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ABSTRACT

This thesis explores the potential of representation learning techniques in game stud-
ies, highlighting their effectiveness and addressing challenges in data analysis. The
primary focus of this thesis is shallow representation learning, which utilizes sim-
pler model architectures but is able to yield effective modeling results. This thesis
investigates the following research objectives: disentangling the dependencies of data,
modeling temporal dynamics, learning multiple representations, and learning from
heterogeneous data. The contributions of this thesis are made from two perspectives:
empirical analysis and methodology development, to address these objectives. Chap-
ters 1 and 2 provide a thorough introduction, motivation, and necessary background
information for the thesis, framing the research and setting the stage for subsequent
publications. Chapters 3 to 5 summarize the contribution of the 6 publications,
each of which contributes to demonstrating the effectiveness of representation learn-
ing techniques in addressing various analytical challenges.

In Chapter 1 and 2, the research objects and questions are also motivated and
described. In particular, Introduction to the primary application field game studies
is provided and the connections of data analysis and game culture is highlighted. Ba-
sic notion of representation learning, and canonical techniques such as probabilistic
principal component analysis, topic modeling, and embedding models are described.
Analytical challenges and data types are also described to motivate the research of
this thesis.

Chapter 3 presents two empirical analyses conducted in Publication I and II that
present empirical data analysis on player typologies and temporal dynamics of player
perceptions. The first empirical analysis takes the advantage of a factor model to offer
a flexible player typology analysis. Results and analytical framework are particularly
useful for personalized gamification. The Second empirical analysis uses topic mod-
eling to analyze the temporal dynamic of player perceptions of the game No Man’s
Sky in relation to game changes. The results reflect a variety of player perceptions
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including general gaming activities, game mechanic. Moreover, a set of underlying
topics that are directly related to game updates and changes are extracted and the tem-
poral dynamics of them have reflected that players responds differently to different
updates and changes.

Chapter 4 presents two method developments that are related to factor models.
The first method, DNBGFA, developed in Publication III, is a matrix factorization
model for modeling the temporal dynamics of non-negative matrices from multi-
ple sources. The second mothod, CFTM, developed in Publication IV introduces
a factor model to a topic model to handle sophisticated document-level covariates
The develeopd methods in Chapter 4 are also demonstrated for analyzing text data.
Chapter 5 summarizes Publication V and Publication VI that develop embedding
models. Publication V introduces Bayesian non-parametric to a graph embedding
model to learn multiple representations for nodes. Publication VI utilizes a Gaus-
sian copula model to deal with heterogeneous data in representation learning. The
develeopd methods in Chapter 5 are also demonstrated for data analysis tasks in the
context of online communities.

Lastly, Chapter 6 renders discussions and conclusions. Contributions of this the-
sis are highlighted, limitations, ongoing challenges, and potential future research
directions are discussed.
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1 INTRODUCTION

This chapter offers an general outline of this thesis. It introduces the significance of
the primary application domain, the explored branch of methods, and the specific
type of data under investigation. The research objective and the structure of this
thesis are also presented.

1.1 Games, Play, and Data Analysis

“Play is older than culture, for culture, however inadequately defined, al-
ways presupposes human society, and animals have not waited for man to
teach them their playing.” [71, p. 1]

As stated in Johan Huizinga’s seminal work “Homo Ludens”, games and play are,
inarguably, not just leisure activities, but a fundamental aspect of human culture. In
other words, games and play not only offer entertainment but have also participated
in the process of the formation of culture [85]. Games and play also create commu-
nities and a sense of belonging [162], shaping societal norms and expectations [57].
Understanding such cultural implications of games and play is a vital task for modern
society.

To understand games and play, data analysis offers its potentials as a tool for
exploring various underlying patterns, especially in a complex setting. The vast
amounts of data generated by non-digital and digital gaming and online communities
related to games and play provide an access to understanding players’ experiences and
behaviors. Online data sources, especially those from social media can supplement
traditional data collection methods in game studies. Conventional methods like sur-
veys and interviews can be costly and often result in smaller and curated datasets.
Such conventional data collection processes requires significant investment in time
and effort, from designing questionnaires to carefully executing the process. By tak-
ing advantage of such data, patterns and trends can be identified and that can be used
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to reveal how players engage with games and how games have made an impact on
players. This thesis is devoted to exploring such potential of data analysis with a
focus on representation learning to provide insights through analyzing the data from
the complex and diverse world of game culture.

1.2 Shallow, Simple yet Effective

This thesis delves into the area of data analysisknown as “shallow representation learn-
ing”. The term “shallow” is here used to describe computational models with simpler
structures in contrast to “deep” learning models which have multiple layers and com-
plex structures [107]. The umbrella term, representation learning, is a set techniques
that aims to uncover latent, unobserved, and abstract features from data [10]. It has
gained popularity in the field of machine learning, particularly with the rise of deep
learning models. On the other hand, research on shallow representation learning has
received less attention compared to deep learning and requires necessary exploration.

This thesis focuses on shallow representation learning, which can offer several
advantages despite the simpler structure. For example, by incorporating human
insights about the analyzed data into the model design, shallowly learned repre-
sentations can yield competitive results without the need for deep or complex ar-
chitectures. Additionally, these representations can be more transferable, less task-
dependent, and more interpretable. Moreover, shallow models can offer a more
data-efficient solution and are potentially more suitable for low-resource settings.
This thesis develops various models with simple structures to demonstrate these ben-
efits. The developed models are inspired by the needs of empirical analysis tasks and
carried out by solving challenges by introducing various modeling insights, e.g., mul-
tiple representations, and heterogeneous data settings. The methods are also proven
useful in various data analysis and prediction tasks.

The focal application area of these representation learning methods is games,
specifically player-generated data on social media related to games and play. Such
data is often complex, large in volume, and contains noise. Representation learning
can be used to distill essential and valuable information in such settings. The learned
representation can be used to summarize the overall theme of the collected data or
describe the dependencies between different data variables.
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1.3 Player-generated Data on Social Media

Playing has been a universal human activity throughout history. Moreover, as one of
the mainstream forms of entertainment, players’ engagement is usually not limited
to game-play itself but also diffuses to a broader range of activities that are outside of
game-play.

The emergence of internet and social media have facilitated such activities, espe-
cially in the formation of online communities [49]. On different online platforms,
players interact with other users. Such activities usually leave behind a variety of digi-
tal footprints, therefore, social media has become a unique venue for the convergence
of various types of player-generated data. These data are often noisy and unstruc-
tured, yet they contain a wealth of valuable information for researchers looking to
understand players and games.

This thesis aims to explore the potential of using representation learning as a tool
for analyzing player-generated data on social media. Representation learning can be
used to extract simplified abstractions while preserving important patterns, variations
and inter-relationships within the data. For example, without reading through the
collected game reviews using human efforts, representation learning techniques such
as topic modeling can be used to inspect the themes of the discussions and at the same
time, model the features such as inter-correlations and temporal dynamics of those
extracted themes.

1.4 Research Objectives, Questions and Contributions

In summary, the research objectives of this thesis lie at the intersection of represen-
tation learning and game-related data from social media. This thesis aims to explore
the potential of using representation learning as a tool for analyzing data to better
understand players and their gaming experiences. The developed methods can be
applied to a wide range of data, including player profiles, game reviews, streamer
networks, and esports match performances. The objectives can be summarized as
follows:

• Disentangle the Dependencies of Data: This objective focuses on distilling
the complexity of the observed data, especially in the situation where the ob-
served variables are intertwining with each other. For example, the player pro-
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files often contain related variables (e.g., achievements and completions) and
they show strong inter-dependency. Leveraging the prior knowledge that the
observed dependency of variables is governed by a specific latent mechanism
can help deduct information that is redundant and extract essential underlying
characteristics to describe the data. For example, the activities such as getting
achievements and completions are an outcome of a specific player personality
that can not be directly observed.

• Modeling Temporal Dynamics: This objective focuses on the underlying
changes over time. For example, the players’ perceptions can alter over time
due to many reasons such as the updates or new versions of games.

• Cross-structure Learning: It is common that the analyzed data set contains
multimodality, as data can be collected in different formats. For example, the
text review written by a player is linked to the player’s profile which contains
mainly numerical values.

• Multiple Representation Learning: Just like a word can express different
meanings in different contexts, a player can behave differently or show a dif-
ferent personality in different surroundings. Games and play can be diverse
and vibrant, for example, each player can carry different traits and personali-
ties and those differences can further affect the player’s behavior. The multiple
representations learned should be able to uncover such diversity. On the other
hand, the learned representation is expected to enhance the performance in
various prediction tasks compared to single representation solutions for they
can capture such nuance. However, allowing such freedom can lead to risks
of introducing noise.

• Learning from Heterogeneous Data: A common situation of social media
data is that the data are often mixed. For example, each player can be gauged
by different performance measurements (win/loss, kills, deaths, and so on)
and each is in a different data type. This yields challenges when trying to
learn representations for each player. The learned representations are required
to distill the necessary information of the player, and at the same time, the
interrelations between different measurements.

To address the objectives, this thesis focuses on the following research questions:
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• RQ.1. How to distill the crucial information from the dependencies and un-
cover the perpendicular, or uncorrelated dimensions that reveal the underlying
structure of the data?

• RQ.2. How to leverage representation learning techniques to model and un-
derstand such evolution of data over time?

• RQ.3. How do different underlying structures interact with each other? How
to model and interpret such interactions?

• RQ.4. What is the appropriate approach to introduce diversity to representa-
tion learning? How to take advantage of the learned representations?

• RQ.5. How to effectively analyze and integrate heterogeneous data from var-
ious sources to derive meaningful insights? How to interpret and visualize the
modeling results?

The thesis employs two perspectives: empirical analysis and methodology devel-
opment, to address the research objectives and questions. The empirical analysis in
Chapter 3 demonstrates how existing representation learning techniques, specifically,
factor models and topic models, can be used data analysis when it comes to under-
standing games and play. It covers game studies issues including player typologies
and player perceptions and lays the foundation for the methodologies by illustrating
the promising potential of representation learning.

Chapter 4 therefore develops methodologies related to factor models and topic
models. A probabilistic dynamic non-negative Bayesian group factor (DNBGFA)
model is proposed to analyze text data collected over time. Additionally, the Cross-
factor Topic Model (CFTM) is further developed to leverage a factor structure and
handle sophisticated covariates when analyzing documents with document-level high-
dimensional data.

Chapter 5 delves into the application of another facet of representation learning:
embedding models. In contrast to factor and topic models, where learned represen-
tations are explicitly align with features (column names) in the training data, embed-
ding models exhibit an implicit nature, disassociated from predefined features. This
implicit characteristic offers flexibility but may bring challenges for interpretation.
The developed embedding models in Chapter 5 try to overcome such challenges
while harnessing the flexibility. The non-parametric graph embedding model devel-
oped in the chapter introduces the concept of multiple representations, bolstering
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learning flexibility, and the number of learned representations of each node can be
further interpreted based on the activities and connections with other nodes. The
Gaussian copula embedding model addresses heterogenous data scenarios, wherein
the embedding vectors learn associations with specific variables, taking into account
their heterogeneity and dependencies, and offer enhanced potential for interpreta-
tion.

The contribution of this thesis is contained in 6 publications. Publications I and
II are empirical studies that apply representation learning to game data analysis tasks.
The investigated issues include discovering underlying player factors and the evolu-
tion of game reviews over time. The conducted research has shown the potential of
applying such methods in game studies. Inspired by the empirical works, a series of
representation learning models have been developed. The scope is further narrowed
down to two focused branches of representation learning methods: the factor mod-
els and the embedding models. Under each branch, two novel methods have been
developed.

• Factor models. Two novel methods have been developed. The first developed
method (Publication III) corresponds to the first listed objective Modeling
Temporal Dynamics. A non-negative matrix factorization model is developed
to model the underlying temporal dynamics of multiple text sources. The
main idea is to introduce a modified Gaussian process latent variable to a non-
negative matrix decomposition problem.

The second developed method (Publication IV, inspired by Publication I) tack-
les the challenge Cross-structure Learning. The developed method uses a fac-
tor model to extract the underlying structure from the numerical covariates
and integrate the factors into a topic model.

• Embedding models. This branch develops two novel methods. The first
method (Publication V) focuses on unsupervised graph embedding, with re-
spect to Multiple Representation Learning. Bayesian non-parametric meth-
ods are employed to derive a multiple representation learning framework.

The second work (Publication VI) focuses on a general embedding vector
learning problem. The method focuses on the challenge of Learning from
HeterogeneousData and proposes an embedding framework based on a Gaus-
sian Copula model. The developed method has been shown effective in mod-
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eling various data sets about games and play.

1.5 Thesis Structure

This thesis is organized as follows. Chapter 2 provides the fundamental notions
for this thesis. A substantial overview of representation learning is concentrating
on branches of methods focused on this thesis. It further provides an introduction
to game-related social media data. The characteristics, challenges of such data, and
potential values can be yielded by harnessing such data as analytical resources are
described. This chapter also attempts to draw upon the literature in game culture
studies to better position this thesis with a facilitated theoretical background.

Chapter 3 describes the empirical works that apply representation learning in
game studies. Chapter 4 introduces the developed method related to Factor models
and in Chapter 5 the representation learning methods related to Embedding models
are described. Note that, Chapters 4 and 5 will focus on the overview of models and
the key notions supporting such methodology development. The details of the algo-
rithm and experiments that can be found in the publications and will not be repeated.
Finally, Chapter 6 concludes the thesis, discusses the limitations, and outlines future
opportunities.
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2 FUNDAMENTALS

This chapter lays the foundations of the background knowledge for this thesis. An
overall introduction of the application area, game studies, is first provided in section
2.1. Section 2.2 describes the basic notions of representation learning, and the rea-
sons for choosing a “shallow” perspective. Section 2.3 covers the characteristics of
social data for game studies, the challenges of analyzing such data. Themethodologies
developed in thesis are devoted to delivering solutions to those challenges.

2.1 Game Studies, Data Analysis, and Social Media

This section examines the specific area of focus for this thesis, beginning with an in-
troduction to research on games with a focus on the field of game studies, as the most
established discipline when it comes to games and play. Key issues that are concerned
in this thesis will be highlighted. Another attempt of this section is to delve deeper
into the theoretical foundations and conceptual resources especially the intersection
of data analysis and game studies. The data-intensive nature of game-play are high-
lighted, emphasizing the potential of data analysis to enhance our understanding of
games. The focus is further narrowed down to social media data, discussing the sig-
nificance of the relationship between social media and games. Finally, the analytical
challenges are outlined to further motivate this thesis.

2.1.1 Research Games and Game Studies - An Overview

As mentioned, games have been a substantial cultural form in modern human soci-
ety. As a results, it has also attracted scholarly attention and academic investigation.
For example, in the field human-computer interaction (HCI), games are intensively
studied as a “computer-technology system” and players are seen as the “users” of
the system [7, 19]. For educational and marketing purposes, games and “playful el-
ements” are used in “non-game purposes” to facilitate the business development or
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learning process [73, 83].
In psychology, games have also been investigated as part of internet culture under

the context of addiction or abuse of substances [92, 60].
As games have become a primary cultural form [22], increasing scholarly atten-

tion has been attracted and devoted to understanding the cultural implications of
games and play. Game studies or game culture studies that “emerged in the late
1990s and early 2000s” [113], is a focused field on games culture and an interdis-
ciplinary field dedicated to understanding the unique properties and potential of
games as a medium. This field emphasizes the importance of studying games on their
own terms, and encourages the development of specific methods and frameworks for
studying games.

Due to the dynamic and rapidly developing nature of the field, it can be challeng-
ing to find a clear and static definition for game studies. As the field continues to
evolve, new encountered research areas and perspectives are constantly emerging into
play, making it difficult to encapsulate all aspects of the field in a single definition.
One possible definition of game studies can be

“study and learningwith games and related phenomena as its subject matter”
[109, p. 6].

Studying game cultures involves examining the game, the players, and the con-
texts in which the game is played in order to understand the meaning and cultural
expression of the game. The term “culture” is defined as a “system of meaning” [109].
One important characteristic that differentiates game studies from other fields is that,
despite that games have been intensively researched and studied in various fields and
academic settings, the mentioned approaches of how games are studied have revealed
that the emphasis and visibility of games and their roles in cultural formation are
usually not the primary focus. Game studies approaches games as its primary sub-
ject matter, and follows the "games in culture" paradigm [109], tries to understand
games “in its own right” [22]. In contrast, other fields may study games, in general,
in relation to other research objectives or as a particular form or case when being
investigated. The importance of taking games as a primary focus as underscored in
the prominent journal Game Studies: the International Journal of Computer Game
Research, which states that the research articles in the venue should:

“attempt to shed new light on games, rather than simply use games asmetaphor
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or illustration of some other theory or phenomenon”

The cultural significance of games and the need to understand their unique prop-
erties and potential as a medium have been highlighted in pioneer works. It has been
stated that:

“[games are] an extremely valuable context for the study of cognition as in-
ter(action) in the social and material world. They provide a representational
trace of both individual and collective activity and how it changes over time,
enabling the researcher to unpack the bidirectional influence of self and soci-
ety ” [157, p. 1].

The quote further highlights the importance of studying games in order to un-
derstand how they shape and are shaped by individuals and society. It investigates
games to understand their meanings, perspectives, and contexts.

As a young field, game studies is a rapidly growing field with many opportunities
for research and exploration in the continuously evolving world of games. It is worth
noting that, although the emphasis is unique, it is still closely related to other research
fields as games have been a common studied object in various academic efforts.

This approach highlights the unique properties and potential of games as a medium
and encourages the development of specific methods and frameworks for studying
games. It emphasizes that game studies as a field of study should focus on understand-
ing games and related phenomena, as opposed to using games as a way to understand
other subjects.

Perhaps one noteworthy development phase of the “independence” of game stud-
ies was the “Ludology vs. narratology debates”. During the debate, the narratologists
have argued that games can be interpreted as a form of text, similar to books, films
and other media, methods from literacy studies can be accordingly applied to ana-
lyze games [1]. To the contrary, the school of ludology, represented by [76], asserted
that, instead of being considered as a form of text, a game should be seen as a set of
rules and norms and they alone express meanings; furthermore, even if games can
comprise storytelling, there are significant differences between games and other me-
dia such as the linearity of time [77]. The concern of the “colonisation from other
fields” was also raised [44]. Although this debate has not reached a final consensus
and even has been later described as a result of “a series of misunderstandings and
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misconceptions” [50], it nevertheless exemplifies how game studies has struggled to
distinguish itself as an independent academic discipline.

On the other side of the above-mentioned struggles, game studies, as a dynamic
and ever-evolving field, also highly stresses the values of interdisciplinarity, inclusiv-
ity, and conversation to fields [37]. It has benefited from various theories, research
methods, practices, and perspectives brought from various disciplines, as stated:

“The scientific and scholarly study of games, play, and related phenomena
must be able to address the complex andmultidimensional character of games,
for which familiarity withmultiple fields of inquiry is a clear benefit.” [111].

The growing amount of recognition and exchange of ideas between different fields
of study and research methods are likely to lead to a disruptive shift that will close
some of the divide that has been observed between the social sciences, humanities,
and the study of technology in relation to games [176]. Researchers in game studies
carry a diversity of backgrounds [112].

This characteristic has resulted in that games studies often contains a combination
of various approaches and does not often embrace a clear or exclusive set of method-
ologies [93] so that, techniques are often “borrowed” from other disciplinaries to
study games [152]. For example, the notion of “user experience” from HCI can
be seen as the precursor of “player experience” when researching games and players
[175]; the notion of “player typologies” is closely related to the concept of segmen-
tation marketing theory and literature [64] as a process to differentiate and identify
customer groups [90]. Methods such as psychophysiological measurements [86] and
modern data analytical techniques such as using natural language processing (NLP)
to, for example, analyze game reviews, have also been highlighted [188, 111].

Games and game culture are constantly evolving with the development of tech-
nology. The emergence and rise of social media, in particular, has had a significant
impact on the field of game studies. It has created a space for game-related cultural
activities to take place on platforms such as Reddit [108] and Twitch [54], provid-
ing opportunities for researchers to study and understand the complexities of games
and play within this context. However, it also poses methodological challenges for
researchers as they navigate and utilize the vast amount of complex data available on
these platforms.

As the primary application field of this thesis, game studies encompasses various
disciplines but emphasizes the uniqueness of games, and examines and analyzes games
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as a primary focus. On the other hand, it is an interdisciplinary and dynamic field
that shares research methods with various related fields.

2.1.2 Data-intensive Game Culture

The connection between data analysis and game studies can be viewed as the intersec-
tion of two fields. Digital games generate vast amounts of data from the user inputs/
instructions (e.g., navigating with the joystick, pulling the trigger on the game-pad,
and moving characters with mouse movements) that control the game mechanics.
The data can help us understand the pattern game-play and decision-making of play-
ers. Additionally, data analysis techniques can also be applied to other areas within
the gaming field such as player engagement and understanding how players interact
with the games. Therefore, the connection between data analysis and game studies is
crucial for understanding and advancing the field of gaming. This data-intensive char-
acteristic of digital games and players was highlighted in one of the pioneer works in
game studies:

“[Game] Software is data: the data instructions to the hardware of the ma-
chine, which is turn executes those instructions on the physical level by mov-
ing bits of information from one place to another, performing logical opera-
tions on other data, triggering physical devices, and so on.” [53, p. 2].

“The player, or operator, is an individual agent who communicates with the
software and hardware of the machine, sending codified messages via input
devices and receiving codified messages via output devices.” [53, p. 2].

As pointed out, playing digital games can be seen as a rapid and intense cycle of
inputting data through inputs like points, clicks, voice and even physical motions,
and receiving output data from the system in response. Thus, gaming can be in-
terpreted as a process of data exchange. It is important to note that this process of
data exchange and the data-intensive nature of digital games is different from other
forms of interactive media or activities, such as film or literature, where the data is
primarily consumed rather than actively exchanged and generated by the audience.

Apart from data exchange, the data-intensive gaming also entails the chracteris-
tics of players in terms of as a data-provider: facilitated by the necessary software
and hardware, large amount of data with high levels of granularity can be easily
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recorded, preserved, and processed. It has been pointed out by scholars in game
studies that such player-generated data carry unique characteristics compared to the
user-generated data in other domains, and result in broad implications. It has been
pointed out that data analysis has played an important role in shaping game industries
and markets [173, 177]

Recently, the notion of “quantified play” has been proposed [41], which can be
summarized into three main characteristics:

• Voluntary: Players usually spontaneously choose to share or let their data be
used, and this voluntary participation can be seen as a form of self-surveillance.

• Mundane: Beyond sophisticated and exclusively tools used by professional pro-
fessionals such as esports players. Quantified play covers a larger range of “or-
dinary” players and data about routines and rhythms of everyday gameplay.

• Habitual: Data “grammertize and materialize” players’ habits, behaviours and
experiences into a form of digital records such as numbers and staticstics.

At the same time, the notion of data analysis has also had an impact on con-
temporary gaming culture, as activities beyond gameplay and various derivatives of
games are being "data-fied." Players knowingly leave digital footprints, or generate
data, outside of gameplay. For instance, the telemetry infographics, which graph-
ically summarize the gameplay data of the total population, disseminated by game
companies, have contributed to the normalization of player surveillance [161].

Player dossiers, in most cases, are third-party data collection and presentation
systems that serve as a reward beyond the game’s own rewards. They allow players to
explore their past gameplay and play an important role in social network and player
community formation by allowing players to gain social capital by creating weak
ties between other players and facilitating information transfer between otherwise
obscure gaming sub-groups. [114].

Metagaming systems [27], such as Steam [174], provide a platform for players
to connect with one another and build social connections through various features.
These systems not only track personal game-play performance but also have a focus
on social functionality. One example of this is online discussion forums, where play-
ers can form communities and discuss games and play styles. Performance tracking
systems also play a role in building connections, as players are able to view and com-
pare their own performance to others. Furthermore, features such as the ability to
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rate other players’ profiles and trade virtual items foster social interaction and com-
munity building within the game. Displaying players’ historical data is relevant to
social connections, as it has been suggested that players on Steam

“tend to befriend those who are similar in terms of popularity, playtime,
money spent, and games owned.” [126, p. 2].

Overall, the data-intensive nature of gaming culture is a result of the advancement
in technology that allows for the efficient collection, processing, and storage of data
generated during both gameplay and activities outside of it. This data and the process
of its generation have played a significant role in shaping player experiences and
cultures. Social media also plays a role in this interplay, further emphasizing the
data-intensive characteristics of gaming culture.

2.1.3 Social Media Data and Games

Social media has become a prominent venue for studying and understanding game
cultures. These platforms not only provide a virtual space for players to interact with
each other and form online communities, but they also offer a wealth of data that goes
beyond the quantitative metrics of gameplay. Online interactions on social media can
take many forms, such as sharing playful experiences, obtaining advises of game-play
and purchase, showcasing achievements, and sharing fan-art. These interactions have
played an important role in shaping and enriching the game culture.

When comparing to traditional gameplay data, social media data sets possess
unique characteristics. They are often large in volume and have complex structures.
They also often provide a more qualitative view of player experiences than game-
play data, with game reviews and discussions being in textual format, and player
connections and communities being encoded in a graph structure. This type of data
can offer valuable insights into various aspects of game studies, from understanding
cheating behaviors on Reddit [164], to investigating the masculinist gamer identity
on Twitter [39], from studying community crises on Steam [75] to understanding
media enjoyment on Twitch [179].

Moreover, the characteristics of social media data share common features with
gameplay data, such as the emphasis on performance statistics and self-tracking ca-
pabilities [41]. For example, on Reddit, users are quantified and tracked by the
number of Karma and awards they have received and given, and on Steam, players
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are quantified and tracked through their player profile, which summarizes their his-
tory on the platform. These player profiles consist of statistics such as playtime and
achievements, which facilitate the self-tracking capabilities.

Players leave their digital footprints on various social media platforms, such as
public player profiles on Steam and writing game reviews. This allows other players
to see their accomplishments, such as the number of badges and trophies they have
collected, and to learn more about their gameplay habits and opinions. Additionally,
it allows players to connect with others who have similar interests and share their
experiences with a wider audience.

Social media data are primarily about the ordinary players and their everyday
activities related to game-play. This provides a more comprehensive view of how
players interact with games and how games fit into their daily lives. The data gener-
ated from these interactions are materialized and preserved in various forms, such as
player profiles, interactions, and connectivity, game reviews, comments, and discus-
sions, which allow researchers to use this information to inform game development
and improve the player experiences.

These characteristics are amplified and enriched in social media due to the chances
and motivations for self-expression [127]. Players voluntarily make their Steam pro-
files public to “show off” to potential profile visitors. Social media data also reveal
how a game can affect the habits and behaviours of players even outside of play. For
example, by studying the online discussions of the game Nintendo Switch Ringfit
Adventure, it was found that players not only discussed their playful experiences
but also shared experiences of their daily lives when they were not playing, such
as sharing recipes for making the in-game recovery items “smoothies” in real life
[104]. This demonstrates that solely “quantifying” players’ behaviors with numbers
are statistics is not enough. Other data types such as text contain richer contents to
offer a more comprehensive understanding of players.

Overall, the digital footprints left by players on social media, such as player pro-
files, interactions, and connectivity, game reviews, comments, and discussions, pro-
vide valuable insights into game culture, industry, and players’ behavior. They are
encoded and stored in different data formats and highlight the importance and value
of social media data in game studies. With social media data, researchers can gain a
more comprehensive understanding of players’ habits, behaviors, and experiences,
both within and outside of gameplay, and use this information to inform game de-
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velopment and improve the player experience.

2.1.4 Focused Issues in Game Studies

This thesis mainly focuses on the following empirical issues in game studies, Player
Typology and Player Experiences, and online gaming communities.

Online gaming Communities are virtual spaces, often created on social media,
where individuals from different parts of the world come together to participate in
online games and engage in social interaction. These communities are often based
around specific games or genres, and they provide players with opportunities to form
social connections with others who share similar interests and hobbies. Players may
engage in various forms of social interaction, including chatting, trading items, and
collaborating on game strategies.

For example, in different gaming subreddits, players in the online community
discuss and share there experiences of gaming and play. Online gaming communities
have been researched in terms of communications [12], nostalgia [11], and cheating
behaviors [14]. In terms of data analysis, the interactions between different online
communities such as common users [171] and webpage hyperlink networks [91]
between subreddits can offer analytical insights such as political polarization and
conflicts between online communities.

Overall, online gaming communities are complex social phenomena that continue
to evolve and impact individuals and society in various ways. As the popularity of
online gaming communities continue to grow, it is important for researchers and
practitioners to stay abreast of the latest developments and understand the implica-
tions of these virtual communities on players’ lives.

Player Typologies have been a prominent studied topic in game studies [9, 141,
51] and also other disciplines HCI [25, 103]. This notion has evolved from its root in
marketing literature [64], where the purpose is looking for appropriate segmentation
of customers for targeted marketing strategies. When it comes to game-play, player
typologies can be used to refer to the different ways that individuals approach and
engage with video games. These types are determined by a player’s motivations,
preferences, and behaviors. They can be used to classify players based on their unique
play-related personalities or motivational structures specific to video games. Player
typologies have also been used to examine the relations between game preferences
and game culture [88], the aesthetic meaning and effect of game-play to players [46].
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The first attempt to create a player typology was by Bartle [8] with four differ-
ent observed types of players Achiever, Explorer, Socializer, and Killer, under the
the context of multi-user dungeons (MUDs). Later, intensive academic efforts have
been made to, e.g., synthesize established typologies [64], expanding typologies by
adding new types [78], empirically verify the existing frameworks [51], or validate
the usability of, for example, using player types to predict player experiences [25].

Typical strategies forming player typologies inherit the notion of segmentation,
and they have been criticized as being overly dichotomous and simple, since players
can have simultaneous motivations [78, 64]. A recent focus of the research is to
use data analytical methods to extract underlying dimensions from data [184, 185,
166, 51], where most of the proposed methods have used survey questionnaires to
players.

Player Experiences, as a research issue, has also attracted increasing research at-
tention, the notion primarily focuses on

“investigating emotional, social, and cognitive components of the experience
emerging from the interaction between players and a gaming system.” [122]

Rooted in HCI, player experiences are a critical aspect of game design and are
often studied when evaluating or improving the overall game-play experience [128].
The concept of player experience encompasses various elements such as flow and
engagement, which are fundamental to the overall enjoyment and satisfaction of the
player. Flow refers to the optimal state of immersion in which a player fully engages
in the game, and their actions and challenges are well-matched [31]. Engagement
refers to the player’s emotional connection and investment in the game, which leads
to a deeper level of immersion and enjoyment [20]. By understanding and improving
player experience, game developers can create more enjoyable and satisfying game-
play experiences for players.

Apart from game design, player experiences have been a key area of research as
they provide insights into the meanings of games to players and how they interact
within the broader framework of culture and society [110]. This research has been
used to understand the ways in which players engage with and experience games,
as well as how games can influence their perspectives and behaviors. For example,
studies have examined the effects of “power-up” mechanics on meanings of the game
[94] to its players in different moments of the game-play, the social meanings of
games to players [55], and how players engage with political ideologies [56].
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Measuring player experiences [123, 158] is a key challenge in research related
to player experiences as they are complex and multidimensional. Recent studies
have focused on the potential of using data from social media to investigate player
experiences, as it can provide a large and diverse sample of players and offer insight
into their complex thoughts, feelings, and behaviors [26, 136].

2.2 Representation Learning

Representation learning is a specialized area of study within machine learning that
deals with discovering useful representations of data, instead of relying on human-
designed or hand-picked features. The aim of representation learning is to automati-
cally identify useful representations of data that can be used for various downstream
tasks, such as classification or clustering. The learned representations usually take
the form of a vector or a set of vectors, which are designed to capture the most
important features of the data.

In machine learning, the term “representations” refers to a set of latent features
that are not directly observed but learned from the observed data through a machine
learning algorithm. Research has shown that a set of appropriately learned repre-
sentations can be effective and complement the observed data in various machine
learning tasks [10]. In other words, representation learning is an area of research
that examines how to “re-present” original data to meet desired requirements through
well-designed learning algorithms.

2.2.1 Beyond Feature Engineering

From the perspective of a machine learning pipeline, a task such as classification
or prediction can be broken down into two main phases: the feature generation
phase and the prediction model phase. The first phase is a process that focuses on
selecting and extracting suitable features for use in the prediction model. Since the
performance of the prediction model can be heavily dependent on the quality of the
input features, this phase is often referred to as the “feature engineering” phase and
is considered to be a crucial process in the overall pipeline.

Traditionally, the process of feature engineering involves a high degree of human
and expert participation. Features are selected and transformedmanually, and human
knowledge and prior information can provide benefits. However, this process can

31



be extremely labor-intensive in practice. Apart from the above-mentioned, conven-
tional feature engineering, this dimension of research is set to extract abstract, high-
level, lower-dimensional representations from raw data, which can reflect essential
features and capture the desired information from the original data. Representation
learning has become an important field of research in machine learning.

Moreover, representation learning is an advanced approach to understanding and
utilizing data, going beyond traditional feature engineering techniques. The learned
representations are typically in the form of a vector or a set of vectors, which are
designed to capture the most important features of the data. This approach is also
useful for addressomg the problem of the curse of dimensionality, which arises when
a dataset has more features than samples, leading to sparse data spaces and degraded
analytical results and model performance.

Representation learning has been applied to various tasks and application areas
beyond training prediction models. It has been used for data visualization and com-
pression on large datasets [137], modeling interactions between proteins in biology
[38], measuring polarization of online communities [171], mitigating biases from
data [2], and enhancing privacy protection [172]. These examples demonstrate that
representation learning is a powerful tool in data analysis and machine learning that
can provide new insights and understanding.

2.2.2 Probabilistic Model vs. Neural Network Perspectives

According to the categorization proposed by [10], the body of literature of rep-
resentation learning can be, in the perspective of understanding, categorized into
two branches of research, the probabilistic model approach and neural network ap-
proaches.

The key distinction between the two branches is that the probabilistic modeling
approach conceptualizes the learned representations as random variables sampled
from some probability distributions whereas in neural networks approaches the rep-
resentations are understood as computational nodes. In particular, the probabilistic
model perspective is elucidated as a process to

“recover a parsimonious set of latent random variables that describe a dis-
tribution over the observed data”. [10]

Formally, let Z = {zn} denote the interested latent representation of the n-th data
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point and let the X = {xn} denote the n-th observed data point. Each data point is
D-dimentional, xn ∈ RD, the latent representation is K -dimensional, zn ∈ RK , and
D > K . The observed data is generated as

  \textbf {X} \sim P(\textbf {X}|\textbf {Z})    (2.1)

where the data are sampled from the probability distribution P (X|Z) and Z plays
the role of governing the generation of the observed data. Using P (Z) to denote the
probability distribution describing the prior information of Z, the joint distribution
of the data likelihood and the latent representation is constructed as

  P(\textbf {X}, \textbf {Z}) = P(\textbf {X}|\textbf {Z})P(\textbf {Z}).      (2.2)

where P (X|Z) is the observed probability distribution of data (likelihood) and
P (Z) is the prior distribution of Z.

The representation learning is therefore a process of searching for the posterior
distribution of Z given the observed data X:

  \label {eq::bayes_rule} P(\textbf {Z}|\textbf {X}) \propto P(\textbf {X}, \textbf {Z}) = P(\textbf {X}|\textbf {Z})P(\textbf {Z}).         (2.3)

Note that the equation 2.3 is derive using Bayes’ theorem, therefore, the process
of obtaining P (Z|X) is also known as Bayesian Inference.

On the other hand, neural network models are a family of machine learning
method that utilize complex, multi-layered architectures. For simplicity, a neural
network model can be denoted as function f (·) such that

  \label {eq:neural} \textbf {y}_n = f(\textbf {x}_n,\theta ) = h(g(\textbf {x}_n,\theta _1),\theta _2)          (2.4)

where x is the input data, y is the outcome, and θ = {θg , θh} are model parame-
ters. The final layers in these models, denoted as h(·) with parameters θh, known as
“predictive layers”, are responsible for making predictions based on the input data
and the outputs generated by the preceding “representation learning layers” or “fea-
ture extractors” or “encoders”, denoted as g(·) with parameters θg. Therefore, the
equation 2.4 can be re-written as the composition of the predictive component

  \label {eq:neural_pred} \textbf {y}_n = h(\textbf {z}_n ,\theta _h)     (2.5)
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and the representation learning component

  \label {eq:neural_rep} \textbf {z}_n = g(\textbf {x}_n ,\theta _g).     (2.6)

The equation 2.6 denotes the representation learning component, or layers that
are responsible for learning and extracting meaningful representations of the input
data that can be used to make accurate predictions in equation 2.5. Representation
learning layers are often tasked with processing the input data and generating the
outputs that are fed into the predictive layers. These models are often task-specific,
meaning they are trained for a specific task such as translation or image classification.
Due to their ability to achieve high performance, deep learning has gained significant
attention in academia, resulting in a vast amount of literature in recent years.

2.2.3 Shallow vs. Deep Representation Learning

Despite the growing popularity of deep learning models in representation learning,
another research direction that has not received as much attention is shallow rep-
resentation learning, referring to models with a single-layer or few layers structure.
It is often considered “cannot mine the deep information hidden in the data” [190].
However, these simpler models can offer unique advantages such as interpretability
and computational efficiency. Additionally, they can still be effective in uncovering
important features and patterns in data, as well as in unsupervised settings. This the-
sis seeks to explore the opportunities and potential of shallow representation learning
techniques, and to demonstrate their value in solving real-world problems.

Overall, the shallow representation learning approach can promise the following
merits:

• Simplicity: Shallow models are simpler in terms of their architecture and the
number of parameters they have, which makes them easier to train and under-
stand.

• Interpretability: Shallow models are more interpretable than deep models
thanks to the simplicity. Since the learned representations are out of simpler
transformation of the input features, it is easier to understand how the model
is making its predictions.

• Efficiency: Shallow models are computationally less expensive and require less
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data to train than deep models. They also tend to be faster to train and make
predictions.

• Generalization: Shallow models can generalize better to new data, as they can
risk less of overfitting to the training data like deep models might.

• Fewer overfitting issues: Shallow models have fewer parameters compared to
deep models, so they are less prone to overfitting and thus generalize better.

• Handling small datasets: Shallow models are less prone to overfitting and can
handle small datasets better than deep models.

• Transferability: Shallow models are able to learn simpler and more general
representations of the data, which makes them more transferable to new tasks
and new domains, especially when trained using self-supervised, unsupervised,
or contrastive representation learning techniques.

These merits further motivate the taken research direction in this thesis, that is,
to contrast with the idea of “deep” learning models this thesis investigates shallow
methods.

2.2.4 Factor Models

Factor models are a canonical representation learning technique. In factor mod-
els, the high-dimensional data is factorized into a lower-dimensional representation,
which consists of a set of latent factors or features that capture its underlying struc-
ture, important patterns and relationships in the data.

One of the key advantages of factor models is their ability to decompose high-
dimensional data structures lower dimensional latent features that are mutually inde-
pendent uncorrelated. It can not only reduces the noise of the original data, but also
help to identify important patterns and relationships that may not be immediately
apparent. This can provide valuable insights into the underlying structure of the
data, improve accuracy, and aid in decision-making.

For text data, factor models such as matrix factorization [133, 118] can provide
improved accuracy and interpretability of the underlying patterns and relationships
in the data. By extracting low-dimensional features or latent factors that represent
important semantic patterns, factor models can improve the accuracy of text analysis
tasks such as document classification, recommendation systems, and search engines.
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These models can also provide interpretable factors that can be used to gain insight
into the underlying semantic structure of the data, helping to identify important
topics, themes, and relationships between documents.

For social network data, factor models can provide improved scalability and flex-
ibility for analyzing and modeling complex network structures [138, 102]. By de-
composing and factorizing the adjacency matrix into smaller matrices or tensors,
factor models can identify important community structures, predict user behavior,
and recommend relevant items to users based on their social connections [74, 180].
These models can also be customized to different types of social network data, such
as directed or weighted networks [62, 183].

