian posterior

Q(F) =
∏
u∈U

N (fu | ξu,Ξu) (3.69)

to which we will come back later.

86

3.2. Pairwise Preferences

Using (3.27), the M-Step objective can then be written as

L(θ) = EQ

[
log

P (O | F)P (F | θ)
Q(F)

]
(3.70)

.
= −EQ

[
log

Q(F)

P (F | θ)
]

(3.71)

= −
∑
u∈U

DKL [Q(fu)‖P (fu | θ)] (3.72)

= −1

2

∑
u∈U

(
tr
(
Σ−1Ξu

)
+ (μ − ξu)

T Σ−1 (μ − ξu) + log
|Σ|
|Ξu| − I

)
(3.73)

.
= −1

2

∑
u∈U

(
tr
(
Σ−1Ξu

)
+ (μ − ξu)

T Σ−1 (μ − ξu) + log |Σ|
)

(3.74)

∝ − tr

(
Σ−1 1

U

∑
u∈U

(
Ξu + (μ − ξu) (μ − ξu)

T
))

− log |Σ| (3.75)

= − tr
(
Σ−1C

)− log |Σ| (3.76)

where we defined C := 1
U

∑
u∈U
(
Ξu + (μ − ξu) (μ − ξu)

T
)
.

We first state the algorithm to give an overview of the method and derive each step.

There are two challenges associated with this formulation:

1. Recall the definitions in (3.67), that show the functional dependence of Σ on θ.
While continuously differentiable, optimizing it naively may be cumbersome. We
address this issue by recognizing in (3.76) the PPCA M-Step objective (3.46). Given
the similarity of the generative model of PPCA to our utility model, we show how
to make use of the analytic solution (3.48) and (3.49) to solve our M-Step.

2. A major obstacle for doing so is the accumulation of sufficient statistics to perform
the M-Step: The straightforward way to obtain

C =
1

U

∑
u∈U

(
Ξu + (μ − ξu) (μ − ξu)

T
)

from Q(F) costs O(I3U + I2U). Using ideas from [Yu et al., 2009], we show how
to use the structure in the problem to potentially speed this computation up. The
main idea is to express both the dimensionality of the E-Step problem as well as the
required statistics in terms of the number of pairs. While the number of pairs can
be large in the worst case, this formulation introduces a single tuning parameter to
reduce the cost of the algorithm, by running a stochastic version of EM by only
presenting a random subset of the pairs to the algorithm.

87

Chapter 3. Models of Implicit Feedback

Reduction to PPCA. Recall that the pseudo-prior on fu is N (μ,Σ) parameterized
in terms of θ =

{
V , b, σ2

}
as

μ = b Σ = V V T + σ2K (3.77)

Instead of an isotropic noise term ε in (3.43) our utility model incorporates a Gaussian
process term gu with kernel matrix K (3.64)6. Let K = LKLT

K be K ’s Cholesky
factorization. Define

Σ̄ := L−1
K ΣL−T

K (3.78)

= L−1
K V V TL−T

K + σ2L−1
K KL−T

K (3.79)

= V̄ V̄
T
+ σ2I (3.80)

which is in the desired form. Substituting Σ in (3.76) by

Σ = LKΣ̄LT
K (3.81)

we get the following objective

− tr
(
Σ̄

−1
L−1

K CL−T
K

)
− log

∣∣LKΣ̄LT
K

∣∣ .
= − tr

(
Σ̄

−1
C̄
)
− log

∣∣Σ̄∣∣ (3.82)

Hence, we can compute V̄ and σ2 using (3.48) and (3.49) but with an eigendecomposition
of C̄ := L−1

K CL−T
K . We recover V using

V = LKV̄ (3.83)

Since we are only interested in the D leading eigenvectors and -values, we can use iterative
Krylov methods that require D matrix-vector multiplications with C̄ per round. These
methods are standard routines shipped with all widely available numerical libraries. We
describe a more efficient implementation of multiplication with C̄ in (3.2.2.6).

The M-Step update of b can be derived in the same way as for normal PPCA using
pseudo-observations ξu. For the update, consider (3.74), which is a sum of quadratic
terms in μ = b. We maximize it by finding the minimizer of:∑

u∈U
(μ − ξu)

T Σ−1 (μ − ξu) (3.84)

6K is assumed to be invertible, which we ensure as in [Neal, 1997] by adding a αI

88

3.2. Pairwise Preferences

The gradient is

∇b

∑
u∈U

(μ − ξu)
T Σ−1 (μ − ξu) =

∑
u∈U

Σ−1 (μ − ξu) (3.85)

= Σ−1

(
Uμ −

∑
u∈U

ξu

)
!
= 0 (3.86)

leading to the following update:

b ← 1

U

∑
u∈U

ξu (3.87)

3.2.2.5 E-Step

In the E-Step, we compute a posterior approximation Q(fu) for each u ∈ U using
Expectation Propagation. The resulting posterior has the following form7

Q (fu) = N (fu | ξu,Ξu) (3.88)

∝
∏

(i,j)∈Ou

N
(
f̄ωu(i,j) | μ̃ωu(i,j), σ̃

2
ωu(i,j)

)
N (fu | μ,Σ) (3.89)

∝ ef
T
uBT

uβu− 1
2
fT
uBT

u diag(πu)BufuN (fu | μ,Σ) (3.90)

⇒ ξu = Ξu

(
BT

uβu +Σ−1μ
)

Ξu =
(
Σ−1 +BT

u diag (πu)Bu

)−1 (3.91)

where πu =
[
σ̃−2
ωu(i,j)

]
(i,j)∈Ou

and βu =
[
μ̃ωu(i,j)σ̃

−2
ωu(i,j)

]
(i,j)∈Ou

are the natural parameters

of the approximate Gaussians, that are computed using EP. We rewrite the posterior
parameters, where the user specific computations are expressed in terms of the number of
pairs per user.

Using the Woodbury formula for matrix inversion, we can rewrite Ξu as

Ξu =
(
Σ−1 +BT

u diag (πu)Bu

)−1 (3.92)

= Σ −ΣBT
u

(
diag (πu)

−1 +BuΣBT
u

)−1
BuΣ (3.93)

= Σ −ΣBT
uEuBuΣ (3.94)

i.e. we define E−1
u :=

(
diag (πu)

−1 +BuΣBT
u

)
∈ R

Pu×Pu .

7The same holds for a Variational Gaussian approximation [Opper and Archambeau, 2009] and local
bounding methods.

89

Chapter 3. Models of Implicit Feedback

Next, we can re-write ξu as follows.

ξu = Ξu

(
BT

uβu +Σ−1μ
)

(3.95)

=
(
Σ −ΣBT

uEuBuΣ
) (

BT
uβu +Σ−1μ

)
(3.96)

= ΣBT
uβu −ΣBT

uEuBuΣBT
uβu + μ −ΣBT

uEuBuμ (3.97)

= μ +ΣBT
uEu

(
E−1

u βu −BuΣBT
uβu −Buμ

)
(3.98)

= μ +ΣBT
uEu

(
diag (πu)

−1 βu +BuΣBT
uβu −BuΣBT

uβu −Buμ
)

(3.99)

= μ +ΣBT
uEu

(
diag (πu)

−1 βu −Buμ
)

(3.100)

= μ +ΣBT
ueu (3.101)

where eu := Eu

(
diag (πu)

−1 βu −Buμ
)
∈ R

Pu . Thus,we can rewrite the update of b as

b ← 1

U

∑
u∈U

ξu (3.102)

= μ +Σ
1

U

∑
u∈U

BT
ueu (3.103)

= μ +Σs (3.104)

with s = 1
U

∑
u∈UBT

ueu.

We now revisit the computation of C = 1
U

∑
u∈U
(
Ξu + (μ − ξu) (μ − ξu)

T
)
. For

convenience, we denote the average over users as 〈f(u)〉 := 1
U

∑
u∈U f(u), i.e. C =〈

Ξu + (μ − ξu) (μ − ξu)
T
〉
.

In order to make clearer the distinction between new value after the update and the
previous value, we use b to denote the updated value and μ to denote the previous value
of the bias term. Recall, that after the update we have

b = μ +Σs (3.105)

Plugging (3.94) for Ξu and b for μ in C and noting that b − ξu = b − μ + μ − ξu =

90

3.2. Pairwise Preferences

Σs −ΣBT
ueu = Σ

(
s −BT

ueu
)
, we obtain:

C =
〈
Ξu − (μ − ξu) (μ − ξu)

T
〉

(3.106)

= Σ −
〈
ΣBT

uEuBuΣ − (μ − ξu) (μ − ξu)
T
〉

(3.107)

= Σ −
〈
ΣBT

uEuBuΣ −Σ
(
s −BT

ueu
) (

s −BT
ueu
)T

Σ
〉

(3.108)

= Σ −Σ
〈
BT

uEuBu − (s −BT
ueu
) (

s −BT
ueu
)T〉

Σ (3.109)

= Σ −Σ
〈
BT

uEuBu − ssT + 2sBT
ueu −BT

ueue
T
uBu

〉
Σ (3.110)

= Σ −Σ
(〈
BT

u

(
Eu − eue

T
u

)
Bu

〉− ssT + 2s
〈
BT

ueu
〉)

Σ (3.111)

= Σ −Σ
(〈
BT

u

(
Eu − eue

T
u

)
Bu

〉
+ ssT

)
Σ (3.112)

= Σ −ΣSΣ (3.113)

Running EP as it is costs O(I3) as we are computing marginal variances over fu. As
initially noted, instead of running inference over fu, we can equivalently run EP to
compute Q(f̄u), using a prior P (f̄u) = N (f̄u | Buμ,BuΣBT

u

)
to obtain πu,βu for

Eu, eu. This is convenient, also because this formulation is a canonical GP classification
with a conditionally independent likelihood for which standard EP code can be used.

3.2.2.6 Implementation Details

In order to run a Krylov method to compute parts of the spectrum of C̄ = L−1
K CL−T

K

iteratively, we notice that it is not necessary to form C̄ explicitly. Instead, we provide a
linear operator that computes x �→ C̄c by using the structure of C̄ .

We rewrite C̄ by plugging in the definition of C :

C̄ = L−1
K CL−T

K (3.114)

= L−1
K (Σ −ΣSΣ)L−T

K (3.115)

= L−1
K ΣL−T

K −L−1
K ΣSΣL−T

K (3.116)

= Σ̄ − Σ̄LKSLT
KΣ̄ (3.117)

where we can multiply with Σ̄, given in (3.78), in O(DM) by performing x �→ V̄ (V̄
T
)x+

σ2x, since we maintain V̄ . Furthermore, we need two triangular and one symmetric
matrix-vector multiplications, which costs O(I2). Thus, we save the O(I3) cost of forming
C̄ and get away with an only marginally more expensive cost than multiplying with C̄

directly. To compute the leading D eigenvectors and -values, we need to perform O(D)

multiplications, for a total of O(DI2) for the M-Step.

For the E-Step, we note that the statistics Eu and eu can be independently computed
per user. The accumulation of S and s is thus in the form of a map-reduce operation.

