160 research outputs found

    Paradigm free mapping: detection and characterization of single trial fMRI BOLD responses without prior stimulus information

    Get PDF
    The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain's response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD responses without prior paradigm information, Paradigm Free Mapping, and assess variations in BOLD sensitivity across brain regions at high field fMRI. Based on a linear haemodynamic response model, Paradigm Free Mapping (PFM) techniques rely on the deconvolution of the neuronal-related signal driving the BOLD effect using regularized least squares estimators. The first approach, named PFM, builds on the ridge regression estimator and spatio-temporal t-statistics to detect statistically significant changes in the deconvolved fMRI signal. The second method, Sparse PFM, benefits from subset selection features of the LASSO and Dantzig Selector estimators that automatically detect the single trial BOLD responses by promoting a sparse deconvolution of the signal. The third technique, Multicomponent PFM, exploits further the benefits of sparse estimation to decompose the fMRI signal into a haemodynamical component and a baseline component using the morphological component analysis algorithm. These techniques were evaluated in simulations and experimental fMRI datasets, and the results were compared with well-established fMRI analysis methods. In particular, the methods developed here enabled the detection of single trial BOLD responses to visually-cued and self-paced finger tapping responses without prior information of the events. The potential application of Sparse PFM to identify interictal discharges in idiopathic generalized epilepsy was also investigated. Furthermore, Multicomponent PFM allowed us to extract cardiac and respiratory fluctuations of the signal without the need of physiological monitoring. To sum up, this work demonstrates the feasibility to do single trial fMRI analysis without prior stimulus or physiological information using PFM techniques

    Paradigm free mapping: detection and characterization of single trial fMRI BOLD responses without prior stimulus information

    Get PDF
    The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain's response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD responses without prior paradigm information, Paradigm Free Mapping, and assess variations in BOLD sensitivity across brain regions at high field fMRI. Based on a linear haemodynamic response model, Paradigm Free Mapping (PFM) techniques rely on the deconvolution of the neuronal-related signal driving the BOLD effect using regularized least squares estimators. The first approach, named PFM, builds on the ridge regression estimator and spatio-temporal t-statistics to detect statistically significant changes in the deconvolved fMRI signal. The second method, Sparse PFM, benefits from subset selection features of the LASSO and Dantzig Selector estimators that automatically detect the single trial BOLD responses by promoting a sparse deconvolution of the signal. The third technique, Multicomponent PFM, exploits further the benefits of sparse estimation to decompose the fMRI signal into a haemodynamical component and a baseline component using the morphological component analysis algorithm. These techniques were evaluated in simulations and experimental fMRI datasets, and the results were compared with well-established fMRI analysis methods. In particular, the methods developed here enabled the detection of single trial BOLD responses to visually-cued and self-paced finger tapping responses without prior information of the events. The potential application of Sparse PFM to identify interictal discharges in idiopathic generalized epilepsy was also investigated. Furthermore, Multicomponent PFM allowed us to extract cardiac and respiratory fluctuations of the signal without the need of physiological monitoring. To sum up, this work demonstrates the feasibility to do single trial fMRI analysis without prior stimulus or physiological information using PFM techniques

    Automatic detection of relationships between banking operations using machine learning

    Get PDF
    In their daily business, bank branches should register their operations with several systems in order to share information with other branches and to have a central repository of records. In this way, information can be analysed and processed according to different requisites: fraud detection, accounting or legal requirements. Within this context, there is increasing use of big data and artificial intelligence techniques to improve customer experience. Our research focuses on detecting matches between bank operation records by means of applied intelligence techniques in a big data environment and business intelligence analytics. The business analytics function allows relationships to be established and comparisons to be made between variables from the bank's daily business. Finally, the results obtained show that the framework is able to detect relationships between banking operation records, starting from not homogeneous information and taking into account the large volume of data involved in the process. (C) 2019 Elsevier Inc. All rights reserved.This work was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Optimal Adaptation Principles In Neural Systems