The probabilistic principal component analysis (PPCA) [165] is one of the most
influential canonical factor models and can be as the pioneer and iconic representa-
tion learning technique. In PPCA, the n-th observed data point xn ∈ RD is sampled
conditionally to a latent representation, from a multivariate normal distribution

  \label {eq:ppca_sampling} \textbf {x}_n | \textbf {z}_n \sim N(\textbf {W}^{\top } \textbf {z}_n, {\sigma ^2} \textbf {I})       (2.7)

where its mean vector is constructed by the product of the latent representation
zn ∈ RK and a weighting matrix W ∈ RK×D. The hyper-parameter σ controls the
noise in the data generation process.

Let the prior distribution of zn is a standard multivariate normal distribution.
The above sampling process in equation 2.7 can be re-parameterized and written as

  \textbf {x}_n = \textbf {W}^{\top } \textbf {z}_n + \varepsilon _{n}, \\ \varepsilon _{n} \sim N(0, \sigma ^2 \textbf {I}).   

     (2.9)

where the zn is a lower dimensional representation of the observed data point
xn. That is, each latent vector zn is generated from a non-informative, multivariate
normal distribution with zero mean and an identity matrix I as the covariance matrix

  \textbf {z}_n \sim N(0, \textbf {I} ).      (2.10)

The K -dimensional vector zn is a lower-dimensional representation of the D-
dimensional data point xn and with the observed data and the prior distribution,
the posterior distribution of zn can be analytically derived as
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  \textbf {z}_n | \textbf {x}_n \sim N(\textbf {M}^{-1} \textbf {W}^{\top } \textbf {x}_n, {\sigma ^2} \textbf {M}^{-1})       (2.11)

which is a normal distribution with the mean vector M−1W⊤xn and covariave
matrix σ2M−1, whereM ∈ RK×K =WW⊤ + σ2I. Moreover,M−1W⊤ can be seen as
the transformation matrix that can be used to recover posterior expected values of the
latent representation by zn linearly projecting the original data to the representation
space.

Overall, factor models provide a powerful tool for gaining insights into the un-
derlying patterns and relationships in complex data structures, helping to identify
important semantic and social structures and inform decision-making in a variety of
applications. The flexibility and interpretability of factor models make them well-
suited for analyzing and modeling a wide range of data types, including text data and
social network data, and their ability to learn informative representations of the data
makes them an important tool for representation learning.

2.2.5 Topic Modeling

Topic modeling [18] is an unsupervised machine learning technique modeling the
latent structures in the collected text documents. The basic notion is that, each doc-
ument d is “represented” by a vector θd contains the proportions of K topics, or
underlying themes. In other words, that each document is assumed to be generated
from the mixture of various unobserved topics. Furthermore, each topic is a distri-
bution over words in a vocabulary and each word in the document is generated from
one of those topics.

Topic modeling has been widely recognized as a powerful technique that can help
us uncover hidden patterns in text data in many domains, including game studies [47,
65, 105], especially when analyzing large-scale text data. By identifying common
themes or topics within a corpus of text data, we can gain insights into the underlying
structure of the data and make predictions about its properties.

Another benefit of topic modeling, similar to other representation learning tech-
niques, is that it can help us reduce the dimensionality of the analyzed data [36].
By distilling large volumes of text data into a smaller number of topics or concepts,
the data can become easier to analyze, visualize and facilitate human interpretation.
This is particularly useful when we need to identify the most important topics or
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concepts in the data, such as when improving search results [106] or facilitate itera-
tive decision-making when document-based relevance feedback are available [6].

Apart from the aforementioned features, topic modeling can also help protect
sensitive information and preserve privacy [191, 153]. By representing data in terms
of an abstraction, the underlying topics or themes, rather than original data contain-
ing specific words or phrases, exposing sensitive information can be avoided while it
is still possible to understand the theme of collected document. This is particularly
important when working with data that contains personally identifiable information
or other information may arouse privacy concerns.

As mentioned, in topic modeling, each document is represented with the θd vec-
tor. The goal of a topic model is to infer, or discover the proportion of the topic
mixture for each document and the word distribution of each topic over the vocabu-
lary, based on the observed collection of documents. In principle, the data generation
process of each document is as follows:

• For each topic k, generate a distribution over words, represented by a vector
of topic probabilities βk ∼ Dir(γ) , where βv,k is the probability that the word
v in the document comes from topic k.

• For each document d, generate a topic mixture according to θd ∼ Dir(α),
where θd,k is the probability that a word in the document d comes from the
k-th topic.

• For the n-th word in the d-th text document, do the following:

– Choose a topic zn for the word, according to the topic mixture represen-
tation vector θd.

– Choose a word from the vocabulary according to the chosen topic. Sup-
pose zn = k then the word is selected from the distribution βk specific to
the chosen topic.

Above, α and γ are hyper-parameters that control the smoothness of the topic and
word distributions. This representation learning framework has also been extended
for various purposes such as modeling correlation between topics [15], incorporating
the observation time of documents [17] and author information [182].
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2.2.6 Embedding Models

Another imperative line of research on representation learning is based on learning
the representations that can predict the interactions between the observed item and
its contexts. This representation learning approach is often called embedding mod-
els. Such models, also known as vectorized models, map high-dimensional data into a
lower-dimensional vector space. By doing so, embedding models can capture impor-
tant patterns and relationships in the data and represent them in a more manageable
format. This makes them a powerful tool for a wide range of applications. This ap-
proach was first introduced in NLP as a language model, where the observed items
and their contexts are different words [116]. The same notion and modeling frame-
work have been later generalized to model other different co-appearance patterns of
different items such as human genes [40] and online communities [171].

In embedding models, the main idea is to assign optimized embedding vectors to
each different possible data item, e.g., a word in the context of NLP or a node in
graph-structured data, including the center item and its context items [101]. items.
Models such as word embedding [116], BERT and ELMo [100] has made impact
expecially in NLP. This notion has also been applied to non-textual data [147].

One of the main benefits of embedding models is their ability to capture semantic
relationships between data points. In the case of text data, for example, embedding
models can capture the meaning of words and phrases based on their context, allow-
ing for tasks such as language modeling, sentiment analysis, and machine translation.
In the case of social network and graph data, embedding models can capture impor-
tant features of the data such as community structure, user preferences, and social
connections, allowing for tasks such as link prediction, node classification, and net-
work visualization.

The pioneer work, word2vec was introduced by [116] is used in the context and
modeling word co-occurrence. Let i and j denote the indices of two items (such as
two words, genes, or communities) where the item j is the context of the item i.
For example, in the item i can be a word in a piece of text, and item j can be any
other word around it. Let D = 1 denotes that the item i and j are present in the same
context, and let D = 0 indicates the opposite. The probability of the co-appearance
(D = 1) of items i and j is defined as the sigmoid transformation of the inner product
of their corresponding embedding vectors ρi and ρj, modeled as
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  P(D = 1|i,j) = \left ( \frac {1}{1 - e^{ -{\boldsymbol {\rho }_{i}}^{\top } \boldsymbol {\rho }_{j} }} \right ).    




 



 (2.12)

Similarly, if item i does not exist (D = 1) given the context time j, which means
the non-existence of the item pair (i, j) the probability is therefore becomes

  P(D = 0|i,j) = 1 - P(D = 1|i,j) = \left ( \frac {1}{1 - e^{{\boldsymbol {\rho }_{i}}^{\top } \boldsymbol {\rho }_{j} }} \right ).            




 




 (2.13)

Since it is computationally expensive to consider all the non-existing pairs, nega-
tive sampling or sub-sampling is a commonly used practice when training embedding
models. The integrated objective function becomes

  \argmaxA _{\boldsymbol {\rho }} \prod _{(i,j) \in D} P(D = 1|i,j) \prod _{(i,j) \in D'} P(D = 0|i,j) \\ = \argmaxA _{\boldsymbol {\rho }} \sum _{(i,j) \in D} \log p(D = 1|i,j) + \sum _{(i,j) \in D'} \log p(D = 0|i,j) \\ = \argmaxA _{\boldsymbol {\rho }} \sum _{(i,j) \in D} \log \left ( \sigma \left ( {\boldsymbol {\rho }_{i}}^{\top } \boldsymbol {\rho }_{j} \right ) \right ) + \sum _{(i,j) \in D'} \log \left ( \sigma \left ( -{\boldsymbol {\rho }_{i}}^{\top } \boldsymbol {\rho }_{j} \right ) \right ).





   



   







    



   





























In text data analysis, embedding models can help identify important semantic
relationships between words and capture similarities between them, allowing the
model to predict the meaning of new words based on their context. This can help
with tasks such as document classification, named entity recognition, and question
answering. Embedding models can also be applied to graph-structured and social
network data [135] to identify community structures [28], predict user behavior
[120], and recommend relevant items to users based on their social connections [58].
Examples of social network analysis tasks that can be performed using embedding
models include link prediction, community detection, and network visualization.

Overall, embedding models are a flexible and powerful tool for modeling and
analyzing a wide range of data types, and their ability to capture important patterns
and relationships in the data makes them a valuable tool for a variety of applications.

Exponential family embedding (EFE) models can be seen as another canonical
general-purpose embedding model compared to word2vec, in which the exponential
family distribution is introduced to extend the embedding models to various do-
mains. In EFE, the data points are generated as samples from an exponential family
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distribution where the natural parameters are governed by the embedding ρ and con-
text vectors α. That is, it can model not only the appearance of the item i given its
context but also the values carried by the observed item and its contexts.

Let x (i)n denote the value (a single value in EFE) of the item i at the location
n, which has its context cn. In exponential family embeddings, the value of x (i)n is
generated from an exponential family distribution depending on its context cn and
their corresponding values xcn .

  x^{(i)}_{n} | \textbf {c}_{n} \sim \mathbf {ExpFam} \left (\eta _{n} \left (\boldsymbol {x}_{\textbf {c}_{n}} \right ), t\left (x_{n} \right ) \right )   







 


(2.14)

where ExpFam can be any exponential family distribution with a corresponding
link function g, ηn

(︁
xcn

)︁
is the natural parameter of the distribution, and t (xn) denotes

the sufficient statistics.
The natural parameter is modeled as a function of an inner product of the em-

bedding vector ρ and the context vector α so that

  \eta _{n} \left (\boldsymbol {x}_{\textbf {c}_{n}} \right ) = g \left ( \boldsymbol {\rho }_{i}^{\top } \frac {1}{|\textbf {c}_n|} \sum _{n' \in \textbf {c}_n} x^{(i')}_{n'} \boldsymbol {\alpha }_{i'} \right ) \;. 





















 (2.15)

As the exponential family offers the flexibility to model different observation
distributions, the embeddingmodels are no longer limited tomodeling co-appearance
(binary) observations. The EFE model has been applied to different domains such
as grouped data [146] and graph-structured data [29].

2.2.7 Variational Autoencoder

Another notable approach is called variational autoencoder [84]. A variational au-
toencoder (VAE) is a generative model for representation learning when the true
posterior distribution of pθ (z|x) ∝ pθ (x|z)pθ (z) is be intricate. It is a probabilistic
model that combines the strengths of autoencoders and variational inference. It con-
sists of two parts: an encoder, which maps the input data x to a hidden representation
z, and a decoder, which maps the hidden representation back to the original input.

The primary notion of VAE is that it extends the standard autoencoder by in-
troducing a probabilistic interpretation of the hidden representation z. The encoder
maps the input data to a variational distribution qϕ(z|x) over the hidden representa-
tion, typically a Gaussian distribution where the parameter ϕ controls the mapping
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process. The decoder is then trained to generate new samples from this distribu-
tion pθ (x|z), which can be used to reconstruct the original input data, where the
generative process is controlled by parameter θ.

The key concept of VAE is that instead of learning a deterministic hidden rep-
resentation z for a given input x, it learns a probability distribution of the hidden
representation given the input. This is done by assuming that the hidden representa-
tion z is sampled from a simple distribution (e.g., a Gaussian) with parameters that
depend on the input x. Then the encoder network is trained to learn the parameters
of this distribution. Mathematically, let x is the observed data and z denote the latent
representations, the VAE can be formulated as:

• The encoder network learns the parameters of the recognition mode, a condi-
tional variational probability distribution qϕ(z|x)

• The decoder network learns the parameters of a conditional probability dis-
tribution pθ (x|z).

The overall goal is to maximize the likelihood of the data, which is intractable to
compute directly. To overcome this, VAE uses an alternative approach. Following
the paradigm of variational inference [16], starting with the discrepancy between
qϕ(z|x) and the exact posterior distribution pθ (z|x):

  KL(q_{\boldsymbol {\phi }}(\textbf {z}|\textbf {x}) | p_{\theta }(\textbf {z}|\textbf {x})) = E_{z \sim q(\cdot |\textbf {x})} \left [ \log \frac {q_{\phi }(\textbf {z}|\textbf {x})}{p_{\theta }(\textbf {z}|\textbf {x})} \right ] \\ = E_{\textbf {z} \sim q(\cdot |\textbf {x})} \left [ \log \frac {q_{\phi }(\textbf {z}|\textbf {x}) p_{\boldsymbol {\theta }}(\textbf {x})}{p_{\theta }(\textbf {x},\textbf {x})} \right ] \\ = \log p_{\boldsymbol {\theta }}(\textbf {x}) + E_{\textbf {z} \sim q(\cdot |\textbf {x})} \left [ \log \frac {q_{\phi }(\textbf {z}|\textbf {x})}{p_{\theta }(\textbf {x},\textbf {z})} \right ]     









  





 



      





 



where KL is the Kullback-Leibler divergence, which measures the difference be-
tween two probability distributions. The Evidence Lower Bound (ELBO) can be
derived as:

  L\left ( \boldsymbol {\phi }, \boldsymbol {\theta } | \textbf {x} \right ) = E_{\textbf {z} \sim q(\cdot | \textbf {x})} \left [ \log \frac {p_{\boldsymbol {\theta }}(\textbf {x}, \textbf {z})}{q_{\boldsymbol {\phi }}(\textbf {z}| \textbf {x})} \right ] = \log p_{\boldsymbol {\theta }}(\textbf {x}) -KL(q_{\boldsymbol {\phi }}(\cdot | \textbf {x}) | p_{\boldsymbol {\theta }}(\cdot | \textbf {x})). 

     




 



        (2.16)

Maximizing ELBO is equvilent to maximize the data likelihood log pθ (x) and
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minimizing KL(qϕ(z|x) |pθ (z|x)). Therefore, a VAE model can be trained by maxi-
mizing ELBO as the objective function (optimizing ϕ and θ).

The sampling in Ez∼q( · |x)
[︂
log pθ (x,z)

qϕ (z |x)
]︂
can be done by using the reparametrization

trick and stochastic gradient descent. For example, if the probabilistic encoder qϕ(·|x)
is normally distributed as N (µ,𝚺) where ϕ = {µ,𝚺}. The data generating process
z ∼ q(·|x) can be done with

  \textbf {z} = g_{\boldsymbol {\mu }, \ \boldsymbol {\Sigma }}(\boldsymbol {\varepsilon }) = \boldsymbol {\mu } + \textbf {L}\boldsymbol {\varepsilon }, \
\boldsymbol {\varepsilon } \sim N(0, \textbf {I})              (2.17)

where L is the Cholesky decomposition of 𝚺 such that 𝚺 = LL⊤. The ELBO can
be estimated as

  E_{\boldsymbol {\varepsilon } \sim N(0 , \textbf {I})} \left [ \log \frac {p_{\boldsymbol {\theta }}(\textbf {x}, \boldsymbol {\mu } + \textbf {L}\boldsymbol {\varepsilon })}{q_{\boldsymbol {\phi }}(\textbf {z}| \boldsymbol {\mu } + \textbf {L}\boldsymbol {\varepsilon })} \right ]. 




   
 


 (2.18)

The gradients used to update ϕ and θ can be obtained with chain rule. This
principal framework of VAE has been widely applied to various machine learning
tasks such as text classification [181] and modeling physical quantities [132].

2.3 Representing Games, Players through Social Media

Games and play have been data-intensive. Player-generated social media data can
provide insights into games, players, and relevant contexts, and can influence player
behavior and gaming culture. For example, online discussions can not only reveal
players’ opinions but also shape players’ behavior, and the formation of online com-
munities has played an important role in the landscape of game culture. Data ana-
lytics provides tools to investigate the interplay of data and game-play and enhance
the understanding of games and players.

When it comes to data from social media, both the volume and granularity of dig-
ital data are growing, for example, the Steam platform contains not only the games
but also the player reviews and their personal profiles into which the player experi-
ences and the refined game-play history are encoded. Computational approaches are
useful to process such data and obtain insights.

The complexity of data from social media can result in both difficulties and bless-
ings. It increases the difficulty during data processing and analysis. On the other
hand, if the model can handle and capture such complexity appropriately, better
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insights can be obtained. The gained insights can help us better understand game
culture. Representation learning is the tool of focus in this thesis to deal with the
complexity of such data. That is, representing games, players with abstract but mean-
ingful features that carry sufficient and distilled information.

It is worth noting that, at the crux of machine learning solutions and the above
application area, there is the tension between explanation and prediction [68]. As
machine learning has long focused on prediction performance, the ability to make
sense of data and interpret models has been often ignored. Well-designed represen-
tation algorithms should offer a learning process that can integrate sufficient human
insights and enhance the interpretation.

This section further outlines the data types that are dealt with in this thesis. The
challenges when analyzing those data are also outlined. Note that the discussed data
types and challenges can only cover a part of reality, as the real domain is often more
complex. This will be discussed in more detail in Section

2.3.1 Data Types

The thesis primarily focuses on the data types as follows. It is important to note
that in the world of games and play, there are other data types beyond those listed,
e.g., player telemetry [189, 154]. Nevertheless, the following data types are the most
important in social media and are often underutilized or understudied.

2.3.1.1 Numerical Data

Social media data contains a variety of numerical measurements. For example, posts
on Reddit are measured with the number of shares and comments, and users are
measured with number of karma points, which reflects the user’s popularity [121]
or reputation [82].

Another example is the player profiles on Steam. Player profile records show-
case the history of the player, numerical values such as the number of badges and
achievements reflect the player’s skills and numerical values such as the number of
friends and workshops reflect the player’s social activity and social capital.

Those numerical values are often unstructured (without dynamic data schema)
and mixed with different types of data. Online social media platforms often contain
different types of data. For example, a Twitch streamer can have the statistics such
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as their number of views (integer), and the lifetime of the streaming (real-valued)
[145].

2.3.1.2 Text Data

A considerable volume of online data is in text format, including online game re-
views and discussions. Compared to numerical values, the text is able to carry richer
and more diverse content. Moreover, user discussions in online forums have both
theoretical and practical implications. They can help improve our understanding
of collective thinking while also facilitating practical applications such as improving
user experience, increasing engagement, and supporting the democratic process. [5,
115] In particular, it has been suggested that game reviews are “one of the primary
forms of videogame journalism” and serve a broader role than just being “shopping
guides” as they cover diverse themes and offer game design suggestions, advice for
enjoying games, and insight into game creators’ intentions. Game reviews also con-
textualize the historical connections between games and help preserve video game
history. [187].

The reviews and online discussions can also reflect players game related activities
such as virtual purchases [23]. Before owning the game, other players’ opinions affect
the decision of possessing the game. After acquiring the game, the “tips and tricks”
learned from other players’ previous experiences [69] influence the strategy and style
of play when actually playing the game. The experiences gained out of playing can
become another review or part of the discussion online that has the potential to
influence other players.

Online game reviews are a valuable source to understand players’ experiences
[26, 186]. For example, on the gaming platform Steam, players can write reviews
to reflect on their experiences after they have purchased the game. Game reviews
provide an interface to understand not only what is in the game but also what the
game has brought to the players while playing, and after playing the game. Those
reviews contain an abundance of information on players’ experiences. However, the
large amount of users leads to a large volume of written text reviews. Challenges
arise when it comes to analyzing them with pure human effort.
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2.3.1.3 Graph Structured Data

Data from social media are often stored in a graph structure. The graph structure can
effectively preserve the interactions between entities. In general, a graph G = (V,E)
is composed of a set of nodes V and a set of edges E. Each node vi ∈ V denotes an
entity and each edge ei,j ∈ E describes the interaction between nodes vi and vj. In
some graphs such as a knowledge graph, each edge or node can carry attributes.

Graph data are ubiquitous in games and social media. For example, interactions
between Twitch steamers [145] and Reddit hyperlink networks [91] can be both
encoded as graph-structured data sets. One common challenge in representation
learning regarding graph-structured data is to construct vector representations for
nodes according to the interactions between nodes. A set of properly learned node
representations can be used as input features in downstream tasks such as node clas-
sification and link prediction between nodes.

2.3.2 Key Challenges

The above-mentioned data types in social media lead to the following analytical chal-
lenges:

2.3.2.1 Latent Temporal Dynamics

How the data has changed over time is an interesting topic in social media data
analysis. For example, in Reddit, the timestamps are often collectible and the data
are often collected over a period of time. These features bring opportunities for
understanding the evaluations of players’ perceptions and experiences over time.

2.3.2.2 Multiple Sources

Social media data are not often centralized. Therefore, in some situations, it is needed
to analyze data from different sources. For example, a game can be discussed in
different places (Reddit, Steam, and Nintendo Forums). The major challenge when
aggregating the data from multiple sources is to appropriately model both the shared
and distinct (source-specific) patterns.
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2.3.2.3 Cross-structure Modeling

Different representation techniques can be used to capture different underlying struc-
tures of data. How to appropriately learn those structures from data and how to
model different-structured representations interact are challenging tasks. Neverthe-
less, the learned structures can offer valuable insights into data analysis, as various
structures can facilitate the interpretation by providing multiple perspectives on the
data.

2.3.2.4 Multiple Representations

It is natural that each entity can pose different characters and roles in different cir-
cumstances. For example, a player can play different roles in different games, or a
word can have different meanings in different contexts. The multiple representation
setting allows the flexibility of models to better capture uncertainty of how data arise
from latent phenomena.

2.3.2.5 Heterogeneous Data

In social media, the collected data can be in mixed types. For example, text docu-
ments often carry metadata alone with the text such as the author’s information, or
document attributes such as the number of likes of a post. Modeling the interactions
between the metadata and the text content yields various research opportunities.
Similarly, in a graph, a node in a graph can contain attributes of different types.
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3 EMPIRICAL ANALYSIS OF GAMES AND PLAY

This chapter demonstrate how representation learning can be used to disentangle the
dependencies of data and model temporal dynamics with two empirical analysis
works for game studies. Specifically, this chapter summarizes two empirical data
analysis cases that utilize two representation learning techniques: the factor model
and the topic model are presented.

The studies in Publication I uses a factor model to explore player typologies based
on user profile data from Steam, a popular digital game distribution platform. The
study demonstrates how factor models can be used to obtain insights into player
behavior and preferences.

In Publication II, the structural topic model [143] (STM), a topic modeling tech-
nique is used to model and analyze the temporal dynamics of player discussions in
response to updates and changes in the game No Man’s Sky [66]. By leveraging topic
modeling, the study gains a better understanding of how players’ perceptions have
changed in reaction to changes in the game and how these responses have evolved
over time.

3.1 Publication I: Extracting Player Factors from Steam Profiles

Publication I leverages a factor model and Steam profiles to investigate player ty-
pologies. The factor model enables more flexible player typologies and the Steam
profiles are proven to be a valuable data source from social media. In total, 8 player
meaningful factors are extracted.

3.1.1 Factorized Player Typologies, and Steam User Profile

The exploration of player typologies has been a significant research topic in game
studies. Understanding player behavior, motivation, and experiences is crucial, and
the conventional strategy of classifying players, such as Bartle’s four-player types
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model [8], has faced criticism for its inflexibility and "clear-cut" categorization. Fur-
thermore, players are unlikely to strictly belong to a specific type as they can have
simultaneous motivations and traits [78, 64]. The notion of player typologies is
rooted in segmenting players [8], but this approach has been criticized for being
dichotomous and overly simplified.

Recently, several player typology frameworks have been proposed based on com-
putational factor models, where the player typologies are captured as latent dimen-
sions [51, 166, 184, 185] where each player is viewed as a composition of various
factors.

The analysis in Publication I further leverages Steam profiles to extract player fac-
tors. This approach extensively utilizes online data and is not limited to using survey
questionnaires. The Steam user profiles offer a good resource for studying player ty-
pologies from the perspective of how different components distribute among the
player profiles.

In Publication I, a factor analysis model is conducted on a collection of 60267
unique user profiles. The data collection was collected in a “snowball” manner. A
web crawler started from one randomly selected user from the leaderboard of top
10 Steam user. The crawler then iteratively go to the list of the user’s friends pro-
file URL. The list of users’ URL was grown via crawling the friends of each of
the existing users on the list. The features that were extracted through crawling in-
clude various elements such as Levels, Showcases, Badges, Number of Games, Screen-
shots, Workshop Items, Videos, Reviews, Guides, Artworks, Groups, Friends, Items
Owned, Trades Made, Market Transactions, Achievements, Perfect Games, and
Game Completion Rate, and Profile Customization.Profile Customization numeri-
cally summarizes four binary profile customization related variables: Avatar, Status,
Background, and Favorite Badge customization (customized or not). For example,
for a user who customized two of the four customizable items, the value of Profile
Customization is then set to 0.5. In addition, to take the user activity into the ac-
count, each user’s active time span was also collected, using the Steam API1, based
on the time when the user last logged off and the time when the user account was
created. The profile duration of the account was further computed and utilized to
normalize the profile features, by simply dividing each feature by the profile dura-
tion.

1https://steamcommunity.com/dev
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3.1.2 Extracted Latent Player Factors

An exploratory factor analysis (EFA) [81, 134, 156] is employed to identify latent
player factors among variables in the Steam user profiles. EFA allows for the re-
duction of data complexity and the discovery of relations between variables. The
parallel analysis (PA) [70] technique was used to determine the number of factors,
which has been shown to be effective in recent research. PA employs Monte Carlo
simulation to create random samples of uncorrelated variables that are parallel to the
observed data. In this study, the parallel analysis task was conducted with 5000 sim-
ulations and 8 latent factors are extracted. Moreover, to simplify the interpretation
of the factor analysis results, the varimax technique [72] was employed for rotation,
which maximizes the variance of each factor loading. The extracted factors and cor-
responding factor loadings can are displayed in Table 3.1 and 3.1. The names of the
extracted factors were given by the authors of Publication I, the discussion was led
by Xiaozhou Li who served the role as the fist author in the study. The process was
based on the analysis of each factor loading on different variables. Each extracted
factor is described as follows:

• Elite: focuses on social comparison and enhancing quantifiable social scores;

• Achiever: prioritizes mastering games and completing them thoroughly

• Provider: enjoys providing facilitation to others with gameplay guides (Guides)
and game-related arts (Artwork)

• Completer: which focuses on finishing games and showcasing possessions

• Improver: which focuses on improving games through workshop items and
reviews

• Trader: buys and sells game-related virtual items

• Belonger: focuses on social belonging and profile customization

• Nostalgist: which restores gameplaymemories through screenshots and videos

It is worth noting that the eight factors aim to explore the various attributes of
Steam users instead of arbitrarily categorizing each user into a single type. With this
framework, an individual player can be represented by the strength on each factor
and further visualized by a radar chart such as Figure 3.1 that illustrates their salient
attributes. By reducing the original number of variables to the strength on the 8
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Table 3.1 Loadings of the Extracted Factors (1)

Variable Elite Achiever Provider Completer

Level 0.641 -0.005 0.004 -0.002
Showcases 0.026 0.107 0.065 0.828
Badges 0.954 0.033 0.004 0.010
Games 0.019 0.511 0.020 0.016
Screenshots -0.000 0.118 0.332 0.046
Workshop.Items 0.007 -0.045 0.042 0.127
Videos 0.002 -0.030 -0.066 0.046
Reviews 0.002 0.232 0.039 0.044
Guides 0.002 0.024 0.879 -0.031
Artwork 0.004 -0.010 0.836 0.101
Groups 0.078 0.017 0.020 0.031
Friends 0.947 0.002 0.004 0.043
Items.Owned 0.004 0.048 0.005 0.049
Trades.Made -0.003 -0.142 -0.002 0.281
Market.Transactions 0.017 0.116 0.001 -0.063
Achievements 0.005 0.865 0.014 0.125
Perfect.Games 0.003 0.847 0.006 0.210
Game.Completion.Rate 0.008 0.274 0.013 0.852
Profile.Customization 0.808 -0.007 -0.008 -0.019
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Table 3.2 Loadings of the Extracted Factors (2)

Variable Improver Trader Belonger Nostalgist

Level 0.008 -0.013 -0.263 0.002
Showcases 0.162 0.180 0.028 0.067
Badges 0.006 0.043 0.016 0.004
Games 0.108 0.365 0.030 0.088
Screenshots 0.344 0.039 0.022 0.490
Workshop.Items 0.789 -0.027 0.003 -0.082
Videos -0.074 -0.022 -0.003 0.901
Reviews 0.769 0.039 0.018 0.113
Guides -0.090 -0.003 -0.001 -0.002
Artwork 0.192 0.006 0.018 0.030
Groups 0.026 0.008 0.951 0.009
Friends 0.007 0.014 0.202 0.001
Items.Owned -0.004 0.733 0.006 -0.022
Trades.Made -0.063 0.551 0.003 -0.061
Market.Transactions 0.044 0.645 -0.007 0.049
Achievements 0.014 -0.010 -0.001 -0.011
Perfect.Games 0.105 -0.045 -0.002 -0.017
Game.Completion.Rate 0.054 -0.004 0.003 0.021
Profile.Customization -0.015 -0.016 0.553 -0.007
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Figure 3.1 An Example of a User Preference Attributes Radar Chart

factors and normalizing the value, users can see their unique distribution over latent
player factors. For example, in Figure 3.1, the user with a salient attribute of being
an improver, being creative with workshop items, and contributing to improving
games through reviews. The user also possesses relevantly strong attributes of being
an elite, achiever, and provider. This indicates that the user favors gaining levels,
badges, and achievements, and providing guides and artworks to the community.

Moreover, this framework can be further applied in personalized gamification
design facilitated by a better granularity of the understanding of each player. Con-
nections can be identified between attributes and established intrinsic motivation
types, as well as other similar gamification design models or frameworks, based on
the variables each attribute is associated with. Personalized gamification design may
vary depending on the player’s motivation and the design elements frameworks that
are utilized.
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3.2 Modeling Temporal Changes in Game Reviews

Publication II focuses on players’ perceptions to game updates and changes. The
game No Man’s Sky was selected to analyzed as it exemplifies a game with constant
changes including ongoing commitment to maintain and update. The work analyzes
85805 unique user reviews onNoMan’s Sky from its release date, August 12th 2016,
to October 5th 2019.

3.2.1 Game Evolution and No Man’s Sky

Software evolution is crucial for maintaining software quality, and with the adop-
tion of incremental and agile development methods, user feedback plays a vital role
in software product evolution [59]. Effective release planning is thus essential, and
numerous studies have contributed to the practice of software release planning, par-
ticularly for mobile applications [148, 149, 160, 124, 168, 35, 151]. Similarly, on-
line distribution platforms for video games allow developers to receive and respond
to player feedback, making proper release planning critical, particularly for Early
Release games [98].

In general situations, as a piece of software, digital games follow the principles
of software evolution. A body of literature has addressed the challenges and issues
of game development practice from software engineering perspectives [3, 79]. For
example, assets, scopes, process, publishing, management, team organization, and
third-party technology have been identified as the primary challenges in game de-
velopment [79]. It has been suggested that game developers often attempt to adapt
traditional software engineering methods to game development with solely certain
adjustments, and tend to ignore the maintenance and verification [4]. Moreover, up-
dating games correctly plays an important role in the process of perfecting the game
and achieving better customer satisfaction [80].

More specifically, from a game-development perspective, the evolution of indi-
vidual games over their life-cycle can be categorized as

• Emerging change: Creating, or designing a space for the players to mold their
own game experiences.

• Reactive change: The changes are in response to direct or indirect feedback
from the players.
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• Pre-planned change: The changes of content that are already planned , de-
signed, or even already produced, before the launch of the game.

The categories are not necessarily equal, but in reality they can overlap during
the evolution due to the shared similarities [125].

The game which is analyzed, No Man’s Sky, is an example of a mixture of the
mentioned changes. It is an action-adventure survival game that was initially launched
in August 2016. In the beginning, the game received strong criticism from players
due to the lack of features that had been promised to be included. However, since
its launch till the data collection in Publication II was conducted (October of 2019),
the game has been continually updated with eight major updates to date, labeled
as versions 1.00, 1.10, 1.20, 1.30, 1.50, 1.70, 1.75, and 2.00. These updates were
released on 12 August 2016, 26 November 2016, 8March 2017, 11 August 2017, 24
July 2018, 29 October 2018, 22 November 2018, and 14 August 2018, respectively
2.

On the other hand, user feedback is critical for improving products and services
[34, 178, 24, 89]. The combination of collectable end user feedback and traceable
software evolution allows effective requirements analysis through data analysis [130].
How to effectively analyze reviews to uncover critical user needs has been shown to
be a prominent issue in many studies [52, 32, 63, 97], including video game user
reviews [98].

In Publication II, a detailed investigation of player reviews was conducted, ex-
amining 85805 game reviews of No Man’s Sky. The collected data spanned a period
of time from August 12th, 2016, to October 5th, 2019. Among them, over half
(44335) of the reviews were given within the first month of the game release and
with 59.14% of the reviews that did not recommend the game. During the timespan
of the data set the overall recommendation rate had increased to 53.03%. Besides
review text and the recommend/not recommend flag for the review, features includ-
ing review publication date, and the user’s play hours were also collected for data
analysis.

The analysis revealed a diverse range of topics discussed by players, along with
temporal patterns of topic prevalence that emerged over time. Moreover, the study
also revealed notable variations in temporal patterns between reviews that recom-
mended the game and those that did not. The research further demonstrated how

2https://nomanssky.gamepedia.com/Patch_notes
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updates to the game coincided with shifts in player discussions and presented con-
crete examples of how these updates might affect player feedback. These findings
provide valuable insights into the dynamic nature of player reviews and the impact
of game updates, offering promising prospects for future research in this domain.

3.2.2 Structural Topic Modeling

The collected data contains not only text reviews but also document-level covariates
including: the user recommendation (recommend or not) indicates the general posi-
tive/negative evaluation of the game, thus it is taken as one of the covariates; we also
take the posting time as a co- variate in order to model the evolution of the review
content over time. To leverage this information, we chose a more advanced topic
model STM. This technique employs machine learning-based topic modeling [18] to
model each document as a combination of latent topics. As introduced in Section
2.2.5, by identifying these latent topics, topic modeling enables us to identify topics
present in a corpus of documents that contain a diverse range of topic combinations.
This approach is more flexible than hard clustering, which assumes that each docu-
ment belongs to a specific cluster, as it represents a document in a more adaptable
way. Each topic is represented as a distribution over words, and the likelihood of a
word w appearing in a document d is estimated. The data generative process can be
summarized with the joint probability:

  p(w|d) = \sum _k p(k|d)p(w|d) 



 (3.1)

where p(k|d) is the probability that the word coming from topic k out of all
possible K topics. Such topics are not pre-specified by humans but are automatically
learned by fitting the model to the data. Unlike, for example, principal component
analysis, topic modeling is inherently designed for count data such as word counts
in text documents. Topic modeling has been used in many domains including game
studies (e.g. [45]).

STM is used tomodel and analyze how the topic prevalence is affected by document-
level covariates. It models the topic prevalence of a document p(k|d) with a vector
θd = [p(1|d), . . . , p(K |d)]⊤ drawn from a distribution that depends on the covariates
so that
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  \mathbf {\theta }_d \sim LogisticNormal_{K-1}(\mathbf {\Gamma }^{\top }\mathbf {x}_d, \mathbf {\Sigma })    (3.2)

where xd is document-level covariates, Σ is the covariance matrix, and Γ is the
coefficient matrix governs the interaction between topic prevalence and document-
level covariates.

The only user-specified parameter which needs to be set up when training an
STM model is the number of the topics K . To decide it, we assessed the held-out
likelihood value as the criterion: to compute it, a subset (here 50%) of the docu-
ments is considered unobserved (“held out”), and the models are evaluated by their
likelihood on this held-out portion. For each model setting, from K = 5 to K = 100,
the held-out likelihood is computed 10 times with random initialization, and the
final number of topics is chosen as the value where the held-out likelihood plateaus.
We then optimize STM with the final K from 10 random initializations, choosing
the result with the best semantic coherence [117] as the final model.

3.2.3 Extracted Themes

In total, 55 topics have been identified, covering a wide range of discussions. A se-
lection of topics with their top words are shown in Table 3.3, the full table can be
found in Publication. Each topic is further labeled through examining the its top
words and example quotes (i.e., documents with high prevalence of the topic). Some
topics such as Evaluating Game-play andMoving and Looking reflect general gam-
ing activities. Other topics reflect positive experiences, such as Enjoyment of Play
Experience and Appreciation, or negative experiences, such as Bugs and Glitches
andDisappointment of Promise andHype. Some topics are related to specific game
mechanics, such as Spaceship Travel and Combat,Material Collection.

Each of the extracted topics reflects a meaningful aspect in game changes. Be-
sides, the STM enables the modeling of the temporal dynamics of topic prevalence
over time. Figure 3.2 displays the changes over time of a subset of the extracted
topics among players who recommend or do not recommend the game. From these
modeled dynamics, it is worth noting that players’ perceptions are changing over
time and these changes can potentially be affected by updates to the game. There
are extracted topics such as Updates and Added Content, Changes in Game, and
Upgrades and Items that are directly related to game updates. Furthermore, the
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Table 3.3 A selection of extracted topics

Topic Pr(%) Top Words

Evaluating Game-play 4.46 play fun get buy hour pretty first bore
good like couple look day soon gameplay

Disapointment of Promise 2.62 promise hype wait buy deliver disappoint
and Hype title worth live hope game pay trash huge

preorder
Appreciation 2.30 love time play start hour keep cool idea

absolutely feel always beautiful first put
experience

Enjoyment of Play 2.30 enjoy explore like far bite thing play look
Experience feel may relax slow find although kind
Updates and Added Content 1.93 new update add game bring content

community future major forward feature
stick atla foundation improvement

Change of Game 1.80 stuff good make need like decent super
lot big easy yet little still take slowly

Moving and Looking 1.57 around turn take away look see like move
head walk way hit one figure blow

Bugs and Glitches 1.44 bug save break progress time con pro fix
buggy hour glitches play start many file

Spaceship Travel and Combat 1.14 ship mine fly space land planet station tool
fuel sell resource attack multi weapon combat

Material Collection 1.11 life find every material planet farm start time
need minute thing walk take tutorial except

Upgrades and Items 1.06 ship upgrade inventory item slot suit fight
find sentinel trade management space system
need blueprint
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Figure 3.2 Selected topic prevalence over time.

difference in topic prevalence between players who recommend the game and those
who do not recommend it shows that the overall evaluation can be either positive or
negative once the player has experienced the updates. The findings have shown that
the updates have played an important role in the life-cycle ofNoMan’s Sky especially
after the game was launched.

The study’s findings highlight the role of updates and changes of a game in shaping
players’ perceptions. It also highlights the importance of creating a continuous and
engaging experience for players.
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4 LATENT FACTORS AS REPRESENTATIONS

This chapter tackles the research addresses regarding disentangle the dependencies
of data, cross-structure learning, and modeling temporal dynamics with a focus
on factor models. The objectives are approached from the perspectives of methodol-
ogy development. It summarizes the methodological advances presented in Publica-
tions III and IV, which focus on the development of factor models for analyzing text
data. Publication III proposes a combination of non-negative matrix factorization
and Gaussian Process Latent Variable model to model the temporal dynamics and
cross-domain relationships of text collected from multiple sources over time. Publi-
cation IV proposes a combination of factor model and topic model to analyze text
data with document-level covariates. Note that this chapter highlights the developed
methods, the details of the algorithms and experiments can be found in the respective
papers.