91

Chapter 3. Models of Implicit Feedback

We implemented a parallelized map-reduce version of our code that runs E-step in parallel,
using multi-threading in C++ with Boost. For simplicity and to avoid synchronization,
in our implementation, each thread manages a local copy of the sufficient statistic
matrix which are then added in the end in parallel, requiring only logarithmic number
of operations in the number of threads. We implemented the parallel reduction using
Intel’s Threading Building Blocks. We opted for a shared memory environment for ease
of implementation, as the scale of the experiments did not justify the communication
overhead of a distributed environment.

3.2.3 Experiments

In this section we report experimental results. In particular, we are interested in the
following aspects. In Section 3.2.3.2, we compare against various GP-based models based
on existing work. There, we investigate the impact of the different components of the
model, as well as the accuracy of the inference method. While in Section 3.2.3.2, we are
limited to small datasets due to the complexity of the GP-based methods, we compare
against, in Section 3.2.3.3, we investigate the performance and running time characteristics
of our method on several larger datasets.

We begin by describing the error metric used as well as the datasets.

3.2.3.1 Preliminaries

Error Metric. All methods we compare are probabilistic in nature. Therefore, we
chose negative log predictive probabilities as error metric. The predictive distribution
over an unseen pair y∗ = (i∗, j∗) is defined as

P (y∗ | O) ≈
∫

P (i∗ �u j∗ | fu)Q(fu) dfu (3.118)

=

∫
P (i∗ �u j∗ | f̄ωu(i∗,j∗))Q(f̄ωu(i∗,j∗)) df̄ωu(i∗,j∗) (3.119)

Formally, this corresponds to the computation necessary for an EP update, which in
case of probit likelihood amounts to the evaluation of a normal CDF [Rasmussen and
Williams, 2006].

Datasets. In our experiments we used two types of datasets, summarized in Table 3.10.
The Movielens dataset is an explicit rating dataset, while the Sushi dataset consists of
rankings, from both of which we derive preference pairs.

The perhaps most used preference benchmark dataset is the Sushi (SSH) dataset
[Kamishima, 2003], that records the preferences of 5000 restaurant clients for differ-

92

3.2. Pairwise Preferences

ent types of sushi. The data comes in two versions: For the smaller one (SSH-A), each
user was asked to give a ranking of the same 10 types of sushi. The ranking can be
decomposed into individual comparisons for a total of 45 comparisons per user. For the
larger dataset (SSH-B), the item set consists of 100 types of sushi. Clients were asked to
rank random subsets of 10 types of sushi each.

This dataset provides both, user and item features. There are 18 item features (2 binary, 4
numerical and a 12-state categorical feature, that we represent using a one-hot encoding)
and 9 user features.

We randomly drew training and test sets as follows. For SSH-A, we subsampled U = 200

users, then extracted 3 training and 1 test pair per user. This very small dataset size
allowed us to compare against methods which scale cubically in the total number of
training pairs. For SSH-B, we used all U = 5000 users, and extracted 10 training and 1
test pair per user.

The Movielens (ML) dataset [Miller et al., 2003] consists of explicit movie ratings and is
available in 3 different sizes. Similar to Mnih and Teh [2012], we derive comparisons from
the ratings for each user by pairing all of the users items with highest rating with all of
the users items with lowest rating. For each user we randomly select 4 of these pairs for
testing. Users with insufficient number of pairs are removed.

SSH-A SSH-B ML-100K ML-1M ML-10M

Items 10 100 1.5k 3.5k 9.5k
Users 5k 5k 715 4.6k 45.6k
Available Pairs 225K 225K 187k 3.5M 18.5M
TestPairs 5k 5k 1.3k 9.9k 77k

Table 3.4 – Versions of Sushi (SSH) and Movielens (ML) datasets for preference learning.
We refer to the text for details on preprocessing and selection of test pairs.

3.2.3.2 Comparison to Alternative Utility Models

We compare our method to other probabilistic preference learning models. Due to the
limited scalability of some of them, the comparison is conducted on the relatively small
Sushi dataset. We compare the following utility models:

GPfull Given item features x(i) ∈ R
D(i) and user features x(u) ∈ R

D(u) , the Bonilla et al.
[2010] model the utility matrix F ∈ R

I×U using a latent function f(x(u),x(i)) drawn
from a coupled GP with kernel k(x(u)

u ,x
(u)
v ,x

(i)
i ,x

(i)
j) = k(x

(u)
u ,x

(u)
v)k(x

(i)
i ,x

(i)
j).

The kernel matrix is K(i) ⊗ K(u) ∈ R
IU×IU . Inference is performed using the

Laplace approximation. We use the code provided by the authors8.
8http://ebonilla.github.io/gppe/

93

Chapter 3. Models of Implicit Feedback

GPitem The model of Birlutiu et al. [2010] models columns of F by latent functions
fu(x

(i)) with kernel k(x(i)
i ,x

(i)
j). Kernel parameters are shared across users. We

use EP and Laplace approximations.

VU This model consists only of the bi-linear term F = V UT + b1TU and does not make
use of item or user features. Salimans et al. [2012] described this model and used a
fully factorized posterior over V , U and b. In contrast, here, we estimate V .

GPVU This is our model combining GPitem with VU.

Apart from the utility models, we were interested in the impact of our choice of inference
method. Thus, for the models GPitem and GPVU, we compare the performance of the
EP approximation against other, simpler ones. For GPVU, these are a local bounding
method proposed by Jaakkola [1997], designated JK, that approximates the logistic
sigmoid instead of the probit. For GPitem we compare against the Laplace approximation
(LP) that was used by Bonilla et al. [2010], Birlutiu et al. [2010].

For all GPs, we use the squared-exponential kernel k(xi,xj) = σ2 exp(−‖xi − xj‖2/ψ).
For GPfull, there are two sets of hyperparameters (σ2

i , ψi) and (σ2
u, ψu) for item and user

kernel, respectively. While it is possible to learn these parameters, we perform a grid
search to minimize the validation error, except for our method, that learns σ2. Similarly,
for VU and GPVU, we select the best value for D. We improve conditioning of all kernel
matrices by adding αI with α = 0.1.

Results on SSH-A. The SSH-A dataset is small enough to allow us to run all methods,
including GPfull. The corresponding errors are shown in Table 3.5. The rankings are
sparsely observed, a setting in which bi-linear models appear to excel. Another reason
could be the quality of the features. Especially the user features seem to be not very
useful, a result consistent with previous findings [Houlsby et al., 2012]. A content based
component in the model can nevertheless be advantageous, e.g. for cold start scenarios.

Model GPfull GPitem VU GPVU

Error 0.897 0.875 0.856 0.798

Table 3.5 – SSH-A: Impact of model on performance. GPFull: Bonilla et al. [2010],
GPitem: Birlutiu et al. [2010], VU: PPCA version of Salimans et al. [2012], GPVU: ours.

Next, we were interested in the impact of the inference method on the performance.
Methods like the Laplace approximation and local bounds have been shown to be less
representative of skewed distributions of posterior mass than the EP approximation [Kuss
and Rasmussen, 2005, Nickisch and Rasmussen, 2008]. Table 3.6 shows the results of
the comparison. As parts of the performance gain of our method is due to the choice of
inference approximation, it is noteworthy, that our formulation enables us to reliably run

94

3.2. Pairwise Preferences

parallel EP for probit classification without modifications, such as damping, achieving
convergence over all users typically within around 10 iterations.

Method GPitem-LP GPitem-EP GPVU-JK GPVU-EP

Error 0.910 0.875 0.854 0.798

Table 3.6 – SSH-A: Impact of inference method on performance. LP: Laplace approxima-
tion, JK: Jaakkola approximation, EP: Expectation Propagation.

Results on SSH-B. The second Sushi dataset contains the full set of 5000 users. While
we admit more pairs, the item size increases 10-fold compared to SSH-B. In this setting,
we were interested if item features have a positive effect. We compared VU and GPVU
and obtain errors as shown in Table 3.7. While the accuracy is slightly better for GPVU,
it required careful tuning of the kernel parameters.

Model VU GPVU

Error 0.730 0.690

Table 3.7 – SSH-B: Performance improvement due to item features.

3.2.3.3 Movielens Datasets

Sub-sampling Observations. Inference for an user u scales cubically with the number
of pairs Pu observed for this user. Real-world collaborative filtering datasets can exhibit
heavy-tailed statistics for the number of observations, where for a fraction of users most of
the observations were made. Inference for these few users would dominate the computation
of the E-Step statistics. Therefore, we implement a simple heuristic to impose a limit on
the computational budget available per user: if Pu > Pmax, we sample Pmax observations
for a user uniformly at random. In Figure 3.5 we show different runs of our method for
different values of Pmax and corresponding PE on the ML-100K dataset. There appears
to be a stable regime, where variations in Pmax does not have a strong influence on the
error achieved. This mechanism thus constitutes a simple way to adjust the cost of the
algorithm to the available computational budget.

Running Time. In Table 3.8, we report running times of a single iteration of GPVU-
EP on the different MovieLens datasets for different values of PE . The running times
were achieved on a Intel 2.8GHz i7-2600S processor with 4 physical cores. We see that on
commodity hardware with four cores, we can run up to 3M pairs within an hour. The
inherent parallelism in the problem allows us to scale further. On a 32-cores system, we
were able to further reduce the processing time for 3M pairs to 10 minutes.

95

Chapter 3. Models of Implicit Feedback

0 5 10 15 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Passes over the data

Er
ro

r
7.6K (upper limit 25)
17K (upper limit 100)
33K (upper limit 400)
43K (upper limit 900)

Figure 3.5 – ML-100K: GPVU-EP, D = 30, ψ = 1. We show runs with different values
of upper limits of pairs Pmax. Different values Pmax imply a different number of pairs
processed during an E-Step. We show test errors as a function of passes over the full set
of pairs. Markers are set after 20 EM iterations.

PE ML-100K PE ML-1M PE ML-10M

17k 1s, 1s 147k 9s, 3s 1M 1m, 20s
33k 7s, 1s 349k 1m, 3s 2M 7m, 20s
43k 27s, 1s 534k 15m, 3s 3M 58m, 20s

Table 3.8 – Running times of an iteration of GPVU-EP on MovieLens datasets for different
total numbers of training pairs processed in the E-Step (PE) due to different values of
Pmax. We report running times of a single EM iteration (in s(econds) or m(inutes)).