    Get PDF
    Animal brains are remarkably efficient in handling complex computational tasks, which are intractable even for state-of-the-art computers. For instance, our ability to detect visual objects in the presence of substantial variability and clutter sur- passes any algorithm. This ability seems even more surprising given the noisiness and biophysical constraints of neural circuits. This thesis focuses on understanding the theoretical principles governing how neural systems, at various scales, are adapted to the structure of their environment in order to interact with it and perform informa- tion processing tasks efficiently. Here, we study this question in three very different and challenging scenarios: i) how a sensory neural circuit the olfactory pathway is organised to efficiently process odour stimuli in a very high-dimensional space with complex structure; ii) how individual neurons in the sensory periphery exploit the structure in a fast-changing environment to utilise their dynamic range efficiently; iii) how the auditory system of whole organisms is able to efficiently exploit temporal structure in a noisy, fast-changing environment to optimise perception of ambiguous sounds. We also study the theoretical issues in developing principled measures of model complexity and extending classical complexity notions to explicitly account for the scale/resolution at which we observe a system

    Channel Characterization for Wideband Large-Scale Antenna Systems Based on a Low-Complexity Maximum Likelihood Estimator

    Get PDF

    Application of the Evidence Procedure to the Estimation of Wireless Channels

    Get PDF
    We address the application of the Bayesian evidence procedure to the estimation of wireless channels. The proposed scheme is based on relevance vector machines (RVM) originally proposed by M. Tipping. RVMs allow to estimate channel parameters as well as to assess the number of multipath components constituting the channel within the Bayesian framework by locally maximizing the evidence integral. We show that, in the case of channel sounding using pulse-compression techniques, it is possible to cast the channel model as a general linear model, thus allowing RVM methods to be applied. We extend the original RVM algorithm to the multiple-observation/multiple-sensor scenario by proposing a new graphical model to represent multipath components. Through the analysis of the evidence procedure we develop a thresholding algorithm that is used in estimating the number of components. We also discuss the relationship of the evidence procedure to the standard minimum description length (MDL) criterion. We show that the maximum of the evidence corresponds to the minimum of the MDL criterion. The applicability of the proposed scheme is demonstrated with synthetic as well as real-world channel measurements, and a performance increase over the conventional MDL criterion applied to maximum-likelihood estimates of the channel parameters is observed

    A Statistical Approach to the Inverse Problem in Magnetoencephalography

    Get PDF
    Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic field outside the human head produced by the electrical activity inside the brain. The MEG inverse problem, identifying the location of the electric sources from the magnetic signal measurements, is ill-posed; that is, there is an infinite number of mathematically correct solutions. Common source localization methods assume the source does not vary with time and do not provide estimates of the variability of the fitted model. We reformulate the MEG inverse problem by considering time-varying sources and we model their time evolution using a state space model. Based on our model, we investigate the inverse problem by finding the posterior source distribution given the multiple channels of observations at each time rather than fitting fixed source estimates. A computational challenge arises because the data likelihood is nonlinear, where Markov chain Monte Carlo (MCMC) methods including conventional Gibbs sampling are difficult to implement. We propose two new Monte Carlo methods based on sequential importance sampling. Unlike the usual MCMC sampling scheme, our new methods work in this situation without needing to tune a high-dimensional transition kernel which has a very high-cost. We have created a set of C programs under LINUX and use Parallel Virtual Machine (PVM) software to speed up the computation.Common methods used to estimate the number of sources in the MEG data include principal component analysis and factor analysis, both of which make use of the eigenvalue distribution of the data. Other methods involve the information criterion and minimum description length. Unfortunately, all these methods are very sensitive to the signal-to-noise ratio (SNR). First, we consider a wavelet approach, a residual analysis approach and a Fourier approach to estimate the noise variance. Second, a Neyman-Pearson detection theory-based eigenthresholding method is used to decide the number of signal sources. We apply our methods to simulated data where we know the truth. A real MEG dataset without a human subject is also tested. Our methods allow us to estimate the noise more accurately and are robust in deciding the number of signal sources
    • …
    corecore