The model proposed in Publication III is a combination of Gaussian Process
Latent Variable model and truncated-normal likelihood. Furthermore, the model
considers a situation where data are from multiple sources. Different from canon-
ical methods such as non-negative matrix factorization (NMF) [95, 30, 129] and
Bayesian group factor analysis (GFA) [169, 87], the usage truncated-normal likeli-
hood is novel and effective since it takes care of not only the non-negative observed
data but also the latent variables generated from a Gaussian Process.

Themodel proposed in Publication IV is inspired by the empirical work on player
typology in Publication I. The proposed model introduces the factor structure to a
topic model to handle the complexity of document-level covariates. In contrast, STM
can only handle low-dimensional covariates. The capability of the developed model
can contribute to not only game studies but also other fields such as political science.
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4.1 Publication III: Multi-source Non-negative Matrix Factorization

In many data analysis situations, the observed data matrix X does not always contain
real-valued numbers. Instead, e.g., in the case of textual data, the elements of the
data matrix are non-negative. Let X+ denote a N ×D term-document matrix where
N is the size of vocabulary and D is the number of documents, and each element
xv,n ∈ R+. In such cases, it may be desirable to find a factorization where the factors
are also non-negative. Such a factorization approximation becomes

  \textbf {X}^{+} \approx \textbf {Z}^{+} {\textbf {W}^{+}}^{\top }.    (4.1)

This approximation leads to a line of research of NMF [95, 30, 129], where the
lower-rank matrices Z+ ∈ R+N×K and W+ ∈ R+K×D are used to approximate the
data matrix X+ containing only non-negative values. In text analytics, the data ma-
trixX+ is typically a term-document matrix ofN terms andD documents containing
occurrence counts of N terms over D documents, or numerical statistics for text an-
alytics such as term frequency–inverse document frequency (TF-IDF) values [150].
The matrix W+ can be interpreted as a topic loading matrix, where each document
d, originally represented as a length-N term-count vector x+

d
, is transformed into an-

other length-K representationw+
d
that contains the topic loadings for K latent topics.

On the other hand, Z+ is the topic content matrix of N terms across the K topics,
where each column z·k is a discrete probability distribution over terms for topic k.

Besides text data analytics, NMF is also widely used in various domains such as
bioinformatics [163] and image processing [95]. For simplicity, the notation + will
be omitted in the forthcoming equations.

The NMF framework can be further extended to a situation where the input
data are a time series of matrices X(1) , . . . ,X(T ) for T timestamps. Moreover, the
data matrix for each timestamp can also encode group information so that it is a
composition of data matrices from different sources, for example, for data from m
views, groups, or sources we can write

  \textbf {X}^{(t)} = [\textbf {X}^{(t)}_1, \hdots , \textbf {X}^{(t)}_m].  
    

  (4.2)

Therefore, the data matrix for each timestamp is a composition of data matrices
from m different sources, therefore, X(t) can be decomposed with a GFA model
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Figure 4.1 Illustration of the DNBGFA model.

[169, 87] as

  \mathbf {X}^{(t)}\approx \mathbf {Z}^{(t)}{\mathbf {W}^{(t)}}^{\top }    (4.3)

where the subpart of the data matrix corresponding to each groupm is constructed
with a group-wise weighting matrixW⊤

m and the shared factor matrix Z.
Publication III considers such a situation encompassing analytical challenges in-

cluding non-negativity, multiple sources, and temporal dynamics. And proposes the
probabilistic dynamic non-negative Bayesian group factor (DNBGFA) model. The
framework of DNBGFA is shown in Figure 4.1.

In the DNBGFA model, a truncated-Gaussian likelihood is used to model non-
negative data, so that

  p(\mathbf {X}^{(t)}|\mathbf {Z}^{(t)}, \mathbf {W}^{(t)}) = \prod _{n,d} N^{+}\left (x^{(t)}_{n,d} |{\mathbf {z}^{(t)}_{n}}^{\top }\mathbf {w}^{(t)}_{d} , \sigma ^{2} \right )    

















(4.4)

where w(t)
d

denotes the dth column of W(t) representing the topic prevalence in
document d, z(t)n denotes the nth row of Z(t) representing the weight of the nth
vocabulary word across the topics The σ2 controls the noisiness of the observations.
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4.1.1 Topic Content Matrix Z

To achieve the non-negativity of the topic content matrix, each element z(t)
k,n

of Z(t)

is parameterized by a softmax transformation

  z_{k,n}^{(t)} = \frac {\exp (\eta _{k,n}^{(t)})}{\sum _{n'=1}^{N}\exp (\eta _{k,n'}^{(t)})} 









(4.5)

to ensure that the summation of word proportions of each topic
∑︁N

n′=1 z
(t)
k,n′ is

equal to 1. And for each term n, the variable ηn = [η(1)1,n . . . η(1)K,n . . . η
(T )
1,n . . . η(T )

K,n ]⊤
controls prevalence of the term in the topic content and the dependencies between
its elements represent dependencies across sources and time. The Gaussian process
latent variable model (GPLVM) [96] is used to model the word dependencies over
topics and time. More specifically, for each term n:

  \left [ \eta _{1,n}^{(1)} \eta _{1,n}^{(2)} \hdots \eta _{1,n}^{(T)} \hdots \eta _{K,n}^{(1)} \hdots \eta _{K,n}^{(T)} \right ]^{\top } \sim \mathbf {N} \left ( \mathbf {0}, \boldsymbol {\boldsymbol {\Sigma }}_{\mathbf {\eta }} \right ) \label {eq:eta} 



    

       










(4.6)

where Ση = Kη + εηI and Kη consists of elements K
(η)
k,l

(ti , tj) = k
(η)
0 (ti , tj)δk,l +

k
(η)
k,l

(ti , tj). The k, l denote two different topics and k(η)0 (ti , tj)δk,l is a kernel function
which governs the within topic consistency over time, k(η)

k,l
(ti , tj) governs the topic-

topic interaction, and εη controls noisiness. k
(η)
0 is an radial basis function (RBF)

kernel

  \mathit {k}^{(\eta )}_{0}(t_i, t_j) = rbf_{(\xi , \iota )}(t_{i}, t_{j}) = \iota ^{2} \times e^{\frac {-||t_{i} - t_{j}||^{2}}{\xi ^{2}}} \label {eq:rbf} 

           

 
 (4.7)

where ι and ξ are amplitude and width parameters, respectively. And the topic-
topic interaction kernel k(η)

k,l
(ti , tj) is constructed

  \mathit {k}^{(\eta )}_{k,l}(t_{i}, t_{j})=e^{-\lambda _{\mathbf {\eta }}{|t_{i}-t_{j}|}}r_{k}^{(t_{i})}r_{l}^{(t_{j})} 



       






(4.8)

which consists of an exponential time decay term λη ∼ Gamma(a, b) and prod-
ucts r (ti )

k
r
(tj )
l

where for each topic the vector rk = [r (t1 )
k

, . . . , r (tT )
k

]⊤ is drawn as a
realization of a Gaussian process (GP) as

  \mathbf {r}_{k}\sim GP(\mathbf {0},\mathbf {\Sigma }_{\mathbf {r}}) \;\;,\;\; \mathbf {\Sigma }_{\mathbf {r}}=\boldsymbol {\mathit {K}}_{\mathbf {r}}+\varepsilon _{r}\mathbf {I}            (4.9)
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where Kr consists of elements K (r) (ti , tj) = k(r)0 (ti , tj) and εr controls noisiness.
The kernel k(r)0 is also an RBF kernel.

4.1.2 Topic Prevalence W

Similar to the topic content model, to enforce non-negativity, each w(d) (t)
m,k

ofW(t) is
sampled from a truncated normal distribution withmean 0 and a source-wise variance
eα

(t)
m,k :

  w(d)^{(t)}_{m, k} \sim N^{+}(0, e^{\alpha ^{(t)}_{m, k}}) \;. 


 

  (4.10)

The source-wise latent variables α(t)
m,k

which control the sparsity of topic in data
sources m and time slices t are again a realization of a GPLVM so that

  \left [\alpha _{1,k}^{(1)} \hdots \alpha _{1,k}^{(T)}, \hdots , \alpha _{M,k}^{(1)} \hdots \alpha _{M,k}^{(T)} \right ]^{\top } \sim \mathbf {N}(\mathbf {0}, \boldsymbol {\Sigma }_{\boldsymbol {\alpha }}). 
    

     


   



  (4.11)

Here, Σα = Kα + εαI. The overall noisiness is controled by εα controls and Kα

consists of elements

  \mathit {K}^{(\alpha )}_{m,n}(t_{i}, t_{j}) = \mathit {k}^{(\alpha )}_{0}(t_i, t_j) \delta _{m,n} + \mathit {k}^{(\alpha )}_{m,n}(t_{i}, t_{j}) 
            (4.12)

k(α)0 (ti , tj)δm,n is a kernel function that governs the within source consistency of
topic prevalence over time and k(α)m,n(ti , tj) governs the cross-source interactions, con-
structed as

  \mathit {k}^{(\alpha )}_{m,n}(t_{i},t_{j})=e^{-\lambda _{\mathbf {\alpha }}|t_{i}-t_{j}|}s_{m}^{(t_{i})}s_{n}^{(t_{j})}.         

  (4.13)

The kernel values above are otherwise again composed of products of two terms,
an exponential time decay term with decay variable λα ∼ Gamma(c, g) and the prod-
ucts s(ti )m s

(tj )
n that control the topic-prevalence related correlation of sources across

time in a flexible manner. In detail, for each sourcem the vector sm = [s(1)m , . . . , s(T )
m ]⊤

is generated from an independent GP as

  \mathbf {s}_{m}\sim \mathbf {N}(\mathbf {0},\mathbf {\Sigma }_{\mathbf {s}}) \;\;,\;\; \mathbf {\Sigma }_{\mathbf {s}}=\boldsymbol {\mathit {K}}_{s}+\varepsilon _{s}\mathbf {I}           (4.14)

where Ks consists of elements

  \mathit {K}^{(s)}(t_i, t_j) = \mathit {k}_{0}^{(s)}(t_i, t_j).          (4.15)
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As before, covariances k(α)0 and k(s)0 are obtained by RBF kernel, whose hyperpa-
rameters control the time dependence.

4.2 Publication IV: Cross-factor Topic Model

One key challenge in data analysis is analyzing text data and document-level covari-
ates collectively. Publication IV proposes a solution, the Cross-factor Topic Model
(CFTM) which can incorporate the document-level covariates when analyzing text
data. The key notion is to extract the factorization structure out of the covariates
and model its relationship with the topic structure extracted from the text.

4.2.1 Generating Covariates From Latent Factors

The CFTMmodel assumes that each document d arises from a latent variable which
is a nonnegative factor loading vector 𝚲d over L factors:

  \boldsymbol {\Lambda }_{d} = [\lambda _{d,1}, \hdots \lambda _{d,L}]^{\top } \sim Dir(\boldsymbol {\alpha }).          (4.16)

And the covariates are directly generated from an exponential family distribution
as

  x^{(p)}_{d} | \boldsymbol {\Lambda }_{d}, \boldsymbol {\phi ^{(p)}} \sim \mathbf {ExpFam} \left ( \zeta \left ( \boldsymbol {\Lambda }_{d}, \boldsymbol {\phi ^{(p)}}\right ), T \left (x^{(p)}_{d} \right ) \right ) 




 
















(4.17)

in whichT
(︂
x
(p)
d

)︂
is the sufficient statistic and the natural parameter ζ is a weighted

average of factor-wise parameters ϕ(p)
l

∼ N (0, σ2ϕ ) weighted by the document-specific
factor loadings 𝚲d, so that

  \zeta \left ( \boldsymbol {\Lambda }_{d}, \boldsymbol {\phi ^{(p)}}\right ) = g^{(p)} \left ( \sum _{l = 1}^{L} \phi _{l}^{(p)} \lambda _{d,l} \right ) 





 












(4.18)

where g is the link function of the exponential-family model. For example, if a
Gaussian with a known variance σ2 is taken as the distribution, the covariate x(p) is
generated as

  x^{(p)}_{d} \sim N(\sum _{l = 1}^{L} \phi _{l}^{(p)} \lambda _{d,l} , \sigma ^{2}). 



 








 (4.19)
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4.2.2 Generating Textual Content

The factor loading vector 𝚲d further participates in the generation of the textual
content of documents. The factors can influence the textual content in two ways,
the topic prevalence and topic content.

When it comes to the topic prevalence, 𝚲d influences the topic prevalence by
participating the generation of the auxiliary variable ηd in each document d so that

  \boldsymbol {\eta }_{d,1:(K-1)} \sim \boldsymbol {N}(\boldsymbol {\Gamma }^{\top }\boldsymbol {\Lambda }_{d}, \boldsymbol {\Sigma }_{\eta })     (4.20)

and the ηd,K is fixed to 0. The topic prevalence vector for each document θd =

[θd,1, . . . , θd,K ]. The coefficient matrix 𝚪 ∈ RK×L controls the interaction between
factors and topics at the topic prevalence level. For each topic k ∈ {1, ...K − 1} a
L-length coefficient vector is generated as

  \boldsymbol {\Gamma }_{k} \sim \boldsymbol {N}(0, \sigma _{\gamma }^{2} \textbf {I}_{L})       (4.21)

On the other hand, when it comes to the topic content, a structure of sparse
additive generative models (SAGE) [42] is used to model how γ influences the topic
content. The word generation is conditional on the attached latent vector βd on
each document d. The βd of length V is used to generate the word content of the
document. The v:th element of the latent vector is defined as

  \beta _{d, v} =\kappa ^{(w)}_{v} + \sum _{k} \theta _{d,k} \kappa ^{(t)}_{v,k}+ \sum _{l} \lambda _{d,l} \kappa ^{(f)}_{v,l}+ \sum _{k} \sum _{l} \theta _{d,k} \lambda _{d,l} \kappa ^{(i)}_{v,l,k} + \varepsilon _{\beta }   


























  (4.22)

where εβ ∼ N (0, σ2
β
). The κ(w) =

[︂
κ(w)1 , . . . , κ(w)V

]︂⊤
is a vector of length V con-

trolling the overall word prevalence. The κ(t)v denotes elements of the overall topic
content latent matrix κ(t) which is a is a V × K matrix, factor influence κ(f ) is a
V × L matrix, and κ(i)

v,l,k
denotes elements of κ(i) , a V × L × K array which governs

factor-topic interactions on the topic content level, that is, the value of κ(i)
v,l,k

reflects
the strength of how much the factor l alters the word probability of v in topic k.

Finally, to generate the observed words in the document, for the nth word in
document d, the word w(d)

n is generated as

  \label {eq:MN_logistic} w_n^{(d)} \sim MN \left (softmax \left (\boldsymbol {\beta }_{d} \right ) \right ) \;. 
 








 (4.23)
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where MN denotes a multinomial distribution and softmax
(︁
βd

)︁
is acting as the

overall word distribution of a document.

4.3 Applications

This section demonstrates the application of the developed models wich as focus on
analyzing text data from internet. The DNBGFA is applied to jointly anlayze text
data from three Finnish text sources online and CFTM is used to analyze review and
player data from Steam.

4.3.1 Modeling the Temporal Dynamics of Online Content in Finnish News and
Social Media

The DNBGFA model can be used to analyze the temporal dynamics of text data
such as Finnish news and social media. In this thesis, it was used to analyze text data
from three sources including Helsingin Sanomat (a Finnish newspaper), the Finnish
Twitter Census1, and Suomi24 (a Finnish online forum; text from sections Talous
(Economics) and Yhteiskunta (Society) are used). The collected data were separated
to 12 time slices (months) from September 2011 to August 2012. For each data
source and time slice, the longest 150 documents were collected and analyzed. Stop
words and rare terms were removed, text was lemmatized, and the TF-IDF weighted
term-document matrices were utilized to train a DNBGFA model.

Partial model output is displayed in Figure 4.2 with a focus on the topicMedia. Its
content evolution over time is displayed in sub-figure (a), and the evolution of topic
sparsity in three different sources is shown in sub-figure (b). The results demon-
strate a potential trend of shifting from news (with top words read reporter, and
paragraph) in earlier time slices to social media (with top words Facebook, source,
and computer) in later time slices. In addition, the topic sparsity, reflecting the pop-
ularity, has started to rise rapidly from November 2011 in all three text sources.

4.3.2 Exploring Player Experiences Across Factors

The CFTM was employed in this thesis to jointly analyze player reviews and player
profile data from Steam. The game reviews as well as the player profile data of a first-

1www.finnishtwitter.com
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Figure 4.2 Evolution of the topic “Media” over time of topic content and topic sparsity (prevalence)

person shooter game, Doom Eternal [13], were used to train a CFTM model. The
data was collected from Steam. In total, 22 continuous variables such as the number
of achievements and played time, etc., were collected in the player profile data. For
text content, numbers, punctuation, and stop words were removed, and the text was
lemmatized. Finally, a collection of 1144 reviews with their corresponding player
profiles was jointly analyzed.

The extracted topics are presented in Table 4.1, with each topic reflecting a unique
aspect of player experiences. Moreover, the CFTM can be used to investigate word-
ing differences of different player factors. As displayed in Figure 4.3, in the topic
Support and Services, players with a high loading of the factor Doom-focused
Player tend to use words including ’doom,’ ’account,’ ’feel,’ and ’weapon’ in the
topic Feelings and Experiences. On the other hand, players with a high loading of
the factorGameCollector prefer using words including ’rip’ and ’tear’ in both topics
Support and Services and Feelings and Experiences. In general, players identified
as Doom-focused Players reflect more details of game mechanics in their reviews
compared to players identified as Game Collectors.
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Table 4.1 Extracted topics

Topic Top Words

Fighting rep tear dream frankly potato neon success kar
smoothly hugo

Support support response week account anayway offline
everyting paste team appove

Visuals and Features doom dream neon march hdr doot mayhem
replayability market kickass

Damage and Survival damage thing though run challenge player bad lot
combat people

Movement and Weapons dash weapon contain minute maykr grenade teleport
switch pad ammo

Feelings and Experiences really game good recommend software feel level
learn start whole

Figure 4.3 CFTM results for Doom Eternal
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5 EMBEDDING VECTORS AS REPRESENTATIONS

In this chapter, the research objectives multiple representation learning and learn-
ing from heterogeneous data are addressed from the perspective of developing em-
bedding models. This chapter summarizes the methodology development in Pub-
lication V and Publication VI. Publication V focuses on random-walk based graph
embedding [135, 61], introducing the notion of multiple representation learning.
Publication VI focuses on learning embedding vectors in general, developing a Gaus-
sian Copula-based embedding model to learn latent representations in a heteroge-
neous data setting.

Publication V presents a key insight into representation learning by allowing
each node to carry more than one embedding vector. This offers greater flexibility
in learning representations. Additionally, the publication introduces the notion of
Bayesian non-parametric, which determines the number of underlying representa-
tions based on the complexity of observed data, eliminating the need for additional
tasks and simulations.

When analyzing data, heterogeneous data settings are common but have not been
properly addressed. Publication VI demonstrates how to incorporate the Gaussian
Copula model, a canonical solution for dealing with heterogeneous data. By using
this model, the representation learning algorithm can handle inter-relations between
data properly and make better use of the information provided by heterogeneous
data.

5.1 Publication V: Learning Multiple Representations on a Graph

Publication V adopts the Bayesian non-parametric approach to learn multiple rep-
resentations for node embedding in a graph. Although prior research has explored
the idea of learning multiple representations for nodes in a graph, existing models
that consider multiple representations often have limitations such as a fixed number
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of representations, or requiring additional tasks or simulations [159, 99, 131, 33,
43]. In contrast, the proposed model in Publication V only relies on the generated
random walks, without any additional constraints or requirements.

5.1.1 Random-Walk Based Graph embedding

Let G = (V,E) denote a graph with a set of nodes/vertices V and a set of edges and
E ⊆ V × V indicating the connectivity between nodes. Random-walk based graph
embedding [135] is a representation learning technique that learns embedding vectors
for each node v ∈ V based on a node sequence generated from a graph by performing
a random walk. More concretely, a random walk w = {w1, . . . , wL} of length L is a
simulated sequence of nodes over the graph G where for each node in the sequence,
the next node is chosen at random from its alters or neighbors.

The notion concept of random-walk based graph embedding is that the repre-
sentation learning is learned from a generated sequence w is a process of sampling
from the graph, therefore, it is able to capture the characteristics of the graph such
as complexity and connectivity of nodes. Moreover, since w is “sampled” from the
graph G, it can be modeled by a probabilistic model that generates w. Note that
there are approaches [61, 142] employing more sophisticated sampling strategies to
generate the node sequence, here the proposed model considers the basic setting of
random walk. Similar to the negative samples in a word embeddings setting, which
was introduced in Section 2.2.6, in each location, a number of “negative samples”
are also sampled for each location l ∈ 1 . . . L in the te random walk. That is, if at the
location l, wl = v, the corresponding negative samples are sampled from the set of
nodes V \ v.

After the sequences (including negative samples) are generated, a “languagemodel”
is trained to model the co-occurrence of nodes in contexts. Here, the context is de-
fined as a sliding window with a fixed length over the sequence. The node here is
treated as a “word” in a language model such as word2vec [116]. The appearance of
a node is conditional on its context nodes in the generated sequence.

5.1.2 Bayesian Non-parametric models

Bayesian non-parametric models are a way to offer a high level of flexibility in sta-
tistical models where the number of parameters is not fixed but decided by the com-
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plexity of observed data. Publication III assumes that each node v can posse more
than one underlying embedding vector and introduces a Bayesian non-parametric
model to flexibly learn the number of multiple latent embedding vectors from data.
After a random walk over the graph is performed, let n ∈ 1 . . . N denote the index of
the location of the generated node sequence, v ∈ 1 . . . V denote the index the node,
and ρn,v denotes the embedding vector used by the node v at the location n. If the
node v selects its s-th embedding vector , it is denoted as

  \boldsymbol {\rho }_{n, v} = \boldsymbol {\rho }_v^{(s)}.     (5.1)

The selection is determined by a stochastic process Gv so that

  \boldsymbol {\rho }_v^{(s)} \sim G_v(G_0, \gamma ).     (5.2)

Here, G0 is a base distribution and γ is a concentration hyper-parameter. More
specifically, an infinite number of possible embedding vectors can be sampled from
G0 where Gv is a draw from it with probabilities {ρ(1)v , . . . , ρ(s)v , . . . , ρ(S )v , . . . , } where S
is the number of already observed embedding vectors. The number S is not manually
specified but learned from data through iterations.

Dirichlet process [48] has been a typical choice forGv as a Bayesian non-parametric
prior. In Dirichlet process, the predictive probability of that the embedding vector
ρn,v is sampled is expressed as

 P(\boldsymbol {\rho }_{n, v}|\{\boldsymbol {\rho }_{n',v}; n'\in \textbf {n}_{v,<n}\}) = \\ \left \{\begin {matrix} \frac {|\textbf {n}^{(s)}_{v,<n}|}{\sum _{s'} |\textbf {n}^{(s')}_{v,<n}|-1+\gamma } & \boldsymbol {\rho }_{v,n} = \boldsymbol {\rho }^{(s)}_v,\;\forall \boldsymbol {\rho }^{(s)}_v \in \{\boldsymbol {\rho }^{(1)}_{v} \hdots \boldsymbol {\rho }^{(S_v)}_{v}\} \\ \frac {\gamma }{\sum _{s'} |\textbf {n}^{(s')}_{v,<n}|-1+\gamma } & \boldsymbol {\rho }_{v,n} = \boldsymbol {\rho }^{(S_{v}+1)}_v\sim G_0 \end {matrix}\right .       





 


           


 


   

(5.3)

which is a Dirichlet distribution which is proportional to the numbers of occur-
rences of the previously sampled embedding vectors of v at earlier locations n′ < n,
for both positive and negative samples.

The Sv denotes the number of different embedding vectors used for v prior to the
location n and |n(s)

v,<n | is the total number of locations before n where the embedding
vector ρ(s)v has been selected, and the hyper-parameter γ governs the generation of a
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new embedding vector.
Despite the fact that the Dirichlet process has been the most commonly selected

choice in Bayesian nonparametric modeling, it suffers from an issue called “the rich
get richer”. That is, as shown in the Equation 5.1.2, the generative process it tends to
repeat those “popular” previous embedding vectors, therefore, the first few embed-
ding vectors can become overly dominant over iterations, which can limit flexibility
in both modeling and inference.

An alternative to Dirichelt process is the uniform process [170]. It was proposed
to address the issue of “the rich get richer”. Different from the generative process
described in Equation 5.1.2, in the uniform process, the parameters are generated
with the predictive probability

 P(\boldsymbol {\rho }_{n, v}|\{\boldsymbol {\rho }_{n',v}; n'\in \textbf {n}_{v,<n}\}) = \\ \left \{\begin {matrix} \frac {1}{S_v+\gamma } & \boldsymbol {\rho }_{n,v} = \boldsymbol {\rho }^{(s)}_v, \forall \boldsymbol {\rho }^{(s)}_v \in \{\boldsymbol {\rho }^{(1)}_{v} \hdots \boldsymbol {\rho }^{(S_v)}_{v}\} \\ \frac {\gamma }{S_v+\gamma } & \boldsymbol {\rho }_{n,v} = \boldsymbol {\rho }^{(S_v+1)}_v\sim G_0 \end {matrix}\right .       



           


    

(5.4)

where the embedding vector ρn,v is generated independently from the occurrence
frequencies of previous generated values. The generation is only controlled by a con-
centration hyper-parameter γ. It is worth noting that the uniform process has been
neglected by the machine learning research community. Most of the applications still
employing Dirichlet processes as their Bayesian non-parametric priors.

5.1.3 Generating Random Walks with Embedding Vectors

Let ρn,v ∈ RD denote the embedding vector of the node v at the location n of the
random walk and αv ∈ RD denote the context vector of the vertex v. The proposed
model in Publication V can be summarized with the generative process shown below:

1. For each node v ∈ V:

- Generate the Bayesian non-parametric stochastic process,Gv ∼ NP (G0, γ)
- Generate the context vector, αv ∼ N (0, σ20 I)

2. For each walk w = {w1, . . . , wL} ∈ W
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- For location n:

- Generate embedding vector, ρn,v ∼ Gv

- Compute the natural parameter, ηn,v = g
(︂
ρ⊤n,v

1
|cn |

∑︁
v′∈cn x̃n,v′αv′

)︂
- Sample from the distribution, xn,v ∼ P (ηn,v)

Where P is an exponential family distribution with the natural parameter η, More
formally, if the vertex appears at the location n, the positive likelihood is then defined
as

  p(x_{n,v} = 1) = f(x_{n,v} = 1 | \eta _{n} \left ( \textbf {c}_n,\tilde {\mathbf {x}}_{\mathbf {c}_n} \right ), T\left (x_{n,v} \right ))       

 


   (5.5)

where f is the corresponding probability density function of the exponential fam-
ily distribution. A “negative likelihood” are used to model the situation when a node
does not appear at location n. The corresponding likelihood of the non-appearance
is

  p(x_{n,v} = 0) = f(x_{n,v} = 0| \eta _{n} \left ( \textbf {c}_n,\tilde {\mathbf {x}}_{\mathbf {c}_n} \right ), T\left (x_{n,v} \right )) \;.       

 


    (5.6)

In the proposed method in Publication V, an exponential family distribution is
used to model the co-occurrence patterns of nodes. If it is a Bernoulli distribution,
the natural parameter pn depending on the context nodes is defined as

  p_n = \mathcal {S} \bigg ( {\boldsymbol {\rho }^{\top }_{n,v}} \frac {1}{|\textbf {c}_n|} \sum _{v' \in \textbf {c}_n} \boldsymbol {\alpha }_{v'} \bigg )  













(5.7)

where |cn | is the number of distinct context nodes and S = 1
1+e−x is sigmoid func-

tion.
The appearance of the node v at the location n, i.e. whether xn,v = 1 or xn,v = 0,

is thus Bernoulli distributed with parameter so that

  x_{n,v} \sim Bern(p_n) \;.     (5.8)

The notion of using Bernoulli likelihood to model the co-appearance of the nodes
is inline with the Skip-gram based models [116]. When it comes to modeling the
number of occurrences of nodes, Poisson and Gaussian distributions are employed.
If a Poisson distribution is chosen, the natural parameter λn is defined as
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  \lambda _n = \exp \bigg ( \boldsymbol {\rho }^{\top }_{n,v} \frac {1}{|\textbf {c}_n|} \sum _{v' \in \textbf {c}_n} \tilde {x}_{n, v'} \boldsymbol {\alpha _{v'}} \bigg )  












(5.9)

with the exponential function as the link function. And |cn | is again the number
of distinct nodes in the context and xn,v′ denotes the number of occurrences of node v′

in the context. The appearance of the node v is generated from a Poisson distribution,
so that

  x_{n, v} \sim Pois(\lambda _n).    (5.10)

When is comes to a Gaussian distribution, it is similar to the settings for Poisson
distribution. The natural parameter is defined as

  \mu _n =\boldsymbol {\rho }^{\top }_{n,v} \frac {1}{|\textbf {c}_n|} \sum _{v' \in \textbf {c}_n} \tilde {x}_{n, v'} \boldsymbol {\alpha }_{v'}  






 (5.11)

without a specific link function, and the appearance of the node v at the location n

is generated as
  x_{n,v} \sim Norm(\mu _n, \sigma )     (5.12)

where σ is set as a fixed hyper-parameter. The primary difference of the Poisson
and Gaussian setting in contrast to the Bernoulli distribution setting is that they
take the number of occurrences of nodes in the context into account. The difference
yields different process when constructing the natural parameter and offers a better
model flexibility.

5.2 Publication VI: Learning Embedding Vectors from
Heterogeneous Data

Publication VI proposes an embedding model for heterogeneous data. Modern do-
mains often involve multiple data types with varied distributions, which brings chal-
lenges, especially when modeling the relationships between the data types due to the
complexity. Moreover, Naive solutions that ignore the characteristics of the individ-
ual data types. Publication VI’s model addresses these challenges by considering the
varied scales and shapes of the different data types and modeling their relationships.
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5.2.1 Gaussian Copula Models

The key notion of the proposed model in Publication VI is to use a Gaussian cop-
ula to model the dependencies between variables having arbitrary data types and
marginal distributions. A J -dimensional copula C is a multivariate cumulative distri-
bution function on [0, 1]J . Each univariate marginal distribution of C is uniformly
distributed on [0, 1]. More concretely, given a set of uniform distributed random
variables U1, . . . , UJ , a copula is the joint cumulative distribution

  \mathbb {C}(u_1, \hdots , u_J) = P(U_1 \leq u_1, \hdots , U_J \leq u_J) \;.                      (5.13)

According to Sklars’ theorem [155], let x denote a random vector of length J ,
and let j ∈ 1 . . . J denote the index the elements (random variables) in x. The joint
cumulative distribution of the variables in x can be modeled by a copula

  F(x_1, \hdots x_J) = \mathbb {C} \left ( F_1(x_1), \hdots , F_J(x_J) \right ) \label {eq:copula}       

      


(5.14)

where F is the joint CDF and Fj (x) = P (Xj ≤ x) is the j-th marginal CDF. A
copula can be obtained from the right-hand side, since each marginal cumulative dis-
tribution function (CDF) value lies within the range [0, 1], without regard to the
underlying distributions of individual marginal CDFs. When each Fj is continuous,
the copula C is unique. This feature makes the copula a valuable tool to capture the
interdependencies between variables, even when they have diverse types and dissim-
ilar marginal CDFs such as x1, . . . , xJ .

The Gaussian copula is utilized in Publication VI for representation learning
tasks. A Gaussian copula is defined with a J -dimensional Gaussian cumulative distri-
bution function (CDF) ΦJ , so that

 \label {eq:gaussian_copula} \mathbb {C}(u_1, \hdots u_J) = \Phi _{J} \left ( \Phi ^{-1}(u_1) , \hdots , \Phi ^{-1}(u_J) | \mathbf {C} \right )       


     


(5.15)

with a correlation matrixC, andΦ−1 refers to the inverse function of the standard
univariate Gaussian CDF. The Gaussian copula enables modeling of the joint CDF
of observed data as follows:

 \label {eq:cdf_gaussian_copula} F(x_1, \hdots x_J) = \mathbb {C}(F_1(x_1), \hdots F_J(x_J)) = \Phi _{J} \left ( \Phi ^{-1}(F_1(x_1)) , \hdots , \Phi ^{-1}(F_J(x_J)) | \mathbf {C} \right ) \;.               


      


 (5.16)
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A Gaussian copula can be represented with a latent Gaussian variable model. In
which a latent vector z is generated from a Gaussian distribution

 \label {eq:latent_representation_z} \boldsymbol {z} \sim \boldsymbol {N}(0, \Omega )    (5.17)

with zero mean and a covariance matrix Ω which corresponds to the correlation
matrix C in equation (5.15). Then for each j, the observed data xj is obtained from

 \label {eq:latent_representation_x} x_{j} = F_{j}^{-1}\bigg ( \Phi \bigg ( \frac {z_j}{\sqrt {\omega _{jj}}}\bigg ) \bigg )   










(5.18)

which is the inverse of the univariate marginal F −1
j according to the generated

latent variable zj where ωjj is the j-th diagonal element of Ω.

5.2.2 Generating Heterogenous Data

The proposed Gaussian Copula Embeddings (GCE) is based on the latent represen-
tation which is shown in Equations (5.17) and (5.18). More specifically, each item
i is corresponding to an latent embedding vector ρi ∈ RK×1 which is generated from
a multivariate normal prior distribution

  \label {eq:prior_rho} \boldsymbol {\rho }_{i} \sim \boldsymbol {N}(0, \boldsymbol {I})\;      (5.19)

and the generated embedding vector ρi is involved in the generation of the latent
variable vector zn

  \label {eq:exchange_z} \boldsymbol {z}_{n}^{(i)} \sim \boldsymbol {N}(0, \mathbf {I} + {\boldsymbol {R}_{n}} {\boldsymbol {R}_{n}}^{\top }) \Longleftrightarrow \boldsymbol {z}_{n}^{(i)} \sim \boldsymbol {N}({\boldsymbol {R}_{n}} \boldsymbol {\rho }_{i}, \boldsymbol {I})      
        (5.20)

where the embedding vectors of the items in the context cn for all observation
variables are used to construct the matrix Rn ∈ RK×J .

Following the latent variable representation, all J observations of an item at a
location will be generated based on the latent variable z. That is, each observed
variable j, the corresponding column rn,j of the matrix Rn is constructed as

  \boldsymbol {r}_{n,j} = \frac {1}{|\boldsymbol {c}_n|} \sum _{i' \in \boldsymbol {c}_n} \boldsymbol {\alpha }_{i',j} 






  (5.21)

where i′ are the items in the context of the location n, cn. The prior of α is again a
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multivariate normal distribution

  \label {eq:prior_alpha} \boldsymbol {\alpha }_{i',j} \sim \mathbf {N}(0, \lambda _{\alpha }^{-1} \mathbf {I})       (5.22)

with a diagonal covariance matrix with precision hyer-parameter λα which con-
trols the constraints on α. By taking the advantage of the exchangeability in equation
(5.20), the generating process can be further re-written as

  \label {eq:gen_z} \boldsymbol {z}_n^{(i)} \sim \boldsymbol {N}( \boldsymbol {\mu }_n^{(i)}, \boldsymbol {I}),\
\textrm {where}\
\boldsymbol {\mu }_n^{(i)} = [\mu _{n,1}^{(i)},\ldots ,\mu _{n,J}^{(i)}]\;\; \textrm {and}\;\; \mu _{n,j}^{(i)} = {\boldsymbol {\rho }_{i}}^{\top } \frac {1}{|\boldsymbol {c}_n|} \sum _{i' \in \boldsymbol {c}_n} \boldsymbol {\alpha }_{i',j} \;.               

    







   (5.23)

According to the Gaussian copula, the observed data are then obtained from the
latent variables z. Let x (i)n,j denote the jth observed value of the location n from the
item i, it is obtained as

  \label {eq:gen_x} x^{(i)}_{n,j} = F_{j}^{-1}\Bigg ( \Phi \Bigg ( \frac {z_{n,j}^{(i)}}{\sqrt {1 + \sum _{k=1}^K r_{n,j,k}^2}}\Bigg ) \Bigg )   








 






(5.24)

where z(i)n,j is the jth element of the latent vector z
(i)
n and rn,j,k is the kth dimension

of the context representation column rn,j, and F −1
j is the inverse CDF of the marginal

distribution of variable j.

5.3 Applications

This section demonstrates how to use the developed methods for data analysis in
the context of online communities. Data from two popular platforms, Twitch and
Reddit, are analyzed for different tasks. Twitch data are used to perform a link
prediction task, and data from Reddit are used to visualize the relationships between
different online communities.

5.3.1 Predicting Connections bewteen Twitch Streamers

Twitch is a popular live game streaming platform where users, known as streamers,
broadcast themselves playing video games and engaging in various activities in real-
time. The platform plays an important role in terms of player communities. This
section demonstrates how the developed non-parametric graph embedding technique
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can enhance the predictive performance of connections between Twitch streamers.
The relationship among Twitch streamers can be encoded by a graph where each
streamer is a node and edges between nodes are used to represent mutual friendship.

Using the non-parametric graph embedding technique, each streamer, or node in
the graph can comprise more than one embedding vectors depending on its interac-
tions with other streamers. A link prediction task was performed on a data set of
7126 nodes and 35324 edges [144]. Specifically, 50% of the edges were first removed
randomly into a held-out test set while the remaining training graph was still con-
nected. A logistic regression classifier was trained based on the embedding vectors
as features learned from the reduced training graph. The classifier was later used to
classify the held-out test-set edges. To leverage the learned multiple representations,
when training the classifier, the logistic regression was trained with sample weights,
that is, each embedding vector ρ(s)v and its expected weight.

To validate the effectiveness, the model is compared to other representation learn-
ing works including Deepwalk [135], node2vec [61], struc2vec [142], EFGE [29],
and Splitter [43]. The area under the curve (AUC) is used to evaluate the binary
link classification. The results in Table 5.1 show that the multiple representations
learned with the developed model can enhance the performance of link prediction.

5.3.2 Visualizing Reddit Online Communities

Reddit is an online social platform where users contribute text, links, images, and
videos to topic-specific “subreddits,” which are community forums. In particular,
the hyperlinks between subreddits allow users to navigate between different commu-
nities, aiding in sharing and accessing information, references, and discussions.

The Gaussian copula embedding model is employed to analyze the Reddit Hyper-
link Network dataset [91], which contains 858,488 hyperlinks connecting 55,863
subreddits. For each hyperlink, the data set records the source and destination sub-
reddits, along with the hypertext description, including the number of words, senti-
ments, and fractions of five distinct character types (i.e., alphabetical, digits, upper-
case characters, special characters, and white space). The Gaussian copula embedding
model is trained based on pairs of source and destination subreddits. In each hyper-
link, the source subreddit is treated as the context for the destination subreddit. The
five fractions of different character types, the word count, and the sentiment are
considered as observed variables (each learning a context vector α).
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Table 5.1 Results for Link Prediction

Twitch
D = 50 D = 100 D = 150

Deepwalk 0.659 0.649 0.672
node2vec 0.681 0.691 0.698
struc2vec 0.830 0.828 0.840
EFGE (Bern) 0.681 0.687 0.707
EFGE (Pois) 0.679 0.708 0.714
EFGE (Norm) 0.791 0.791 0.802
Splitter 0.836 0.823 0.823

dp-emb (Bern) 0.757 0.787 0.782
dp-emb (Pois) 0.656 0.704 0.716
dp-emb (Norm) 0.847 0.845 0.871
up-emb (Bern) 0.750 0.788 0.784
up-emb (Pois) 0.658 0.706 0.714
up-emb (Norm) 0.849 0.846 0.869
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Figure 5.1 t-SNE visualization of learned embedding vectors ρ

Figure 5.1 displays the t-SNE visualization [67, 167] of the learned embedding
vectors ρ. The locations reflect the relationships between subreddits. Specifically, the
green area contains the subreddits related to game developers (e.g., r/gamedev and
r/unity3d), and the light blue-green area contains subreddits that are more player-
centric (e.g., r/games and r/webgames), as well as subreddits related to individual
games (e.g., r/stalker and r/horizon). This implies that the game and player commu-
nities are in general close to each other indicated by the geometric locations of their
embedding vectors, but there are still nuances in terms of community formation.
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6 DISCUSSION AND CONCLUSION

The thesis is committed to exploring the challenges and potential of applying rep-
resentation learning techniques in social media data with a focus on game-related
data. When capitalizing on such data, one of the major challenges is its complex
nature. Rich, diverse, and often unstructured are the features of such data, which
makes them difficult to analyze using conventional data analysis methods. Repre-
sentation learning techniques can help address this challenge by learning meaningful
representations from the data, which facilitates effectiveness and interpretation.