Non-parametric PCA. In this setting, we compare our method to the non-parametric
PCA (NPCA) method by Yu et al. [2009]. Their EM algorithm served as inspiration
of ours. The motivation for NPCA was the observation that for the Netflix prediction
problem, increasing the dimensionality of latent factors seemed to improve the test RMSE.
Instead of a low-rank decomposition, they are after a bi-linear model with full rank,
i.e. D = I. There is no content-based aspect to their utility model. They derive a
PPCA-like model with this assumption, that can be trained using an EM algorithm close
to ours, but with an M-Step that imposes no rank constraint on the prior covariance
Σ. The criterion is the same as ours in (3.76). Since they optimize for an unstructured
covariance, their M-Step update is just Σ ← Σ −ΣCΣ, which costs two matrix-matrix
multiplications at O(I3). The E-Step is identical to ours. We compare the resulting
method to GPVU on the Movielens datasets and report test errors in Table 3.9. We see

96

3.2. Pairwise Preferences

ML-100K ML-1M ML-10M

NPCA-EP 0.525 0.375 0.576
GPVU-EP 0.483 0.368 0.390

Table 3.9 – Average test log-loss for NPCA-EP and GPVU-EP on MovieLens (100K, 1M,
10M). Scores are averaged over 5 repetitions each (different seeds), as well as over the last
few EM iterations of each run. GPVU outperforms NPCA in all cases, the differences
being statistically significant for 100K and 10M.

that for the sparser datasets ML-100K and ML-10M NPCA appears to be overfitting,
while our low-rank assumption seems more robust. On ML-1M the errors are much closer,
which, we conjecture, is due to a higher density of observations.

3.2.3.4 Visualization of Results

Genre clustering. Figure 3.6 illustrates the parameters V , b learned on ML-10M.
We further decompose V into its SVD and display the five leading singular vectors
and b. Since each row corresponds to a movie, we sort and annotate the rows by the
corresponding genres.We recognize distinct patterns in the latent factors for the different
genre-clusters. This representation of items as real-valued vector could be useful for
subsequent tasks. Note, however, that movie features are part of the item features.

O
fsse

t +
 Five

 fa
c

to
rs

Movies

C
om

edy

A
ction

D
ram

a

D
ocum

entary

H
orror

1
2

3
4

5
6

1

2023

2705

3386

3775

4307
−6 −5 −4 −3 −2 −1 0 1 2 3

Figure 3.6 – ML-10M: Visualization of b and the leading components of V . We recover
an approximate genre clustering of movies.

Quantifying Uncertainty. Preference learning is often considered in an active learning
context, where the goal is to elicit a user’s preferences using a minimal amount of
queries [Chu and Ghahramani, 2005, Brochu et al., 2008, Bonilla et al., 2010, Houlsby
et al., 2012]. Such decision making problems can be solved in a principled way using
probabilistic models by quantifying the remaining uncertainty given the current set
of observations. Specifically, by observing certain behavior repeatedly, revealed by

97

Chapter 3. Models of Implicit Feedback

corresponding choices, the uncertainty about making such choices should be reduced.
Retrieving more comparisons of this sort would therefore not be as informative as others
and should be avoided. We illustrate the capability of our model to reflect this in the
following experiment. We create an artificial preference dataset by creating comparisons
in favor of a certain genre GP . We hold out 100 of these pairs for testing and successively
train our model on the remaining pairs. As more of these pairs are presented to the model,
the uncertainty over the test set reduces as illustrated in Figure 3.7 for GP = Comedy and
GP = Action. The red curve corresponds to the average probability to correctly predict
in favor of GP on the test set. The blue curve corresponds to unrelated comparisons for
which we have not received sufficient information.

0 10 20 30

0.3

0.5

0.7

0.9

I like Comedy

Training preferences

Te
st

 p
re

fe
re

n
c

e
 p

ro
b

a
b

ili
ty

Comedy > Others

Drama > Action

0 10 20 30

0.3

0.5

0.7

0.9

I like Action

Training preferences

Te
st

 p
re

fe
re

n
c

e
 p

ro
b

a
b

ili
ty

Action > Others

Drama > Comedy

Figure 3.7 – ML-10M: Simulation of uncertainty reduction for genre preference. We
create artificial preference pairs in favor of comedy movies (left) or action movies (right).
As the number of comparisons in favor of the preferred genre trained on increases, the
uncertainty about predicting this preference decreases (red curves), while unrelated
comparisons remain uncertain (blue curves).

3.2.4 Discussion

In this section we introduced a new utility model for collaborative preference learning
from pairwise comparisons, combining bilinear latent factor models with non-parametric
regression. Bilinear models have been successfully used for collaborative filtering and
are complemented here by a content-based aspect that can help to overcome sparsity.
We discussed issues of scalability for bilinear models and found that the difficulty of
learning such models do not merely stem from intractable inference in the E-Step. While
still non-conjugate, we have powerful approximate inference techniques that are effective

98

3.2. Pairwise Preferences

in this setting. Instead, learning this model is complicated due to the latent couplings
induced by the observations, leading to an expensive M-Step. We address this structural
problem by a reformulation from which we recover a standard PPCA M-Step. Although
our model is not fully Bayesian, we feature a full posterior covariance model over items,
useful for decision making such as in active learning.

While our algorithm scales better than other methods based on GPs, there are limitations
due to the dense I × I matrices, we need to maintain, effectively limiting us in practice to
around 105 items. Also, in order to reduce the complexity of the M-Step, the E-Step now
scales cubically in the number of pairs per user. Assuming no repetitions, there can be
O(I2) pairs in the worst case. We introduced a simple heuristic to reduce this number,
for which, however, no theoretical guarantees exist. This heuristic could be replaced or
complemented by other approximation techniques, such as sparse GP approximations.
Another useful alternative could be online EM algorithms that update the parameters
more frequently before making a full pass over the users.

99

Chapter 3. Models of Implicit Feedback

3.3 Collaborative Recurrent Neural Networks

3.3.1 Overview and Related Work

As ever larger parts of the population routinely consume online an increasing amount of
digital goods and services, and with the proliferation of affordable storage and computing
resources, to gain valuable insight, content-, product- and service-providing organizations
face the challenge and the opportunity of tracking at a large scale the activity of their
users. Modeling the underlying mechanisms that govern a users’ choice for a particular
item at a particular time is useful for, e.g., boosting user engagement or sales by assisting
users in navigating overwhelmingly large product catalogs through recommendations, or
by using profits from accurately targeted advertisement to keep services free of charge.
Developing appropriate methodologies that use the available data effectively is therefore
of great practical interest.

In recent years, the recommendation problem has often been cast into an explicit-rating-
prediction problem, possibly facilitated by the availability of appropriate datasets [e.g.,
Bennett and Lanning, 2007, Miller et al., 2003]. Incorporating a temporal aspect into
the explicit-rating recommendation scenario is an active area of research [e.g., Rendle,
2010, Koren, 2010, Koenigstein et al., 2011, Chi and Kolda, 2012]. However, concerns are
increasingly being raised about the suitability of explicit rating prediction as an effective
paradigm for user modeling. Featuring prominently among the criticism are concerns
about the availability and reliability of explicit ratings, as well as the static nature of this
paradigm [Yi et al., 2014, Du et al., 2015], in which the tastes and interests of users are
assumed to be captured by a one-time rating, thus neglecting the immediate context of
the rating at the instant it is issued by the user.

In contrast, the implicit-feedback scenario is advantageous due to abundantly available
data that can be gathered unintrusively in the background [Rendle et al., 2009]. Although
methods for processing implicit feedback often only consider a static aggregate [e.g., Ko
and Khan, 2014], the raw data typically consist of user activity logs, i.e., sequences of
user interactions with a service, and is thus a far more suitable basis for dynamic user
models. Data of this form is generated in many domains where user interactions can
range from navigating a website by following links, to consuming multi-media content on
a streaming site or to announcing the current physical locations on social media, thus
making appropriate methods widely applicable. Moreover, a user’s behavior is intimately
linked to the context in which it is observed: factors such as mood, current activity,
social setting, location, time-of-day etc. can temporarily cause a shift in a user’s item
preferences. While the relevant contextual factors themselves are hard to observe or even
to define, their effect might be visible in the form of particular temporal patterns in the
activity logs, the exploitation of which would then lead to more fine-grained and accurate
user models. The purpose of this work is therefore to develop and evaluate methods for
analyzing activity sequences generated by a heterogeneous set of users.

100

3.3. Collaborative Recurrent Neural Networks

The desired traits of a model for this kind of data are (1) flexibility, (2) the ability to model
complex, potentially long-range dependencies in the sequences, and (3) collaboration
between users.

Flexibility. Although we often have at our disposal datasets richer than the sequences
described above, these sequences are a common denominator for many applications. Thus,
we devise practical methods suitable for processing sequences, but with the flexibility for
handling different tasks with minor modifications, ideally in an end-to-end fashion, and
for tapping into existing sources of metadata to augment the sequences.

Long-range Dependencies. The model needs to be powerful enough to represent
complex dependencies within long sequences that might be of different length, in contrast
to methods that, in order to achieve scalability, have to make compromises regarding the
number of past events taken into account [Rendle et al., 2010, Wang et al., 2015].

Collaboration. Conceivably, there are two extreme cases: each individual user’s behavior
is modeled in isolation, or all users are described by a single prototypical behavioral
profile. There are several drawbacks to both extremes: the first approach clearly relies
on the sufficient availability of observations about each user, whereas realistically, the
distribution of ratings over users is often heavily skewed in favor of a few very active
users. Furthermore, users typically only access a subset of the items, thus making it
difficult to recommend anything outside of this subset. The second approach, i.e. ignoring
to the concept of individual users, implies that a single model is trained on all sequences
pooled together. Although pooling, to an extent, mitigates the sparsity problem, it
lacks personalization and thus neglects potentially important differences in user behavior.
Instead of these extremes, our model needs to be personalized yet collaborative to make
efficient use of the available data by identifying parameters that can be learned across
users.

In this work, we propose a model that fulfills these requirements based on recurrent neural
networks [RNN, Rumelhart et al., 1988, Werbos, 1990], that combines ideas from language
modeling with collaborative-filtering to take into account the multi-user structure of the
problem. We study different architectural variants of our model and find that including
the collaborative aspect can lead to an efficient, practical method. To test the versatility of
our approach, we present experimental results on two very different real-world tasks, music
recommendation and mobility prediction, where we find that the new model significantly
outperforms various baseline methods.

Related Work. As previously mentioned, there has been much work dedicated to the
rating-prediction problem. Some of these methods also take into account the effect of
time [Rendle, 2010, Koren, 2010, Koenigstein et al., 2011, Chi and Kolda, 2012]. The

101

Chapter 3. Models of Implicit Feedback

difference is that recurrent temporal patterns are not apparent in the underlying datasets,
because ratings are one-time events. Du et al. [2015] propose a model for recurrent
user activities, but use a fundamentally different approach: they use continuous-time
stochastic processes to explicitly model time and tie the recommendation to a specific
point in time and focus more on modeling when the next event might occur by using the
self-excitation property of the Hawkes process. A problem closely related to our setup is
the next-basket prediction for e-commerce applications [Rendle et al., 2010, Wang et al.,
2015], which models sequences of sets of items that represent the contents of shopping
carts bought by users. Wang et al. [2015] learn a hierarchical latent-factor representation
reminiscent of a multi-layer perceptron arguing that the non-linearity in their model is a
crucial component. Rendle et al. [2010] use a Markov chain per user and assume low-rank
structure for the transition tensor and optimize a BPR-inspired objective [Rendle et al.,
2009]. Our work differs in mainly two ways: first, we model events at a finer granularity,
i.e., per event, which is more appropriate for the applications we considered. Second,
the use of RNNs enables us to model long-range dependencies, whereas their models use
much stricter factorization assumptions for computational reasons. To the best of our
knowledge, this is the first use of RNNs in this context.

The remainder of this section is organized as follows. We begin in Section 3.3.2 by
introducing notation, and formalizing the task by defining the error metric we will use
for comparing different methods. In Section 3.3.3 we introduce various baseline models
and discuss their properties. In Section 3.3.4, we describe our collaborative RNN model,
the learning algorithm and present variants of the neural network. We present the
experimental evaluation in Section 3.3.5.

3.3.2 Preliminaries

Let U denote a set of users of cardinality |U| = U and let I denote a set of items of
cardinality |I| = I. As usual, the sets of users and items are assumed to be fixed. We
use indices u and i to refer to users and items, respectively. For every user u ∈ U we
observe a sequence y(u) = [y

(u)
1 , . . . , y

(u)
Tu

] with elements y
(u)
t ∈ I, i.e., each event in a user

sequence is an exclusive choice over the set of items. We will refer to a user making such
a choice as consuming the item. Similar to [Rendle et al., 2010], we focus on sequences
without taking into account the absolute time at which the events occurred, because here,
we are interested in exploiting temporal patterns expressed by the ordering of events. We
denote by y

(u)
<t = [y

(u)
1 , . . . , y

(u)
t−1] and y

(u)
≥t = [y

(u)
t , . . . , y

(u)
Tu

] subsequences up to and from
index t, respectively.

The basic query a sequence model should support is the quantification of the likelihood
of a user u to consume items at t = k, k + 1, k + 2, . . . given access to the history y

(u)
<k of

events.

102

3.3. Collaborative Recurrent Neural Networks

Our approach for such prediction tasks is to model the observed sequences probabilistically.
Given the ordering imposed by time, it is reasonable to choose a factorization of the joint
distribution over a sequence that respects that order:

Pθ (y
(u)) =

Tu∏
t=1

Pθ (y
(u)
t | y(u)

<t), (3.120)

where θ denotes a set of model parameters.

As we model a discrete set of outcomes, the conditionals are multinomial distributions over
I, represented by probability vectors p(u)

t of dimension I, whose concrete parameterization
and form is determined by the assumptions that underlie a particular model:

Pθ (y
(u)
t | y(u)

<t) = p
(u)
t (θ,y

(u)
<t). (3.121)

The evaluation metric we report is the average negative log likelihood computed for
a held-out part of the sequence: For every user, we split y(u) into y

(u)
<ru and y

(u)
≥ru

at
1 < ru ≤ Tu and define the error as

E(y
(1)
≥r1

, . . . ,y
(U)
≥rU

| θ) = − 1

U

∑
u∈U

1

Tu − ru + 1
logPθ (y

(u)
≥ru

). (3.122)

3.3.3 Baseline Models

Many approaches to specify a model within the framework of Eq. 3.120 come to mind.
Here, we present several straightforward models, that differ in whether or not they have a
mechanism to represent dynamics and collaboration, and against which we will benchmark
our method.

Static Uniform. A trivial, yet illustrative, baseline is the uniform distribution over I:

P (y
(u)
t | y(u)

<t) = P (y
(u)
t) =

1

I
. (3.123)

n-grams. n-gram models, popular in NLP [Brown et al., 1992], are distributions over
co-occurrences of n consecutive items and thus have to maintain O(In) parameters. Due
to data sparsity, we consider only n = 1 (unigram) and n = 2 (bigram). We define the
following quantities:

ci =
∑
u∈U

Tu∑
t=1

�(y
(u)
t = i), bij =

∑
u∈U

Tu∑
t=2

�(y
(u)
t = i, y

(u)
t−1 = j). (3.124)

103

Chapter 3. Models of Implicit Feedback

Then, we define the unigram model as

P (y
(u)
t = i | y(u)

<t) = P (y
(u)
t = i) =

ci + ε∑
k∈I(ck + ε)

. (3.125)

Similarly, the bigram model is defined as

P (y
(u)
t = i | y(u)

<t) = P (y
(u)
t = i | y(u)t−1 = j) =

bij + ε∑
k∈I(bkj + ε)

, (3.126)

where we added Laplace-smoothing parameterized by ε.

Matrix Factorization. Methods based on matrix factorization have become a widely
used tool for collaborative filtering due to their early success for recommender systems [Ko-
ren et al., 2009]. Although the low-rank representation of a rating matrix is helpful for
sparse static rating data by transferring knowledge between similar users and items, they
are less suitable for sequential data. Approaches, such as tensor factorization [Xiong et al.,
2010, Chi and Kolda, 2012] generalize matrix factorization to more than two dimensions,
one of which can be used to represent time under the assumptions that observations
per user are temporally aligned. Related to this issue is the a-priori unknown optimal
size of time slices for grouping together related observations. These challenges could
greatly increase the complexity of the model or of the processing pipeline. Nevertheless,
a static method based on matrix factorization is an interesting baseline to compare
against in order to study the effect of a collaborative component in isolation. From the
sequential data, we construct a matrix of log-counts9, i.e., we construct a (sparse) matrix
M with entries miu = log

(
c
(u)
i + 1

)
. Then, we compute the low-rank decomposition

of M ≈ V TU with V ∈ R
D×I and U ∈ R

D×U by solving the weighted-λ-regularized
formulation by Zhou et al. [2008]:

min
U ,V

∑
(i,u):miu>0

(
miu − vT

i uu

)2
+ λ

(∑
u∈U

du‖uu‖2 +
∑
i∈I

di‖vi‖2
)
, (3.127)

where with a slight abuse of notation, we denote by du =
∑

i∈I �(miu > 0) and di =∑
u∈U �(miu > 0). Next-step distributions can then be defined as

P (y
(u)
t | y(u)

<t) = P (y
(u)
t) = σm(zu, y

(u)
t), zu = V Tuu, (3.128)

σm(z , j) =
exp(zj)∑

k∈[|z |] exp(zk)
. (3.129)

This model is collaborative and makes the whole set I accessible for each user, but it
neglects the sequential nature of the data.

Hidden Markov Model (HMM). Another natural baseline to compare against is the
9We use log counts to combat over-dispersion due to the heavy-tailed nature of the data. Note that

as a side effect the output of the softmax (Eq. 3.128) can then be interpreted as a ratio of pseudo-counts.

104

3.3. Collaborative Recurrent Neural Networks

HMM. We consider a standard formulation and refer to Rabiner and Juang [1986].

3.3.4 The Collaborative Recurrent Neural Network Model

We motivate our Collaborative RNN (C-RNN) model as follows. We begin by postulating
a latent feature embedding that characterizes the items and that can be considered
static for the time-scale of interest, in the same spirit as latent factor models [Koren
et al., 2009] and word embeddings [Mikolov et al., 2013]. Next, we view user behavior
as governed by a dynamical state intrinsic to each user. This internal state is hidden
and needs to be inferred from recent activity and could be due to a mechanism too
complicated to explicitly describe. Recurrent neural networks are sequence models that
operate in precisely this way: They maintain a hidden state that is updated when the
next element in the input sequence is presented to the network, by a complex, non-linear
parametric function of the previous events, whose parameters are learned from the data
itself. Moreover, the parameters in the input layer can be interpreted as item embeddings,
which therefore can be learned, too, from variable length sequences.

In recent years, practical advances in the area of recurrent neural networks and their
variants [Hochreiter and Schmidhuber, 1997, Cho et al., 2014b] have led to enormously
successful methods to tackle various interesting, yet extremely challenging, tasks that
are inherently sequential in nature, most prominently in, but not restricted to, the area
of Natural Language Processing (NLP). The success of RNN-based models in these
applications demonstrates their versatility, flexibility and ability to capture complex
patterns that require the model to retain information gathered at various previous time
steps, possibly in the distant past. Therefore, in spite of shortcomings such as the lack of
theoretical guarantees on the performance, we deemed RNNs to be a solid foundation on
top of which we developed a model that fulfills the previously posed requirements.

We found RNN language models as described in Section 1.2.2, to be well-suited for
incorporating the dynamics into our collaborative model. In particular, the RNN Language
Model [RNNLM, Mikolov et al., 2010] was the main source of inspiration for this work,
as we found their problem formulation to closely match ours. For language models,
I represents the vocabulary, and user sequences correspond to sentences. The crucial
difference to our setup is that the goal in language modeling is to learn a single underlying
concept that ties together all sequences: a generative model for the language. Thus,
it makes sense to not seek to model the dynamics per sequence, but to do so for the
whole corpus. The necessary model-complexity for capturing the nuances of a language
is achieved by adding more layers [Graves et al., 2013, Sutskever et al., 2014]. This
perspective is to an extent supported by the type of data itself: For language models,
a corpus consists of a plethora of relatively short sequences from the same language,
whereas in our case, sequences are very long and are expressions of relatively few distinctly
individual preferences. In Section 3.3.4.1, we will give details on how the RNNLM

105

Chapter 3. Models of Implicit Feedback

processes a single sequence. This procedure will serve as the building block to our simple
collaborative extension in Section 3.3.4.2.

3.3.4.1 Processing a Single Sequence

Recall from Section 1.2.2, that RNNs compute a mapping from the input sequence to a
corresponding sequence of real-valued hidden state vectors of dimension D:

RNN([y1, . . . , yT]) = [h1, . . . ,hT] , ht ∈ R
D. (3.130)

The hidden state ht is a flexible representation, meant to summarize the sequence
seen up to time t, that enables us to use the network for different tasks by defining an
appropriate output layer. RNNs can be seen as non-linear dynamic systems that define the
computation of the hidden state recursively. In graphical terms, they are a generalization
of the directed, acyclic graph structure of feed-forward networks by allowing cycles to
represent dependencies on the past state of the network. The RNNLM uses a simple
network architecture that goes back to Elman [1990] and expresses the dependency on
the past through the following recursive definition of the hidden state vectors:

at = Whht−1 +Winδyt ,

ht = σ(at).
(3.131)

The recurrence is initialized by a constant vector h0 = ε1 with small ε ≥ 0. The matrices
Wh ∈ R

D×D and Win ∈ R
D×I are parameters of the RNN and σ(·) is a non-linear function

that is applied element-wise to its input, such as the logistic sigmoid, the hyperbolic
tangent or, more recently, the rectified linear function. The input is presented to the
network as one-hot encoded vectors denoted by δyt , in which case the corresponding
matrix-vector product Winδyt reduces to projecting out the yt-th column of Win. Thus,
the columns of Win can be thought of as latent features describing he corresponding item.
Note, that the network can be trivially extended to accept arbitrary side information
that characterizes the input at time t. In practice, more sophisticated architectures
implementing (3.130) are in use [Hochreiter and Schmidhuber, 1997, Cho et al., 2014b].

To obtain a distribution over the next item, we can linearly map the hidden state to R
I

using a matrix Wout ∈ R
I×D and pass the output vector yt ∈ R

I through the softmax
function from (3.129):

zt = Woutht,

P (yt+1 | y<t+1) = σm (zt, yt+1) .
(3.132)

This likelihood together with the recursion in (3.131) enables us to sample sequences, by
drawing from the multinomial (3.132) and presenting the sample as input to the network
for the next timestep.