The thesis makes a significant contribution to the field of game studies by demon-
strating how representation learning techniques can be applied to player-generated
data in social media. The empirical analysis presented in Publications I and II pro-
vides examples of how representation learning techniques can be used to understand
game cultures, such as by identifying player typologies and key themes and topics
that are relevant to players. The factor model used in Publication II for the discov-
ery of player typologies offers novel approaches to understanding players. The di-
chotomous, clear-cut “player types” are substituted with the notion of latent “player
factors”, the learned representation from players’ profile data. Introducing this view-
point facilitates a more flexible understanding of player behavior and better fits re-
alistic situations. In Publication II, topic modeling is used to investigate the tem-
poral changes in player perceptions in response to game changes. The response to
game changes is studied from the “player-centered”, and “bottom-up” perspectives.
Compared to previous “production-centered” research focusing on the same topic,
representation learning has proven to be effective when it comes to investigating this
aspect of game culture.

The developed methods in Publications III-VI have drawn upon various ma-
chine learning and statistical techniques such as Gaussian processes, Bayesian non-
parametrics, and copula models. Each developed method has focused on a specific
issue related to representation learning. Moreover, the developed methods have
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broader applications beyond game studies, such as in political science. For example,
the methodology developed in Publication IV was also used to analyze an open-access
dataset, the Finnish election compass to understand the spectrum of politicians’ po-
litical positions. One of the key aspects of the thesis is its focus on “shallow” or
simpler model architecture. Shallow models are computationally efficient and easy
to interpret, which makes them highly usable and applicable in a wide range of
scenarios. The thesis demonstrates that shallow models can achieve competitive per-
formance in many tasks, despite their simplicity. The thesis argues that the focus on
shallow models enables better usability and the potential for further generalization.
The DNBGFA was employed to model the temporal dynamics of text from vari-
ous data sources, including Helsinki Sanomat, Finnish Tweets, and Suomi24. The
CFTM was utilized to extract both underlying topics and factors from a dataset of
the game Doom Eternal, collected from the Steam platform. The non-parametric
graph embedding model was employed to analyze a dataset collected from Twitch
and demonstrated its ability to improve performance in terms of predicting connec-
tions between Twitch streamers. The Gaussian copula embedding model was utilized
to understand the relationships between different online communities. Note that, al-
though these methods were primarily developed within the context of game studies,
they are anticipated to be applied in other research domains and creating a more
extensive impact.

The methods developed in this study have significant implications for future re-
search in both game studies and machine learning. For example, the CFTM model
presented in Publication IV has the potential to be applied to various empirical anal-
ysis tasks. The notion of multiple representations proposed in Publication V can be
utilized to diversify the results of graph-based recommendation systems by introduc-
ing the flexibility of allowing multiple representations for each node. Finally, the
Gaussian copula-based embedding model introduced in Publication VI can be inte-
grated into, e.g., a layer of a deep learning model, to enhance more inclusive data
analysis.

Regarding the research questions, the inquiry denoted as RQ.1: “How to dis-
till the crucial information from the dependencies and uncover the perpendicular,
or uncorrelated dimensions that reveal the underlying structure of the data?” is
answered by the first empirical analysis presented in Chapter 3. The efficacy of
the factor model, particularly in the context of player typologies, is demonstrated
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to be promising in the extraction of crucial information from mutually dependent
data. Furthermore, the extracted factors are meaningful in exploring and explaining
player typologies. The RQ.2: “How to leverage representation learning techniques
to model and understand such evolution of data over time?” is addressed by the
second empirical analysis in Chapter 3, where the temporal dynamics of player per-
ception are modeled and analyzed. The DNBGFA developed in Chapter 4 further
leverages a Gaussian process latent variable model to uncover the temporal dynamics
from non-negative matrix data. RQ.3: “How do different underlying structures in-
teract with each other? How to model and interpret such interactions?” is addressed
by the model CFTM presented in Chapter 4, as it integrates a factor model and a
topic model for cross-structured data analysis. The non-parametric graph embedding
model presented in Chapter 5 addresses RQ.4: “What is the appropriate approach to
introduce diversity to representation learning? How to take advantage of the learned
representations?” by introducing Bayesian non-parametrics for multiple representa-
tion learning in graph-structured data. Finally, RQ.5: “How to effectively analyze
and integrate heterogeneous data from various sources to derive meaningful insights?
How to interpret and visualize the modeling results?” is addressed by the Gaussian
copula embedding model presented in Chapter 5, proposing a Gaussian copula-based
framework for learning representations from heterogeneous data.

Despite the contributions made by this thesis, there are still limitations and on-
going challenges that need to be addressed. The contributions (Publication I and
II) on empirical analysis are limited to using existing techniques, the future research
will focus on applying techniques developed in Publication III to Publication VI to
more empirical data analysis tasks. On the other hand, the data types that this thesis
investigates are still limited, analyzing and capitalizing on other data types such as
images, videos, and audio that are also heavy in games and play are important area
of research that requires further investigation.

The emergence of AI-generated content (e.g., GPT [139, 21] and Dalle-2 [140])
poses challenges that need to be addressed, as they can make an impact on the credi-
bility of online data, particularly in social media, which is often used to analyze and
represent real human behaviors. Further research is needed to evaluate the impact
of machine-generated content and develop appropriate responses [119].

In conclusion, the thesis provides insights into the application of representation
learning techniques to analyzing player-generated content in social media. The de-
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veloped methods and techniques can be further applied to fields other than game
studies that also require data analysis. This thesis has used both empirical analysis
and methodology development to demonstrate that in a wide range of scenarios,
shallow models can be highly effective and applicable. Also, limitations and ongoing
challenges of this research are also highlighted. Nevertheless, the thesis provides a
solid foundation for further research in this area.
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Abstract. Gamification is widely used as motivational design towards enhanc-
ing the engagement and performance of its users. Many commonly adopted game
design elements have been verified to be effective in various domains. However,
the designs of such elements in the majority of the target systems are similar. Due
to inevitable differences between users, gamification systems can perform more
effectively when users are provided with differently and personally designed fea-
tures according to their preferences. Many studies have suggested such require-
ments towards personalizing gamified systems based on the users’ preferences,
with categorizing gamification users and identifying their preferences as the ini-
tial step. This study proposes a preliminary analysis of the factors that catego-
rize user preference in a game community, based on the user profiles data of the
Steam platform. It shall not only facilitate understanding of players’ preferences
in a game community but also lay the groundwork for the potential personalized
gamification design.

Keywords: Gamification · Exploratory Factor Analysis · Steam · User Profile ·
Preference · Personalized Gamification.

1 Introduction

Gamification, commonly defined as the use of game design elements for non-game
contexts [12], has been widely adopted as motivational design to support users moti-
vation enhancement and performance improvement. Many game design elements, e.g.,
badges/achievements, points, leaderboard, progress, story, etc., have been adopted in
various service domains and proven effective in many studies [14]. However, the ma-
jority of the gamification systems provide very limited alteration towards different users
but adopt the one-size-for-all design approach instead [32]. Such rigid gameful designs
are to a certain extent ineffective in persuading the users into positive behaviors. Many
studies have shown that different users are likely to be motivated by different game el-
ements and persuasive strategies [31, 32, 40]. Therefore, it is critical to understand dif-
ferent users’ preferences when providing them the personalized gameful experiences.

The studies on the users’ types and preferences regarding gamification systems are
based on the similar studies on game players. A seminal study on the player types for
multi-user dungeon (MUD) games is Bartle’s player typology [2]. Meanwhile, a num-
ber of studies also contribute to extending the user typology framework by focusing
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on psychographic and behavioral aspects [15]. Even though the direct connection is
not addressed, such studies on player typology do facilitate the understanding of users
preference of play style and their motivations of playing [15]. On the other hand, a
gamification-specific user typology framework is developed by Marczewski [26], who
proposes six gamification user types based on intrinsic or extrinsic motivational affor-
dances [36] and their different degrees for the users. Furthermore, based on this particu-
lar framework, a 24-item survey response scale is presented to score users’ preferences
regarding the six different types of motivation toward a gameful system, which can
therefore identify a users type and describe his/her preferences [42].

Despite the uniform well-defined player types and gamification user types, such a
‘clear-cut’ categorization approach can be questioned as a player may not belong to
a certain type strictly [15, 21]. In addition, limitations of using survey data towards
such categorization have also been recognized [42]. In this study, we focus on users
of the Steam platform and their community-related behaviors presented on their profile
pages. The users’ Steam profiles provide various information, including the games they
have, the game achievements, item trading, friends, groups, reviews, screenshots, profile
customization options, and so on. The objective nature and large volume of such data
shall has the potential to yield enhanced characterizations of users and their diferences.
Herein, based on factor analysis of large user profile data, we identify the factors that
characterize the differences between Steam users. Instead of a strict categorization of
players, the study aims to answer what are the factors that distinguish Steam users from
one another and determine their preferences, as well as how such distinguishing factors
can be applied to facilitate personalized gamification design.

The paper is organized as follows. Section 2 introduces previous studies on game
players and gamification user typologies and on analysis of the Steam platform and user
data. Section 3 introduces our data collection and analysis methods, Sections 4 and 5
present results and discussion Section 6 concludes.

2 Related Work

2.1 Player Types and Gamification User Types

The aim of segmentation in marketing is to identify different customer groups so that
they are served with products and services that match their unique needs. Studies on
player types also serve this purpose. The majority of the prevailingly cited studies focus
on the player segmentation in terms of the behavioral and psychographic attributes in-
stead of geographic or demographic ones [15]; our focus is similar, since our Steam pro-
files did not contain demographic/geographic attributes and we focused on the available
profile information reflecting player behavior. When available, our modeling principle
could accommodate demographic/geographic attributes as covariates.

Bartle’s seminal player typology — Achiever, Explorer, Socializer and Killer — is
based on the things people enjoy about MUD in either an action or interaction dimen-
sion towards either players or the game world [2]. It is also criticized for being dichoto-
mous and too simplifying, as well as focusing on only one game genre instead of a broad
range [3, 15, 42]. Extending Bartle’s typology model, many studies have proposed sim-
ilar typology models for online game players with specialized focuses [43, 45]. Many
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other studies present different ways of categorizing players based on their various moti-
vation and behaviors when not fixating on online games [21, 39]. Such player typology
models provide ways to detect the difference in players and their preference regarding
motivations and behaviors in general. On the other hand, many studies also focus more
specifically on players’ preferences regarding game design elements [11, 19].

The studies on gamification user types also adapt the results from the player typol-
ogy studies. Such studies are mostly supported by the research on behavior motivations
and personalities [29,36]. Regarding the user typology in the gamification domain, Mar-
czewskis gamification user type model is the most cited work [26]. Motivated by the in-
trinsic and extrinsic motivational factors of the users, which is defined by the Self Deter-
mination Theory (SDT) [35], Marczewski categorizes the users of gamification services
into six types, including socializers, achievers, philanthropists, free spirits, players, and
disrupters. Other studies also attempt to provide adapted typology frameworks regard-
ing specific domains [1,44]. Meanwhile, adapting Marczewski’s gamification user types
model, Tondello et al. present and validate a standard scale to determine users’ prefer-
ence towards gamification systems regarding different motivation types [42]. Based on
that, their subsequent works contribute to suggesting gameful design elements regard-
ing user preferences, personalizing persuasive strategies, and creating a recommender
system model for personalized gamification [32, 40, 41]. However, mentioned as their
limitation, the data are self-reporting and subject heavily to participants’ personal un-
derstanding of survey statements and preferences towards diverse game elements. Thus,
relevant objective data with a larger sample volume can address such limitation and can
also yield alternative results.

2.2 The Steam Platform and Users

Steam, a popular digital game distribution platforms, has drawn attention from the
academia. Becker et al. analyze the role of games and groups in the Steam community
and present the evolution of its network over time [5]. O’Neill et al. also investigate the
Steam community but focus on the gamers’ behaviors, in terms of their social connectiv-
ity, playtime, game ownership, genre affinity, and monetary expenditure [30], whereas
Blackburn et al. focus more specifically on the cheating behavior [7]. Many other stud-
ies also investigate the various perspectives of players’ behaviors on the Steam platform.
For example, Sifa et al. investigate the players’ engagement and cross-game behavior by
analyzing their different playtime frequency distributions [37,38]. Baumann et al. focus
on “hardcore” gamers’ behavioral categories based on their Steam profiles [4]. Lim and
Harrell examine players’ social identity and the relation between their profile maintain-
ing behaviors and their social network size [22]. Meanwhile, other scholars also study
the other perspectives of Steam, such as, recommender systems for its content [6], early
access mechanism [24], game updating strategies [23], game reviews [25], and so on.
However, research on characterizing players based on their Steam profile data towards
analyzing players’ preference to different game design elements is still limited.
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3 Method

3.1 Data Collection

A web crawler based on the Beautiful Soup Python module was created to collect data
from public user profiles. The data collection proceeded in a “snowball” manner. The
crawler started from one user’s Steam profile URL which was selected at random from
the top 10 Steam user leaderboard, and crawled the list of the user’s friends profile URL.
Iteratively, the list of users was grown via crawling the friends of each of the existing
users on the list and appending the results to the end of the list. Although guarantee-
ing an unbiased sample from such a huge base is difficult and our gathered dataset is
necessarily small, it can still achieve a good representativity. Duplicated profile URLs,
as well as private ones from which no valid data can be obtained, were eliminated.
To reduce crawling time while achieving reasonable coverage, only profile URLs were
crawled, and from the initial data pool of 2561387 unique user profile URLs, we col-
lected the profile information on a random subset of the URLs which includes 60267
users. The crawled features include Levels, Showcases, Badges, Number of Games,
Screenshots, Workshop Items, Videos, Reviews, Guides, Artworks, Groups, Friends,
Items Owned, Trades Made, Market Transactions, Achievements, Perfect Games, Game
Completion Rate, and four binary profile customization related variables: Avatar, Sta-
tus, Background, and Favorite Badge customization (customized or not). To summarize
the binary variables per user, we define an aggregate value called Profile Customization
whose value is the percent of ‘customized’ values: for example, if a particular user cus-
tomized three of the four items mentioned above, his/her Profile Customization score
will be assigned as 0.75. In addition, each user’s active time span was also collected
based on the time when the user last logged off and the time when the user created the
account, using the SteamAPI. To take the user activity into account, we further com-
puted the duration the profile had existed using the above-mentioned information and
utilized it to normalize the profile variables, by simply dividing each variable by the
profile duration.

3.2 Exploratory Factor Analysis

To uncover the underlying structures of the Steam user profiles, an exploratory factor
analysis (EFA, [13]) is conducted. It enables us to reduce the complexity of the data,
explain the observations with a smaller set of latent factors and discover the relations
between variables. Unlike clustering which discovers groups of players, EFA discovers
underlying axes characterizing players and their differences. In game culture studies,
EFA has been widely used especially in studies related to user/player types and user
motivations (e.g. [42, 43]). Extracted EFA factors can also be a basis for analysis such
as clustering (player segmentation) or prediction in follow-up work; we focus on dis-
covering underlying axes of variation in Steam user profiles through EFA and their
applications in gamification.

One common issue in EFA is how to decide the number of factors. In this paper,
the parallel analysis (PA) introduced by Horn [18] is adopted to solve the problem. It
has been widely used and has given good results in recent research works (e.g. [33,
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34]). Several comparative studies (e.g. [8, 46]) have shown that it is an effective way to
determine the number of factors.

Table 1. Result of Parallel Analysis

Factor Observed Eigenvalue Simulated Eigenvalue

1 3.104 1.031
2 2.744 1.025
3 1.650 1.021
4 1.382 1.018
5 1.167 1.015
6 1.130 1.011
7 1.073 1.008
8 1.027 1.006
9 0.916 1.003

In PA, the Monte Carlo simulation technique is employed to simulate random sam-
ples consisting of uncorrelated variables that parallel the number of samples and vari-
ables in the observed data. From each such simulation, eigenvalues of the correlation
matrix of the simulated data are extracted, and the eigenvalues are, as suggested in
the original paper [18], averaged across several simulations. The eigenvalues extracted
from the correlation matrix of the observed data, ordered by magnitude, are then com-
pared to the average simulated eigenvalues, also ordered by magnitude. The decision
criteria is that the factors with observed eigenvalues higher than the corresponding sim-
ulated eigenvalues are considered significant. Hereby, we conduct the parallel analysis
task with 5000 simulations to determine the number of factors.

To simplify interpretation of the factor analysis result, the varimax rotation tech-
nique [20] which maximizes the variance of the each factor loading is employed. Re-
sults with an alternative rotation approach promax [17] were similar.

4 Result

4.1 Factor Analysis

The result of the parallel analysis is shown in Table 1. Based on the mentioned criteria,
the turning point can be found easily by examining the differences between observed
eigenvalues and simulated eigenvalues. Since the simulated eigenvalue becomes greater
than the observed eigenvalue in the 9th factor (1.003 and 0.916 respectively), the first
8 factors are retained. The corresponding factor loadings can be found in Table 2. A
cross-loading of the variable Profile.Customization was found on Factor 1 and 7, we
further computed the Cronbach’s alpha [9] on those two factors to evaluate their internal
consistency and the values are found acceptable (0.87 and 0.71 respectively).

4.2 Factors Interpretation

Based on the result of EFA, we interpret each of the eight factors and summarize each
of the unique preference attributes of Steam users.
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Table 2. Loadings of the Extracted Factors

Variable Factor 1 2 3 4 5 6 7 8

Level 0.641 -0.005 0.004 -0.002 0.008 -0.013 -0.263 0.002
Showcases 0.026 0.107 0.065 0.828 0.162 0.180 0.028 0.067
Badges 0.954 0.033 0.004 0.010 0.006 0.043 0.016 0.004
Games 0.019 0.511 0.020 0.016 0.108 0.365 0.030 0.088
Screenshots -0.000 0.118 0.332 0.046 0.344 0.039 0.022 0.490
Workshop.Items 0.007 -0.045 0.042 0.127 0.789 -0.027 0.003 -0.082
Videos 0.002 -0.030 -0.066 0.046 -0.074 -0.022 -0.003 0.901
Reviews 0.002 0.232 0.039 0.044 0.769 0.039 0.018 0.113
Guides 0.002 0.024 0.879 -0.031 -0.090 -0.003 -0.001 -0.002
Artwork 0.004 -0.010 0.836 0.101 0.192 0.006 0.018 0.030
Groups 0.078 0.017 0.020 0.031 0.026 0.008 0.951 0.009
Friends 0.947 0.002 0.004 0.043 0.007 0.014 0.202 0.001
Items.Owned 0.004 0.048 0.005 0.049 -0.004 0.733 0.006 -0.022
Trades.Made -0.003 -0.142 -0.002 0.281 -0.063 0.551 0.003 -0.061
Market.Transactions 0.017 0.116 0.001 -0.063 0.044 0.645 -0.007 0.049
Achievements 0.005 0.865 0.014 0.125 0.014 -0.010 -0.001 -0.011
Perfect.Games 0.003 0.847 0.006 0.210 0.105 -0.045 -0.002 -0.017
Game.Completion.Rate 0.008 0.274 0.013 0.852 0.054 -0.004 0.003 0.021
Profile.Customization 0.808 -0.007 -0.008 -0.019 -0.015 -0.016 0.553 -0.007

Factor 1: Elite (Level, Badge, Friends, and Profile Customization) Factor 1 in-
dicates the users’ tendency to become the elite of the Steam community. The elite users
focus on their social comparison advantages over the others by enhancing their quantifi-
able social scores, such as, levels, badges, and friends numbers. According to Steam’s
unique mechanism, the users can upgrade their levels and earn more badges without the
requirements of exerting more effort in actual gameplay. Therefore, the elite users tend
to value their social achievement more than experiences in gameplay. In addition, they
also prefer profile customization in order to present their unique social identity.

Factor 2: Achiever (Games, Achievement, and Perfect Games) Users’ tendency
in Factor 2 indicates their preference towards mastering the games. They focus on com-
pleting games thoroughly and obtaining as many in-game achievements as possible.
They also tend to enlarge their game collection whenever possible. Compared to the
elite users, the achiever users prefer to put their effort in games and less in social.

Factor 3: Provider (Guides and Artworks) Users with high attribute in Factor 3
love to provide facilitation to the others with gameplay guides and self-created unique
game-related arts. Different from elite and achiever users who focus on their social
presence or achievement, the provider users tend to be more altruistic and care about
other users and their game playing.

Factor 4: Completer (Showcases and Game Completion Rate) Similar to the
achiever users, the completer users also focus on gameplay but less on achievements.
They prefer to finish the games that they start but have less intention of pursuing the
full achievement by investing extra amount of hours. Meanwhile, they like to show
their possessions, e.g., showcases, as much as possible, but put less effort on organizing
compared with the elite users.
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Factor 5: Improver (Workshop Items and Reviews) Users with high value on
Factor 5 focus on game improvement. They make efforts to add unique experiences to
games via workshop items and reviews. These encourage developers to improve the
games and publish better games in the future. Similar to provider users, they are also
altruistic but focus more on game quality.

Fig. 1. An Example of User Preference Attributes Radar Chart

Factor 6: Trader (Item Owned, Trades Made, and Market Transaction) The
trader users do not pay much attention to either games or social, but to buying and sell-
ing game related virtual items instead. According to Steam’s mechanism, users neither
have to own or play games to obtain items nor have to become friends with others or
join groups to make trades. Thus, trader users tend to make the community a business
playground, buying low and selling high.

Factor 7: Belonger (Groups and Profile Customization) Similar to the elite users,
the belonger users also tend to focus more on social interaction than gameplay, when
the difference is that the belonger users prefer the feeling of relatedness and belonging,
rather than social comparison. Belonging to social groups is always their first priority.
Having a proper customized profile is thus also necessary to fit them in the groups.

Factor 8: Nostalgist (Screenshots and Videos) Users with high nostalgist attribute
have the tendency of restoring their gameplay memories by taking screenshots and
recording videos. They also share their gameplay memories with others in the activ-
ity timeline, so that other players can enjoy the unique scenes and compare to their own
gameplay too. Meanwhile, the ”thumbs up” and appreciation from the others is their
reward.

It is worth noting that the eight factors aim to explore the various attributes of Steam
users instead of arbitrarily categorizing each user into a single type. Generally, each in-
dividual user shall contain certain scores in all given attributes while the attribute value
distribution of different users shall differ. Meanwhile, each user may also contain high
or low score in multiple attributes simultaneously. By reducing the variable dimensions
to one for each attribute and normalizing the value, each individual user shall have a
radar chart illustrating his/her salient attributes. Fig. 1 shows an example of a user who
possesses a salient attribute of improver and is creative with workshop items and also
loves to contribute in improving games by giving reviews. Meanwhile, this particular
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user also possesses relevantly salient attributes of elite, achiever, and provider. It indi-
cates that the user also favors gaining levels, badges, and achievements, and providing
guides and artworks to the community.

Table 3. An Example Mapping between Preference Attributes and Motivation Types

Attributes Steam Variables Motivation Types [10, 36] Gameful Elements [40]

Elite Level Mastery Progression
Badges Mastery Incentive
Friends Relatedness Socialization
Profile Customization Autonomy Customization

Achiever Games Mastery Progression
Achievements Mastery Incentive
Perfect Games Mastery Incentive

Provider Guides Mastery, Purpose Altruism
Artwork Autonomy Altruism

Completer Showcases Autonomy, Mastery Customization
Game Completion Rate Mastery Progression

Improver Workshop Items Autonomy, Purpose Altruism
Reviews Autonomy, Purpose Altruism

Trader Items Owned Mastery Incentive
Trades Made Relatedness Socialization
Market Transactions Relatedness Socialization

Belonger Groups Relatedness Socialization
Profile Customization Autonomy Customization

Nostalgist Screenshots Autonomy, Relatedness Socialization
Videos Autonomy, Relatedness Socialization

To apply such a preference framework in gamification design, based on the vari-
ables each attribute is related to, we could find connections between attributes and the
established intrinsic motivation types or other similar gamification design models or
frameworks. With different player motivation and design elements frameworks, the ap-
plication towards personalized gamification design could differ. Table 3 is an example
of connecting the obtained preference attributes with the SDT motivation types [10,36]
and the gameful design elements categories [40]. Ideally, each Steam variable can be
mapped to a certain type of motivation and a particular gameful design element cate-
gory. Subsequently, the motivation that drives the corresponding preference attributes
and the related gameful design element set can be decided and weighted (e.g., based
on relatedness of the variables to the attributes). However, such presumption of con-
necting attributes, motivation types, and design elements can be subjective, when the
motivation of each user towards each individual Steam variable is unknown and hard to
be dichotomized. For example, ‘Level’ is likely to be driven by the motivation of mas-
tery, when, on the other hand, particularly in Steam, higher level means that the user
will have more badges and showcases to customize. Therefore, the ‘Level’ variable
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is driven by the motivation of autonomy, to some extent. Furthermore, a quantifiable
value of ‘Level’, together with ‘Badges’ and ‘Profile Customization’, can be also seen
as the tendency towards social comparison. Such equivocality shall be addressed with
potential ordering or voting schemes.

5 Discussion

Compared with Lim and Harrell’s study on players’ social identity [22], we cover more
perspectives of Steam users’ social behaviors in the gamer community by extending
the data collection to more features. However, different from Sifa et al.’s work [38] our
data covers only the Steam users’ profile information and not users’ in-game behaviors.
Thus, with the current dataset, mapping from the obtained user preferences towards the
gameful design elements regarding heavily in-game behaviors, such as, immersion or
risk/reward, is not possible [40]. Furthermore, based on the goal of this study to study
users’ preference regarding gamification design, the data limits generalization towards
all gamification users instead of only gamers. Despite the above limitations, the data
(similar to other product-oriented social media profiles, e.g. Amazon profiles) can be
seen as more generalized rather than focusing on gamers from specific games or genres.
Compared with previous studies on gamification user types [40,42], such data collected
from user profiles can be more objective than self-reported survey data.

This study presents a data-driven approach to investigating users’ preferences to-
wards game design elements. The resulting axes of variation among players can be in-
spected and used in gamification. In future work the results can also be used as a basis
for categorization of players; data-driven approaches [16] can improve efficiency and
representativeness compared to manually designed categories. One follow-up direction
is to build a collaborative filtering recommender system based on similarity of users’
preference towards various game design elements, allowing a personalized gamifica-
tion design based on the recommendation for each user [41]. Another future direction
is to validate the user preference framework with empirical analysis. For example, the
user preference scale of Tondello et al. [42] can be adopted as a reference, with Steam
users as participants. Furthermore, the data volume can be enlarged with more users,
e.g., by crawling from multiple seed users; our data could further be combined with
additional data regarding, e.g., players’ in-game behaviors, preference on game genres,
and reviews on games. After validation, the proposed user preference framework can
be applied to future data-driven player studies. Together with previous gamification de-
sign methods [27], the framework will facilitate gamification design and provides an
efficient way to address key issues in the user analysis phase [28].

6 Conclusion

We presented an exploratory way of analyzing user presences towards game design ele-
ments using Steam user profile data. Using EFA, eight factors/attributes are gained, the
value of which can be used to define each individual user’s preference regarding behav-
iors in the Steam community. Together with the connection between such behaviors and
the underlying motivation types and gameful design elements, each user’s preference
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regarding gamification systems can be also perceived. Due to the quantifiable and ob-
jective nature of the data, such estimation of the users’ preference can be more precise.
It will contribute to the future work of personalized gamification design and creation of
recommender systems for personalized gamification in a data-driven manner.

Acknowledgments. This research was supported by the Academy of Finland project
Centre of Excellence in Game Culture Studies (CoE-GameCult, 312395).
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ABSTRACT

Current game publishing typically involves an ongoing commitment to maintain and update

games after initial release, and as a result the reception of games among players has the

potential to evolve; it is then crucial to understand how players’ concerns and perception of

the game are affected by ongoing updates and by passage of time in general. We carry out

a data-driven analysis of a prominent game release, No Man’s Sky, using topic modeling

based text mining of Steam reviews. Importantly, our approach treats player perception not

as a single sentiment but identifies multiple topics of interest that evolve differently over

time, and allows us to contrast patching of the game to evolution of the topics.

Keywords

No Man’s Sky, Player Modeling, Topic Modeling

INTRODUCTION

Steam is one of the biggest digital game distribution platforms. In addition to being a plat-

form for purchasing and playing, it is also a community where members have mutual discus-

sions and game owners can write game reviews to share their opinions and game-play expe-

riences. When writing a game review, the player can label the game as “recommended” or

“not recommended”. How much time (hours) the player has played the game when writing

the review is also recorded. Steam reviews form an important view into a game’s reception

among players; an overall summary of the proportion of positive reviews is prominently

reported on a game’s Steam store page and is also often reported on third-party sites and in

various news and social media discussion on a game. However, such an overall summary

does not reveal the main concerns reviewers report on, or the change of their perceptions

over time.

Steam allows for games to be easily updated once released. Developers release updates on

their own schedule; on the players’ side, available updates can be set to happen automati-

cally, making it easy for users to keep their games up to date. The dynamic of such updates

is very different compared to the earlier practice without a unified platform, where users

needed to download patches from developer or publisher websites. Steam also supports

the sale of downloadable content (DLC), allowing developers to esily add paid content to

already published games. In addition to normal game releases, Steam has a programme

called early access (Steamworks Documentation: Early Access Accessed 8 Dec 2019). It



allows developers to already sell games that are still in development and not ready for a final

release on the platform. The impact of such an environment, where game updates are com-

monplace, on player perception has not been explored in game research in a comprehensive

quantitative way. In this work we do so in context of a particular game, No Man’s Sky.

No Man’s Sky is an action-adventure survival game first launched in August 2016. It re-

ceived strongly critical responses from players due to lacking features that had been promised

to be in the game. However, since launch the game has been supported by rapid updates; it

has had 8 major updates so far, denoted by versions 1.00, 1.10, 1.20, 1.30, 1.50, 1.70, 1.75

and 2,00, released on 12 August 2016, 26 November 2016, 8 March 2017, 11 August 2017,

24 July 2018, 29 October 2018, 22 November 2018 and 14 August 2018, respectively1.

The changes to No Man’s Sky exemplify several typical types of change in digital games.

Digital games, as other software products, evolve during their lifecycle. The evolution of

games can be in the form of emerging change (designing a space for the players to mold

their own game experiences), reactive change (changing the game by reacting to direct or

indirect feedback from the players) or pre-planned change (content that is already designed,

or in some cases already produced, before the launch of the game), and their evolution

has similarities to how more utility focused software products evolve, but not all proper-

ties are equal (Nummenmaa et al. 2013). No Man’s sky is a mixture of all three types of

evolution. Emerging change is built into the system, even if lightly, as the game world is

generated piece by piece when users access new worlds. Reactive change is prevalent, as

new changes are implemented due to feedback in the form of patches. Pre-planned change

is also present, as the developer has implemented features that have already been promised

prior to release. As Newman (2012) has pointed out, due to two factors, ports (transferring

to different operating systems or platforms) and patches (updating or adding new features),

a game itself is an unstable object. Due to this nature of games, the player perceptions or

experiences of a game are therefore dynamically changing over time.

Despite research on various aspects of game development, and other research on impact

of game updating strategies, there is a lack of research coupling large-scale analytics of

different aspects of players’ reception of a game to aspects of the update strategy, and in this

work we do that. Our research questions are: RQ1 - What are the main topics of discussion

(e.g. themes of concern or appreciation) in players’ reviews? RQ2 - How do the contents

of reviews change over time, are some topics rising or falling over time, and at what rates?

RQ3 - How does the presence of the topics differ in reviews recommending versus not

recommending the game? RQ4 - How do updates carried out to the game coincide with

changes in the topical content of the reviews?

To answer the research questions, in this research, a collection of more than 85 thousands

user reviews across roughly 3 years ofNoMan Sky from steamwere analyzed. We use a ma-

chine learning based text mining technique called topic modeling to analyze the collected

data in a computational manner. The model we use both extracts topics as semantically

meaningful themes in players’ reviews, and also models the relationship between the pres-

ence of those themes, time of the review, players’ playing hours, and players’ attitude in the

are distilled/extract their relationships between players’ overall attitude towards the game

in the sense of whether they recommend the game or not.

–2–



In the following we first discuss a selection of related work on challenges in game devel-

opment, customer feedback and review analysis, update strategy planning, and analysis of

updates and reviews on Steam. We then discuss the method from data collection to the text

analysis. Next, we discuss the results first in terms of the extracted topics and in terms of

their prevalence over time. Lastly, we provide discussion and conclusions.

RELATED WORK

Many studies have addressed the challenges and issues in computer game development prac-

tice from software engineering perspectives (Alves et al. 2007; Kanode and Haddad 2009).

Kanode andHaddad (2009) list and specify several challenges in game development in terms

of software engineering, including assets, scopes, process, publishing, management, team

organization and third-party technology. Ampatzoglou and Stamelos (2010), by reviewing

the literature, examine the use of software engineering theories, methods and tools in game

development practice and find that game developers tend to fit traditional software engineer-

ing methods to game development with certain adjustments. The authors also indicate that

the maintenance activities within game development are mainly corrective and maintenance

and verification in game development are often neglected. However, the game products can

be changed significantly due to the feedback from testing phase and themarket (Kasurinen et

al. 2014). Thus, enabled by the contemporary online distribution channels, updating games

correctively and perfectively can improve them significantly towards enhanced customer

satisfaction.

In order to improve products and services, Customer feedback is an important data source

for companies to understand the market and the needs of their customers (Cho et al. 2002;

Wu et al. 2010). In the software engineering domain, end user feedback is also critical

for facilitating the evolution of software products and services (Burnett et al. 2004; Ko et

al. 2011). The importance of end users as stakeholders is particularly enhanced for mobile

applications, since they are commonly distributed through online platforms (Holzer and

Ondrus 2011). The combination of collectable end user feedback and traceable software

evolution allows further requirements analysis to be done effectively through statistical and

data-driven methodologies, in order to plan future changes and to be aware of how the

changes may impact user satisfaction (Palomba et al. 2015). Following advances in data

mining, many studies have provided various approaches towards effective review analysis

to uncover critical user needs (Fu et al. 2013; Chen et al. 2014; Guzman andMaalej 2014; Li

et al. 2018). Hence, despite their differences from mobile app reviews, video game end user

reviews can also provide valuable information that game developers can take into account

in order to improve their game products (Lin et al. 2019).

The evolution of software products is considered important for maintaining their quality,

when together with the widely applied incremental and agile development methods, users

receive early releases of software products and are more likely to support their evolution

with meaningful feedback from which requirements are elicited and prioritized effectively

and continuously (Greer and Ruhe 2004). Thus, an effective planning for software release is

highly required. Many studies have contributed to the practice of software release planning,

in terms of the process, decision making, strategic models and tools (Ruhe and Saliu 2005;

Saliu and Ruhe 2005; Svahnberg et al. 2010). In particular for mobile applications that are

distributed at unified online platforms where updates are easily delivered and feedback are
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instantly received, Nayebi et al. (2016) find that developers tend to follow predefined ra-

tional update strategies and mostly believe that frequent updates and the different release

strategies shall affect the app quality and users’ feedback. Hence, towards effective mobile

application specific release planning strategies that ease the developers’ efforts and respond

swiftly to users’ concerns and complaints, many studies have proposed approaches and tools

facilitating mobile app release planning (Villarroel et al. 2016; Ciurumelea et al. 2017; Scal-

abrino et al. 2017). Comparatively, even though many players still choose to purchase phys-

ical copies, the video games online distribution platforms have grown rapidly with the ad-

vantages of easiness to find relevant games based on preferences, affordability, easiness

of payment, and so on (Toivonen and Sotamaa 2010). The mechanisms of the platforms

also enable developers to constantly listen to players’ feedback and update accordingly, but

also requires them to plan the updates properly, especially for “Early Release” games (Lin

et al. 2018).

As one of the most popular digital game distribution platforms, Steam provides not only

video game purchasing and downloading service but also online communities for the players

to review games and for developers to respond. Due to the notable volume and dynamic of

the data contained in Steam, it has been widely used for research purposes (Kang et al. 2017;

Lin et al. 2019). Lim and Harrell examine the players’ behaviors of profile and social net-

work maintenance and analyze the differences in their player identities (Lim and Harrell

2014). Slivar et al. analyze the the impact of game types and video adaptation strategies on

the quality of the experience (Slivar et al. 2015). To investigate player behaviors on Steam,

Sifa et al. analyze the players’ different playtime frequency distribution and investigate their

engagement and cross-game behavior (Sifa et al. 2014; Sifa et al. 2015). Regarding game

updates on Steam, Lin et al. conduct an empirical study of the urgent updates of the 50 most

popular games and find that the choice of update strategy affects the proportion of com-

pulsory urgent updates (Lin et al. 2017). Furthermore, regarding game reviews, Lin et al.

perform an empirical study on the reviews of 6224 games on Steam and analyze the review

content and the relation between players’ play hours and their reviews (Lin et al. 2019).

METHOD

Data Collection

In this study, we use Scrapy2, an open-source Python-written web crawling framework, to

obtain the user review data from the Steam platform, specifically for the game No Man’s

Sky. Scrapy was first released in 2008 with its latest version 1.8.0 being compatible with

Python 3.5 and later versions. Technically, in order to crawl structured review data from the

community page of a particular game, we define a Spider with Scrapy and run it through the

crawler engine. The crawling process starts with a request on the URL of the game com-

munity page and calls the default callback method, which loops through the elements (i.e.,

review items) with CSS selectors and yields a dictionary with the requested information.

Notably, Scrapy is able to crawl the content loaded with Javascript via users’ scrolling that

cannot be obtained using BeautifulSoup3, which is crucial for crawling Steam user review

data.

As a result of the crawling, we obtain the 85805 unique user reviews on NoMan’s Sky from

its release date, August 12th 2016, to October 5th 2019. The features of the data include
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review publication date, review text, user ID, the recommend/not recommend flag for the

review, the user’s play hours, the number of products owned by the user, the number of

people who rated the review as helpful and the number of people who rated the review as

funny. Among the obtained reviews, over half (44335) were given within the first month

of the game release, with 59.14% of the users not recommending the game. During the

timespan of the data set the overall recommendation rate has increased to 53.03%.

Text Analysis

Weemploy a text analysis technique called Structural TopicModel (STM,Roberts et al. 2016)

to analyze the collected review texts. STM has been applied to analyze gaming discussion

on game development (Lu et al. 2019) and trophy hunting (Lu et al. 2020). Topic modeling

represents document content as a mixture of underlying topics, each of which has a distribu-

tion of typical words; these underlying topics and their prevalences in each document in the

collection are found by fitting the topic model to the data set. The resulting topics and their

prevalences over the documents can then be analyzed. The resulting topics can describe

subjects of discussion, but can also describe other elements such as tone of writing. Among

a set of multiple topics, some may differ greatly from one another while others may be more

similar, describing differences of emphasis within a common theme. Compared to meth-

ods such as Latent Dirichlet Allocation (LDA, Blei et al. 2003) and Dynamic Topic Model

(DTM, Blei and Lafferty 2006), the STM technique that we use is a more advanced model

which is able to take available document-level covariates into account when modeling the

text. For Steam reviews, we take into account several covariates in the modeling: the user

recommendation (recommend or not) indicates the general positive/negative evaluation of

the game, thus it is taken as one of the covariates; we also take the posting time as a co-

variate in order to model the evolution of the review content over time; the user’s playing

hours which reflects their amount of experience with the game as a player is also included

as a covariate in the model.