106

3.3. Collaborative Recurrent Neural Networks

The network is parameterized by θ = {Win,Wh,Wout} and can be trained by using
maximum likelihood. The resulting continuous optimization problem is solved using
stochastic gradient descent, where gradients are approximated using backpropagation
through time [BPTT, Williams and Zipser, 1995], which we briefly describe below and
amounts to unrolling the recurrence described by the forward equations (3.131) for a
fixed number of steps.

Parameter Learning. We describe how the RNNLM processes a single sequence as
we will use this procedure as a building block for learning the model in Section 3.3.4.2.
As loss function Mikolov et al. [2010] use the log-probability of sequences (see Eq. 3.120),
which is differentiable with respect to all parameter matrices. The network is trained
using backpropagation through time [BPTT, Williams and Zipser, 1995]. BPTT computes
the gradient by unrolling the RNN in time and by treating it as a multi-layer feed-forward
neural network with parameters tied across every layer and error signals at every layer.
For computational reasons, the sequence unrolling is truncated to a fixed size B. This is
a popular approximation for processing longer sequences computationally more efficiently.
This method is summarized in Algorithm 7. To train on a full corpus, Algorithm 7 is used
on individual sentences in a stochastic fashion. The learning rule in the original RNNLM
is a gradient descent step with a scalar step size10. The training process is regularized
by using early stopping and small amounts of Tikhonov regularization on the network
weights.

Algorithm 7 processSequence()

Require: Sequence y , θ = {Win,Wh,Wout}, batch size B
Ensure: Updated parameters θ
1: B ← Split y into sub-sequences of length B
2: h0 ← ε1
3: for b ∈ B do
4: h1, . . . ,hB ← RNN (b,h0;θ) (Forward pass using Eq. 3.131)
5: ∇θ logE ← BPTT (b,h1, . . . ,hB;θ) (Backward pass, see below)
6: θ ← LearningRule (∇θ ,θ)
7: h0 = hB

8: end for

Backpropagation Through Time. We derive the BPTT equations for the RNNLM
for the gradient computations in Algorithm 7. This is done in the same manner as
back-propagation is derived for feed-forward networks. The unrolled RNN differs from
a feed-forward network by having input and error terms at each layer. Furthermore,
gradients are approximate due to truncation. Note, that modern neural network libraries

10There are more nuances to their algorithm, but for the purpose of our development this basic
exposition is sufficient.

107

Chapter 3. Models of Implicit Feedback

do not require writing gradient code, which is especially useful for more complex RNN
architectures. Nevertheless, we found it instructive to understand the basic computations
involved in training neural networks.

Based on the forward equations (3.131) and (3.132), we define the sequence likelihood
using the following quantities:

pt := [σm(zt, i)]i∈I (3.133)

�t := log σm(zt, yt+1) = log pt,yt+1
(3.134)

L :=
∑B−1

t=0 �t (3.135)

To compute ∇θL, it is convenient to first compute the gradients ∇atL, ∀t. The forward
equations reveal the dependencies on a particular at as being two-fold: both �t and at+1

contribute to ∇atL. Therefore, the gradient ∇atL is given by (assuming row vectors)

∇atL = ∇at�t +
∑
k

∂L

∂at+1,k

∂at+1,k

∂at
= ∇at�t + (∇at+1L)(Δatat+1) (3.136)

The recursion is initialized by ∇aB−1L = ∇aB−1�B−1 since only the output �B−1 depends
on the last activation. The gradient and Jacobian used above are given by:

∇at�t =
∑
i

∂�t
∂yt,i

∂yt,i
∂at

= (δyt+1 − pt)
TWout diag

(
σ′(at)

)
(3.137)

Δatat+1 = Wh diag
(
σ′(at)

)
(3.138)

Now, the parameter gradients can be easily obtained using ∇W ·L =
∑

t,k
∂L

∂at,k

∂at,k
∂W · and

∂at,k
∂Wh

=
∂

∂Wh
δTk (Whht−1 +Winδyt) = δkh

T
t−1 (3.139)

∂at,k
∂Win

=
∂

∂Win
δTk (Whht−1 +Winδyt) = δkδ

T
yt (3.140)

Plugging this in, we get

∇Wh
L =

∑
t

(∇atL)h
T
t−1 (3.141)

∇WinL =
∑
t

(∇atL) δ
T
yt (3.142)

The output weights are not affected by the recurrent structure. Thus, we only need to
accumulate terms

∇Wout�t = (∇zt�t)h
T
t (3.143)

108

3.3. Collaborative Recurrent Neural Networks

3.3.4.2 The Collaborative Recurrent Neural Network (C-RNN)

We extend the RNN to the collaborative setting in a straightforward way. We explained
previously that our model needs to represent hidden contextual state that can vary per
user as a function of a user u’s activity. We therefore define our collaborative RNN as a
function that maps a user’s sequence to a personalized sequence of hidden states:

C-RNN
(
[y

(u)
1 , . . . , y

(u)
Tu

]
)

=
[
h
(u)
1 , . . . ,h

(u)
Tu

]
, h

(u)
t ∈ R

D, ∀u ∈ U. (3.144)

Using a RNNLM-type network per user would result in several problems: the limitations
to individual item libraries and excessive, potentially redundant, parameterization, with
potentially insufficient data to learn the parameters effectively. Concretely, we would
have to handle O(2DIU +UD2) parameters, where the problem stems from the IU term
as in general D
 I.

We propose the following compromise: the input and output parameter matrices Win

and Wout can be thought of as real-valued embeddings, akin to latent factors in matrix
factorization models [Koren et al., 2009] or word embeddings [Mikolov et al., 2013]. With
this interpretation, we assume that such latent factors embody certain global traits
of items, valid across users and static on the time-scale of interest, and we attribute
the dynamics to users by maintaining per-user the part of the model responsible for
capturing the dynamics, i.e., the relatively small matrix Wh. The parameterization is thus
reduced to a more tolerable11 O(2DI + UD2), i.e., θ =

{
Win,Wout,W

(1)
h , . . . ,W

(U)
h

}
.

Correspondingly, the forward equations become personalized:

a
(u)
t = W

(u)
h h

(u)
t−1 +Winδ

(u)
yt (3.145)

h
(u)
t = σ(a

(u)
t) (3.146)

z
(u)
t = Wouth

(u)
t (3.147)

P (y
(u)
t | y(u)

<t) = σm(z
(u)
t , y

(u)
t). (3.148)

Regularization and Learning Algorithm. We train the network by using Algorithm
8 that uses the BPTT procedure from Algorithm 7 as a building block. For the learning
rule, we found it more effective to use RMSprop [Tieleman and Hinton, 2012]. For the
regularization, we use early stopping. Additionally, we implemented dropout [Srivastava
et al., 2014], following the insights about its application to RNNs presented by Zaremba
et al. [2014], but found it to not to be effective. Similarly to Jozefowicz et al. [2015], we
initialize the weights by randomly drawing each component i.i.d. from N(0, D−1).

11For comparison, a latent factor model would typically have O(D(I + U)) parameters.

109

Chapter 3. Models of Implicit Feedback

Algorithm 8 Collaborative RNN Training

Require: Sequences y(1), . . . ,y(U), Batch size B

1: Init θ =
{
Win,Wout,W

(1)
h , . . . ,W

(U)
h

}
2: repeat
3: R = randperm(U) (process users in random order)
4: for u ∈ R do
5: θu ←

{
Win,Wout,W

(u)
h

}
6: Win,Wout,W

(u)
h ← processSequence

(
y(u),θu, B

)
(Algorithm 7)

7: end for
8: until Early Stopping Criterion holds

3.3.4.3 Variants

Recently, since the RNNLM was first introduced, great strides have been made in the
area of RNNs. Special attention has been paid to the fact that RNNs are known to be
difficult to train due to vanishing and exploding gradients [Hochreiter et al., 2001].

Among the approaches to mitigating this issue [Pascanu et al., 2012, Mikolov et al., 2014],
architectural modifications to the standard RNN stand out as being easily adoptable
and effective in practice. The Long Short-Term Memory (LSTM) cell introduced by
Hochreiter and Schmidhuber [1997] is the first and perhaps best-known variant, specifically
designed to counteract the vanishing-gradient problem by including a gating mechanism
to enable the network to retain information for much longer sequences. This method
is especially appealing as it requires virtually no modifications to standard stochastic
gradient descent-based learning techniques, but this comes at the cost of an increase in
the number of parameters by a constant factor.

In this work, we choose to use the Gated Recurrent Unit [GRU, Cho et al., 2014a], a
simplified architecture that is similar in spirit to the LSTM cell and that works well
in practice [Jozefowicz et al., 2015]. The forward equations for our Collaborative GRU
model are

w
(u)
t = σl

(
W

(u)
zh h

(u)
t−1 +Wziδyt

)
, (3.149)

r
(u)
t = σl

(
W

(u)
rh h

(u)
t−1 +Wriδyt

)
, (3.150)

h̃
(u)
t = σ(Wh(r

(u)
t ◦ h(u)

t−1) +Winδyt), (3.151)

h
(u)
t = (1−w

(u)
t) ◦ h(u)

t−1 +w
(u)
t h̃

(u)
t . (3.152)

Here, σl(·) denotes the logistic sigmoid, that maps inputs to [0, 1], such that the vectors
w and r can be thought of as implementing a soft gating mechanism. The resulting
additive update of the hidden state is more robust than the non-linear update of the

110

3.3. Collaborative Recurrent Neural Networks

basic RNN. The number of parameters is increased by a small factor to O(4DI + 3UD2).

3.3.4.4 Implementation Details

We implement the learning algorithm by using Theano [Theano Development Team,
2016] and execute the code on NVIDIA Titan X (Maxwell) GPUs on Intel Xeon E5-2680
servers with 256 GB of RAM. As we back-propagate on the fixed-sized sub-segments
of the original sequence12, we can unroll the Theano scan operation13, trading a minor
increase in compilation time for significant speedups in execution.

3.3.5 Empirical Evaluation

In this part, we present our experimental findings. We begin by introducing the datasets
that we use in Section 3.3.5.1 and then address the following points. In Section 3.3.5.2,
we investigate the influence of the RNN architecture, as well as that of the collaborative
aspect of the model in contrast to the user-agnostic version. In Section 3.3.5.3, we show
the comparison against various baselines. Lastly, in Section 3.3.5.4 we shed some light
on the difficulty of the problem by characterizing the dependence of the performance on
properties of the user profile.

3.3.5.1 Datasets

We used two publicly available datasets for our evaluation: Brightkite14 (BK) and
LastFM15 (LFM).

Brightkite, discontinued in 2011, used to be a location-based social network where users
could actively announce (“check in”) their location and find their nearby friends. For our
purposes, we focus on the check-in logs consisting of triplets of the form (user id, location
id, check-in time).

The LastFM16 dataset consists of sequences of songs played by a user’s music player
collected by using a tracking plug-in. In our evaluation, we consider the sequences of
artists.

Errors are measured using the average negative log-likelihood (3.122).

We apply the following preprocessing steps: As Rendle et al. [2010], we start with a 10-core

12In our experiments we use a window of length 128.
13This had a great impact on performance, as we document in http://yjk21.github.io/unrolling.html
14https://snap.stanford.edu/data/loc-brightkite.html
15http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
16http://last.fm

111

Chapter 3. Models of Implicit Feedback

subset17 and remove pathologically homogeneous user profiles (e.g., overall reporting only
a single place but hundreds or thousands of times). We prepare test sets that consist of
the last 2.5% of the data clipping their length to the interval [3, 500]. Additionally, in the
case of LFM, we restrict the maximum sequence length to 5120, because we did not find
qualitative differences beyond that length. The set of items I is taken to be the union
of the individual training sequences. The resulting datasets, along with the error of a
uniform baseline predictor (3.123), are summarized in Table 3.10. We see that the total
number of events of the two datasets differ by an order of magnitude, suggesting that
results on the LFM dataset might be more meaningful.

Users Items Events E Unif.

BK 1679 23 243 599 618 10.05
LFM 954 48 188 4 320 170 10.78

Table 3.10 – Summary of the datasets. EUnif. is the negative log probability assigned to a
sequences by the uniform baseline given in Eq. 3.123.

3.3.5.2 Comparison of RNN Variants

The aforementioned difficulties in training RNNs has sparked numerous architectural
variants of the basic tanh RNN. Understanding their effect on performance is an interesting
aspect in its own right with major relevance for practitioners. Therefore, e.g., Jozefowicz
et al. [2015] conducted large empirical studies comparing many thousands of variants,
focusing on modifications of the original LSTM cell [Hochreiter and Schmidhuber, 1997]
in comparison to the GRU [Cho et al., 2014b]. Although they did not identify a single
best model, they corroborated the observation that such advanced RNN architectures
as the GRU and LSTM outperform the tanh RNN. We choose GRUs over LSTMs for
their simpler formulation and parameterization and state-of-the-art performance for many
tasks, and we compared it to the collaborative tanh RNN (C-tanh). We found that the
advantage of the gated version over the basic RNN carries over to our setup.

Furthermore, we compared our collaborative model to the user-agnostic GRU model
that we will refer to as pooled RNN (P-RNN). It is conceivable that a RNN with a
large-enough number of hidden units can eventually capture even distinct, user-specific
patterns. However, we found that for our problem the collaborative RNN, tailored to
the structure of the problem, is far more efficient in terms of computation. This is due
to the fact that, whilst the collaborative RNN maintains recurrent connection matrices
per-user thus more parameters in absolute numbers, each of these matrices can be of
smaller dimension. As the learning algorithms are otherwise virtually equivalent, the
pooled model incurs a major performance hit. At this point, we do not rule out that the
P-RNN can match the collaborative version. But with the large running times required,

17We keep only users with at least 10 observations and items that were consumed at least 10 times.

112

3.3. Collaborative Recurrent Neural Networks

due to the large number of hidden units required to come close to the performance of
the collaborative model, thorough model selection for even higher-dimensional models
becomes extremely cumbersome. We summarize these findings in Figure 3.8.

In a side note, another advantage of the collaborative model, apart from the computational
aspect, is that it meets the potential requirement of discovering user specific embeddings.

P-GRU C-tanh C-GRU

BK 6.45 6.08 6.02
LFM 4.58 4.90 4.51

Figure 3.8 – Left: Errors of different RNN models on the two datasets. Right: Running
time comparison of a single Epoch of different RNN models on the larger LFM dataset,
demonstrating the difference in the number of hidden units for each model to perform
well. We found that the P-RNN achieves a similar performance requiring an excessive
amount of hidden units (D = 768). The negative impact on running time prevented us
from exploring even higher-dimensional models.

3.3.5.3 Baseline Comparison

In this part, we present the comparison of our model against the various baselines that
we introduced earlier. The static methods, i.e., those that do not take into account time
(unigram, matrix factorization), do not perform very well, whereas the simple bigram
model does (Table 3.11).

For HMM we used the GHMM18 library and for MF we used the parallel coordinate
descent algorithm by Yu et al. [2012] implemented in the libpmf19 library.

1-gram MF HMM 2-gram C-GRU

BK 9.53 9.40 8.81 6.73 6.02
LFM 8.60 8.86 7.66 5.87 4.51

Table 3.11 – Comparison with baseline methods on different datasets.

3.3.5.4 Characterization of Error

To conclude this section, we examine the error incurred on individual users and relate it to
a notion of difficulty. An intuitive way to quantify the difficulty of predicting the behavior
of a user is to use the Shannon entropy of the empirical distribution of items. A lower
value corresponds to a lower difficulty with a lower bound of 0, which corresponds to a user
having consumed the same item at all times. We divided users into three equally sized

18http://ghmm.org
19http://www.cs.utexas.edu/~rofuyu/libpmf/

113

Chapter 3. Models of Implicit Feedback

bins, according to the entropies of their sequences; in Figure 3.9 we show the distribution
of errors in each bin. Unsurprisingly, there is a distinct correlation between our proxy for
difficulty and the median error. We see that the C-RNN not only outperforms the closest
competing baseline on average, but also in terms of variability of the errors over all bins.

Figure 3.9 – LFM: Distribution of errors per user for three different difficulty regimes.
These regimes were found by dividing the users into three equally-sized groups according
to the entropy of their sequences. Solid lines indicate the mean errors across all users.
The dashed line is the error associated with the uniform baseline. Errors are correlated
with difficulty. The RNN-based model appears to not only incur a lower error on average,
but also to perform more consistently.

3.3.6 Discussion

We presented a novel collaborative RNN-based model to analyze sequences of user activity
useful for modern recommender systems based on specific assumptions and modeling
goals. We empirically showed that these models consistently outperform straightforward
baseline methods on two real-world datasets. These results are to be taken with multiple
grains of salt. It is not entirely clear, what the model is learning, especially for the artist
prediction task, where it may be very well the case, that at least parts of the sequences
were generated by player shuffling songs randomly. We tried to shed light on this issue
by measuring sequence entropy. Therefore, additional experiments with datasets where
user intent is more clearly displayed might be necessary. Furthermore, we also tried to
visualize the high-dimensional item features but did not found any particular structure,
e.g. indicating genre.

Scalability to large datasets can be improved by using techniques such as those of Chen

114

3.3. Collaborative Recurrent Neural Networks

et al. [2015] for the sub-linear evaluation of the output layer in case of large item sets, a
major factor in the overall running time, and those of Recht et al. [2011] to parallelize
training, which can work due to sparse updates of the parameters.

We can apply tensor factorization of the O(UD2) transition tensor to better handle
sparsity, similar to the factorization of the transition tensor in the personalized Markov
model, described by Rendle et al. [2010].

A drawback of our approach, is the lack of representing the time passed between events
One way to make temporal information available, is to augment the input by the time
passed since the last event. Another way is to introduce a special symbol (similar to an
end-of-sequence or unknown-word symbol in language models) to indicate a gap.

115

4 Concluding Remarks

In this dissertation we discussed applications of approximate inference and learning for
probabilistic models relevant for two particular application.

In Chapter 2, we discussed inference problems mainly motivated by the problem of
reconstructing images from an underdetermined system of linear measurements that are
corrupted by noise, that are formally also closely related to supervised learning problems.
We studied in Section 2.1 rectified-linear Poisson regression, a particular likelihood model
for counts, useful for modeling noise in photon-limited acquisition scenarios. We described
an efficient dynamic program for computing Gaussian expectations of this likelihood,
enabling us to run Expectation Propagation faster and more robustly than with a
generic quadrature implementation. We experimentally found that properly modeling
the distinctly non-Gaussian noise characteristics in low intensity regimes is important for
reconstruction performance. Next, in Section 2.2, we modeled the hierarchical correlations
between the coefficients of an orthonormal multi-scale Wavelet transform using a tree-
structured super-Gaussian mixture model. To use this model as an image prior for image
denoising and inpainting tasks, we derived an approximate inference algorithm, able to
infer full posterior covariances for realistic image sizes. We confirmed that using additional
structure helps to regularize difficult reconstruction problems if a proper probabilistic
inference method is used to deal with the increased latent space.

In Chapter 3, we discussed the problem of inferring user preferences for items from
three different types of implicit feedback: aggregate counts of users interacting with
items, binary outcomes of pairwise preference statements and user activity logs at the
granularity of single events. In Section 3.1 we modeled count data using a latent Gaussian
bi-linear model with Poisson likelihood. For this model, we developed an approximate
inference algorithm based on the variational Gaussian lower-bounding technique and
derive a closed-form constrained variational objective, that can be optimized by a simple
alternating scheme. Our experiments confirmed the advantages of probabilistic methods
previously described in related studies and show that these advantages are available at a

117

Chapter 4. Concluding Remarks

cost only marginally larger than for point estimation. In Section 3.2, we addressed the
problem of inferring user preferences from the binary outcomes of pairwise preference
statements. We proposed a utility model that combines a low-rank bi-linear model with
non-parametric item-feature regression. We illustrated the difficulty of learning such a
model due to latent couplings and presented an approximate variational Expectation
Maximization algorithm that mitigates these computational challenges. We extended the
notion to the pairwise case, that latent bilinear models are an excellent representation
compared to purely content-based models. In Section 3.3, we aimed at modeling sequences
of user activity at the granularity of single interaction events in contrast to the aggregate
counts in Section 3.1. Routinely gathered in the background at a large scale in many
applications, such sequences can reveal temporal and contextual aspects of user behavior
through recurrent patterns, which we tried to uncover by using a collaborative sequence
model based on recurrent neural networks. As a concession to scale and complexity of
the model, we used a generative likelihood model for sequences, but without representing
uncertainty in the weights or hidden states and trained the network using simple maximum
likelihood estimation. We found that this model performed favorably in two different
sequence-prediction tasks compared to various simple baselines.

Looking back, we began by introducing probabilistic models as having long been recognized
as a versatile and expressive framework for data analysis. Making inferences in probabilistic
models in a principled way, however, often entails high-dimensional integration for which
no analytic expressions exist. This leaves us in a trade-off situation, where we can either
compromise by neglecting uncertainty in latent quantities or make only approximate
inferences. For most of this dissertation we took the second approach. We advocated
deterministic approximations, in particular Gaussian approximations, but soon found
ourselves confronted with several more trade-offs on different levels about the type of
approximation, factorization assumptions or more subtle points, such as the number
of iterations for numerical primitives. From an optimistic perspective, this leaves us
with the freedom and the fine-grained control necessary to adapt these methods to our
computational budget, often enabling us to begin with methods, that are not much more
costly than point estimation.

Arguably the biggest benefit of a probabilistic perspective is, however, the mindset that it
may help cultivating. It forces us to make explicit our assumptions and encourages us to
reason in terms of uncertainties. Moreover, by conditioning on the data we have observed,
we acknowledge that our inferences are very much tied to the particular sample with all
its imperfections. This seems good practice, especially when trying to predict phenomena
related to something as complex, and even erratic at times, as human behavior.

118

Bibliography

H. Attias. A Variational Bayesian Framework for Graphical Models. In NIPS 12, pages
209–215, 2000.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

M. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby
Unit, 2003.