Before the model traing, stop words (e.g. ‘is’, ‘this’, ‘etc’) and rare words (words that only

appeared once in the whole text corpus) were removed and all the words were then lem-

matized. The lemmatization technique takes morphology into account and can find unified

forms for more complicated cases, such as irregular verbs (e.g. ‘drive’, ‘drove’ and ‘driven’

are lemmatized to their common lemma ‘drive’).

The final model was decided based on the criterion called held-out likelihood. To compute

the value of the criterion, a proportion (50%) of a small subset of the collected documents

is considered unobserved (“held out”) and is not used to build the topic distributions, and

the STM models are evaluated by their likelihood on this held-out portion, representing the

ability of the models to represent previously unseen text. In our large collection of reviews,

it is possible to find a large number of underlying topics, and thus it we chose the number

of topics by a careful search. We first searched among topic numbers K = 10, 20, ... to
100, with an interval of 10. After finding that the model with K = 50 had the maximum

value of the held-out likelihood criterion, the search was focused around K = 50, and a

more detailed search for possible improved values with K = 41 to 49 and K = 51 to 59
was conducted. The model with K = 55 ultimately turned out the have the best value of

the held-out likelihood after the search and was chosen for the model. Note that the criteria

of held-out likelihood has received criticism by e.g. (Chang et al. 2009), however, it is still
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a common practice to decide the number of topics with STM (Stamolampros et al. 2019).

After deciding the number of topics, the semantic coherence value (Mimno et al. 2011) was

taken as a criterion to choose the best model frommultiple runs with different initializations.

The semantic coherence value measures how strongly the top words in each topic co-occur

over documents, thus, it can be employed to evaluate the performance of topic models and

to choose the best-performing model among several models. We built 10 models with 55

topics using the whole dataset, starting from different initializations, and the model with the

best average semantic coherence value over topics was selected as the final model.

RESULT

We first discuss the themes found in the extracted topics, then we discuss the evolution of

the topics’ prevalence over time, and we further discuss the impact of the users’ play hours

on the prevalence of different topics in their reviews.

Extracted topics

The top 10 words of each topic are listed in Tables 1, 2, 3, and 4. In each table, we list for

each topic its most common words, and also its overall proportion (“Pr (%)”) representing

how much of all review content arises from that topic. The topics are also given descriptive

names by the authors by analyzing their top words as well as analyzing example reviews

that prominently arise from the topic. Notably, the rich review content in Steam allowed

us to extract a large variety of topics with clear semantic meaning; this both indicates that

players have a rich variety of concerns relating to the game and its development, and shows

the benefit of using text mining approaches for review analysis. We next discuss the found

topics.

The topic Evaluating Game-play with terms such as play, fun, get, ... holds the highest

prevalence. One example quote is

´´It’s fun at first, but gets boring after a while and then weirdly, gets fun again It’s a good

game, though it has it’s flaws 9/10, go buy the game goddamnit”.

Followed by topics Reaching Recommended Status and Appreciating Improvements.

They reflect players’ positive perceptions after improvements of the game. Other similar

topics includeGradual Improvementwhich emphasizes temporal aspects (e.g. with terms

such as time, long and due); For example, one quote of the topic Gradual Improvements

is

´´this has supprised me the last few times i have played. at first i was not overly happy with

my purchase but as time has gone by i have become more happy. is it poerfect, no, but it is

fun to play now.”

A certain amount topics are related to updates, including Updates and Added Content,

Change of Game and Upgrades and Items. One example quote from the topic Updates

and Added Content is:

´´The Foundation Update has added a good amount of new features to the game, including
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building bases and owning Freighters. This is just the foundation of future updates so you

can see Hello Games are actively working to make the game better. Kudos to them.”

Among other topics with higher prevalence, some of them are related to game purchase such

asWorth the Price, Pre-order and Refund; some are directly related to disappointment to

the promises, one example is the topicDisappointment to Promise andHype, one example

quote is :

´´I preordered that game thinking it would be magical after seeing the trailers. It was not

what was promised then. I tried again after beyond because they said they made it a lot

better. yes some things changed but this game is so empty and ugly compared to what they

said it was. the only fun i had was building my base which is now broken after a patch. I

don’t even want to figure it out. Quests ? boring as hell and there is nothing rewarding in

them. thank you hello games, i was naive, now i will never preorder anything again, I’ll

wait to see what kind of crap a game really is before jumping in....”

another similar topic is Lies and Miss Promises, one example quote is:

´´The trailers lie. Most of the stuff in the trailers don’t exist in the game. They are selling

this to us under false pretenses which is illegal.”

Other topics that directly reflect to the disappointments include Strong Dislike, waste of

money, Feels Unfinished, Indie vs AAA (Quality Level), Quick Disappointment, Lack

of Content / Grind and Recurring Bad Game-play. One example quote from the topic

Strong Dislike, waste of money

´´♥♥♥♥ YOU ♥♥♥♥ THIS GAME. YOU SHOULD GO BANKRUPT . NO ♥♥♥♥ING WAY

IM GONA BUY FROM YOUR ♥♥♥♥IN COMPANY GAME. ♥♥♥♥ ♥♥♥♥♥”

and example quotes from the topic Feels Unfinished, Indie vs AAA (Quality Level)

´´In it’s current state it feels as if I purchased an early access game.”, ´´AAA price. Indie

gameplay. 11/10”.

Despite the negative feelings, there are some topics related to the appriciations including

Appreciation, Enjoyment of Play Experience and Enjoyment Despite Flaws. One ex-

ample quote of the topic Appreciation is

´´Best game,a lot of oprtunities and no limits you always have something to do,they have

redeamed theirselfs.”.

There are also topics that are related to other reviews. Reviews vs. Reality with top words

such as review, read, see, okay, say... is about players’ reflections on other reviews or the

comparison between the reviews the players have read their own experiences. One example

quote of this topic is

´´I really do not understand why there is so uch negative comments and posts about this

game. I totally enjoy it and...”

–7–



Another topic related to other players’ reviews is Not as Bad as People Say with top words

such as people, say, review, give, think, everyone .... Where are some example quotes of

this topic that are trying to defend the game:

´´This game is amazing, I woud love to wright a proper review but I am speechles and I dont

understand why the reviews are so negative, thats all I have to say, this game is amazing...”

and

´´Some people like it, some don’t. Some people anticipated more, some didn’t. Some people

feel tricked, some don’t. Some people love Trump, some don’t. I personally think that if this

game was named as ”Early Acces Game”(which it technically is) then a lot of things would

be different”

Technical issues are also discussed in the collected game reviews. Relevant topics include

Graphics Settings, Crashes and Bugs and Glitches. For example, one quote from the

topic Crashes is

´´i cant even start playing, the minute the game starts to load it crashes”.

Some topics are related the to details of game-play, includingMoving and Looking, Base-

building and Desired Content, Spaceship Travel and Combat, Repetitive Resource-

collection Game-play, Exploration and Discovery andMaterial Collection. One exam-

ple quote from Repetitive Resource-collection Game-play is

´´Explore, collect resources so you can keep exploring, repeat...”

Besides, some topic are specifically associated to PCG content, e.g. Procedurally Gener-

ated Universe and Exploration and Procedural Content Generation of Maps.

One quote from the topic Procedurally Generated Universe and Exploration is

´´A very interesting game where you explore a procedurally generated universe. It is very

chill and if you enjoy relaxedly exploring a universe it’s a great time. If you’re looking for

a survival game or fps or flight sim its not really that, though it has elements of that. Good

stuff if you like exploration though.”

Topic Prevalence over Time

Figures 1, 2, and 3 show the temporal dynamics of the topic prevalence. The blue line

presents the prevalence among players who recommend the game and the red line presents

the prevalence among the players who do not recommend the game; dotted lines around

them represent 95% confidence intervals of the topic prevalences. The date of updates are

also marked with black and green bars; the black bars represent the starting date of each

major update and green bars are smaller updates.

In the plots of topic prevalence over time, 20 out of 55 plots show that the prevalence of the

topic is always high among players who do not recommend the game; note that Figures 1,

2, and 3 only show a selection of interesting plots; the 20 out of 55 ratio was verified for the
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Table 1: Extracted topics, part 1

Topic Pr (%) Top Words

Evaluating Game-play 4.46 play, fun, get, buy, hour, pretty, first, bore,

good, like, couple, look, day, soon, gameplay

Reaching Recommended

Status

3.69 update, launch, still, next, since, improve,

change, come, beyond, finally, recommend,

original, long, recent, theyve

Appreciating Improvements 3.46 good, great, lot, amaze, awesome, nice, keep,

ton, job, perfect, overall, game, work, friend,

fun

Worth the Price 2.94 worth, price, sale, recommend, full, defi-

nitely, quite, pay, enjoyable, pick, say, tag,

good, chill, like

Game Lifecycle, Work of the

Developers

2.81 release, year, dev, game, work, late, continue,

ago, free, developer, day, finally, week, dlc,

month

Interaction with Other Play-

ers

2.73 want, try, play, can, give, friend, another,

multiplayer, like, else, make, back, someone,

think, time

Not as Bad as People Say 2.68 people, say, review, give, think, everyone,

hate, like, negative, see, alot, hope, positive,

good, personally

Graphics Settings 2.64 run, setting, gtx, graphic, ram, low, high, max,

fine, spec, set, smooth, card, window, com-

puter

Disapointment of Promise

and Hype

2.62 promise, hype, wait, buy, deliver, disappoint,

title, worth, live, hope, game, pay, trash, huge,

preorder

Strong dislike, Waste of

money

2.54 money, ♥♥♥♥, waste, suck, buy, crap,

♥♥♥♥ing, copy, garbage, paste, piece, back,

scam, ever, ♥♥♥♥♥♥

Lies and Missed Promises 2.53 lie, feature, show, advertise, trailer, miss,

promise, developer, video, false, product,

many, multiplayer, sell, unfinished

Appreciation 2.30 love, time, play, start, hour, keep, cool, idea,

absolutely, feel, always, beautiful, first, put,

experience

Enjoyment of Play Experi-

ence

2.30 enjoy, explore, like, far, bite, thing, play, look,

feel, may, relax, slow, find, although, kind

Feels Unfinished, Indie vs

AAA (Quality Level)

2.20 feel, content, early, potential, access, current,

amount, indie, aaa, simply, depth, extremely,

high, shallow, market

Crashes 2.16 crash, load, start, screen, work, minute, play,

try, computer, playable, unplayable, past, fix,

open, min
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Table 2: Extracted topics, part 2

Topic Pr (%) Top Words

Lack of Content / Grind 2.11 nothing, grind, anything, real, end, like, lit-

erally, reason, whole, thing, basically, way,

empty, stay, youll

Comparing with Other

Games

2.06 space, exploration, like, minecraft, world, sur-

vival, elite, dangerous, combat, deep, open,

game, adventure, sandbox, simulator

Quick Disappointment 2.00 bad, spend, half, hell, like, hour, big, tech,

look, demo, page, ever, forget, seriously,

straight

Issues and Patches 1.98 issue, fix, patch, problem, support, perfor-

mance, work, need, optimization, edit, tech-

nical, hopefully, state, experience, poor

Refunds 1.95 refund, steam, hour, ask, return, realize, al-

pha, buy, playtime, wish, attempt, hope, pol-

icy, game, store

Updates and Added Content 1.93 new, update, add, game, bring, content, com-

munity, future, major, forward, feature, stick,

atla, foundation, improvement

Reviews vs Reality 1.92 review, read, see, okay, say, write, time,

watch, decide, know, check, sure, think, post,

need

Change of Game 1.80 stuff, good, make, need, like, decent, super,

lot, big, easy, yet, little, still, take, slowly

Gradual Improvement 1.73 however, purchase, time, game, happy, long,

due, developer, concept, recommend, effort,

offer, regret, massive, point

Discussion of GameVersions 1.72 actually, ever, big, game, version, edit, make,

call, good, disappointment, back, put, come,

sorry, late

Reactions 1.70 know, please, thank, guy, hard, yes, damn,

stop, kinda, wow, good, god, let, work, like

General Opinion Words 1.64 thing, like, game, want, think, enjoy, hear,

know, type, say, anyone, believe, fantastic,

person, follow

Pre-orders 1.58 never, everything, pre, order, every, almost,

like, make, ever, first, sit, see, imagine, look,

time

Moving and Looking 1.57 around, turn, take, away, look, see, like,

move, head, walk, way, hit, one, figure, blow

Variation in Content 1.54 planet, different, look, animal, see, plant, ev-

ery, rock, color, thing, similar, variation, type,

like, generate
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Table 3: Extracted topics, part 3

Topic Pr (%) Top Words

Performance 1.53 drop, run, terrible, rate, frame, bad, stutter,

horrible, port, lag, optimize, poorly, constant,

like, console

Basebuilding and Desired

Content

1.53 build, base, player, multiplayer, add, story,

make, single, character, good, vehicle, friend,

new, still, able

Repetitive Resource-

collection Game-play

1.50 resource, galaxy, planet, repetitive, center,

hour, gather, find, collect, another, repeat,

bore, become, first, reach

Procedurally Generated Uni-

verse and Exploration

1.45 universe, experience, story, generate, explore,

action, procedurally, vast, discovery, infinite,

unique, exploration, visual, wonder, truly

Bugs and Glitches 1.44 bug, save, break, progress, time, con, pro, fix,

buggy, hour, glitches, play, start, many, file

Enjoyment Despite Flaws 1.43 many, despite, experience, mod, moment, see,

along, yet, incredible, true, flaw, dream, con-

sider, become, world

Hype and Expectation 1.41 expect, expectation, small, hype, game, ex-

actly, team, train, review, think, sci, plenty,

fan, people, gamers

Lack of Interest and Reward 1.40 feel, lack, make, interest, reward, simple, lit-

tle, place, point, gameplay, thing, certain,

kind, find, purpose

Minor Complaints 1.37 seem, like, use, right, thing, first, sure, able,

otherwise, sad, complaint, minor, look, see,

lucky

Developers and Studios 1.36 fact, gaming, game, matter, example, say, de-

velop, value, total, never, history, compare,

studio, trust, let

Acknowledging and Expect-

ing Improvement

1.35 man, sky, game, become, wonderful, ever,

say, truly, come, leap, good, upcoming, next,

experience, freelancer

Exploration and Discovery 1.33 planet, find, alien, discover, learn, creature,

system, name, new, explore, word, language,

race, fauna, species

Control Difficulty 1.19 rather, less, time, mouse, step, hold, three, re-

quire, handle, appear, spore, play, impossible,

avoid, button

Recurring Bad Gameplay 1.17 happen, still, make, time, constantly, mess,

good, instead, box, thing, apparently, some-

where, need, manage, fill

–11–



Table 4: Extracted topics, part 4

Topic Pr (%) Top Words

Spaceship Travel and Com-

bat

1.14 ship, mine, fly, space, land, planet, sta-

tion, tool, fuel, sell, resource, attack, multi,

weapon, combat

Death 1.13 lose, kill, back, die, leave, annoy, time, find,

shoot, sometimes, spawn, try, inside, death,

power

Material Collection 1.11 life, find, every, material, planet, farm, start,

time, need, minute, thing, walk, take, tutorial,

except

Falling Short of Expectations 1.10 tell, gameplay, graphic, short, fall, suggest,

requirement, average, little, good, will, hard,

level, discount, significant

Travel Between Star Systems 1.10 system, star, travel, jump, entire, end, light,

leave, can, explain, set, life, make, find, take

Control Interfaces 1.08 control, option, menu, flight, hold, change,

click, press, key, controller, texture, interface,

hand, force, button

Upgrades and Items 1.06 ship, upgrade, inventory, item, slot, suit, fight,

find, sentinel, trade, management, space, sys-

tem, need, blueprint

Procedural Content Genera-

tion of Maps

0.98 map, design, generation, sound, procedural,

limit, world, surface, element, variety, vary,

effect, engine, system, encounter

Survival and Challenge 0.91 survival, mode, craft, mechanic, need, chal-

lenge, grind, easy, normal, progression, make,

creative, use, satisfy, equipment

Interaction with Factions 0.84 large, planet, battle, see, interaction, faction,

trade, giant, space, planetary, terrain, player,

creature, war, close

Quests 0.83 quest, freighter, mission, pirate, ability, ship,

fleet, space, system, base, use, trade, enemy,

multiple, main
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Figure 1: Selected topic prevalence over time. Part 1. Blue: Recommend;

Red: Do not recommend; Dot lines: 95% interval.; Black Bar: Time of the

updates

whole set of plots. One kind of such topics include players’ negative perception and com-

ments on the game, such as Strong dislike, Waste of money, Lies and Missed promises,

Feels Unfinished, Indie vs AAA (Quality Level), Quick Disappointment, Refund, etc.
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Figure 2: Selected topic prevalence over time. Part 2.

Specifically, the prevalence of these topics immediately reaches the peak after the game was

released, and starts declining after the first major release called Foundation (update 1.10) on

Nov. 26 2016, and continues declining over the follow-up major releases, which indicates

that the game studio’s effort on releases do relieve players’ strong dissatisfaction. Besides,

there are also topics of complaints of game contents or features, and they areMaterial Col-
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Figure 3: Selected topic prevalence over time. Part 3.

lection, Control Interfaces, Graphics Settings, Crashes, Bugs and Glitches, Recurring

Bad Gameplay, Spaceship Travel and Combat, Death, etc. Their prevalence increases

among players not recommending the game, indicating the bugs and issues remain or are

introduced throughout the releases. Some of them might be mitigated in a specific release.

For example, prevalence plots of topics such as Material Collection, Bugs and Glitches,

Recurring Bad Gameplay, Spaceship Travel and Combat, Death have a small hump af-

ter twomajor updates in October, 2018 (1.70) and November, 2018 (1.75). Their prevalence

declines for a certain period before rising again.

Despite the controversy, there are 19 topics showing more game recommendation since it

was released. The topics are related to understanding, appreciation, and acknowledgement

of the game and its continuous improvements despite the failure to present the promised

features to meet some players’ high expectations when the game came out. Some play-

ers also defend the game against the complaints and disappointment expressed in other

reviews.These clearly implies the game studio’s effort on keeping improving games, and

–15–



the improvements are appreciated. In addition, the prevalence plots such as Falling Short

of Expectations and Disappointment of Promise and Hype show a decline among play-

ers not recommending the game and a rise among players recommending the game. Both

support the observation of a gradual increase in players’ satisfaction, along with the game

updates.

Among game purchase topics, for the topic Worth the Price, there is a clear distinction

between players who recommend and do not recommend the game, on the other hand, the

topics Refunds and Pre-orders have reached the peak in the beginning and the prevalence

of those topics in general has a going-down trend after the peak. The topic Refunds might

have been driven by the different kinds of early disappointment and reached the peak, One

the other hand, Pre-orders is a timely topic so the discussion capacity has been done after

certain amount of time.

The temporal pattern of the topics that reflect the disappointment varies. Lies and Miss

Promises, Feels Unfinished, Indie vs AAA (Quality Level), Strong Dislike, Waste of

Money, Quick Disappointment and Disappointment of Promises and Hype are fre-

quently discusses among players who do not recommend the game only in the early stage,

the prevalence dropped in different time. One the other hand, it seems thatLack of Content

/ Grind is a constantly lasting issue especially among players who don not recommend the

game.

When it comes to technical related topics (Graphics Settings, Crashes and Bugs and

Glitches), the trend of the prevalence in general has been growing especially among play-

ers don’t recommend the game. One potential reason is that, due to more and more new

features added into the game over time, there is a higher possibility for players to encounter

technical difficulties, especially bugs and glitches and result in negative perceptions.

Temporal trend of topics related to game updates (in Figure 2) show different trends in terms

of temporal dynamics. The topic Updates and Added Content and Changes of Game

show a overall positive perception and the topic Upgrades and Items shows a growing

negative perceptions.

Topics related to specific game-play experiences, including Moving and Looking, Base-

building and Desired Content, Survival and Challenge, Procedurally Generated Uni-

verse and Exploration, Quests, andMaterial Collection, each shows a different pattern.

The topicMoving and Looking shows a mixture of reviews both from players recommend

and do not recommend the game. Basebuilding and Desired Content was more prevalent

in the beginning among players who recommend the game but the prevalence has grown

among players who do not recommend the game and in the end prevalence is roughly the

same in both kinds of players. The topic Material collection has a growing prevalence

among players who do no recommend the game and it reached the peak around the be-

ginning of 2019. The topic Survival and Challenge was more prevalent in the beginning

among player who recommend the game and in the end it has become more popular in play-

ers who who do not recommend the game. The topic Procedurally Generated Universe

and Exploration has been always popular among players who recommend the game and

the topic Quests has grown in both kinds of players but the growing changing was more
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obvious among players who do not recommend the game.

Examples of Relationships between Updates and Review Content

As already mentioned in the previous subsection, the temporal trends in Figure 2 for topics

directly related to game updates already show clear changes over time, with the Updates

and Added Content and Changes of Game topics showing a rising presence in positive

(recommending) reviews near major updates, and the topic Upgrades and Items showing

a growing presence in negative (not recommending) reviews near the updates towards the

end of 2018; and several other topics had changes of prevalence associated with times of

the updates as discussed above. We next discuss the influence of updates on the reviews in

more detail.

The players opinions can be potentially affected by the updates. For example, updates 1.50

(24 July 2018) have addedmoremissions including Real timemissions, Scheduledmissions,

New mission types including freighter combat so on. However, it turns out such content-

adding updates aroused complaints. This can be seen in the growing prevalence of the topic

Quest among players who do not recommend the game. For example, in a review written

on 30 July 2018, a user wrote

“I really wanted to like this game, but after 12 hours of game-play and about 10 attempts

at the freighter mission. I’m still unable to obtain the freighter. When doing the missions I

either recieve wanted level from stray shots at the freighter. Or when I do complete it and

recieve the ships transmission to land. I land and then the game hard crashes when I press

the button accept the freighter. I spent about 4 hours redoing the mission with the same

results on mulitple occasions.”

Another example is related to the topic Survival and Challenge. Updates 1.10 (26 Novem-

ber 2016) had aroused positive reviews, for example one review written on the next day (27

November 2016) said:

“The new 1.1 update and survival mode add alot of promise to the game, i had uninstalled

it but playing survival mode is actually alot more fun than the original game mode !”

And another example review written on the same day said

“New update made this a playable game. If it was too easy before try survival mode, it’s

pretty brutal.”

One example of updates that brought both positive and negative reviews is seen in reviews

strongly featuring the topic Interact with Other Players, one review written on 29 July

2018 said

“Honestly, this gmae is MIND BLOWING now. Playing it alone or with a friend is so much

fun. Give it a chance.”

yet another review written on 12 December 2018 said:

“Multiplayer update !! Ok Let’s give it a chance, let’s buy it. It can’t be that bad. Except
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that it’s not multiplayer. It’s observer mode.I was in the middle of a sandstorm walking back

toward my ship, while my shields were failing rapidly. My friend was a few steps away, no

sandstom, his shields are fine. Can’t share anything. This is not multiplayer. Don’t call

this multiplayer. If this is multiplayer then watching a game on Twitch is multiplayer.”

Topic Prevalence and Play Hours
Figure 4 shows the interaction between topic prevalence and play hours; the STM topic

model which uses the play hours as a covariate allows us to extract this influence from the

model and plot it. The horizontal axis displays how much the topic prevalence of a review

increases or decreases when the writer of the review has played one hour; the dot shows

the mean increase and the bar shows the 95% confidence interval. Thus, compared to an

average review, an increase of one playing hour tends to happen for reviews having around

.001 % more content of Procedual Content Generation of Maps and .001 % less content

ofWorth the Price and correspondingly for the other topics.

In general, topics related to game-play details such as Exploration and Discovery, Space-

ship Travel and Combat, Survival and Challenge, and Procedurally Generated Uni-

verse and Exploration are positively associated with the play hours. Some other topics

such asMoving and Looking andMaterial Collection. Although lean to in average higher

playing hours, the associations are not significant

When it comes to disappointments, the associations with play hours vary. Lack of Interest

and Reward leans to higher play hours whereas Strong Dislike, Waste of Money, Quick

Disappointment, and Disappointment of Promise and Hype is associated with lower

playing hours. Other topics such as Lack of Content/Grind, Lies and Missed Promises,

Falling Short of Expectations, and Feels Unfinished, Indie vs AAA (Quality Level) do

not show either significant positive or negative association with the playing hours.

The variation can be also found in topics related to positive feelings. Enjoyment Despite

Flaws and Appreciation are significantly associated with playing hours, on the other hand,

Appreciating Improvements leans to lower playing hours.

The topics related to updates also show both directions of association with the playing hours.

Topic prevalence ofUpgrades and Items andUpdates and Added Content are associated

with higher playing hours whereas Change of Games and Gradual Improvements are

negatively associated with the playing hours.

DISCUSSION
One worth mentioning phenomena is that the players’ perceptions are indeed changing over

time and the change can potentially affected by updates and of the game. There are extracted

topics such as Updates and Added Content, Changes of Game and Upgrades and Items

that are directly related to the game updates. Besides, the corresponding difference of topic

prevalence between players who recommend the game and player who do not recommend

the game shows that the overall evaluation can be either positive of negative once the player

has experienced the updates.

Another phenomenon is how the playing hours affect the playing experiences that are re-

flected in the game reviews. The positive association of topics related to game-play details
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Figure 4: Influence of play hours on topical content of reviews.

with the play hours shows that, compared to other topics, it requires players to spend enough

time on playing the game so that the game-play details can become a part of their experi-

ence and can be written in the reviews. The association of the topic Lack of Interest and
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Rewardwith higher playing hours can potentially reflect the opinions from the players who

were not satisfied even after updates. The association of the topics StrongDislike,Waste of

Money, Quick Disappointment, and Disappointment of Promise and Hype with lower

playing hours can result from the players who were disappointed in the beginning when the

game was launched and chose to complain about the game in their reviews or even gave up

to play the game.

The updates have played an important role in the life-cycle of No Man’s Sky especially after

the game was launched. Some of them did potentially affect the opinions of players (e.g.

topic Survival and Challenge) in a positive way. However, our analysis showed that the

updates do not always bring positive feedback. Apparently the players had differnt percep-

tions to topics Upgrades and Items, Updates and Added Content, Change of Games,

and Change of Gradual Improvements. Besides, the update related to the topic Interact

with Other Players especially the multiplayer feature is one example. Some players felt

even ´´MIND BLOWING” (see the quote in Section ) but some players were not satisfied

and left a negative review.

CONCLUSIONS, LIMITATIONS AND OPPORTUNITIES
In this research, an analysis of a large collection of over 85000 game reviews of the game

No Man’s Sky is conducted. The results reveal a large variety of topics that were discussed

by players, answering RQ1; the results also reveal clear temporal dynamics of topic preva-

lence over time, answering RQ2; the results also revealed differences of temporal dynamics

between reviews that recommended the game and reviews that did not, answering RQ3; and

the results further revealed how such temporal changes coincided with updates to the game,

with concrete examples how the updates can potentially affect the discussions, answering

RQ4.

The reviews were collected from the Steam platform. Despite the large amount of reviews

we were able to gather, reviews from this platform can only reflect the opinions of PC

players. Some findings of this research might be applicable directly to players in other

platforms such as PlayStation. However, some platform-specific topics, especially technical

related topics, might not be appropriate to be imposed on players in other platforms.

This work can be beneficial not only for researchers to study andmodel players’ expectations

of game content and reactions to game releases and updates, but also for game industry

practitioners when it comes to maintaining players’ perceptions; game companies can draw

insights from the issues and reactions of players found in this work if the release of another

game leads to a similar situation as in No Man’s Sky.
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ENDNOTES
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ABSTRACT
Nonnegative matrix factorization (NMF) is a popular approach to
model data, however, most models are unable to flexibly take into
account multiple matrices across sources and time or apply only to
integer-valued data. We introduce a probabilistic, Gaussian Process
based, more inclusive NMF-based model which jointly analyzes
nonnegative data such as text data word content from multiple
sources in a temporal dynamic manner. The model collectively
models observed matrix data, source-wise latent variables and their
dependencies and temporal evolution with a full-fledged hierarchi-
cal approach including flexible nonparametric temporal dynamics.
Experiments on simulated data and real data show the model out-
performs comparable models. A case study on social media and
news demonstrates the model discovers semantically meaningful
topical factors and their evolution.
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Factor analysis is a popular approach to extract latent components
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CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6859-9/20/10.
https://doi.org/10.1145/3340531.3411956

matrix factorization (NMF) [14, 18] in particular has become a
prominent solution for data sets in matrix form, applicable in nu-
merous settings where measurements and their latent factors are
expected to be nonnegative, such as in several text analytics and
bioinformatics settings. However, much factor analysis work has
focused on factorization of individual matrices.

Analyzing data from multiple sources has attracted increasing
attention in the machine learning community [11]. For instance
text data such as online discussions or news articles from a single
source may not provide a sufficiently thorough understanding of
the underlying phenomena. Analyzing the factors underlying data
matrices from multiple sources jointly is a promising approach to
infer improved models that better represent the phenomena, have
better predictive performance, and allow discovery of relations and
interactions between different sources.

In addition to multiple sources, modeling temporal variation of
the phenomena from data collected over time is also often desired.
Models including flexible generative approaches such as Gaussian
Processes (GPs) [19] and their extensions have been proposed to
model temporal dynamics. Temporal analysis should ideally reveal
both variation of the underlying factor prevalences and variation
of the factors’ contents over time.

Although NMF has been widely accepted as a classical approach
when analyzing text data, to our knowledge there are only few
probabilistic matrix-factorization models that address the multiple
sources aspect or the temporal aspect, and none that address both.

We introduce a novel probabilistic non-negative matrix factor-
ization model, suitable for analysis of multiple data matrices across
sources and time, applicable to any series of nonnegative real-
valued matrices. The proposed method models the matrix data,
the underlying source-wise parameters of factor prevalence and
content, and inter-source parameters of factor relationships across
sources. Temporal dynamics of topic prevalence, topic content and
source-source interaction are modeled with a flexible (Hierarchical)
Gaussian Process Latent Variable Model (GPLVM) [12, 13, 15] based
approach. Modeling temporal dynamics with GP priors can model
smooth temporal changes without fixing a rigid parametric form
[8]. We carry out variational inference for the model.

The model has superior performance in experiments in predict-
ing held-out data. We demonstrate the model both on simulated
data and a case study on news and social media. We use a text
analytics case for simplicity of illustrating results, but the model
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applies to all similar domains with non-negative data and is not re-
stricted e.g. to integer-valued count data, unlike some text analysis
solutions.

The rest of the paper is organized as follows. Next, Section 2 de-
scribes preliminaries and related work. Sections 3 and 4 present the
basic structure of the proposed model and its variational inference.
Sections 5 and 6 describe the experiments with simulated and real
data. Section 7 provides conclusions and discussion.

2 RELATED BACKGROUND
Non-negative Matrix Factorization. NMF is a widely used data
analysis approach in domains such as bioinformatics [23], image
processing [14], and text mining [16]. In short, NMF finds an ap-
proximate decomposition of a 𝑁 × 𝐷 matrix X containing only
nonnegative element values into a product of two lower-rank ma-
trices X ≈ ZW⊤ where Z is a 𝑁 × 𝐾 matrix,W is a 𝐷 × 𝐾 matrix,
and 𝐾 is the number of latent factors, where Z and W also contain
only nonnegative values. For example in text analytics X may be
a term-document matrix of 𝑁 terms and 𝐷 documents,W can be
interpreted as a topic loading matrix of 𝐾 topics of 𝐷 documents, so
that each row w𝑑 contains the topic loadings for document 𝑑 , and
Z can be interpreted as a topic content matrix of 𝑁 terms across
the 𝐾 topics, each column z·𝑘 is a discrete distribution over terms
for topic 𝑘 . Different NMF variants use different divergences to
measure difference between X and its approximation ZW⊤ and reg-
ularize Z andW by different penalties. We adopt the form where
the model is specified by a particular noise model between ZW⊤
and the observed X and particular priors for Z and W; the latter
incorporate a hierarchical model for cross-sources and temporal
dynamics.

Related Work. Some NMF based methods have been proposed
to model temporal dynamics [21, 24] of text data or data from multi-
ple sources [4, 7, 22]; most of these are not hierarchical approaches
or deal with only one of the two aspects (multi-source or temporal).
For example, in the Joint Past-Present Decomposition Model (JPP;
[24]) at each time slice the term-document matrix is explained by
both current topics and topics at the previous time slice.

A noteworthy example of Matrix factorization approaches is
Bayesian Group Factor Analysis (GFA) [10, 25] which analyzes data
from multiple sources (groups). GFA considers the joint data set
Y = {X1, . . . ,X𝑀 } of matrices X1 ∈ R𝑁×𝐷1 , . . . ,X𝑀 ∈ R𝑁×𝐷𝑀 .
GFA factorizes Y into matrices Z and W as Y ≈ ZW⊤ where
W = [W⊤1 . . .W⊤𝑀 ]⊤, W𝑚 ∈ R𝐷𝑚×𝐾 and each element 𝑤𝑚,𝑘 (𝑑)
in W𝑚 is normally distributed with zero mean and a group-wise
precision parameter 𝛼𝑚,𝑘 as𝑤𝑚,𝑘 (𝑑) ∼ 𝑁 (0, 𝛼−1𝑚,𝑘 ). The precision
parameter 𝛼𝑚,𝑘 enables GFA to model shared underlying features
between groups. However, GFA has no model for temporal dy-
namics. Moreover, GFA is not designed to model non-negative
factorization and hence it can yield negative-valued factors even
for nonnegative-valued data, making it unsuitable to be directly
applied in cases when factors are required to be nonnegative e.g.
for interpretability, such as loadings and contents of topics in text
data. We use GFA as a comparison both as is and with a simple
correction for nonnegativity.

One similar work [9] tries to model the temporal dynamics but
only takes the dynamics of the left-hand side matrix 𝒁 into account,
the loading matrix𝑾 is considered static.

Another group of approaches are the models based on Poisson
factor analysis (PFA) [1, 6, 17, 28]. However, since the Poisson
distribution only models positive integers, the approaches only
model positive-integer-valued matrices but not positive real-valued
matrices; the latter occur in many domains including text mining,
e.g. real-valued term weighting such as TF-IDF is often crucial for
document representation. This paper focuses onmethods applicable
to positive real-valued matrices.

3 PROPOSED MODEL
We now present the proposed dynamic non-negative Bayesian
group factor (DNBGFA) model. For clarity we use text data terminol-
ogy (documents, terms, topics) but the model is general. DNBGFA
considers a temporal sequence of 𝑇 term-document matrices
X(1) ,X(2) , . . . ,X(𝑇 ) , sharing the same vocabulary of𝑁 terms (words).
For each time slice 𝑡 , X(𝑡 ) = [X(𝑡 )1 , ...X(𝑡 )𝑀 ] is a combined matrix of
𝑀 text sources, each X(𝑡 )𝑚 contains 𝑁 terms and 𝐷 (𝑡 )𝑚 documents,
and the total document count at time 𝑡 is 𝐷 (𝑡 ) =

∑
𝑚 𝐷

(𝑡 )
𝑚 .

For each time slice 𝑡 , the task is to approximately factorize the
𝑁 × 𝐷 (𝑡 ) term-document matrix X(𝑡 ) as

X(𝑡 ) ≈ Z(𝑡 )W(𝑡 )⊤ (1)

where Z(𝑡 ) is a 𝑁 × 𝐾 matrix which represents the topic content
andW(𝑡 ) , a 𝐷 (𝑡 ) × 𝐾 matrix, represents the topic prevalence, and
both matrices are nonnegative. The setup is illustrated in Figure 1.
We infer the factorization as part of a hierarchical generative model
for the data.

The graphical plate model representation of the model is shown
in Figure 2. We assume a truncated-Gaussian likelihood where
each Gaussian is truncated from below at 0 as is appropriate for
nonnegative data, so that

𝑝 (X(𝑡 ) |Z(𝑡 ) ,W(𝑡 ) ) =
∏
𝑛,𝑑

𝑁 +
(
𝑥
(𝑡 )
𝑛,𝑑
|z(𝑡 )𝑛

⊤
w(𝑡 )
𝑑
, 𝜎2

)
(2)

where w(𝑡 )
𝑑

denotes the 𝑑th column of W(𝑡 ) representing the topic
prevalence in document 𝑑 , z(𝑡 )𝑛 denotes the 𝑛th row of Z(𝑡 ) repre-
senting the weight of the 𝑛th vocabulary word across the topics The
𝜎2 controls the noisiness of the observations. We set it equal for
every document in the following implementations but one can also
take the advantage of the flexibility to make a more sophisticated
model if needed. For example, a more detailed document-specific
variance 𝜎2

𝑑
representing a source-specific noise parameter can

be assigned as 𝜎𝑑 = 𝜎𝑚 (𝑑) where 𝑚(𝑑) denotes the group that
document 𝑑 belongs to.

The key idea is to generate the factor matrices in a way that flex-
ibly ties them over time, topics, and sources, without restricting the
time dependency to a pre-given form; we generate the dependen-
cies (covariance matrices) as functions of latent variables that are
draws from flexible nonparametric time series models, as detailed
in Sections 3.1 and 3.2.
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Figure 1: Illustration of the DNBGFA model. A sequence of non-negative matrices X(1) , ...,X(𝑇 ) is factorized into Z(1) , ...,Z(𝑇 )
and W(1) , ...,W(𝑇 ) while modeling temporal dependencies of factors.

3.1 Topic Content
To enforce non-negativity of the topic content matrix, each element
𝑧
(𝑡 )
𝑘,𝑛

of Z(𝑡 ) is parameterized by a softmax transformation

𝑧
(𝑡 )
𝑘,𝑛

=
exp(𝜂 (𝑡 )

𝑘,𝑛
)∑𝑁

𝑛′=1 exp(𝜂
(𝑡 )
𝑘,𝑛′)

(3)

which ensures the summation of word proportions of each topic∑𝑁
𝑛′=1 𝑧

(𝑡 )
𝑘,𝑛′ is equal to 1. Note that we will model magnitude of

numbers in observed matrices by the loading matrices, hence we
can without loss of generality fix the sums as above. Similar trans-
formations are often used in text mining models [3, 20].