J. Bennett and S. Lanning. The Netflix Prize. In Proceedings of KDD Cup and Workshop,
2007.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image Inpainting. In ACM
SIGGRAPH 27, pages 417–424, 2000.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

A. Birlutiu, P. Groot, and T. Heskes. Multi-task Preference Learning with an Application
to Hearing Aid Personalization. Neurocomputing, 73(79):1177–1185, 2010.

C. M. Bishop. Bayesian PCA. NIPS 13, pages 382–388, 1999.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 1st edition, 2006.

C. M. Bishop, D. Spiegelhalter, and J. Winn. VIBES: A Variational Inference Engine for
Bayesian Networks. In NIPS 15, pages 777–784, 2002.

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

E. Bonilla, S. Guo, and S. Sanner. Gaussian Process Preference Elicitation. In NIPS 23,
pages 262–270, 2010.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

E. Brochu, N. De Freitas, and A. Ghosh. Active Preference Learning with Discrete Choice
Data. In NIPS 20, pages 409–416. 2008.

119

Bibliography

T. Broderick, N. Boyd, A. Wibisono, A. Wilson, and M. Jordan. Streaming Variational
Bayes. In NIPS 26, pages 1727–1735, 2013.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. Class-based
n-gram Models of Natural Language. Computational Linguistics, 18(4), 1992.

L. Buesing, M. Sahani, and J. H. Macke. Spectral Learning of Linear Dynamics from
Generalised-linear Observations with Application to Neural Population Data. In NIPS
26, pages 1682–1690, 2012.

W. Buntine. Variational Extensions to EM and Multinomial PCA. In ECML 13, pages
23–34, 2002.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to Rank using Gradient Descent. In ICML 22, pages 89–96. ACM, 2005.

E. Candès, J. Romberg, and T. Tao. Robust Uncertainty Principles: Exact Signal
Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

M. Carlavan and L. Blanc-Féraud. Sparse Poisson Noisy Image Deblurring. IEEE
Transactions on Image Processing, 21(4):1834–1846, 2012.

E. Challis and D. Barber. Concave Gaussian Variational Approximations for Inference in
Large-Scale Bayesian Linear Models. In AISTATS 14, pages 199–207, 2011.

C. Chen and J. Huang. Compressive Sensing MRI with Wavelet Tree Sparsity. In NIPS
26, pages 1115–1123, 2012.

X. Chen, X. Liu, M. Gales, and P. C. Woodland. Recurrent Neural Network Language
Model Training with Noise Contrastive Estimation for Speech Recognition. In IEEE
ICASSP, pages 5411–5415, 2015.

E. C. Chi and T. G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM
Journal on Matrix Analysis and Applications, 33(4):1272–1299, 2012.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches. In Proceedings of the Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014a.

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation. EMNLP, pages 1724–1734, 2014b.

W. Chu and Z. Ghahramani. Gaussian Processes for Ordinal Regression. Journal of
Machine Learning Research, 6(7):1019–1041, 2005.

120

Bibliography

M. Collins, S. Dasgupta, and R. Schapire. A Generalization of Principal Components
Analysis to the Exponential Family. In NIPS 14, pages 617–624, 2002.

M. Crouse, R. Nowak, and R. Baraniuk. Wavelet-based Statistical Signal Processing
using Hidden Markov Models. IEEE Transactions on Signal Processing, 46:886–902,
1998.

A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of Royal Statistical Society: Series B, 39:1–38, 1977.

P. Diggle, P. Moraga-Serrano, B. Rowlingson, and B. Taylor. Spatial and Spatio-temporal
Log-Gaussian Cox processes: Extending the Geostatistical Paradigm. Statistical Science,
28(4):542–563, 2013.

D. Donoho. Compressed Sensing. IEEE Transactions on Information Theory, 52(4):
1289–1306, 2006.

D. Donoho, A. Maleki, and A. Montanari. Message-passing Algorithms for Compressed
Sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

N. Du, Y. Wang, N. He, J. Sun, and L. Song. Time-Sensitive Recommendation From
Recurrent User Activities. In NIPS 28, pages 3492–3500. 2015.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk. Single
Pixel Imaging via Compressive Sampling. IEEE Signal Processing Magazine, 25(2):
83–91, 2008.

F. X. Dupé, M. J. Fadili, and J. L. Starck. Deconvolution of Confocal Microscopy Images
using Proximal Iteration and Sparse Representations. In 5th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, pages 736–739. IEEE, 2008.

J. L. Elman. Finding Structure in Time. Cognitive science, 14(2):179–211, 1990.

Y. Gal and Z. Ghahramani. A Theoretically Grounded Application of Dropout in
Recurrent Neural Networks. In NIPS 29, pages 1019–1027, 2016.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Texts in
Statistical Sciences. Chapman & Hall, 1st edition, 1995.

M. van Gerven, B. Cseke, F. de Lange, and T. Heskes. Efficient Bayesian Multivariate
fMRI Analysis using a Sparsifying Spatio-Temporal Prior. Neuroimage, 50:150–161,
2010.

S. Gerwinn, J. Macke, M. Seeger, and M. Bethge. Bayesian Inference for Spiking Neuron
Models with a Sparsity Prior. In NIPS 20, pages 529–536, 2008.

S. Gerwinn, J. Macke, and M. Bethge. Bayesian Inference for Generalized Linear Models
for Spiking Neurons. Frontiers in Computational Neuroscience, 4, 2010.

121

Bibliography

Z. Ghahramani. Probabilistic Machine Learning and Artificial Intelligence. Nature, 521
(7553):452–459, 2015.

M. Girolami. A Variational Method for Learning Sparse and Overcomplete Representations.
Neural Computation, 13(11):2517–2532, 2001.

X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier Neural Networks. In AISTATS
15, number 106, 2011.

A. Graves. Practical Variational Inference for Neural Networks. In NIPS 24, pages
2348–2356, 2011.

A. Graves, A. Mohamed, and G. Hinton. Speech Recognition with Deep Recurrent Neural
Networks. In IEEE ICASSP, pages 6645–6649, 2013.

Grouplens. HetRec2011, 2011. URL http://grouplens.org/datasets/hetrec-2011.

L. He and L. Carin. Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing.
IEEE Transactions on Signal Processing, 57(9):3488–3497, 2009.

L. He, H. Chen, and L. Carin. Tree-Structured Compressive Sensing with Variational
Bayesian Analysis. IEEE Sig. Proc. Letters, 17(3):233–236, 2010.

R. Herbrich, T. Minka, and T. Graepel. TrueSkill: A Bayesian Skill Rating System. In
NIPS 19, pages 569–576, 2007.

S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural Computation, 9(8):
1735–1780, 1997.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient Flow in Recurrent
Nets: The Difficulty of Learning Long-term Dependencies, 2001.

M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic Variational Inference. Journal
of Machine Learning Research, 14:1303–1347, 2013.

N. Houlsby, J. Hernandez-Lobato, F. Huszar, and Z. Ghahramani. Collaborative Gaussian
Processes for Preference Learning. In NIPS 25, pages 2105–2113, 2012.

A. Ilin and T. Raiko. Practical Approaches to Principal Component Analysis in the
Presence of Missing Values. Journal of Machine Learning Research, 11(7):1957–2000,
2010.

T. Jaakkola. Variational Methods for Inference and Estimation in Graphical Models. PhD
thesis, MIT, 1997.

T. Jaakkola and M. Jordan. Improving the Mean Field Approximation via the Use of
Mixture Distributions. In M. I. Jordan, editor, Learning in Graphical Models, pages
163–173. 1998.

122

Bibliography

R. G. Jarrett. A Note on the Intervals between Coal-mining Disasters. Biometrika, 66(1):
191–193, 1979.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An Introduction to Variational
Methods in Graphical Models. In M. I. Jordan, editor, Learning in Graphical Models.
1997.

R. Jozefowicz, W. Zaremba, and I. Sutskever. An Empirical Exploration of Recurrent
Network Architectures. In ICML 32, 2015.

Kaggle. Million Song Data Set Challenge, 2012. URL https://www.kaggle.com/c/
msdchallenge/data.

T. Kamishima. Nantonac Collaborative Filtering: Recommendation based on Order
Responses. In SIGKDD 9, pages 583–588, 2003.

M. E. Khan, Y.-J. Ko, and M. Seeger. Scalable Collaborative Bayesian Preference
Learning. In AISTATS 17, 2014.

A. Klami. Polya-gamma Augmentations for Factor Models. In ACML 6, 2014.

Y.-J. Ko and M. E. Khan. Variational Gaussian Inference for Bilinear Models of Count
Data. In ACML 6, 2014.

Y.-J. Ko and M. Seeger. Large-scale Variational Bayesian Inference for Structured
Scale-mixture Models. In ICML 29, 2012.

Y.-J. Ko and M. Seeger. Expectation Propagation for Rectified Linear Poisson Regression.
In ACML 7, 2015.

Y.-J. Ko, L. Maystre, and M. Grossglauser. Collaborative Recurrent Neural Networks for
Dynamic Recommender Systems. In ACML 8, 2016.

N. Koenigstein, G. Dror, and Y. Koren. Yahoo! Music Recommendations: Modeling
Music Ratings with Temporal Dynamics and Item Taxonomy. In ACM RecSys 5, pages
165–172, 2011.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 1st edition, 2009.

Y. Koren. Collaborative Filtering with Temporal Dynamics. Communications of the
ACM, 53(4):89–97, 2010.

Y. Koren, R. Bell, C. Volinsky, et al. Matrix Factorization Techniques for Recommender
Systems. Computer, 42(8):30–37, 2009.

A. Kucukelbir, R. Ranganath, A. Gelman, and D. Blei. Automatic Variational Inference
in Stan. In NIPS 28, pages 568–576, 2015.

123

Bibliography

M. Kuss and C. Rasmussen. Assessing Approximate Inference for Binary Gaussian Process
Classification. Journal of Machine Learning Research, 6:1679–1704, 2005.

M. Kuusela and V. M. Panaretos. Empirical Bayes Unfolding of Elementary Particle
Spectra at the Large Hadron Collider. The Annals of Applied Statistics, 9(3):1671–1705,
2015.

P. Lamere. The LastFM ArtistTags2007 Dataset, 2008. URL http://musicmachinery.
com/2010/11/10/lastfm-artisttags2007.

D. Lee and H. Seung. Learning the Parts of Objects by Non-negative Matrix Factorization.
Nature, 401:788–791, 1999.

A. Levin, Y. Weiss, F. Durand, and W. Freeman. Understanding and Evaluating Blind
Deconvolution Algorithms. In CVPR, pages 1964–1971, 2009.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding Blind Deconvolution
Algorithms. IEEE PAMI, 33(12):2354–2367, 2011.

Y. Lim and Y.-W. Teh. Variational Bayesian Approach to Movie Rating Prediction. In
Proceedings of KDD Cup and Workshop, 2007.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

L. B. Lucy. An Iterative Technique for the Rectification of Observed Distributions. The
Astronomical Journal, 79:745, 1974.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier Nonlinearities Improve Neural
Network Acoustic Models. In ICML 30, 2013.