GPLVM based model. For each term 𝑛, the variable 𝜼𝑛 =

[𝜂 (1)1,𝑛 . . . 𝜂
(1)
𝐾,𝑛 . . . 𝜂

(𝑇 )
1,𝑛 . . . 𝜂

(𝑇 )
𝐾,𝑛]⊤ controls topic content and the de-

pendencies between its elements represent dependencies across
sources and time. We model them in a nonparametric approach
by a Gaussian process latent variable model (GPLVM) which lets
us model temporal dynamics in a flexible way. In a GPLVM, the
parameters of a Gaussian distribution are constructed by a draw
from another GP :[

𝜂
(1)
1,𝑛𝜂

(2)
1,𝑛 . . . 𝜂

(𝑇 )
1,𝑛 . . . 𝜂

(1)
𝐾,𝑛 . . . 𝜂

(𝑇 )
𝐾,𝑛

]⊤
∼ N

(
0, 𝚺𝜂

)
(4)

where

Σ𝜼 = K𝜼 + 𝜖𝜼I (5)

and K𝜼 consists of elements

K (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) = k (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑘,𝑙 + k

(𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) (6)

where𝑘 , 𝑙 are topic indices and k (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑘,𝑙 is a kernel function
which governs the within topic consistency over time, k (𝜂)

𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 )

governs the topic-topic interaction, and 𝜖𝜼 controls noisiness.
The kernel k (𝜂)0 can be formed by an arbitrary kernel function of

time slices 𝑡𝑖 , 𝑖 = 1, . . . ,𝑇 . In this paper, we use RBF kernel which
is defined as

𝑟𝑏 𝑓(𝜉,𝜄) (𝑡𝑖 , 𝑡 𝑗 ) = 𝜄2 × 𝑒
−||𝑡𝑖−𝑡 𝑗 | |2

𝜉2 (7)
where hyperparameters 𝜉 and 𝜄 control dependencies over time.
This is a nonparametric time series model for the changing of the
term 𝑛 over time in topic 𝑘 . As in GPs, no specific functional form
is assumed for behavior over time, only that values at similar time
points are correlated as described.

k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) controls topic-topic interactions not only within a

time-slice but also across two different time-slices. We construct it
as

k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝜂 |𝑡𝑖−𝑡 𝑗 |𝑟 (𝑡𝑖 )𝑘

𝑟
(𝑡 𝑗 )
𝑙

(8)

which consists of an exponential time decay term 𝜆𝜂 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)
and products 𝑟 (𝑡𝑖 )

𝑘
𝑟
(𝑡 𝑗 )
𝑙

that control topic-topic interactions of top-
ics 𝑘 and 𝑙 across time in a more flexible way: for each topic the
vector r𝑘 = [𝑟 (𝑡1)

𝑘
, . . . , 𝑟

(𝑡𝑇 )
𝑘
]⊤ is drawn as a realization of a GP as

r𝑘 ∼ 𝐺𝑃 (0,Σr) , Σr = Kr + 𝜖𝑟 I (9)

where Kr consists of elements

K (𝑟 ) (𝑡𝑖 , 𝑡 𝑗 ) = k (𝑟 )0 (𝑡𝑖 , 𝑡 𝑗 ) (10)

and 𝜖𝑟 controls noisiness. Large values of the product 𝑟 (𝑡𝑖 )𝑘
𝑟
(𝑡 𝑗 )
𝑙

strengthen the dependency k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) between two time slices
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whereas small values of the product decrease the dependency, al-
lowing new topic content to emerge.

Like k (𝜂)0 , the kernel k (𝑟 )0 can be computed given time slices 𝑡𝑖 ,
𝑖 = 1, . . . ,𝑇 with an RBF kernel shown in equation (7). Noisiness
variables 𝜖𝜂 and 𝜖𝑟 could be given priors or be used as hyperparam-
eters, we did the latter for simplicity.

The kernel k (𝜂)0 is identical in different topics, hence it acts as a
regularizing term controlling word (dis)similarities within topics
over time whereas k (𝜂)

𝑘,𝑙
models flexibility of topic-topic interactions.

3.2 Topic Prevalence
Similar to the topic content model, to enforce non-negativity, each
𝑤 (𝑑) (𝑡 )

𝑚,𝑘
ofW(𝑡 ) is sampled from a truncated normal distribution

with mean 0 and a source-wise variance 𝑒𝛼
(𝑡 )
𝑚,𝑘 :

𝑤 (𝑑) (𝑡 )
𝑚,𝑘
∼ 𝑁 + (0, 𝑒𝛼

(𝑡 )
𝑚,𝑘 ) . (11)

The source-wise latent variables 𝛼 (𝑡 )
𝑚,𝑘

which control the sparsity of
topic in data sources𝑚 and time slices 𝑡 are again a realization of a
GPLVM

[
𝛼
(1)
1,𝑘 . . . 𝛼

(𝑇 )
1,𝑘 , . . . , 𝛼

(1)
𝑀,𝑘

. . . 𝛼
(𝑇 )
𝑀,𝑘

]⊤
∼ N(0, 𝚺𝜶 ) (12)

where
Σ𝜶 = K𝜶 + 𝜖𝜶 I (13)

and K𝜶 consists of elements

K (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) = k (𝛼)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑚,𝑛 + k
(𝛼)
𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) (14)

where k (𝛼)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑚,𝑛 is a kernel function governs the within
source consistency of topic prevalence over time and k (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 )
governs the cross-source interactions.

The cross-source interactions 𝑘 (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) are constructed as

𝑘
(𝛼)
𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝛼 |𝑡𝑖−𝑡 𝑗 |𝑠 (𝑡𝑖 )𝑚 𝑠

(𝑡 𝑗 )
𝑛 (15)

where 𝜖𝛼 controls noisiness and the matrix is otherwise again
composed of products of two terms, an exponential time decay term
with decay variable 𝜆𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑔) and the products 𝑠 (𝑡𝑖 )𝑚 𝑠

(𝑡 𝑗 )
𝑛

that control correlation sources across time in a flexible manner,
by generating for each source𝑚 the vector s𝑚 = [𝑠 (1)𝑚 , . . . , 𝑠

(𝑇 )
𝑚 ]⊤

from an independent GP as
s𝑚 ∼ N(0,Σs) , Σs = K𝑠 + 𝜖𝑠 I (16)

where Ks consists of elements

K (𝑠) (𝑡𝑖 , 𝑡 𝑗 ) = k (𝑠)0 (𝑡𝑖 , 𝑡 𝑗 ) (17)
and 𝜖𝑠 controls noisiness.
As before, covariances k (𝛼)0 and k (𝑠)0 are obtained by RBF kernel,

whose hyperparameters control time depencency; we used RBF. For
the noisiness parameters 𝜖𝛼 , and 𝜖𝑠 could again be given their own
priors but for simplicity we kept them as hyperparameters.

The models of topic content and prevalence in the previous sec-
tion and this section are highly analogous just like matrices Z(𝑡 )
and W(𝑡 ) have highly analogous roles. The differences are the dif-
ferent way to enforce non-negativity, and the different role of topics

Algorithm 1 Variational EM Procedure
Require:

X(1) . . .X(𝑇 ) : Observed matrices
𝐾 : number of topics
𝜎𝑑 : Hyper-parameters (likelihood)
k (𝜂)0 , k (𝑟 )0 , 𝜖𝑟 , 𝜖𝜂 , 𝑎, 𝑏: Hyper-parameters (content)
k (𝛼)0 , k (𝑠)0 , 𝜖𝑠 , 𝜖𝛼 , 𝑐, 𝑔: Hyper-parameters (prevalence)

Ensure:
1: for iter← 1 to maxit do
2: E-step: update 𝜼,𝜶 ,W
3: M-step: update r, s, 𝜆𝜂 , 𝜆𝛼
4: end for
5: return 𝜼,𝜶 ,W, r, s, 𝜆𝛼 =0

and sources: in the previous section correlations were modeled by
GPLVMs for each term across topics and time slices, here correla-
tions are modeled by GPLVMs for each topic across sources and
time slices. This establishes a flexible framework for factorization
of matrices related across sources and time. The factorizations at
each time slice (i.e., the parameter posteriors) are learned based on
both the hierarchical prior and the likelihood.

The hierarchical prior lets the model handle cases where at some
time slices no documents belonging to a source exist; we test this in
an experiment in Section 5. If a source is known to be inactive (not
just missing) at some time slices, such as birth/death of sources,
it can be specified into the priors e.g. by larger 𝜖𝛼 , if such expert
knowledge is available.

4 VARIATIONAL INFERENCE
To deliver time-efficient inference, we derive variational inference
algorithms. Approaches such as Gibbs sampling are possible, here
we focus on the variational approach. The inference constructs a
variational posterior distribution 𝑞 for each parameter of interest;
update rules for parameters of the 𝑞 distributions are given below.
We update the parameters in an EMmanner, as shown in Algorithm
1. Inference algorithms are further described.

4.1 Topic Content Variables 𝜼 and Topic
Sparsity Sariables 𝜶

A Laplace’s method based inference [26] is used. The variational
distribution 𝑞(𝜼 (𝑡 )𝑛 ) = N(𝜼 (𝑡 )𝑛 |m𝜼 (𝑡 )𝑛

,−∇2 𝑓 (m
𝜼 (𝑡 )𝑛
)−1) where the

meanm
𝜼 (𝑡 )𝑛

is set to the value of the MAP solution which maximizes
the joint log-probability 𝑓 defined as

𝑓 (𝜼𝑛) =∑
(𝑡 )

𝐸𝑞 (w)
[
log𝑝 (x(𝑡 )𝑛 |z(𝑡 )𝑛 ,w(𝑡 ) )

]
+ 𝐸𝑞 (r)

[
log𝑝 (𝜼 (𝑡 )𝑛 |r)

]
. (18)

In this work, we obtained them
𝜼 (𝑡 )𝑛

= argmax
𝜼 (𝑡 )𝑛

𝑓 (𝜼 (𝑡 )𝑛 ) using an
optimizer called simulated annealing (SANN) [2]. The covariance
matrix ∇2 𝑓 (m

𝜼 (𝑡 )𝑛
) is the Hessian matrix of 𝑓 evaluated at the point

m
𝜼 (𝑡 )𝑛

.
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Figure 2: Graphical representation of the DNBGFA model. Noisiness parameters 𝜖𝜂 , 𝜖𝑟 , 𝜖𝑠 , 𝜖𝛼 not shown for clarity.

Inference of 𝜶 is similar, the variational distribution 𝑞(𝜶𝑘 ) is
N(𝜶𝑘 |m𝜶𝑘 ,−▽2 𝑓 (m𝜶𝑘 )−1) and the corresponding objective func-
tion 𝑓 (𝜶𝑘 ) is

𝑓 (𝜶𝑘 ) =∑
(𝑡 )

𝐸
𝑞
(
w(𝑡 )
𝑘

) [log 𝑝 (w(𝑡 )
𝑘
|𝜶𝑘 )

]
+ 𝐸𝑞 (s)

[
log𝑝 (𝜶 (𝑡 )𝑛 |s)

]
(19)

4.2 Topic Content Correlation r and Sparsity
Correlation Tendencies s

To carry out the posterior inference of the variables r and s describ-
ing the topic-specific content and source-wise sparsity correlation
tendencies, we adapted a recently developed framework proposed
by Damianou et al. [5] which is able to capture the complexity of the
interactions between latent variables. In the framework, auxiliary
variables u(𝑟 ) and r𝑢 are induced. The joint probability related to r
is then expanded, written as

𝑁∏
𝑛=1

𝑝 (𝜼𝑛 |u(𝑟 )𝑛 , r, r𝑢 )𝑝 (u(𝑟 )𝑛 |r𝑢 )𝑝 (r) (20)

where 𝑝 (𝜼𝑛 |u(𝑟 )𝑛 , r, r𝑢 ) = N(𝜼𝑛 |an, Σ∗𝜂 ) with an = K𝜂𝑢K (𝑟 )𝑢
−1
u𝑛

and Σ∗𝜂 = Σ𝜂 − K𝜂𝑢K (𝑟 )𝑢
−1K𝑢𝜂 . The pseudo-inputs

r𝑢 = [𝑟 (1)𝑢 , . . . , 𝑟
(𝑇 )
𝑢 ]⊤ are the constructing variables of u(𝑟 ) , that

is,

𝑝 (u(𝑟 )𝑛 |r𝑢 ) = N(u(𝑟 )𝑛 |0,K (𝑟 )𝑢 ), (21)

where K (𝑟 )𝑢 consists of elements

K (𝑟 )𝑢 (𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝜂 |𝑡𝑖−𝑡 𝑗 |𝑟 (𝑡𝑖 )𝑢 𝑟
(𝑡 𝑗 )
𝑢 + 𝑘 (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 ) . (22)

The posterior is then approximated with
𝑁∏
𝑛=1

𝑝 (𝜼𝑛 |u(𝑟 )𝑛 , r′, r𝑢 )𝑞(u(𝑟 )𝑛 )𝑞(r′) (23)

where r′ = [𝑟 (1)1 . . . 𝑟
(1)
𝑘

. . . 𝑟
(𝑇 )
1 . . . 𝑟

(𝑇 )
𝑘
]⊤; 𝑞(r′) is a Gaussian dis-

tribution 𝑞(r′) = N(r′ |mr′, Sr′) where the variational mean vector
mr′ and covariance matrix Sr′ are obtained via maximizing an ob-
jective function F̂ (r′) −𝐾𝐿 (𝑞(r′) | |𝑝 (r′)) which is a Jensen’s lower
bound of the marginal likelihood, with respect to mr′ and Sr′ to-
gether with r𝑢 .

We have

F̂ (r′) =
∑𝑁
𝑛=1 𝜼

⊤
𝑛W

(𝑟 )𝜼𝑛
−2 +

𝑁 log ©­«
𝜖
−(𝐾×𝑇 )
𝜂 |K (𝑟 )𝑢 |

1
2

(2𝜋) (𝐾×𝑇 )2 |𝜖−2𝜂 𝚿(𝑟 )2 +K (𝑟 )𝑢 |
1
2

ª®¬
+

𝑡𝑟

(
K (𝑟 )𝑢

−1
𝚿(𝑟 )2

)
−𝜓 (𝑟 )0

2𝜖2𝜂/𝑁
(24)

where the matrices involved are computed as

W(𝑟 ) = 𝜖−2𝜂 I(𝐾×𝑇 ) − 𝜖−4𝜂 𝚿(𝑟 )1

(
𝜖−2𝜂 𝚿(𝑟 )2 +K (𝑟 )𝑢

)−1
𝚿(𝑟 )1

⊤
, (25)

𝜓
(𝑟 )
0 = m⊤r′mr′ + 𝑡𝑟 (Sr′), (26)

𝚿(𝑟 )1 = r𝑢m⊤r′ ◦ D(𝜂𝑢) , (27)

𝚿(𝑟 )2 = D(𝑢𝜂) ◦ r𝑢
(
mr′m⊤r′ +𝑇𝑟 (Sr′)

)
r⊤𝑢 ◦ D(𝜂𝑢) , (28)

Sr′ =
(
𝚺r′
−1 + 𝑑𝑖𝑎𝑔(𝝃r′)

)−1
, (29)
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where

D(𝜂𝑢) = 1𝐾 ⊗


1 . . . 𝑒−|1−𝑇 |𝜆𝜂
. . .

𝑒−|𝑇−1 |𝜆𝜂 . . . 1


(30)

and D(𝑢𝜂) = D(𝑢𝜂)⊤. Note that ◦ denotes Hadamard product and
⊗ denotes Kronecker product.

For the parameters s which define the tendency of the topics’
sparsity to correlate, the inference is done in a similar manner by
imposing u(𝑠) and s𝑢 . The variational distribution 𝑞(s′) related
parameters {ms′, 𝝃s′, s𝑢 } are obtained via optimizing the objective
function F̂ (s′) − 𝐾𝐿 (𝑞(s′) | |𝑝 (s′)). The computation of F̂ (s′) is
similar to the computation of (r’) via replacing corresponding vari-
ables.

4.3 Time Decay Parameters 𝜆𝜂 and 𝜆𝛼
Here we obtain the point estimates of 𝜆𝜂 and 𝜆𝛼 by optimizing the
following objective functions:

𝑓 (𝜆𝜂 ) = 𝐸𝑞 (𝜼)𝑞 (r)
[∑
𝑛

log𝑝 (𝜼𝑛 |r, 𝜆𝜂 )
]
+ log𝑝 (𝜆𝜂 |𝑎, 𝑏) (31)

and

𝑓 (𝜆𝛼 ) = 𝐸𝑞 (𝜶 )𝑞 (s)
[∑
𝑘

log𝑝 (𝜶𝑘 |s, 𝜆𝛼 )
]
+ log𝑝 (𝜆𝛼 |𝑐, 𝑔) (32)

which can be done by standard optimizers, here we again use the
SANN optimizer.

4.4 Topic Prevalence W
The truncated normal distribution preserves the Gaussian-Gaussian
conjugacy, therefore, the variational distribution can can be ob-
tained analytically:

𝑞
(
w(𝑡 )
𝑑

)
= N+ (w(𝑡 )

𝑑
|mw𝑑 , 𝜎

2Sw𝑑 ) (33)

where we have

mw𝑑 = Sw𝑑𝐸𝑞 [Z(𝑡 )
⊤]x(𝑡 )

𝑑
(34)

and

Sw𝑑 =

(
𝐸𝑞

[
Z(𝑡 )⊤Z(𝑡 )

]−1
+ Σ−1

𝛼 (𝑡 )
𝑑

)−1
. (35)

5 SIMULATION EXPERIMENTS
We evaluate the proposed model both on simulated and on real
data. We focus on cases where individual matrices are relatively
small, so that good modeling assumptions become crucial for strong
predictive performance. In this section we first compare the model
with other approaches using artificial data in the same range as
our collected data, simulated from an underlying DNBGFA model
with 𝑡 = 1, ..., 10, 𝑁 = 200, each 𝐷 (𝑡 )𝑚 = 20 and hyper-parameters:
k (𝜂)0 = k (𝛼)0 = 𝑟𝑏 𝑓(0.1,100) , k

(𝑟 )
0 = k (𝑠)0 = 𝑟𝑏 𝑓(1,0.1) , 𝜖𝑟 = 𝜖2 = 1,

𝜖𝜂 = 𝜖𝛼 = 0.1, 𝑎 = 𝑐 = 1, 𝑏 = 𝑔 = 10, 𝜎 = 0.01. The above RBF kernel
parameters emphasize time dependency in the simulated data.

We compare the proposedmethod DNBGFA to six other methods:
NMF, GFA and its variant denoted NGFA, JPP, and an integer-based
method denoted DTM, as described below.

In these experiments as well as the case studies, the data are
real-valued and we focus on comparing methods that are appli-
cable to such real-valued data; therefore, NMF, GFA and JPP are
selected as comparison methods designed for real-valued data. In
contrast to the above methods, methods that are restricted to inte-
gers [6, 27, 28] are not readily applicable to real-valued data. We
will compare to one such method, Dynamic Topic Model (DTM)
[3] as a prominent example of integer-restricted dynamic methods;
due to its restriction to integer data, DTM’s model building is here
based on integer-rounded observations. We compare performance
of the methods in two scenarios below.

Partial Article. In this scenario, we simulate a situation where
only partial content of articles are observed and we aim to predict
the rest. A model built from the observed document parts is used
to predict left-out content of the same documents. This scenario
corresponds e.g. to using news RSS feed snippets to predict the
news content, or using abstracts to predict the content of full-text
research articles.

We simulate the scenario by leaving a randomly selected 10% of
the content of each document vector x(𝑡 )

𝑑
in the training data set. In

detail, each column of the training term-document matrix X(𝑡 )𝑡𝑟𝑎𝑖𝑛
is generated by a multinomial draw. For each document vector
x(𝑡 )
𝑑

column (document) x = [𝑥1, . . . , 𝑥𝑁 ]⊤ of the original matrix
X(𝑡 ) , denote the total term occurrence by | |x| |1 and the vector of
term occurrence proportions by x/| |x| |1; we fill the corresponding
column of 𝑋 (𝑡 )𝑡𝑟𝑎𝑖𝑛 as the count vector of 0.10 · | |x| |1 trials from the
distribution x/| |x| |1. The resulting training matrix contains 10% as
many term occurrences as the original.

After training a model (DNBGFA, NMF, GFA, NGFA, DTM and
JPP) to obtain the underlying topic content and topic prevalence
matrices, the left-out term-document matrices of complete articles
𝑋 (𝑡 ) are then estimated by ˜𝑋 (𝑡 ) ≈ 𝑍 (𝑡 )𝑡𝑟𝑎𝑖𝑛𝑊

(𝑡 )
𝑡𝑟𝑎𝑖𝑛

⊤ × 10, where the
multiplier scales the prediction to the size of left-out data.

Interpolating Missing Data. In this scenario, we leave out the
entire term-document matrix out of the 10 time slices, and we repeat
the scenario 10 times leaving out a different time slice each time.
The task is to estimate the missing slice given its time index and
number of documents. For NMF, GFA and NGFA, the missing matrix
is estimated using the result of the previous time slice, where topic
loadings of an unseen document are estimated by average loadings.
We have also tried to use the result from the next time slice and
the performance is very similar. As DTM does not directly allow
missing time slices we train it with the missing slice omitted and
predict using the result from the previous time slice.

For DNBGFA, the matrices of the left-out time slice 𝑍 (𝑡 ) and
𝑊 (𝑡 ) are directly estimated from the hierarchical model based on
the time index of the held-out slice, thus the missing matrix 𝑋 (𝑡 )
can be directly estimated.

Results. For both scenarios, we repeat the process 20 times to
account for stochasticity in data generation and in training meth-
ods, the root mean square error (RMSE) between predicted matrix
content and true left-out content is employed as the performance
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Figure 3: Performances are compared with averaged RMSE. Error bars are the variances of the mean value. DNBGFA attains
the lowest average RMSE and outperforms other approaches in all four experiments (a)-(d), and for all cases over 𝐾 (number
of topic on the horizontal axis).

measure and pairwise t-tests between DNBGFA and other meth-
ods are then conducted to verify if the differences are statistically
significant. Results can be found in Figure 3. In all cases DNBGFA
achieves clearly smaller prediction error than other methods, and
the differences between DNBGFA and other methods are statisti-
cally significant (𝑝 < 0.01).

6 CASE STUDY: FINNISH NEWS AND SOCIAL
MEDIA

We apply the model to data from three text sources in 12 time
slices (months) from September 2011 to August 2012, including
Helsingin Sanomat (a Finnish newspaper), Finnish Twitter Census
(www.finnishtwitter.com) and Suomi24 (Finnish online forum; we
take text from sections Talous (Economics) and Yhteiskunta (Soci-
ety)). We remove stop-words and rare terms, lemmatize the text,
then form TF-IDF weighted term-document matrices from the pro-
cessed text.

Comparative Study. A comparison study is presented here,
analogous to the two scenarios in Section 5 but with the above-
mentioned data. For each experiment, we randomly sample 20 docu-
ments from each source and each time slice. The hyper-parameters
are set as in the section 5 Results are shown in Figure 3. DNBGFA

again outperforms other methods and differences are statistically
significant.

Case Study: Exploratory Analysis of Topic Evolution. We
further apply the proposedmodel to a subset of the above-mentioned
dataset which contains the 150 longest documents from each time
slice and each text source, yielding 5400 documents in total and
1286 terms after removing rare words and stop words. Figure 4
displays two example topics of the posterior analysis, showing
their prevalence and topic content across time slices. The topic
content evolution is extracted from the posterior of 𝜂 (terms with
highest loadings for each time slice are shown) and the prevalence
is extracted from posterior of 𝛼 (controlling ability of the topic
to appear in documents; higher value yields higher chance to ap-
pear). Both of these topics start from low prevalences in September
and October 2011, rise rapidly in November 2011, and continue
with greater prevalences thereafter. Both topics have roughly equal
prevalence across the sources (Suomi24 social media, Helsingin
Sanomat news and Twitter), but the prevalences have differing
time behavior. Prevalence in Twitter attains a peak fastest for both
topics; for the Media topic Twitter prevalence has only one broad
peak whereas for the Education topic there are three peaks. Preva-
lence in Helsingin sanomat shows two peaks for the Media topic,

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1041



Figure 4: Evolution over time of topic content and topic sparsity (prevalence) in different sources: (a) evolution of the content
of topic ‘Media’ in Finnish news and social media, (b) evolution of topic sparsity for the topic ‘Media’, (c) evolution of the
content of topic ‘Education’ in Finnish news and social media, (d) evolution of topic sparsity for the topic ‘Education’.

and noisy behavior for the Education topic. Prevalence in Suomi24
has a single peak for the Media topic in February 2012, and two
peaks in December 2011 and July 2012 for the Education topic.
Both topics are sensible in terms of their content and experience
reasonable variation of prevalence and content over time. For ex-
ample, in Figure 4 (a) the top words are all relevant to media but
each time slice emphasizes a different aspect of media. It seems
that time slices 09.2011, 21.2011, and 05.2012 focus more on news
(contain words ‘read’, ‘reporter’ and ‘paragraph’) and time slices
02.2012 and 08.2012 focus more on social media (containing words

‘Facebook’, ‘source’ and ‘computer’). Similarly, in Figure 4 (c) the
top words refer to education with different time slices emphasizing
different aspects, for example the time slice 03.2012 04.2012 empha-
sizes performance evaluation (containing words ‘positive’, ‘exam’
and ‘task’) whereas 04.2012 focuses more on education as a public
service (containing words ‘service’, ‘child’ and ‘city’). Our approach
allows smooth changing of topic content, for example in Figure 4
(a) the word ‘media’ appears in adjacent time slices 11.2011 and
12.2011 of the Media topic, but with less prevalence in the latter.
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7 CONCLUSIONS AND DISCUSSION
We introduced DNBGFA, a probabilistic NMF-based model that en-
ables flexible modeling of temporal dynamics usingmultiple sources
of data across data sources (domains) and time slices. Novelties in-
clude a Softmax+GP prior and overall structure of the hierarchical
model; the model is a novel solution to address temporal dynamics
and multiple sources at the same time. The hierarchical structure
lets the model incorporate prior knowledge, especially underlying
structure of source-source interactions and temporal dynamics, to
inference, in addition to the data. The model achieved better gener-
alization ability (ability to predict left-out data) than comparable
models in realistic scenarios.The case study showed the model en-
ables discovery of topic evolution and interactions. The model is
applicable beyond text data to nonnegative matrices with multiple
sources and temporal dynamics.

Our contributions are 1. Hierarchical modeling of topics shared
across sources and time and topics unique to sources or time slices;
2. Discovering temporal dynamics of both topic content and preva-
lence; 3. Comparative studies using both simulated data and real-
world data; 4. A real-world demonstration using data from three
Finnish text sources.
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Abstract

Modern text data is increasingly gathered in situations where it is paired with a high-
dimensional collection of covariates: then both the text, the covariates, and their relation-
ships are of interest to analyze. Despite the growing amount of such data, current topic
models are unable to take into account large amounts of covariates successfully: they fail
to model structure among covariates and distort findings of both text and covariates. This
paper presents a solution: a novel factor-topic model that enables researchers to analyze
latent structure in both text and sophisticated document-level covariates collectively. The
key innovation is that besides learning the underlying topical structure, the model also
learns the underlying factorial structure from the covariates and the interactions between
the two structures. A set of tailored variational inference algorithms for efficient compu-
tation are provided. Experiments on three different datasets show the model outperforms
comparable topic models in the ability to predict held-out document content. Two case
studies focusing on Finnish parliamentary election candidates and game players on Steam
demonstrate the model discovers semantically meaningful topics, factors, and their inter-
actions. The model both outperforms state-of-the-art models in predictive accuracy and
offers new factor-topic insights beyond other topic models.

Keywords: Probabilistic Modeling, Natural Language Processing, Topic Modeling

1. Introduction

In multiple domains, textual data is paired with accompanying numerical covariates. Ex-
amples include questionnaires where free-choice text fields are paired with a set of numerical
(continuous or discrete-choice) answers to different questions (often on a Likert scale); po-
litical discussion where statements of public figures are paired with their voting record;
product reviews where review text is paired with covariates either describing the reviewer
along different attributes or scoring the product by multiple criteria; and many others. Such
datasets contain structure both within the text content, often described as underlying top-
ics; structure within the set of covariates; and structure linking the text and the covariates.
The structures of the covariates and how they interplay with the text content play crucial
roles and offer valuable insights. However, current generative probabilistic models do not
work well in this setting: the models have overemphasized the text structure only with

© 2021 C. Lu, J. Peltonen, T. Nummenmaa, J. Nummenmaa & K. Järvelin.
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little attention to modeling structure in covariates. Available topic models either ignore
covariates or simplistically model only direct influence of individual covariates, which yields
poor overfitted performance when covariates are high-dimensional. Besides poor predictive
performance, such models are also unable to provide insight into the structure in covariates
and its relationship to topics. In this paper, we present a solution.

We introduce the Cross-structural Factor Topic Model (CFTM), a novel generative
probabilistic model which can model the structure of both the text and its high-dimensional
numerical covariates. We describe the generative structure of the model, and a parallelizable
inference algorithm based on variational approximation. We show in experiments on several
data sets that the method yields good performance in modeling held-out document content
and yields meaningful insights about structures of covariates and text content.

The rest of the paper is structured as follows. Section 2 discusses related work. Sections
3 and 4 present the proposed method: Section 3 describes the generative model and Section
4 presents the inference approach. Empirical analysis including quantitative and qualitative
evaluation is presented in Section 5. Conclusions are given in Section 6.

2. Related Work

For modeling text content of documents alone, topic models of multiple kinds have been
proposed. Among them, Latent Dirichlet Allocation (LDA, Blei et al. 2003) is the classical
method, which models document content as a bag of words whose word counts arise out
of a mixture of latent topics, each of which has its own multinomial word distribution.
Nonparametric topic models have been proposed, including Hierarchical Dirichlet Processes
(Teh et al. 2006) which aim to learn the number of topics from data. Nonparametric
modeling is a direction of future extension for our work.

The Entity topic model (ETM, Kim et al. 2012) models the influence of entities on word
content by generating entity mentions from topics and then words from entity-describing
word distributions. However, entity mentions are part of text content, no covariates are
considered. An Author Topic Model (Rosen-Zvi et al. 2004) was introduced to model
relationships between authors, documents, topics and words; however, such models only
consider author identity and do not consider author attributes as covariates.

Supervised LDA (sLDA, Mcauliffe and Blei 2008) was developed to model labeled doc-
uments. An extended approach called Dirichlet-multinomial regression (DMR, Mimno and
McCallum 2008) introduces regression model on topic mixture over covariates. The Sparse
additive generative text model (SAGE, Eisenstein et al. 2011) allows topic content to fluc-
tuate by the covariates. However, none of these models allows covariates to affect both
topic prevalence and content; our proposed model addresses this.

MetaLDA (Zhao et al. 2017) and Structural topic model (STM, Roberts et al. 2016)
both allow covariates to influence topic prevalence and content. However, MetaLDA does
not provide a generative model of covariates, and only takes into account simple binary
label covariates in modeling topics. STM was recently developed based on SAGE. It is an
integrated solution to model covariates (both categorical and continuous) and text. How-
ever, the covariates that affect topic content have a limitation, as they allow discrete values
only. Thus STM cannot handle sophisticated covariates. We will show in our experiments
that STM performance is drastically worsened when the dimension of covariates is high.
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Figure 1: Proposed model. Plates denote top-
ics, factors, documents, and words.
The top row of latent variables (cir-
cles) describe topics, factors, and
their interaction; the 2nd row (θ
and Λ) describe prevalence of topics
and factors in a document; the bot-
tom part describes document content
(gray boxes). Factor-loading prior pa-
rameter α and noise variances σ, σγ ,
Ση, Στ , σφ, σβ omitted for clarity.

Distributed Multinomial Regression (Taddy 2015) is an alternative approach which directly
models the relationship between the word occurrences and the covariates, but it does not
model any structure among the covariates.

Another group of works focuses on combining neural models and topic modeling (Sri-
vastava and Sutton 2017; Card et al. 2018; Gui et al. 2019; Wang and Yang 2020). Among
them, SCHOLAR (Card et al. 2018) can be seen as a similar work to STM which incor-
porates covariates with a variational autoencoder (Kingma and Welling 2014). However,
despite their flexibility these models do not generate structure within covariates, they only
use covariate values as additional inputs in document content generation. Besides topic
models, Non-negative Matrix Factorization (NMF) models are also used for text analysis.
In general, a Poisson likelihood is employed to model the observed text whereas multino-
mial distributed likelihood are typically used by topic models. Many NMF-style works have
been proposed (Hu et al. 2016; Acharya et al. 2015; da Silva et al. 2017; Zhao et al. 2018);
among such works the most relevant is CTPF (Gopalan et al. 2014) which incorporates a
multivariate user-rating matrix into account as covariates, and we will compare to it.

3. Proposed Method

We model a collection of documents indexed by d ∈ {1, . . . , D} with text content and co-
variates jointly by a probabilistic model. Word content is distributed over a vocabulary of
V unique words indexed by v ∈ {1, . . . , V } and covariates are indexed by p ∈ {1, . . . , P}.
Word content arises from K underlying latent topics indexed by k ∈ {1, . . . ,K}, and co-
variates from L < P underlying latent factors indexed by l ∈ {1, . . . , L}. Topics and factors
interact: the strength of the latent factors affects the prevalence of topics and content (word
distribution) in each topic. Figure 1 shows the plate model representation of the overall
model. We next describe the generative model of the covariates and text content.

3.1. Document-level Latent Variables

Factor Loadings. Each document d is attached with a loading vector over L factors,

Λd= [λd,1, . . . λd,L]
> ∼ Dir(α) . (1)
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Interaction Coefficients. For each topic k ∈ {1, ...K − 1} a L-length coefficient
vector is generated as

Γk ∼N(0, σ2γIL) (2)

to model the relation between the factors and the prevalence of the topic. Note that
coefficient vectors for the first K − 1 topics suffice since topic prevalences sum to 1.

Topic Prevalence. For each document d, the topic prevalence vector θd = [θd,1, . . . , θd,K ]
is generated as θd = softmax(ηd) where the auxiliary variables are generated as

ηd,1:(K−1) ∼N(Γ>Λd,Ση) (3)

and the ηd,K is fixed to 0.

3.2. Structure of the Covariates

We assume the text content in each document is paired with a set of covariates. Different
covariates in the set may require different model types to properly model their structure.

Let x
(p)
d denote the p:th covariate of document d. We model covariates with two kinds of

structure: mixture model and factorization model. The former is suitable especially for
discrete covariates, such as multiple-choice values, and the latter for continuous covariates.
In both cases the covariate generation depends on a vector Λd of L latent parameters. We
describe both types of covariate generation next.

Mixture Model. In this structure the p:th covariate is generated from a mixture. The
mixture component membership label of the p:th covariate in document d is first generated
from a categorical distribution

s
(p)
d ∼ Cat(Λd) (4)

and the covariate x
(p)
d corresponding to the label s

(p)
d is then generated as x

(p)
d ∼ p(x

(p)
d |ξ

(p)

s
(p)
d

)

with parameter ξ
(p)

s
(p)
d

. We model the distribution in each mixture component as a Poisson

distribution for covariates that are a count of rare events and as a multinomial distribution
for categorical covariates.

Factorization Model. The covariate is directly generated from an exponential family
distribution as

x
(p)
d |Λd,φ

(p) ∼ ExpFam
(
ζ
(
Λd,φ

(p)
)
, T
(
x
(p)
d

))
(5)

in which the natural parameter ζ is a weighted average of factor-wise parameters φ
(p)
l ∼

N(0, σ2φ) weighted by the document-specific factor loadings Λd, so that

ζ
(
Λd,φ

(p)
)
= g(p)

(
L∑

l=1

φ
(p)
l λd,l

)
(6)

where g is the link function of the exponential-family model. For example, if a Gaussian

with a known variance σ2 is taken as the distribution, we have x
(p)
d ∼ N(

∑L
l=1 φ

(p)
l , σ2).
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3.3. Structure of Text

Topic Content. We model the word generation process with a SAGE-inspired structure
in which each document is attached with a latent vector βd of length V . The v:th element
of the latent vector is generated as

βd,v = κ(w)v +
∑

k

θd,kκ
(t)
v,k +

∑

l

λd,lκ
(f)
v,l +

∑

k

∑

l

θd,kλd,lκ
(i)
v,l,k + εβ (7)

where εβ ∼ N(0, σ2β). The κ(w) is a vector of length V controlling the overall word preva-

lence. The overall topic content κ(t) is a V × K matrix, factor influence κ(f) is a V × L
matrix, and κ(i) is a V × L×K array which governs factor-topic interactions on the topic

content level, that is, the value of κ
(i)
v,l,k reflects the strength of how much the factor l alters

the word probability of v in topic k.
To generate the observed words in the document, for the nth word in document d, the

word w
(d)
n is sampled from a multinomial distribution

w(d)
n ∼MN (softmax (βd)) . (8)

This model design allows the latent factors and topics to interact on both topic preva-
lence and topic content levels.

4. Variational Inference

We carry out variational inference for the model; variational inference aims to approxi-
mate the posterior distribution of model parameters by a factorized distribution q whose
components are from known families. Unlike point estimate methods such as maximum a
posteriori (MAP), variational inference is able to model a full distribution for parameters
based on observations. The parameters of the factorized distribution are optimized by min-
imizing Kullback-Leibler divergence from the factorized distribution to the true parameter
posterior, which becomes equivalent to maximizing the Evidence Lower Bound (ELBO).
Iterative optimization optimizes each component distribution given the others; depending
on the form of the observation probability and parameter priors, the optimum is obtained
analytically for some parameters and by optimization techniques for others. In particular
it turns out a crucial part, inference of the topic content, is nontrivial to do computation-
ally efficiently–naive inference is slow; we solve this by a distributed multinomial regression
approach with a kernel trick.

Topic Prevalence. Using Laplace Variational Inference (Braun and McAuliffe 2010;
Wang and Blei 2013), the variational distribution of ηd is obtained as

q(ηd) ≈ N(η̂d,−∇2L(η̂d)−1) (9)

where the mean η̂d is the MAP solution, i.e., optimum of

L(ηd) ∝ −
1

2
η>d Σ−1η ηd + η>d Σ−1η Γ>Λd +

∑

v

cd,v log
∑

k

ud,k,v exp(ηd,k)

−Wd log
∑

k

exp(ηd,k) (10)
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and ud,k,v is an auxiliary variable

ud,k,v =
exp

(
κ
(w)
v + κ

(t)
v,k + E[Λd]

>κ(f)
v + E[Λd]

>κ(i)
v,k

)

∑
v exp

(
κ
(w)
v + κ

(t)
v,k + E[Λd]>κ

(f)
v + E[Λd]>κ

(i)
v,k

) . (11)

The ∇2L(η̂d) is a Hessian matrix of L(ηd) at η̂d. We find η̂d with the “L-BFGS” optimizer.
Mixture Covariates Model. We infer the component parameters for each member-

ship label l = 1, . . . , L. We present separately the cases for count data and for categorical
data. We also infer the distribution of the membership labels.

When the p:th covariate is Count Data (with a Poisson model), we consider the Poisson

parameter ξ
(p)
l for each membership label l = 1, . . . , L. The optimum of the variational

distribution has an analytical form and becomes

q(ξ
(p)
l ) = Gamma(a(p) + E[Λl]

>X(p)
d , b(p) +

∑

d

(E[Λl])) (12)

When the p:th covariate is Categorical Data (with a Multinomial model), we consider

for each membership label l = 1, . . . , L the multinomial parameter ξ
(p)
l , i.e., the vector of

category probabilities. The solution has an analytical form q(ξ
(p)
l ) = Dir(a(p)+

∑
dE[s

(p)
d =

l]X
(p)
d ) where s

(p)
d is the current membership label for covariate p of document d.

Membership Labels. The variational distribution of the mixture membership label

s
(p)
d for covariate p of document d is multinomial and the optimum has an analytical form

log q(s
(p)
d = l) ∝ logE[λd,l] +

∑
p logE[p(x

(p)
d |ξ

(p)
l )].

Factorization Covariates Model. Taking advantage of conjugacy, the variational

posterior of the factor-wise natural parameters φ
(A)
p is q(φ(p)) = N(µ̂φ(p) , Σ̂φ(p)) where the

covariance matrix Σ̂φ and the mean µ̂φ(p) are

Σ̂φ =

(
Σσ
−1 +

1

σ2φ

∑

d

Eq

[
ΛdΛ

>
d

])−1
, µ̂φ(p) = Σ̂φ

∑
dEq [Λd]x

(A)
d,p

σφ2
(13)

where Σσ = Diag(σ2, . . . , σ2).
Factor Loading. The variational posterior of Λd is a Dirichlet distribution parame-

terized by pseudocount vector αΛd
. To derive the variational posterior (i.e. find the αΛd

),
we set up an objective function proportional to the ELBO; the objective function is

Eq[(a + sd − 1)> logΛd +
1

2
(2b>Λd −Λd

>AΛd)]−H(Λd) (14)

where we have

b = Eq

[
ηd
>Σ−1η Γ> +

∑

k

θd,k(wd
>κ(i)

k )

]
+ Eq

[
X

(A)
d

>
Σ−1(A)φ

>
]

and (15)

A = Eq

[
ΓΣ−1η Γ> + φΣ−1(A)φ

>
]
, (16)
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and H(Λd) is the entropy of the Dirichlet distribution. Using a Taylor approximation to
simplify the computation, denote

f(Λd) = (a + sd − 1)> logΛd +
1

2
(2bΛd −ΛdAΛd) . (17)

Then the objective function becomes

Eq[f(Λd)]−H(Λd) ≈ f(Λ̂d) +
1

2
tr(∇2f(Λ̂d)Covq(Λ̂d))−H(Λd) (18)

where Λ̂d =
αΛd∑
l αΛd l

is the mean of Λd and ∇2f(Λ̂d) = Diag( (1−a−sd)
Λ̂
−2
d

)−A is the Hessian

matrix. The L-BFGS optimizer is used to optimize (18) with respect to αΛd
.

Topic-Factor Interaction. For k ∈ {1, . . . ,K−1}, we derive the variational posterior
of the interaction coefficient vector Γk which defines the effect of factor loadings on the topic
prevalence. As the prior of the coefficients and the likelihood are both normal, taking the
advantage of the conjugacy we have the analytical posterior q(Γk) = N(µ̂Γk

, Σ̂Γk
) where

the covariance matrix Σ̂Γk
and mean µ̂Γk

are

Σ̂Γk
=

(
Ση
−1∑

d

Eq

[
ΛdΛ

>
d

]
+Σγ

−1
)−1

and (19)

µ̂Γk
=
(
Eq [Λ]Eq [Λ]> + Σγ

−1
)−1

Eq [Λd]
>Eq [η] . (20)

Topic Content. The complexity of topic content β and κ leads to challenges of ef-
ficiency and accuracy. A naive derivation of a variational posterior would yield computa-
tionally inefficient and non-scalable equations involving inverses of huge matrices and other
expensive computations. Instead, we develop a set of tailored inference algorithms based on
distributed multinomial regression (Taddy 2015) and a kernel trick (Agrawal et al. 2019),
as described next in Proposition 1, Proposition 2, and Theorem 1. The propositions and
theorem show how the text structure inference algorithm can be implemented with parallel
computation (each vocabulary term can be run in parallel) to enhance efficiency.

Proposition 1 (Distributed Multinomial Regression) The inference of the β in (8)
can be performed through conducting inference on independent Poisson models for each
word, where each word v has the following generative model:

κv ∼ N(0,Στ ) , βd,v = κv
>Ψd + εβ , wd,v ∼ Poisson

(
eβd,v+κ

(w)
v +logmd

)
(21)

where εβ ∼ N(0, σ2β) is the random noise. The notation κv = [κ
(t)
v,1, . . . κ

(t)
v,K , κ

(i)
v,1,1, . . . , κ

(i)
v,L,K ]

joins together the topic and topic-factor interaction coefficients affecting word v. Corre-
spondingly, Ψd is a mapping function that represents the combined influence terms of both
topic prevalences and factor loadings and is defined as

Ψd , Ψ (θd,Λd) := [θd,1, . . . , θd,K ,Λd,1, . . . ,Λd,L,Λd,1θd,1, . . . ,Λd,Lθd,K ] (22)
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where the first K elements in the vector are the topic prevalence, the positions are cor-

responding to the κ
(t)
v and the rest are topic-factor interactions, their position are corre-

sponding to vec(κ
(i)
v ). In the following, for simplicity we abuse the notation, using zd to

denote the collection of {θd,Λd}. The logarithm of the document length logmd is plugged
in to serve as the fixed effect (exposure) in the Poisson model.

This framework was proposed by Taddy (2015) to transform the multinomial logistic
model into a collection of independent Poisson models to circumvent expensive compu-
tations resulting from softmax transformation. Moreover, since the Poisson models are
independent of each other, one can easily introduce parallel computation techniques (e.g.
map-reduce, Dean and Ghemawat 2008) to speed up the computation. STM also adopted
this approach; we apply the framework in a novel factor-topic modeling context. By adapt-
ing the framework, the likelihood model (8) is factorized into V independent term-wise
Poisson models with a plug-in fixed effect (exposure) shared across terms.

Proposition 2 (Gaussian Process Reparametrization) The generative model in Propo-
sition 1 can be reparameterized as

gv ∼ GP (0, kτ ) , βd,v = gv(zd) , wd,v ∼ Poisson
(
eβd,v+κ

(w)
v +logmd

)
(23)

where the equation of βd,v in (21) is seen as a function with inputs θd and λd and is then
presented as the equation of βd,v in (23), and with a Gaussian process prior .

Combining the propositions 1 and 2, taking the weight-space view (see Rasmussen and
Williams 2006), the prior of βv becomes

βv ∼ N(0,Kτ + σ2βID) (24)

where Kτ is a D×D matrix with kτ (zd, zd′) , Ψ>d ΣτΨd′ . We first find the point estimate
βv
∗ , argmax

β
f(β) with the objective function

f(β) =
∑

d

log p(wd,v|βd,md)− logβ>Rτβ (25)

where Rτ =
(
Kτ + σ2βID

)−1
. We use “L-BFGS” to get the fixed κ

(w)
v value by κ

(w)
v =

1
D

∑
d β
∗
d,v, the margin β(m) =

[
β∗1 − κ(w)1 . . . ,β∗V − κ

(w)
V

]
is then the posterior mode of

β. These equations infer the posterior of the word distribution parameters β which are

combinations of topic and factor influences. Next we infer the influence variables κ
(t)
v of

topics to each word and κ
(i)
v,,k of factors to each word and topic, with the following theorem.

Theorem 1 (Kappa Recovery) Let θk be a k-th unit vector with length K, Λl be a l-th
unit vector with length L, zk denote the collection {θk,Λ0}, zl denote the collection {θ0,Λl},
and zk,l denote the collection {θk,Λl}. Then the posterior of κ

(t)
v,k is N(µ

κ
(t)
v,k

, σ2
κ
(t)
v,k

), and

the posterior of κ
(f)
v,l is N(µ

κ
(f)
v,l

, σ2
κ
(f)
v,l

) where

µ
κ
(t)
v,k

= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v , µ

κ
(f)
v,l

= Kτ

(
zl, {zd}Dd=1

)
Rτβ

(m)
v , (26)
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σ2
κ
(t)
v,k

= kτ (zk, zk) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
, (27)

σ2
κ
(f)
v,l

= kτ (zl, zl) +Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
(28)

and Kτ and Rτ are defined in Proposition 2. The posterior of κ
(i)
v,k,l is N(µ

κ
(i)
v,k,l

, σ
κ
(i)
v,k,l

) with

µ
κ
(i)
v,k,l

= [−1,−1, 1]Kτ

(
{zk, zl, zk,l}, {zd}Dd=1

)
Rτβ

(m)
v (29)

where [−1, 1, 1] is simply the 1× 3 matrix with elements 1 and −1, and the variance is

σ2
κ
(i)
v,k,l

= kτ (zk, zk) + kτ (zl, zl) + kτ (zk,l, zk,l) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
+

Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
+Kτ

(
zk,l, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk,l

)
. (30)

Proof By Proposition 2, g(zk) = κ
(t)
v,k, thus, given the multivariate normal distribution

[
β
(m)
v

g(zk)

]
∼ N

(
0,

[
Kτ + σ2βID Kτ

(
{zd}Dd=1, zk

)

Kτ

(
zk, {zd}Dd=1

)
kτ (zk, zk)

])
(31)

the posterior mean and variance of κ
(t)
v,k can be obtained as

µ
κ
(t)
v,k

= E
[
g(zk)|{zd}Dd=1,β

∗
v

]
= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v and (32)

σ2
κ
(t)
v,k

= V ar
(
g(zk)|{zd}Dd=1,β

∗
v

)
= kτ (zk, zk) +Kτ

(
zk, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zk

)
.

(33)

Similarly, the posterior mean and variance of κ
(f)
v,l are

µ
κ
(t)
v,k

= Kτ

(
zk, {zd}Dd=1

)
Rτβ

(m)
v , σ2

κ
(f)
l,k

= kτ (zl, zl)+Kτ

(
zl, {zd}Dd=1

)
RτKτ

(
{zd}Dd=1, zl

)
.

(34)

Since we have g(zk,l) = κ
(t)
v,k + κ

(f)
v,l + κ

(i)
v,k,l, given the multivariate normal distribution

[
β
(m)
v

g(zk,l)

]
∼ N

(
0,

[
Kτ + σ2βID Kτ

(
{zd}Dd=1, zk,l

)

Kτ

(
{zk,l, zd}Dd=1

)
kτ (zk,l, zk,l)

])
(35)

the posterior mean and variance of κ
(i)
v,k,l can be obtained accordingly via

µ
κ
(i)
v,k,l

= E[g(zk,l)− g(zk)− g(zl)|{zd}Dd=1,β
(m)
v ] and (36)

σ2
κ
(t)
v,k

= V ar
(
g(zk,l)− g(zk)− g(zl)|{zd}Dd=1,β

(m)
v

)
. (37)
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The process for the inference of text structure is summarized in Algorithm 1 and the
entire inference process is shown in Algorithm 2, where the update steps correspond to the
equations described in this section for each parameter.

Algorithm 1: Text Structure Inference Algorithm 2: Variational Inference

Data: Term-document Matrix
Hyper-parameters: σβ , Στ
Result: {β(m), κ(w), κ(t), κ(i)}
for v in 1, . . . , V do

Obtain β∗v with (25)

Obtain κ
(w)
v with (4)

Obtain β
(m)
v = β∗v − κ(w)v

Recover κv with Theorem 1
end

Data: Term-document Matrix W,
Covariates X

Model Setting: K, L
Hyper-parameters: σβ , Στ , Ση, σγ , σφ
Result: {β, κ, η, Γ,Λ, s,φ,ξ}
for t in 1, . . . ,maxit do

Update β, κ (Text Structure)
Update η, Γ, Λ, s (Local Variables)
Update φ, ξ (Covariate Structure)

end

5. Empirical Study

The empirical study comprises two parts. In the first part we compare our model quanti-
tatively with other state-of-the-art approaches. We will show that it outperforms the other
methods with regard to predictive performance on held-out data. The second part contains
qualitative evaluations on case studies which demonstrate the usability of CFTM for gain-
ing insight into text data and their covariates. The fitted CFTM model is used to extract
underlying topics, structure among the covariates, and their interactions.

5.1. Datasets

We perform the empirical study using three real-world datasets.
Yle Election Compass 2019 is a survey directed to candidates for Finnish parliamentary

elections with results open to the public.1 It collects each candidate’s basic information
and agreement with different statements about ideological viewpoints, societal issues and
policies, measured by 29 Likert scale questions (score 1-5). Candidates can elaborate their
answers to advertise or communicate to voters; We take the written content of each candi-
date as the text document, the Likert scale questions as continuous variables, and gender
and native languages as categorical variables. Text is lemmatized, numbers, punctuation
and stop-words are removed. Texts with more than 40 words are taken for analysis, the
final dataset contains 1937 documents and 1764 vocabulary terms. The original text is in
Finnish, in the case study shown in Section 5.3 we provide an English translation.

Doom Eternal Game Reviews were collected from Steam2, a popular gaming plat-
form with an abundance of player-written game reviews. We focused on a first-person
shooter game “Doom Eternal”. Review texts and corresponding metadata were collected
via SteamAPI and profile data was crawled from public profile pages linked with collected
Steam IDs. The positivity/negativity (if the reviewer recommends the game or not) is taken

1. https://vaalikone.yle.fi/eduskuntavaali2019 ; https://yle.fi/uutiset/3-1072538.
2. https://store.steampowered.com/
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as a categorical variable. The number of submissions and guides of users are rare events so
they are considered count variables. We identified 22 continuous variables such as number
of achievements, and played time, etc. For text content, numbers, punctuations and stop
words were removed and the text was lemmatized. Reviews with more than 40 words after
processing were kept. Finally, a collection of 1144 reviews and 2377 terms remained.

Airport Lounge User Reviews were collected from Skytrax3, in which customers can
give numerical ratings (score 1-5, including aspects such as comfort and staff) to the air-
port lounges together with written reviews. Again, we keep reviews with more than 40
words, numbers, punctuations and stop words were removed, and texts are lemmatized.
The processed data set contains 1311 reviews with 2799 vocabulary terms, paired with 8
numerical ratings, and 2 categorical ratings (recommend or not).

5.2. Quantitative Evaluation

We compare our model with four state-of-the-art models: LDA, STM, MetaLDA, and
SCHOLAR. The performance comparison focuses on held-out prediction using the above-
mentioned datasets. Details are described as follows.

Evaluation Metric. The held-out likelihood is used to evaluate model performance.
The text content is randomly divided into training and held-out sets, each containing 50%
of the original content 4. The training set is used to fit the models. The fitted model is then
used to predict the held-out text content and the held-out likelihood values are computed.
Note that another typical metric, perplexity on the test set, is an exponential transformation
of the held-out likelihood: higher held-out likelihood means lower perplexity.

Experimental Settings. CFTM is run with simple unoptimized prior settings α =
10 · 1, Σγ = Στ = 10 · I, ση = σφ = 0.1, σβ = 0.01. Other methods are run with their
default values. We evaluate the model performance on different settings (combinations
of the number of topics K ∈ {5, 10, 15, 20} and number of factors L ∈ {5, 10}). To assess
robustness of the methods to limited data, we run experiments both on the full data sets and
on a random draw of 500 documents. The document subset sampling (in the limited-data
case), train-test division, and model fitting are repeated 10 times for each setting.

Running time. We implemented our algorithms in R 5. Using the parallel implemen-
tation, on average our model takes around 8 minutes and 13 minutes to converge using 8
and 4 cores respectively. In contrast, the R implementation of STM (a method also having
covariates) takes 18 minutes to converge, clearly longer than our model.

Results. The result is shown in Figure 2. In most settings (Yle Compass with 500 sam-
ples, Doom Eternal full data set and 500-samples, Lounge reviews full) CFTM clearly and
statistically significantly outperforms all other methods. In two settings results were closer:
for Lounge reviews with 500 samples, CFTM with L = 5 is statistically significantly better
than the closest competitor SCHOLAR for 5 and 10 topics and not significantly different
for 15 and 20; for the Yle Compass full data set the difference to the closest competitor
LDA is not statistically significant. Overall, CFTM has consistently good performance.

3. www.airlinequality.com, we use the collection https://github.com/quankiquanki/skytrax-reviews-dataset
4. Note that the 50%-50% division is chosen according the practice used in STM(Roberts et al. 2016).
5. source code and data sets used in this work can be found in supplementary material



Lu Peltonen Nummenmaa Nummenmaa Järvelin

Figure 2: Quantitative evaluation, performance comparison with held-out likelihood (per
word), higher is better. CFTM is compared to LDALDA, MetaLDA, SCHOLAR,
STM, MetaLDA, and CTPF. (a)-(c): Comparison on the full dataset. (d)-(f):
Comparison on 500 random samples. The box plots show variation of performance
over random simulations or random divisions of data.

5.3. Case Studies

We conduct empirical analyses using CFTM on Yle Election Compass 2019 and Doom
Eternal Game Reviews datasets. The hyper-parameter setting is the same as above but the
model is trained with the full datasets. Among multiple choices of the number of topics and
factors, we use semantic coherence (Mimno et al. 2011) as the model selection criterion to
choose the best CFTM model for inspection.

Spectrum of political positions. When fitting the Yle Election Compass 2019
dataset, the CFTM model with 9 topics and 5 factors was selected. Figure 3(a) shows
the top words for the 9 extracted topics. Topic names are assigned by authors by analy-
sis of the topic words. CFTM has found clear topical content appropriate in the domain:
each topic uncovers different aspects of political interests ranging from local politics (Local
Politics of Pirkanmaa) to climate issues (Climate Change and Costs).

Figure 3 (b) displays the factor structures of three factors: Eurosceptic, Green, and Pro-
global 6 and Figure 3 (c) presents their influences on topic content. Similarly to the topics,
factor labels can be assigned by analyzing their feature weights (posterior mean of φ). For
example, the factor Green supports environmental protection, having high agreement with
statements such as “Climate is worth the cost”, “Discourage eating meat”, and “Reduce tree
cutting”. The factor Eurosceptic agrees with statements “Leave eurozone” and “Immigrants

6. The feature weights of all the 5 factors are provided in supplementary material
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Figure 3: CFTM results for Yle Election Compass. (a) Extracted topics. Top words are
shown in order of frequency in the topic. (b) Feature weights of factors Euroscep-
tic, Green and Pro-global. (c) Wording difference of Eurosceptic vs. Green on
the topic Climate Change and Costs, and wording difference of Eurosceptic vs.
Pro-global on topics Young Immigrants. Horizontal position of a term v shows

the difference κ
(i)
v,l,k − κ

(i)
v,l′,k in topic k of factors l and l′.

cause insecurities”, and disagrees with “Join NATO”; and the factor Pro-global holds an
opposite position on the above statements and supports “More work-based Immigrants”.

The impact of factors on wordings of a topic can be explored with the posterior of κ(i).
Figure 3 (c) examines factor influence on wordings, showing the comparison of Eurosceptic
vs. Green on the topic Climate Change and Costs and the comparison of Eurosceptic vs.
Pro-global on the topic Young Immigrants . The horizontal axis reveals the difference of
influence between two factors on prominence of words. Candidates with high loading along
the Eurosceptic factor use more words ‘let alone’ and ‘make time’ when discussing the topic
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Climate Change and Costs whereas candidates aligned along the factor Green emphasize
‘claims’, and ‘personally’. On the other hand, when it comes to the topic emphasize Young
Immigrants , candidates aligned along the factor Eurosceptic use more words such as ‘vic-
tim’, and ‘consumption’, whereas candidates aligned along the factor Pro-global use more
words such as ‘compete’ and ‘result’. The differing wording preferences among the factors
corresponding to competing political orientations shows how the same issues (topics) are
approached from very different perspectives by candidates aligned along those factors.

Exploring player experiences. The CFTM model of 6 topics and 7 factors was
selected when fitting the Doom Eternal Game Reviews dataset. Figure 4 (a) displays the
topic words of the extracted topics. The topics cover game mechanics (e.g. Fighting, Damage
and Survival) and more general views on the game (Feelings and Experiences) and issues
external to the play experience (Support and Services). Figure 4 (b) 7 and (c) further present
the feature weights of factors Doom-focused Player, Game Collector, and their influences
on topics Support and Services and Feelings and Experiences. Players with high loading
of the factor Doom-focused Player are more likely to use words like ‘doom’ and ‘account’
in the topic Support and Services and ‘feel’, ‘weapon’ in topic Feelings and Experiences,
whereas players with a high loading of the factor Game Collector prefer words ‘rip’, ‘tear’
in both topics Support and Services and Feelings and Experiences. The topics, factors and
interactions are well-suited for the domain.

6. Conclusions

We presented the Cross-structural Factor-Topic Model (CFTM), a novel generative prob-
abilistic model for text documents occurring with sophisticated covariates. It represents
latent topical structure in text, factor structure in covariates, and influence of the factors
on both topic prevalence and content. The model is flexible, allowing both discrete covari-
ates with a mixture structure and continuous covariates with a factorized structure in the
same model. We proposed an efficient inference scheme coupling variational inference to
efficient distributed inference. In experiments the model outperformed LDA, STM, Met-
aLDA, and SCHOLAR; moreover, CFTM discovered meaningful topics, factors, and factor
influences in case studies investigating a political survey and reviews of a computer game.
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Abstract

In graph data, each node often serves multiple func-
tionalities. However, most graph embedding mod-
els assume that each node can only possess one
representation. We address this issue by propos-
ing a nonparametric graph embedding model. The
model allows each node to learn multiple represen-
tations where they are needed to represent the com-
plexity of random walks in the graph. It extends the
Exponential family graph embedding model with
two nonparametric prior settings, the Dirichlet pro-
cess and the uniform process. The model combines
the ability of Exponential family graph embedding
to take the number of occurrences of context nodes
into account with nonparametric priors giving it
the flexibility to learn more than one latent repre-
sentation for each node. The learned embeddings
outperforms other state of the art approaches in
link prediction and node classification tasks.

1 INTRODUCTION

Data in the form of graphs is drastically growing across
disciplines to represent complex observations and their re-
lationships in the graph topology. One common challenge
for such data is unsupervised representation learning (em-
bedding) which discovers underlying functions or charac-
terizations of nodes solely from the graph structure without
requiring availability of node attributes. Such research has
shown encouragingly that the learned latent representations
can be used as features for different predictive tasks with
promising performance.

Despite the success of such models, most of the proposed
methods consider only the co-appearance pattern of nodes in
walks across a graph. The prominence of nodes in their sur-
roundings, for example as hubs or bridges, is an important
trait of the network structure but is often ignored.

Moreover, it is a common phenomenon that each graph node
can serve different functions or roles: a node can, for exam-
ple, act both as a local hub for its nearby nodes and also as a
crucial bridge along a path between far-off connected areas
of a graph. However, most methods are unable to properly
represent this: they are restricted to single representation
learning where each node is only assigned one latent vector
representation. A model that only supports one embedding
per node tries to collapse all underlying roles of the node
into one vector representation could omit necessary informa-
tion: this can yield poor representations that are ’inbetween’
the roles of the node and do not represent any of them well
or represent only some roles while ignoring others.

In this paper we introduce a novel embedding model, which
extends exponential family embedding [Rudolph et al.,
2016] with nonparametric priors and allows a node to have
more than one latent representation. We allocate such la-
tent representations following two nonparametric priors, the
Dirichlet process and the uniform process. While Dirichlet
processes are popular in nonparametric modeling, the uni-
form process has been neglected in such models; our results
show the uniform process is a promising prior for the pro-
posed model. A tailored truncation-free inference algorithm
is developed. Different from the traditional approaches, the
algorithm introduces new latent embedding vectors over
iterations which provides more efficient inference.

We evaluate the proposed model with two tasks, link predic-
tion and node classification. Results over several datasets
show the proposed multiple representation learning method
improves performance compared to state of the art baselines.

The contributions of this work are:

• We introduce the notion of multiple representation to
graph embeddings: each node can have more than one
latent vector representation.

• We propose a graph embedding model leveraging
Bayesian nonparametrics, which is unprecedented and
challenging to do well. The number of latent represen-
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tations are thus decided by the observed data.

• In addition to the Dirichlet process, we explore the
uniform process, and show it is an important option for
achieving best results.

• We develop an adaptive inference algorithm for effi-
cient computation.

The paper is organized as follows. Section 2 describes back-
ground concepts. Section 3 introduces the proposed model.
Section 4 develops the inference algorithm. Experiments are
conducted in Section 5 and Section 6 draws the conclusions.

2 FUNDAMENTAL CONCEPTS

This section provides a brief overview of some basic con-
cepts that are related to our approach.

2.1 EXPONENTIAL FAMILY EMBEDDING

Exponential family embedding (EFE) [Rudolph et al., 2016]
is a probabilistic extension of the CBOW embedding model
[Mikolov et al., 2013a,b]. Observations are made of objects
v that occur at locations n surrounded by a context which
is a set of other objects. In a traditional word embedding
scenario an object would be a word and the context would be
the surrounding words in a sentence; in the graph embedding
scenario that we address, objects are instead nodes of a graph
and contexts are other nodes on a random walk in the graph.

Let xn,v denote the observed value for object v at location
n. Denote the context by a set cn = {v′} of other objects v′
and a vector x̃cn = {x̃n,v′} of their values in the context. In
our graph embedding case, the values represent whether the
object (graph node) occurs at the location and how many
times the context objects (nodes) occur in the context.

In EFE, conditioning on the context set cn and context
values x̃cn , the observed value xn,v for object v is assumed
to be exponential family distributed:

xn,v|cn, x̃cn ∼ ExpFam
(
ηv (cn, x̃cn) , T

(
xn,v

))
(1)

where ExpFam is an exponential family distribution,
ηv (cn, x̃cn) is the natural parameter, and T

(
xn,v

)
denotes

the sufficient statistics.

In EFE, each object v is represented in two ways, with an
embedding vector ρv ∈ RD and a context vector αv ∈ RD

where D is the embedding dimensionality. The EFE cap-
tures the co-occurrence pattern by constructing the natural
parameter based on interaction between the embedding vec-
tor of the center object and the context vectors of its context
objects weighted by their context values. The model can be
seen as a special generalized linear model since the natural
parameter is modeled as a link function of an inner product,

so that

ηv (cn, x̃cn) = g


ρ⊤

v

1

|cn|
∑

v′∈cn

x̃n,v′αv′


 . (2)

Since ExpFam can be any exponential distribution,
CBOW can be seen as the special case of employing a
Bernoulli distribution where the observed value xn,v can be
either 1 or 0. One principal merit of the generalization to
other probability distributions is the capability of capturing
latent patterns by incorporating the observed values. For ex-
ample, in a shopping cart scenario, quantity of an observed
item is modeled by the quantities of its context items (i.e.,
other products in the shopping cart) which are not binary but
positive integers. Similarly, in a graph embedding scenario
counts of graph nodes in a context will be positive integers.

2.2 RANDOM WALK BASED NODE EMBEDDING

Let G = (V,E) be a graph where V denotes the set of ver-
tices, and E ⊆ V× V denotes the edge set. A random walk
w = {w1, . . . , wL} of length L is a simulated sequence
of nodes over the graph where each node is chosen at ran-
dom from the neighbors of the previous node. Extraction of
such random walks is a way to describe a graph by extract-
ing sequence data representing graph connectivity. Such
sequences can then be modeled by a generative model.

Random walk based embedding approaches [Perozzi et al.,
2014, Grover and Leskovec, 2016] model co-occurrence of
nodes in a set of random walksW . The generative process
models the sequence content, and thus the graph connectiv-
ity, through embeddings of nodes: the model is conditional
on the nodes and generates the sequences.

Given a walk w ∈ W , the occurrence of node wn at po-
sition n in the walk is conditional on the set cn of its sur-
rounding (context) nodes in the walk. The occurrence prob-
ability is modeled as depending on embedding vectors of
the node and embedding vectors of the context nodes. The
representation learning aims to optimize the probability
of occurrence of the nodes wn given their contexts, i.e.,∏

w∈W
∏

n p(wn|cn).

2.3 BAYESIAN NONPARAMETICS

In Bayesian nonparametric models, the number of parame-
ters is not fixed in advance but learned during model fitting
up to a potentially infinite number of parameters. The mod-
els are typically described as mixtures: each observation is
modeled by a parameter drawn from a distribution G over
the space of parameters (e.g. RD) where only a finite num-
ber of parameter values have nonzero probability, but G
itself is drawn as

G ∼ NP (G0, γ) (3)



from a stochastic process prior NP with base distribution
G0 and concentration parameter γ. The process NP yields
distributions over the parameter space, with different num-
bers of possible values up to a potentially infinite number,
but each draw from NP has a finite number. Thus fitting
the model to data with the prior NP will infer how many
parameters are needed to describe the data.

2.4 RELATEDWORK

Among random walk based unsupervised node embed-
dings, Deepwalk [Perozzi et al., 2014] has been the clas-
sical method. Grover and Leskovec [2016], Ribeiro et al.
[2017] simulate variant random walks emphasizing different
structural features of the graph. Celikkanat and Malliaros
[2020] extend the models with different likelihoods with
EFE framework; in their work, the context vectors are taken
to represents the vertices.

A group of models have been proposed to learn multiple
representations. Among those, Sun et al. [2019] decide the
number of embedding with a community detection task; Liu
et al. [2019], Park et al. [2020], Chen et al. [2020] impose
a fixed number of embedding vectors for all nodes with a
predefined value. The most similar method to ours is Epasto
and Perozzi [2019] which uses local neighborhood clus-
tering to generate multiple representations for nodes where
different nodes can have different number of embedding vec-
tors. Those methods often depend on extra simulations of
the graph data in addition to the random walks data, whereas
our method only requires the generated random walks.

Besides random walk based methods, there are other pro-
posed approches include, for example, methods based on
matrix factorization [Ou et al., 2016, Wang et al., 2017, Qiu
et al., 2018] and neural network based approaches [Li et al.,
2018, Velickovic et al., 2019, Wu et al., 2020].

3 PROPOSED MODEL

The proposed model is a Bayesian nonparametric extension
of exponential family node embedding. We next describe
the two notions and how they are used to learn multiple
node representations. Figure 1 shows an overall illustration.
In the figure, random walks are first extracted from a graph,
yielding sequences whose sliding windows each contain a
center node and counts of other nodes in the context. The
occurrence of the center node will be modeled based on the
context, where dependency is characterized using vectorial
embeddings: each node has one embedding as a context
node and can have multiple embeddings as a center node.
The generation of the observed sequence content can be
written as a graphical plate representation where nonpara-
metric priors are used to generate the embedding vectors of
center nodes, and the center and context embedding vectors

together are used to generate observed values, that is, the
observed center nodes in each window of a random walk.

3.1 EXPONENTIAL FAMILY NODE EMBEDDINGS

Given a simulated random walk node sequence w =
{w1, . . . , wL} of length L, we slide windows of length K
along it. In each window the center node wn is surrounded
by context nodes {wn−K , . . . , wn−1, wn+1, . . . , wn+K}.
For each possible vertex v we denote xn,v = 1 if it was
the center node so that wn = v, otherwise xn,v = 0. The
context is denoted by the set cn of unique vertices in the
context nodes and the counts x̃cn

= {x̃n,v′} how many
times each vertex v′ ∈ cn occurred in them, x̃n,v′ ≤ K − 1.
We will model dependency of node occurrences along a
sequence, based on distributions whose natural parameter
compares observed values to their context. In more detail,
the natural parameter is based on comparison of node em-
bedding vectors that characterize what kind of surroundings
each node tends to appear in. We first describe the distri-
bution and then describe the construction of the natural
parameter for different exponential families (different likeli-
hoods).

We model the co-occurrence pattern between wn and the
context (cn, x̃cn

) with an exponential family

xn,v|cn, x̃cn
∼ ExpFam

(
ηn (cn, x̃cn

) , T
(
xn,v

))
(4)

where ηv (cn, x̃cn) is the natural parameter and T
(
xn,v

)

the sufficient statistics.

In this work occurrence of a node is represented as a one-hot
choice vector and it is modeled as a draw from an exponen-
tial family distribution whose parameters depend on the
surrounding nodes. Concretely, if the vertex appears at the
location n, the positive likelihood is then defined as

p(xn,v = 1) = f(xn,v = 1|ηn (cn, x̃cn
) , T

(
xn,v

)
) (5)

where f is the corresponding probability density function of
the exponential family distribution. For a vertex that does not
appear at location n, the likelihood of the non-appearance
(also called a ‘negative likelihood’) is

p(xn,v = 0) = f(xn,v = 0|ηn (cn, x̃cn
) , T

(
xn,v

)
) . (6)

Since random walks only yield positive samples of vertices
that occurred in the center of their windows, learning from
them alone would bias the model; thus we use a popular
negative sampling approach, and randomly generate several
negative samples (5 in experiments) for each location n.
A negative sample has the same context (cn, x̃cn

) as the
positive sample at n, but xn,v is instead set to 1 for a random
vertex among those that did not appear in the location.In
this work, we explore three different exponential family
distributions: Bernoulli, Poisson, and Gaussian.
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Figure 1: Illustrations of the proposed model. Left: random walk (light blue) along a graph from which windows are
extracted as positive samples (green) of vertices that were center nodes and counts of other nodes in their context, and
corresponding negative samples (red) of vertices that did not occur in the center. Middle: each vertex has one or more
d-dimensional vector representations ρ as center nodes (circles), and one representation α as a context node (diamonds).
The picture shows a d = 3 dimensional example. Right: graphical plate representation of the proposed model.

Bernoulli Likelihood. We employ Bernoulli distribution to
model the co-occurrence patterns of nodes. Let ρn,v∈ RD

denote the embedding vector of the node v at the location n,
αv ∈ RD denote the embedding vector for the vertex v, the
natural parameter is then defined as

pn = S
(
ρ⊤
n,v

1

|cn|
∑

v′∈cn

αv′

)
(7)

where S denotes the sigmoid function S = 1
1+e−x , and

|cn| is the number of distinct nodes in the context. The
appearance of the node v at the location n, i.e. whether
xn,v = 1 or xn,v = 0, is thus sampled from a Bernoulli
distribution with parameter pn so that

xn,v ∼ Bern(pn) . (8)

Note that we use the Bernoulli likelihood to model only
the co-appearance of the nodes, which can be seen as an
extension of Skip-gram based models. The number of occur-
rences of nodes in the context is not taken into the account.
To incorporate the number of occurrences of nodes, we
employ the Poisson and Gaussian distributions.

Poisson Likelihood. For a Poisson distribution, the parame-
ter λn is defined as

λn = exp

(
ρ⊤
n,v

1

|cn|
∑

v′∈cn

x̃n,v′αv′

)
(9)

where |cn| is again the number of distinct nodes in context
and xn,v′ denotes the number of occurrences of node v′ in
the context. The appearance of the node v is generated as

xn,v ∼ Pois(λn) (10)

The pivotal difference between the Bernoulli and Poisson
cases is that the latter takes the number of occurrences of
nodes in the context into account when constructing the
natural parameter. The Gaussian case takes the same setting.

Gaussian Likelihood. Similar to the settings for Poisson
Likelihood, the natural parameter here is defined as

µn = ρ⊤
n,v

1

|cn|
∑

v′∈cn

x̃n,v′αv′ (11)

without a specific link function, and the appearance of the
node v at the location n is generated as

xn,v ∼ Norm(µn, σ) (12)

where we set σ as a fixed hyper-parameter; in the experi-
ments we arbitrarily choose the σ from {1, 5, 10}.

When several different likelihoods are feasible, The model
choice can depend on domain expertise, or cross-validation
can be used as a model selection process.

3.2 NONPARAMETRIC EMBEDDING

Instead of restricting each vertex v to have a single role rep-
resented, to better capture the complexity of vertex roles in
a graph as observed in random walks, we present a multiple
representation learning model which enables each vertex
to have multiple latent vector representations, so that the
ocurrence of the the vertex at each location in a walk can
arise from a different role of the vertex. To do so, we set
a nonparametric prior on the embedding vectors ρ. That
is, we assume that at each location n, an embedding vector
ρn,v is generated from a stochastic process Gv specific to



the vertex, so that

ρn,v = ρ(s)
v ∼ Gv(G0, γ) (13)

whereGv is a stochastic process with a base distributionG0

and a concentration parameter γ. The base distribution G0

has an infinite number of possible embedding vectors and
Gv is a draw from it allocating nonzero probability to a finite
number of possibilities {ρ(1)

v , . . . ,ρ
(s)
v , . . . ,ρ

(S)
v , . . . , }

where S is the number of observed embedding vectors. We
set the base distribution to be a d-dimensional Normal distri-
butionN(0, σ0). In experiments we set σ0 = 5 for Bernoulli
likelihood and σ0 = 10 for both Poisson and Gaussian likeli-
hood. For simplicity, similar to the settings of Rudolph et al.
[2017], Rudolph and Blei [2018], although we allow mul-
tiple embedding vectors ρn,v for a vertex we will use only
one context vector αv per vertex; this setting can already
generate good results in the experiments, and generalization
to allow multiple context vectors is a future work.

In the following, let nv = n+v ∪ n−v denote locations related
to vertex v, so that n+v denotes locations where the v appears
and n−v locations where v is the negative sample. Moreover,
denote by nv,<n the subset of nv where the location is before
n, and denote by superscript (s) those locations where the
embedding vector was the s:th embedding vector of v.

Dirichlet Process. One of the most common nonparametric
process priors is a Dirichlet process. The predictive proba-
bility of ρn,v is defined based on numbers of occurrences
of embedding vectors of v at earlier locations n′ < n in
positive or negative samples, so that

P (ρn,v|{ρn′,v;n
′ ∈ nv,<n}) =




|n(s)v,<n|∑
s′ |n

(s′)
v,<n|−1+γ

ρv,n = ρ
(s)
v , ∀ρ(s)

v ∈ {ρ(1)
v . . .ρ

(Sv)
v }

γ∑
s′ |n

(s′)
v,<n|−1+γ

ρv,n = ρ
(Sv+1)
v ∼ G0

(14)

where |n(s)v,<n| is the number of locations before n where
ρ
(s)
v has been selected, and γ governs the generation of a

new embedding vector.

Uniform process. An alternative to Dirichlet process is a
uniform process [Wallach et al., 2010] with the predictive
probability

P (ρn,v|{ρn′,v;n
′ ∈ nv,<n}) =




1
Sv+γ ρn,v = ρ

(s)
v , ∀ρ(s)

v ∈ {ρ(1)
v . . .ρ

(Sv)
v }

γ
Sv+γ ρn,v = ρ

(Sv+1)
v ∼ G0

(15)

where Sv denotes the number of different embedding vec-
tors used for v before location n, and the embedding vector
ρn,v is generated independently from the occurrence fre-
quencies of previous generated values. The generation is
only controlled by the concentration parameter γ.

Figure 2: A comparison bewteen two nonparametric priors
on the embeedings of the node [YGR078C] in Yeast dataset.
(a): Weights of each embedding vector Dp-Pois model (γ =
0.01). (b): from up-Pois model (γ = 0.000001).

Despite the popularity of Dirichlet process, it suffers from
the “rich get richer” issue, as it tends to repeat previous
values and tends to model the first (or first few) embedding
vectors as highly dominant, which can limit model flexi-
bility. The uniform process was proposed to address this
issue. Figure 2 show an example where the Dirichlet pro-
cess concentrates on the first embedding vector and uniform
process delivers smoother weights. The uniform process
has been neglected by the research community, with most
applications employing Dirichlet processes as priors.

Overall generative process. The proposed model can be
summarized with the generative process shown below (cor-
responding plate model shown in Figure 1, Right):

1. For each vertex v ∈ V:
- Gv ∼ NP (G0, γ)

- αv ∼ N(0, σ2
0I)

2. For each walk w = {w1, . . . , wL} ∈ W
- For location n:

- ρn,v ∼ Gv

- ηn,v = g
(
ρ⊤
n,v

1
|cn|
∑

v′∈cn x̃n,v′αv′

)

- xn,v ∼ P (ηn,v)

4 INFERENCE

We adapt a truncation-free variational inference algorithm
proposed by [Huynh et al., 2016]. Using a stick-breaking
construction [Sethuraman, 1994], for vertex v we have

Gv =

∞∑

s=1

β(s)
v δ

ρ
(s)
v

, ρ(s)
v ∼ G0 , (16)

β(s)
v = ζ(s)v

s−1∏

i=1

(
1− ζ(i)v

)
, ζ(s)v ∼ Beta(1, γ) . (17)



The posterior distribution for the stick breaking parameters
βv = (β

(1)
v , . . . , β

(Sv)
v , β

(Sv+1)
v ) is then

(β(1)
v , . . . , β(S)

v , β(S+1)
v ) ∼ Dir(θ(1)v , . . . , θ(Sv)

v , γ) (18)

where parameter θv governs the general prevalence over all
potential embedding vectors. For each location, the embed-
ding vector ρn,v is decided by a label zn,v sampled from a
Multinomial distribution

zn,v ∼Multinomial(βv) , ρn,v = ρ(zn,v)
v . (19)

The variational distribution q(zv,n) is updated as

exp
(
Eq

[
ln zn,v

])
∝ exp

(
E
[
ln p(xn,v|cn, x̃cn ;ρ

(s)
v ,α)

]
+

E
[
ln p(zn,v|znv\n,v; γ)

])
(20)

where the first term is the fitness of the selected embedding
ρ
(s)
v , and the second term is related to the prior. If the prior

is a Dirichlet process, the second term in Equation (20) is

E
[
ln p(zn,v|zn\n,v; γ)

]
=




ln

E[θ
(s)

nv\n,v
]

|nv|−1+γ − 1
2

V ar[θ
(s)

nv\n,v
]

E[θ
(−s)
v ]

2 s ≤ S

ln γ
|nv|−1+γ s > S

(21)

where nv denotes the locations of vertex v and |nv| denotes
its size. We then have

E[θ(s)v ] =
∑

n∈nv

q(zn,v = s) (22)

E[θ
(s)
nv\n,v] =

∑

n∈nv\n
q(zn,v = s) (23)

V ar[θ(s)v ] =
∑

n∈nv

q(zn,v = s)(1− q(zn,v = s)) (24)

V ar[θ
(s)
nv\n,v] =

∑

n∈nv\n
q(zn,v = s)(1− q(zn,v = s))

(25)

On the other hand, if the prior is a uniform process, the
second term in Equation (20) has a simpler form:

E
[
ln p(zn,v|γ)

]
=

{
ln 1

|nv|+γ s ≤ S

ln γ
|nv|+γ s > S

(26)

The truncation-free algorithm starts with setting S = 1,
where q(z(S+1)

v,n ) = 0. When E[θ
(S+1)
v ] > 1, the algorithm

sets S = S + 1, increasing the dimension of vector zv,n,
and sets q(z(S+1)

v,n ) = 0. We can then use the θv to calculate
the expected weighting of the vector ρ(s)

v .