D. MacKay. Bayesian Interpolation. Neural Computation, 4(3):415–447, 1992.

S. Mallat. A Wavelet Tour of Signal Processing. Academic press, 1999.

P. McCullach and J.A. Nelder. Generalized Linear Models. Number 37 in Monographs on
Statistics and Applied Probability. Chapman & Hall, 1st edition, 1983.

X. Meng, S. Wu, L. Kuang, and J. Lu. An Expectation Propagation Perspective on
Approximate Message Passing. IEEE Signal Processing Letters, 22(8):1194–1197, 2015.

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent Neural
Network based Language Model. In Interspeech, volume 2, 2010.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representa-
tions in Vector Space. ICLR Workshop, 2013.

T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. A. Ranzato. Learning Longer
Memory in Recurrent Neural Networks. arXiv preprint arXiv:1412.7753, 2014.

124

Bibliography

B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl. MovieLens Unplugged:
Experiences with an Occasionally Connected Recommender System. In IUI 8, 2003.

T. Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, MIT,
January 2001a.

T. Minka. Expectation Propagation for Approximate Bayesian Inference. In Uncertainty
in AI 17, 2001b.

T. Minka. Divergence Measures and Message Passing. Technical Report MSR-TR-2005-
173, Microsoft Research, Cambridge, 2005.

A. Mnih and Y. W. Teh. Learning Label Trees for Probabilistic Modelling of Implicit
Feedback. In NIPS 25, pages 2825–2833, 2012.

S. Mohamed, K. Heller, and Z. Ghahramani. Bayesian Exponential Family PCA. In
NIPS 21, pages 1089–1096, 2008.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

S. Nakajima and M. Sugiyama. Analysis of Empirical MAP and Empirical Partially
Bayes: Can They be Alternatives to Variational Bayes? In AISTATS 17, pages 20–28,
2014.

S. Nakajima, M. Sugiyama, S. D. Babacan, and R. Tomioka. Global Analytic Solution of
Fully-observed Variational Bayesian Matrix Factorization. Journal of Machine Learning
Research, 14(Jan):1–37, 2013.

R. M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Clas-
sification and Regression. Technical Report 9702, Department of Statistics, University
of Toronto, January 1997.

H. Nickisch. Bayesian Inference and Experimental Design for Large Generalised Linear
Models. PhD thesis, 2010.

H. Nickisch and C. Rasmussen. Approximations for Binary Gaussian Process Classification.
Journal of Machine Learning Research, 9:2035–2078, 2008.

B. Olshausen and D. Field. Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images. Nature, 381:607–609, 1996.

B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy
employed by V1? Vision Research, 37:3311–3325, 1997.

M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited.
Neural Computation, 21(3):786–792, 2009.

M. Opper and O. Winther. Expectation Consistent Approximate Inference. Journal of
Machine Learning Research, 6:2177–2204, 2005.

125

Bibliography

M. Opper, U. Paquet, and O. Winther. Perturbative Corrections for Approximate
Inference in Gaussian Latent Variable Models. Journal of Machine Learning Research,
14(1):2857–2898, 2013.

J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM Algorithms for
Non-Gaussian Latent Variable Models. In NIPS 18, pages 1059–1066, 2006.

L. Paninski. Maximum Likelihood Estimation of Cascade Point-Process Neural Encoding
Models. Network: Computation in Neural Systems, 15:243–262, 2004.

G. Papandreou and A. Yuille. Gaussian Sampling by Local Perturbations. In NIPS 23,
pages 1858–1866, 2010.

G. Papandreou and A. Yuille. Efficient Variational Inference in Large-scale Bayesian
Compressed Sensing. In ICCV Workshop, pages 1332–1339. IEEE, 2011.

G. Papandreou, P. Maragos, and A. Kokaram. Image Inpainting with a Wavelet Domain
Hidden Markov Tree Model. In IEEE ICASSP, pages 773–776, 2008.

M. Park and J. W. Pillow. Bayesian Inference for Low-rank Spatiotemporal Neural
Receptive Fields. In NIPS 26, pages 2688–2696, 2013.

M. Park, J. P. Weller, G. D. Horwitz, and J. W. Pillow. Bayesian Active Learning of Neural
Firing Rate Maps with Transformed Gaussian Process Priors. Neural Computation, 26
(8):1519–41, 2014.

R. Pascanu, T. Mikolov, and Y. Bengio. On the Difficulty of Training Recurrent Neural
Networks. arXiv preprint arXiv:1211.5063, 2012.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

T. Pham, V. Bluche, C. Kermorvant, and J. Louradour. Dropout Improves Recurrent
Neural Networks for Handwriting Recognition. In ICFHR 14, pages 285–290, 2014.

J. W. Pillow. Likelihood-based Approaches to Modeling the Neural Code. Bayesian
Brain: Probabilistic Approaches to Neural Coding, pages 53–70, 2007.

J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image Denoising using Gaussian
Scale Mixtures in the Wavelet Domain. IEEE Transactions on Image Processing, 12:
1338–1351, 2003.

L. R. Rabiner and B. H. Juang. An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, pages 4–15, January 1986.

R. Ranganath, S. Gerrish, and D. Blei. Black Box Variational Inference. In AISTATS 17,
2014.

C. E. Rasmussen and H. Nickisch. Gaussian Processes for Machine Learning (GPML)
Toolbox. Journal of Machine Learning Research, 11(Nov):3011–3015, 2010.

126

Bibliography

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A Lock-free Approach to Parallelizing
Stochastic Gradient Descent. In NIPS 24, pages 693–701, 2011.

S. Rendle. Time-variant Factorization Models. In Context-Aware Ranking with Factoriza-
tion Models. 2010.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian
Personalized Ranking from Implicit Feedback. In Uncertainty in AI 25, pages 452–461,
2009.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing Personalized Markov
Chains for Next-basket Recommendation. In WWW 19, 2010.

W. H. Richardson. Bayesian-based iterative method of image restoration. Journal of the
Optical Society of America, 62(1):55–59, 1972.

R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by
Back-propagating Errors. Cognitive Modeling, 5(3), 1988.

R. Salakhutdinov and A. Mnih. Probabilistic Matrix Factorization. In NIPS 20, pages
1257–1264, 2008a.

R. Salakhutdinov and A. Mnih. Bayesian Probabilistic Matrix Factorization using Markov
Chain Monte Carlo. In ICML 25, pages 880–887, 2008b.

T. Salimans, U. Paquet, and T. Graepel. Collaborative Learning of Preference Relations.
In ACM RecSys 6, 2012.

C. Sanderson. Armadillo: An Open Source C++ Linear Algebra Library for Fast
Prototyping and Computationally Intensive Experiments. Technical report, 2010.

L. Saul, T. Jaakkola, and M. I. Jordan. Mean Field Theory for Sigmoid Belief Networks.
Journal of AI Research, 4:61–76, 1996.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 1st edition, 2002.

M. Seeger. Bayesian Model Selection for Support Vector Machines, Gaussian Processes
and Other Kernel Classifiers. In NIPS 12, pages 603–609, 2000.

M. Seeger. Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal
of Machine Learning Research, 9:759–813, 2008.

M. Seeger and G. Bouchard. Fast Variational Bayesian Inference for Non-Conjugate
Matrix Factorization Models. In AISTATS 15, 2012.

127

Bibliography

M. Seeger and H. Nickisch. Compressed Sensing and Bayesian Experimental Design. In
ICML 25, pages 912–919, 2008.

M. Seeger and H. Nickisch. Large Scale Bayesian Inference and Experimental Design for
Sparse Linear Models. SIAM Journal of Imaging Sciences, 4(1):166–199, 2011a.

M. Seeger and H. Nickisch. Fast Convergent Algorithms for Expectation Propagation
Approximate Bayesian Inference. In AISTATS 14, 2011b.

E. Simoncelli. Modeling the joint statistics of images in the Wavelet domain. In Proceedings
44th SPIE, pages 188–195, 1999.

S. Som and P. Schniter. Compressive Imaging using Approximate Message Passing and a
Markov-tree Prior. IEEE Transactions on Signal Processing, 60(7):3439–3448, 2012.

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(1), 2014.

J.-L. Starck and F. Murtagh. Astronomical Image and Data Analysis. Springer, 2002.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural
Networks. In NIPS 27, pages 3104–3112, 2014.

G. Takács and D. Tikk. Alternating Least Squares for Personalized Ranking. In ACM
RecSys 6, pages 83–90, 2012.

Theano Development Team. Theano: A Python Framework for Fast Computation of
Mathematical Expressions. arXiv e-prints, abs/1605.02688, 2016.

R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of Royal
Statistical Society: Series B, 58:267–288, 1996.

T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the Gradient by a Running
Average of its Recent Magnitude. COURSERA: Neural Networks for Machine Learning,
2012.

M. Tipping and C. Bishop. Mixtures of Probabilistic Principal Component Analyzers.
Neural Computation, 11(2):443–482, 1998.

M. Tipping and C. Bishop. Probabilistic Principal Component Analysis. Journal of Royal
Statistical Society: Series B, 61(3):611–622, 1999.

M. Titsias and M. Lázaro-Gredilla. Spike and Slab Variational Inference for Multi-Task
and Multiple Kernel Learning. In NIPS 24, pages 2339–2347, 2011.

J. Vanhatalo, V. Pietiläinen, and A. Vehtari. Approximate Inference for Disease Mapping
with sparse Gaussian Processes. Statistics in Medicine, 29(15):1580–1607, 2010.

128

Bibliography

J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari.
GPstuff: Bayesian modeling with Gaussian Processes. Journal of Machine Learning
Research, 14(4):1175–1179, 2013.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. FTML, 1(1–2):1–305, 2008.

P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning Hierarchical Represen-
tation Model for NextBasket Recommendation. In ACM SIGIR 38, 2015.

P. J. Werbos. Backpropagation Through Time: What it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

R. J. Williams and D. Zipser. Gradient-based Learning Algorithms for Recurrent Networks
and their Computational Complexity. Back-propagation: Theory, Architectures and
Applications, 1995.

L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, and J. G. Carbonell. Temporal
Collaborative Filtering with Bayesian Probabilistic Tensor Factorization. SDM, 2010.

X. Yi, L. Hong, E. Zhong, N. N. Liu, and S. Rajan. Beyond Clicks: Dwell Time for
Personalization. In ACM RecSys 8, 2014.

H.-F. Yu, C.-J. Hsieh, I. Dhillon, et al. Scalable Coordinate Descent Approaches to
Parallel Matrix Factorization for Recommender Systems. In IEEE ICDM 12, 2012.

K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast Nonparametric Matrix Factorization for
Large-Scale Collaborative Filtering. In ACM SIGIR 32, pages 211–218, 2009.

A. Yuille and A. Rangarajan. The Concave-Convex Procedure. Neural Computation, 15
(4):915–936, 2003.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent Neural Network Regularization.
arXiv preprint arXiv:1409.2329, 2014.

M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, et al. On Rectified-Linear Units for Speech Processing. In
IEEE ICASSP, pages 3517–3521. IEEE, 2013.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale Parallel Collaborative
Filtering for the Netflix Prize. In Algorithmic Aspects in Information and Management.
Springer, 2008.

129

131

132