β̂(s)
v = Eq

[
β(s)
v

]
=

Eq

[
θ
(s)
v

]

∑Sv

s=1 Eq

[
θ
(s)
v

] (27)

Algorithm 1: Inference Algorithm
input :Random walksW , negative samples W̃ , initial

learning rate ξ, number of epochs, number of
mini-batchesM

output :embedding vectors Φ = {ρ,α}, embedding
weights {β̂}

foreach v ∈ V do
Set Sv = 1, initialize embedding vectors ρ

(1)
v , αv

end
foreach epoch do

Divide input data intoM random partitions.
form← 1 to M do

Use the subsetW(m) and W̃(m)

foreach v do
foreach n ∈ n(m)

v do
update zn,v with Equation (20)

end
updata θv with Equation (22) - (25)
Calculate β̂v with Equation (27)
if E[θ(S+1)

v ] > 1 then
Sv = Sv + 1
foreach n ∈ nv do

increase the dimension of zn,v and
set z(S+1)

n,v = 0
end

end
end
update embedding vectors Φ = {ρ,α}
Φ = Φ− ξ ∗ ∂L

∂Φ
ξ is set with Adam[Kingma and Ba, 2015]

end
end

Inference of embedding vectors.

After updating the Eq

[
zn,v

]
, the inference is conducted by

optimizing the objective function L = Lprior + Llikelihood.

The term Lprior = log p(ρ) + log p(α) is derived from the
Gaussian prior N(0, σ2

0) for the embedding vectors:

log p(ρ(s)
v ) =

∥∥∥ρ(s)
v

∥∥∥
2

−2σ2
0

, log p(αv) =
∥αv∥2
−2σ2

0

. (28)



Table 1: Datasets for Link Prediction

Data ∥V ∥ ∥E∥ Avg.deg Density

GitHub 37700 289003 15.332 0.00041
Wikipedia 11631 180020 30.955 0.00266
Twitch 7126 35324 9.914 0.00140

Table 2: Datasets for Node Classification

Data ∥V ∥ ∥E∥ ∥K∥ Avg.deg Density

LastFM 7624 27806 18 7.294 0.00095
CiteSeer 3327 4237 6 2.845 0.00043
Yeast 2617 11855 13 9.060 0.00346

For Bernoulli likelihood we have

Llikelihood =
∑

v∈V
(
∑

n∈n+v

∑

s∈Sv

Eq

[
zn,v = s

]
pn+

∑

n∈n−v

∑

s∈Sv

Eq

[
zn,v = s

]
(1− pn)) . (29)

For Poisson likelihood we have

Llikelihood =
∑

v∈V
(
∑

n∈n+v

∑

s∈Sv

Eq

[
zn,v = s

]
(log λn − λn)

−
∑

n∈n−v

∑

s∈Sv

Eq

[
zn,v = s

]
λn) . (30)

For Gaussian likelihood, we have

Llikelihood =
∑

v∈V
(
∑

n∈n+v

∑

s∈Sv

Eq

[
zn,v = s

]
(
(1− µn)

2

−2σ2

)

+
∑

n∈n−v

∑

s∈Sv

Eq

[
zn,v = s

]
(

µ2
n

−2σ2

)
) . (31)

We then use gradient descent to update the embedding vec-
tors over iterations.

4.1 STOCHASTIC INFERENCE

We employ stochastic inference. For each epoch, the input
data is randomly partitioned intoM mini-batches and only
one mini-batch is used for each iteration. When mini-batch
m is used, the sum over locations nv can be approximated
by a sum over a subsampled set n(m)

v , so the right-hand side
of (22) is approximated by |nv|

|n(m)
v |

∑
n∈n(m)

v
q(zn,v = s) and

similarly in the other sums. The inference procedure is sum-
marized in Algorithm 1. For all the experiments conducted
in this work, we run two epochs with 1000 mini-batches and
initial learning rate ξ = 0.01. For the negative samples, we

generate W̃ with 5 negative samples for each location fol-
lowing the procedure of Mikolov et al. [2013b], Celikkanat
and Malliaros [2020].

5 EXPERIMENTS

For generality, we run experiments with two standard tasks
commonly adopted in graph embedding works, link predic-
tion and node classification, with 3 data sets [Csardi and
Nepusz, 2006, Rossi and Ahmed, 2015, Rozemberczki et al.,
2020] for each task (Tables 1 and 2). The data sets cover
varied domains and aim to represent typical use scenarios
of the proposed method. We denote our method variants by
prior (dp: Dirichlet process, up: uniform process) and Exp-
Fam distribution (Bern, Pois, Norm), e.g. ‘up-emb (Bern)’.
We compare to random walk based methods DeepWalk [Per-
ozzi et al., 2014], node2Vec [Grover and Leskovec, 2016],
struc2vec [Ribeiro et al., 2017], and EFGE [Celikkanat and
Malliaros, 2020], and Splitter [Epasto and Perozzi, 2019].
To evaluate effect of embedding dimensionality, for each
method we run three dimension settings: D = 50, 100,
and 150. The concentration parameter for our model is cho-
sen from γ = {0.01, 0.05, 0.1} for Dirichlet process and
γ = {0.0000001, 0.0000005, 0.000001} for uniform pro-
cess. The input random walks are generated with the R
package igraph [Csardi and Nepusz, 2006] with 80 walks
per node with length L = 10, the random walks are also
fed to EFGE. For other methods, parameters are all set to
default values.

5.1 TASK: LINK PREDICTION

In link prediction, for each graph we first randomly move
50% of the edges into a held-out test set while keeping the
remaining training graph connected. In both training and test
sets, randomly sampled negative edges are added in equal
amount to the positive edges. A classifier is trained based on
the reduced training graph and the training negative edges;
the classifier is used to classify the held-out test-set edges.
As in the previous single-representation learning works in-
cluding Deepwalk, node2vec, struc2vec, and EFGE, logistic
regression is selected as the classifier. In our approach, to
incorporate multiple representations when training the clas-
sifier, we employ logistic regression with sample weights,

embedding ρ(s)
v is weighted by

ˆ
β
(s)
v . The Splitter used max-

imum dot-product similarity, we transform the similarity
into a class probability using logistic regression.

Note that when logistic regression is trained with sample
weighting, embeddings of all nodes in our model are sepa-
rate samples weighted in the log-likelihood by their occur-
rence probabilities. The regression learns to classify nodes
based on all their embedding vectors, and at test time, a
node is classified by weighted average of class probabili-
ties predicted for each of its embedding vectors. Thus, the



Table 3: Results for Link Prediction

GitHub Wikipedia Twitch
D = 50 D = 100 D = 150 D = 50 D = 100 D = 150 D = 50 D = 100 D = 150

Deepwalk 0.722 0.695 0.694 0.911 0.915 0.922 0.659 0.649 0.672
node2vec 0.731 0.734 0.731 0.913 0.931 0.941 0.681 0.691 0.698
struc2vec 0.849 0.864 0.874 0.820 0.881 0.863 0.830 0.828 0.840
EFGE (Bern) 0.729 0.726 0.736 0.939 0.950 0.962 0.681 0.687 0.707
EFGE (Pois) 0.728 0.771 0.771 0.950 0.955 0.964 0.679 0.708 0.714
EFGE (Norm) 0.862 0.868 0.888 0.977 0.983 0.985 0.791 0.791 0.802
Splitter 0.898 0.600 0.900 0.876 0.880 0.884 0.836 0.823 0.823

dp-emb (Bern) 0.823 0.831 0.830 0.986 0.991 0.991 0.757 0.787 0.782
dp-emb (Pois) 0.737 0.723 0.780 0.979 0.984 0.986 0.656 0.704 0.716
dp-emb (Norm) 0.923 0.932 0.929 0.985 0.985 0.985 0.847 0.845 0.871
up-emb (Bern) 0.813 0.838 0.843 0.989 0.991 0.992 0.750 0.788 0.784
up-emb (Pois) 0.741 0.767 0.780 0.979 0.982 0.986 0.658 0.706 0.714
up-emb (Norm) 0.926 0.932 0.931 0.985 0.985 0.986 0.849 0.846 0.869

multiple embedding vectors are treated separately instead
of being combined in a simplistic weighted average.

Three different datasets are used for the link prediction task.

GitHub: a social network where each node is a GitHub
developer, links between nodes are mutual follow relations.
Wikipedia: a network of English Wikipedia pages. Edges
between pages reflect their mutual links.
Twitch: a user-user interaction network between gamers.
Edge between two nodes represents mutual friendship.

We evaluate the binary link classification by area under the
curve (AUC). Table 3 shows our model performs well on all
datasets; the model with Gaussian likelihood works best.

5.2 TASK: NODE CLASSIFICATION

In this task, each node has a class. The learned embedding
vectors are used as input features to train a classifier to pre-
dict the class of each node. Again, for Deepwalk, node2vec,
struc2vec and EFGE, a logistic regression classifier is used.
For our model, the logistic regression with sample weights
is used. For Splitter, we take the same procedure with each
embedding equally weighted. Three different datasets are
used for the node classification task.

LastFM Asia: a network of people living in Asia using the
streaming site LastFM. Links represent followership rela-
tions. The class of each node is its location.
CiteSeer: a scientific publication network from the CiteSeer
digital library. Each node belongs to 1 of 6 categories.
Yeast:a protein-protein interaction network. The “Class” at-
tribute of each protein is based on its function (e.g. energy).

We evaluate the performance by Micro-averaged F1, re-
ported in Table 4. Our model outperforms other methods.
Rozemberczki et al. [2020] Additionaly, in general, our

model took 2-4 hours to converge (depends on different
tasks and settings) without GPU. The Splitter, which also
learns multiple representations for each node, took 10+
hours on a GPU machine and 100+ hours without GPU.
Our approach achieved better results with less resources.

6 DISCUSSIONS AND CONCLUSIONS

We proposed nonparametric exponential family graph em-
bedding, allowing multiple node representations, drawn both
with a Dirichlet process prior, and also exploring uniform
processes. A tailored algorithm for efficient computation is
provided. The experiments demonstrate the learned multiple
representations can enhance performance in two tasks. We
considered three classical exponential family distributions,
Bernoulli, Poisson, and Gaussian, which yielded promising
results. Our model can be adapted to other distributions such
as Geometric and Chi-square with the proposed nonparamet-
ric framework. In our experiments, the hyperparameter γ of
the nonparametric prior was fixed for the nodes, which al-
ready yielded promising results in the standard tasks; having
differing γ values could be useful for extending the model
to scenarios such as learning multiple representations for
under-represented nodes, or imbalanced classification tasks.
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Abstract

Learning latent vector representations via embedding models has been shown
promising in machine learning. However, most of the embedding models are still
limited to a single type of observed data. We propose a Gaussian copula embedding
model to learn latent vectorial representations of items in a heterogeneous-data
setting. The proposed model can effectively incorporate different types of observed
data and, at the same time, yield robust embeddings. We demonstrate that the
proposed model can effectively learn in many different scenarios, outperforming
competing models in modeling quality and task performance.

1 Introduction

Representation learning is a prominent machine learning approach for working with originally non-
vectorial data. Embedding models learn latent vectorial representations for data items that appear
together with a context, through modeling the interactions between each center item and its context
items. The approach was first introduced as a language model [14] which learns word representations
through modeling the probability of the appearance of a central word given surrounding context
words. The word appearance is modeled as an observation from a multinomial word distribution.
Building on this notion, exponential family embeddings were proposed [19] which further generalized
the original model to a class of models suitable for many observed data types, which have been shown
promising in different domains. However, the ability of such models to incorporate heterogeneous
data is still limited.

Data in many modern domains is heterogeneous, involving simultaneous observation of different data
types such as categorical values, integers and real-valued numbers, and having varied distributions
within each data type, hence it is difficult to model them together as observations in vectorial
embedding; naive unified solutions that ignore the difference of the data types would not yield
good models. In particular, the different data types are often distributed over varied scales and with
various distributional shapes: naive normalization coupled to modeling with a single distributional
assumption would not suffice to yield robust embedding models, and would leave them vulnerable to
extreme values and distributional shapes not corresponding to the assumed ones. An equally pressing
problem is how to flexibly model relationships (dependencies) between the several observed variables
with their differing distributions: naive modeling strategies ignoring the variable dependencies would
again yield poor embedding models.

We solve the mentioned challenges by introducing a novel Gaussian copula based latent representation
learning model. The model learns vectorial embedding representations for items leveraging the center-
context item interactions, but unlike previous embedding models the proposed model is able to learn
embeddings in a setting with multivariate data having heterogeneous data types and distributions.

For computational efficiency, we introduce a set of variational auto-encoder based inference algo-
rithms. In experiments on five different scenarios, the proposed model is shown to be effective,
outperforming competitive methods in task-based evaluations and yielding insights in a social media
analysis task.

Our contributions are:

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



• We introduce a general-purpose representation learning framework which incorporates
multiple, heterogeneous data. Our work allows embedding models to include multiple
data types and distributional assumptions in well-founded probabilistic joint modeling
through the Gaussian copula; other approaches such as exponential family embeddings have
generalised to different data types but still treat them individually.

• To our knowledge, ours is the first work which brings the advantages of Gaussian copula to
learning representation vectors from heterogeneous data. The Gaussian copula is intuitive
and has proven effective in machine learning research, thus it is an attractive solution which
was neglected in representation learning. We close this gap, and the result shows it handles
heterogeneous data well.

• We develop an efficient inference procedure based on semiparametric estimation and varia-
tional autoencoder. Previous works have used MCMC for inference and in many such works,
lack of scalability has limited their application to larger amounts of data.

• We demonstrate the effectiveness of our model on five different scenarios, each with a
real-world data set and corresponding quantitative and qualitative evaluation.

This paper is organized as follows. Section 2 introduces the necessary background notions of
embedding models and copula models. Section 3 introduces the Gaussian copula model and Section 4
develops the inference algorithms. Five different scenarios of using the proposed model are provided
5, each evaluated with an experiment on a real-world data set. Section 6 draws the conclusions.

2 Background

2.1 Embedding models

Learning latent representations based on the interactions between the observed item and its contexts
has been an imperative topic in machine learning. It was first introduced as a language model to model
relations between words [14]. The framework has been later generalized to model other different
co-appearance patterns such as in community embedding [23].

In brief, let the item i and its context j be two items (such as two words, or two communities). The
probability of them appearing (D = 1) in the same context (such as in the same sliding window) can
be modeled as

P (D = 1|i, j) =
(

1

1− e−ρi
⊤ρj

)
(1)

where ρi and ρj are the embedding vectors of the items. Note that instead of using the same kinds
of vectors for both roles, the context items can have their own context vectors α, thus the above
probability becomes

P (D = 1|i, j) =
(

1

1− e−ρi⊤αj

)
. (2)

Exponential Family Embeddings [19] is an extension which has further generalized the model to
data beyond text. Let x(i)n be the value of the item i at the location n, which has its context cn. In
exponential family embedding, the value of xn depends on its context cn and is generated from an
exponential family distribution

x(i)n |cn ∼ ExpFam
(
ηn (xcn) , t (xn)

)
(3)

where ηn (xcn) is the natural parameter, and t
(
xn,v

)
denotes the sufficient statistics. The natural

parameter is modeled as a function of an inner product of the embedding vector ρ and the context
vector α so that

ηn (xcn) = g


ρ⊤

i

1

|cn|
∑

n′∈cn

x
(i′)
n′ αi′


 . (4)

As the exponential family can model different observation distributions, the embedding models are
no longer limited to modeling co-appearance (binary) observations. It has been applied to different
domains such as grouped data [18] and graph data [1].

2



Negative sampling or sub-sampling is a common practice when training embedding models. The
notion is to consider only a randomly generated subset of the items that do not occur at the location
n. That is, if an item i does not occur at a location, the probability of that negative occurrence

P (D = 0|i, j) =
(

1

1−e−ρi
⊤αj

)
is integrated into the objective function. In exponential family

embeddings, if the item i is generated as a negative sample, the corresponding pseudo observed value
is encoded as x(i)n = 0.

2.2 Gaussian copula

A J-dimensional copula C is a probability distribution on [0, 1]J where each of its univariate marginal
distributions is a uniform distribution on [0, 1]. That is, given a set of uniform distributed random
variables U1, . . . , UJ , a copula is the joint cumulative distribution

C(u1, . . . , uJ) = P (U1 ≤ u1, . . . , UJ ≤ uJ) . (5)

The key idea of copula modeling is to use the copula to model the dependencies between several
variables having arbitary types and marginal distributions. Let x be a random vector of length J , and
let j ∈ 1 . . . J index the elements (random variables) in x. According to Sklars’ theorem [21], the
cumulative distributions (CDFs) of the variables in x can be modeled by a copula

F (x1, . . . xJ) = C
(
F1(x1), . . . , FJ(xJ)

)
(6)

where F is the joint CDF and Fj(x) = P (Xj ≤ x) is the j-th marginal CDF. Since each marginal
CDF value is in [0, 1], the right-hand side is a copula regardless of what distributions the individual
marginal CDFs have. If every Fj is continuous, then the C is unique. In this way, the copula encodes
the structure of variable dependencies, while allowing each of the variables x1 . . . xJ to be of a
different type and to have differing kinds of marginal CDFs.

In this paper, we consider a Gaussian copula, which is one of the widely used copula models; we
introduce the model to the representation learning task. A Gaussian copula is defined as

C(u1, . . . uJ) = ΦJ

(
Φ−1(u1), . . . ,Φ

−1(uJ)|C
)

(7)

where ΦJ is a J-dimensional Gaussian CDF with a correlation matrix C, and Φ−1 is the inverse
function of the standard univariate Gaussian CDF. With the Gaussian copula, the joint CDF of
observed data can be modeled as

F (x1, . . . xJ) = C(F1(x1), . . . FJ(xJ)) = ΦJ

(
Φ−1(F1(x1)), . . . ,Φ

−1(FJ(xJ))|C
)

. (8)

The Gaussian copula can also be expressed in terms of a latent Gaussian variable representation. First,
a latent vector z is generated from a Gaussian distribution

z ∼N(0,Ω) (9)

wih covariance matrix Ω which corresponds to the correlation matrixC in equation (7). Then for each
j, the observed data value xj is obtained from the inverse of the univariate marginal F−1

j according
to the generated latent variable zj so that

xj = F−1
j

(
Φ

(
zj√
ωjj

))
(10)

where ωjj is the j-th diagonal element of Ω. In principle, equations (9) and (10) could be used to
derive an equation for the likelihood of the data values xj at each observation, in order to use such
likelihoods for parameter fitting. However, instead the practical approach in Gaussian copula research
is to derive an extended likelihood, and we will do that for the vectorial embedding task.

3 Gaussian Copula Embeddings

We now introduce Gaussian Copula Embeddings (GCE), which perform representation learning for
data with heterogeneous-type observations of items in contexts. Let {x1 . . .xN} be the observations.
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Each observation xn is of a particular item, occurring in a context; moreover, each occurrence of the
item is observed with multiple feature values (variables). Let xn = x

(i)
n denote that the item i occurs

at location n and is observed carrying J variables x(i)
n = [x

(i)
n,1, . . . , x

(i)
n,J ]

⊤, where the location n
comes with a context cn which contains a collection of context item indices.

The principle of the GCE model is that the multiple heterogeneous observations will be generated
based on the relationship of the central item i to its context, characterized by several embedding
vectors, and the dependencies between the observations will be characterized by a Gaussian copula.
For each central item i there is an underlying embedding vector ρi ∈ RK×1. In addition to occurring
as a central item, each item may also occur as part of a context. The context cn of the location n will
contain several items i′. The roles of the items in the context will be characterized by context vectors:
unlike a traditional embedding model that generates only one type of observation, here each context
item i′ has a set of variable specific context vectors {αi′,j |j ∈ 1, . . . J}.
We develop the GCE model based on the latent representation equations (9) - (10). For each item i
the underlying embedding vector ρi ∈ RK×1 is generated from a multivariate normal distribution

ρi ∼N(0, I) . (11)

Following the latent variable representation of Gaussian copula, all J observations of an item at a
location will be generated based from a latent vector. The latent variable vector zn is generated as

z(i)n ∼N(0, I+RnRn
⊤)⇐⇒ z(i)n ∼N(Rnρi, I) (12)

where the matrix Rn ∈ RK×J is constructed based on the embedding vectors of the items in the
context cn for all observation variables. For each observation variable j, the corresponding column
rn,j of the matrixRn is constructed as

rn,j =
1

|cn|
∑

i′∈cn
αi′,j (13)

where i′ are the items in the context of the location n, cn. Here, for simplicity, we set the prior of α
to be a multivariate normal distribution

αi′,j ∼ N(0, λ−1
α I) (14)

with a diagonal covariance matrix where the constant λα is a precision parameter which controls the
constraints on α. Using the exchangeability in equation (12), the above generating process can be
also written as

z(i)n ∼N(µ(i)
n , I), where µ(i)

n = [µ
(i)
n,1, . . . , µ

(i)
n,J ] and µ

(i)
n,j = ρi

⊤ 1

|cn|
∑

i′∈cn
αi′,j . (15)

The observations are then obtained from the latent variables according to the Gaussian copula
equations. The jth observed value x(i)n,j is obtained as

x
(i)
n,j = F−1

j

(
Φ

(
z
(i)
n,j√

1 +
∑K

k=1 r
2
n,j,k

))
(16)

where z(i)n,j is the jth element of the latent vector z(i)n and rn,j,k is the kth dimension of the context
representation column rn,j , and F−1

j is the inverse CDF of the marginal distribution of variable j.
Inference of the embedding parameters based on the observations will be done with an extended
likelihood approach introduced in the next section.

The major difference between our approach and other embedding models is that the GCE can take
heterogenous, multivariate observed data into account. Another difference is that GCE further
specializes the roles of embedding vectors ρ and context vectors α: in traditional exponential family
embeddings their roles can be seen as ambiguous, having the same form and a very similar place
in the generative equations. In contrast, here the roles are made distinct: the ρ are used to model a
general representation of each item as a central item, and the variable-specific context vectors αj

govern the role of each item as a context item for the multiple variables, telling how the different
variables interact with the central item as well as controlling the dependencies between the variables.
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4 Inference

The task of the inference is to fit the embedding parameters ρ and αj of all items to the observations.
We will use a variational inference approach; a key aspect of it is to replace direct evaluation of the
likelihood by an extended likelihood approach described next.

4.1 Extended Likelihood

As pointed out by [7], the naive inverse of equation (16) during the inference is only recommended
when the observed data is continuous and follows an easy-to-invert parametric distribution. Moreover,
directly inverting the CDF for discrete variables can lead to pushing the latent variables to extremes
and affect the validity of the inference. Therefore, an extended rank likelihood has been proposed for
the inference of Gaussian copula.

Consider all observations xn,j of variable j at all locations n = 1, . . . , N , and the corresponding
latent variables zn,j where for brevity we drop the item indices i; each observation may arise from a
different item. Denote the latent variables together by a vector zj and observed variables together by
vector xj . Since each zn,j is related to the corresponding observed xn,j by two monotonic functions
(a gaussian CDF and an inverse CDF), the rank order of the zn,j is the same as that of the xn,j . The
vector zj is one of a setD(xj) of vectors having that rank order:

zj ∈ D(xj) = {zj ∈ RN : xn,j < xn′,j ⇒ zn,j < zn′,j} . (17)

TheD(xj) is the set of possible zj = (z1,j , . . . , zn,j) which preserve the ordering of the observed
data [20]. Let D = {Z ∈ RJ×N : zj ∈ D(xj) ∀1 ≤ j ≤ J} be the set of possible latent variable
combinations, such that the rank order is satisfied for each observed variable j. Note that ties may
happen in the rank orders, for example when discrete variables yield the same value at multiple
observations.

In the Gaussian copula model the observed variables are directly obtained as unique transformations
of the latent variables. Because the possible latent variables must satisfy the rank orders of the
observations, the rank perservation can be inserted into the full likelihood which can then be factorized
as

P (X|C, F1, . . . , FJ) = P (X,Z ∈ D|C, F1, . . . , FJ)

= P (Z ∈ D|C)× P (X|Z ∈ D,C, F1, . . . , FJ) . (18)

The P (Z ∈ D|C) is then taken as the alternative likelihood. It has been proved [8] that it shares
the same information bound as using estimator of the full data. Ranks also bring an advantage of
robustness as they are unaffected by precise value and thus are less prone to outliers. Using an
extended likelihood based on the rank of observed data is the current state of the art practice for
Gaussian copula inference [15, 3].

4.2 Amortized variational autoencoder

Most of the previous works taking the extended likelihood use Gibbs sampling for inference [15, 3].
Despite some recent improvement such as [9], the sampling process inevitably must update the latent
variables for every location n, which makes the computation inefficient when the volume of data
grows large. To avoid this inefficiency, we develop a stochastic variational inference procedure
exploiting the idea of amortized inference [4] and a variational autoencoder [11].

Since the essence of the estimator using P (Z ∈ D|C) is to keep the ranking of zj corresponding to
the ranking of xj , we then employ the Plackett-Luce model with ties [24] as an alternative likelihood.
Let r(xn,j) denote the rank of xn,j and r(xj) denote the vector of rankings corresponding to xj . We
then have

p(r(xj)|zj) =
∏

q

(
ezn,j

∑
n′∈Cq

ezn′,j

) 1
|Aq|

(19)

where q in the product goes over the rank positions, Aq = {n : r(xn,j) = q} denotes the items
ranked at position q (there may be more than one due to ties), and Cq = {n : r(xn,j) ≥ q} are
items ranked at q or higher. Note that if there are no ties, equation (19) reduces to the standard
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Plackett-Luce distribution. The ties are considered in order to handle discrete data. The likelihood for
all variables j is then simply

∏
j log p(r(xj)|zj). Moreover, the likelihood can be optimized using a

stochastic procedure with a random subset of each xj .

Let us consider again the J latent variables per location, denoted z(i)n . To avoid exhaustively updating
every z

(i)
n , we follow the framework proposed by [11]. According to the “reparameterization trick”,

equations (15) can be rewritten as

z(i)n = µ(i)
n + ϵ(i)n , ϵ(i)n ∼ N(0, I) . (20)

Therefore, during the stochastic inference, the latent variables z̃ can be simulated based on the other
parameters and the random noise. This will save computation and memory because the z̃ only need
to be simulated at the subset of positions samples in the ongoing mini-batch of optimization. The
noise is first sampled from a standard normal distribution and a pseudo variable z̃ is then generated as

z̃(i)n = µ̂(i)
n + ϵ(i)n , ϵ(i)n ∼ N(0, I) (21)

where µ̂(i)
n = ρ̂⊤

i
1

|cn|
∑

i′∈cn α̂i′,j , and ρ̂ and α̂ are point estimates of the embedding vectors which

we are optimizing. The log-likelihood function becomes L̃(ρ,α;x) =∑j log p(r(xj)|z̃j) and the
objective function is computed as

F = L̃(ρ,α;x) +
∑

i

log p(ρi) +
∑

i′

∑

j

log p(αi′,j) . (22)

In each iteration, the gradients of the log-likelihood with respect to ρ̂ and α̂ can be simply obtained
with z̃ by chain rule via ▽ρL̃ =

∑
j

∂ log p(xj |z̃j)
∂z̃j

∂z̃j
∂ρ , and ▽αj

L̃ = ∂ log p(xj |z̃j)
∂z̃j

∂z̃j
∂αj

. The p(ρi) and
p(αi′,j) are set to N(0, I) and N(0, λ−1

α I) according to equations (11) and (14). The gradients of
the log-priors are

∑
i
∂ log p(ρ)

∂ρi
and

∑
i′
∑

j
∂ log p(α)
∂αi′,j

respectively. The gradient to update ρ̂ or α̂
with respect to F is then the sum of the corresponding log-likelihood and log-prior gradients.

The complete stochastic inference procedure is given in Algorithm 1. We optimize the embedding
vectors iteratively over epochs. In each epoch data is partitioned randomly into mini-batches, and
negative samples are generated for each batch in addition to its positive samples: a negative sample
has the same location n and context as a positive sample but a randomly chosen different item i, and
its observed variable values are all set to zero since the item did not occur at that location. The items
for the negative samples are chosen from a distribution proportional to a power of the overall item
distribution, as is done in word embedding [14]. In experiments we use M = 1000 mini-batches and
5 negative samples for each positive sample. Due to the stochastic partitions, for each epoch the latent
variables only need to be simulated at the positions in the mini-batch. The optimization then updates
the embedding vectors in each epoch by gradient steps with step sizes chosen by the Adam optimizer.

5 Empirical Case Studies

In this section we describe 5 different scenarios of using GCE to model the observed data. The
precision parameter λα is set to 0 corresponding to a very wide prior for α. We have also tried
another setting with a constrained prior, they yield similar results (see supplementary materials).

5.1 Product rating data

Data. The Anime rating data1 is a set of user ratings on anime movies and series collected from
myanimelist.net. It contains 17562 different anime rated by 325770 different users. Unlike typical
product rating data sets, the data set provides how many episodes (integer) the user had watched
when rating the anime (discrete), thus there are multivariate heterogeneous observed variables.

Modeling. We evaluate GCE by comparing with two other models on their capability to predict
held-out ratings. Compared models are exponential family embeddings (Poisson distribution, p-emb)
and Poisson matrix factorization model ([2], Pois-MF). The p-emb is selected as a comparison method

1From Kaggle, https://www.kaggle.com/datasets/CooperUnion/anime-recommendations-database
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Algorithm 1: Inference Algorithm
input :Observations {x1 . . .xN}, Context {c1 . . . cN}, initial learning rate ξ
output :Point estimates of embedding vectors ρ̂

and context vectors α̂
foreach epoch do

Divide input data intoM random partitions.
Generate negative samples.
form← 1 toM do

Use them-th batch of the data
Simulate z̃n with (15) for every n in the mini-batch
Compute gradients ▽ρF =

∑
j

∂ log p(xj |z̃j)
∂z̃j

∂z̃j
∂ρ +

∑
i
∂ log p(ρ)

∂ρi
,

▽αjF = ∂ log p(xj |z̃j)
∂z̃j

∂z̃j
∂αj
+
∑

i′
∑

j
∂ log p(α)
∂αi′,j

Update ρ and α with ρ = ρ− ξ ∗ ▽ρF , and α = α− ξ ∗ ▽αF
ξ is set with Adam[10]

end
end

Table 1: Left: Held-out MAE for Anime rating. Right: Held-out MAE for Match Records.

Kills Deaths

Model K = 50 K = 100 Model K = 50 K = 100 K = 50 K = 100

Pois-MF 7.4866 7.4872 n-emb 30.0125 31.3224 29.4128 30.6495
p-emb 3.0857 3.0691 p-emb 32.5609 32.5409 32.5620 32.5433
GCE 1.2170 1.2207 GCE 14.0867 14.0766 13.5245 13.5106

since our model can been seen as an extension of exponential family embeddings; the Pois-MF is
a model for the user-rating scenario and it was also a compared method to p-emb in [19]. For all
methods, when training the model, we hold out 10% of the data as the testing data set, and the trained
models are used to predict the ratings in the test data. For each anime rated by a specific user, other
anime rated by the same user are its context. We train GCE with two variables, anime rating and
number watched episodes, whereas p-emb and Pois-MF which can only model one variable are
trained to model the anime ratings.

To compute the predictive ratings we use (16) with z
(i)
n,j set to the means µ(i)n,j computed from the

optimized embedding vectors and with F−1
j computed as the inverse of the empirical CDF in the

training data. The held-out mean absolute error (MAE) is used as the performance metric. The results
are shown in the Table 1 (Left): our model strongly outperforms p-emb and Pois-MF.

5.2 Player modeling in online games

Data. The HLTV match record data is collected from HLTV.org and records professional match
histories of a multiplayer first-person shooter game Counter-Strike: Global Offensive [22]. We used
a web crawler to gather the histories of 34900 matches of 4751 professional players from the website.
For each match, we collect the match ID, player ID, and records of each player in the match including
number of kills and deaths, again yielding multivariate heterogeneous observations.

Modeling. We train GCE to learn representation vectors for each player. The context for the player in
each match is the set of other players in the same match. Observed data are the numbers of kills and
deaths. We again compare our model to two exponential family embeddings (normal and Poisson)
because they are the methodologically closest approaches. We train GCA incorporating the two
variables at the same time whereas the exponential family embeddings train the model for each
variable separately. The predictions for the variables are done as in Section 5.1. We measure MAE
for both variables separately. The results are shown in Table 1 (Right): we strongly outperform the
comparison methods.
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Table 2: Results for Darknet Traffic Classification

Model Precision Recall F1 Accuracy

DeepImage [6] 0.86 0.86 0.86 0.86
Random forest (original features) 0.8374 0.7963 0.8117 0.8917
GCE (K = 20) + Random forest 0.8955 0.8789 0.8846 0.9347
GCE (K = 30) + Random forest 0.8945 0.8803 0.8851 0.9355
GCE (K = 40) + Random forest 0.8952 0.8786 0.8844 0.9346

Figure 1: Importance of top-20 variables in the random forest classifiers, x-axis is the mean decrease
of Gini impurity, the higher the more important the variable. Left: Variable importances in the random
forest for original input variables. Right: The random forest model trained with additional 30 learned
features. Learned features V28, V19, and other 7 features are in the 20 most important variables.

5.3 Internet traffic classification

Data. The CIC Dark-net traffic data set [6] contains 141532 records of darknet traffic. Each record
is categorized into a traffic category (Audio-Stream, Browsing, Chat, Email, P2P, Transfer, Video-
Stream, and VOIP, 8 categories in total) and contains the source IP, destination IP, and communication
observations such as forward and backward bytes, flows, duration, subflow and so on.

Model. We use GCE to learn the latent representation for each source IP. In each traffic record,
the destination IP is the context of the source IP. The observed data used to train the GCE model
are IP co-appearance (Boolean), TCP Flag counts (SYN, RST, PSH, and ACK; integer), and three
subflow related measurements (continuous value). We first train the embedding model with different
vector dimensions. After training GCE, we incorporate the learned representation vector of each
source IP as additional features to the original input variables and train a random forest classifier to
predict the traffic category. We compare our model to DeepImage, which is a convolutional neural
network based, end-to-end solution proposed in [6]. The results in Table 2 show that the learned
additional features not only improve performance of the random forest classifier, but also outperform
DeepImage, the state-of-the-art deep learning based classifier. Figure 1 further demonstrates that the
learned features play important roles in the classification task.

5.4 Graph embedding with node meta-data

Data. Spanish Twitch gamers is a subgraph of the Twitch gamers graph data [17]; each node is a
Twitch gamer; an edge denotes mutual friendship. The data has 5538 nodes and 85893 edges.

Model. We train the embedding vectors incorporating the node-level observations including number
of views and life duration. Following the customary graph embedding procedure, we first generate
randomwalks on the graph to simulate a node sequence as input data: 80 walks per node with length 10
steps. Conventionally, limited by the capability of embedding models, most graph embedding models
only take appearance of nodes into account. With GCE, we incorporate not only the appearance of
nodes but also the views and lifetime of the nodes into the model.

To evaluate our model, we take on link prediction, a classical task for graph embedding models. We
hold out 50% of edges randomly into a test set while keeping the remaining training graph connected.
In both training and test sets, randomly sampled negative edges are added in equal amount to the
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Table 3: Results for Link Prediction: area under the curve (AUC) of the link classification

Model Deepwalk Node2vec EFGE-bern EFGE-pois EFGE-norm GCE

K = 50 0.7151 0.7143 0.5795 0.5934 0.6063 0.7853
K = 100 0.7063 0.6612 0.5887 0.6004 0.6291 0.7832

Table 4: Example GCE model output with the subreddit hyperlink network data. We show the top 4
closest subreddits in terms of the embedding vectors ρ and three different context vectors. The α1

corresponds to the fraction of the characters, α2 corresponds to the fraction of the digits, and α7

corresponds to the semantics.

Top 4 closest subreddits

Embedding r/environment

ρ r/cornbreadliberals r/basicincome r/energy r/northcarolina
α1 r/climate r/green r/oil r/water
α2 r/conservation r/climate r/likeus r/tdcs
α7 r/invasivespecies r/lockcarbon r/metageopolitics r/earthdisaster

r/cryptocurrency

ρ r/litecoin r/noblecoin r/siacoin r/bitcoinserious
α1 r/altcoin r/blackcoin r/ripple r/karmacoin
α2 r/cannabis r/xdp r/flappycoin r/litecoin
α7 r/dogenews r/ethtrader r/ethdev r/vos

positive edges. A logistic regression classifier is trained based on the reduced training graph and
the training negative edges, using Hadamard product of embeddings of the edge endpoint nodes
as input features; the classifier is used to classify the held-out test-set edges. We compare our
model to state-of-the-art, random walk based solutions including Deepwalk [16], Node2vec [5] and
Exponential Family Graph Embeddings (EFGE; [1]). The results in the Table 3 show our model
outperforms the other competitive models.

5.5 Social media community interactions

Data.The Reddit Hyperlink Network [12] is a data set of 858488 hyperlinks between 55863 subreddits.
For each hyperlink, the data set records the source and destination subreddit, and the description of
the hypertext including, e.g., number of words, sentiments, fractions of 5 different character types
(i.e., alphabetical, digits, uppercase characters, special characters, white space) and so on.

Model. We train the model based on the pairs of source and destination subreddits. The source
subreddit in each hyperlink is the context for the destination subreddit. The 5 fractions of different
character types, the number of words, and the sentiment are taken as the observed variables. We train
a GCE model withK = 100.

We demonstrate the closest subreddits based on embedding vectors, and three context vectors.
Each reflects a different aspect: take the r/environment for example, when it comes to fraction of
alphabetical characters, closest subreddits are related to resources such as r/climate, r/green, and r/oil,
and r/water. However, when it comes to sentiment, the closest subreddits for r/environment become
r/invasivespecies, r/lockcarbon, r/metageopolitics, and r/earthdisaster.

6 Discussions and Conclusions

We introduced Gaussian copula embeddings (GCE), a representation learning model that can in-
corporate observed data of different data types. A stochastic variational inference algorithm based
on semi-parametric estimation for efficient computation is introduced. The empirical case studies
demonstrate that our model is effective in many domains outperforming competitive comparison
methods, and can provide analytical insights. Moreover, our model can extend the representation
learning task to more complex settings and thus bring more opportunities to the research community.
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Figure 2: t-SNE visualization of embedding vectors ρ. The green area contains the subreddits related
to basketball and green area contains subreddits related to music. The learned representation from
GCE are semantically meaningful.

In this paper we used a streightforward parametric construction of context and its combination with
embedding vectors; however, the GCE framework can be flexibly adapted to other parameterizations,
such as integrating it as a layer within deep learning architectures, and integrating context selection
mechanisms such as [13]. Our method brings a new way of analyzing data through vectorial embed-
ding which has the potential to bring greater understanding of several phenomena; as usual such tools
must be used responsibly to avoid negative societal impact.
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Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] In supplementary.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] In supplementary.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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