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We address the application of the Bayesian evidence procedure to the estimation of wireless channels. The proposed scheme is
based on relevance vector machines (RVM) originally proposed by M. Tipping. RVMs allow to estimate channel parameters as well
as to assess the number of multipath components constituting the channel within the Bayesian framework by locally maximizing
the evidence integral. We show that, in the case of channel sounding using pulse-compression techniques, it is possible to cast the
channel model as a general linear model, thus allowing RVM methods to be applied. We extend the original RVM algorithm to the
multiple-observation/multiple-sensor scenario by proposing a new graphical model to represent multipath components. Through
the analysis of the evidence procedure we develop a thresholding algorithm that is used in estimating the number of components.
We also discuss the relationship of the evidence procedure to the standard minimum description length (MDL) criterion. We show
that the maximum of the evidence corresponds to the minimum of the MDL criterion. The applicability of the proposed scheme is
demonstrated with synthetic as well as real-world channel measurements, and a performance increase over the conventional MDL
criterion applied to maximum-likelihood estimates of the channel parameters is observed.
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1. INTRODUCTION

Deep understanding of wireless channels is an essential pre-
requisite to satisfy the ever-growing demand for fast infor-
mation access over wireless systems. A wireless channel con-
tains explicitly or implicitly all the information about the
propagation environment. To ensure reliable communica-
tion, the transceiver should be constantly aware of the chan-
nel state. In order to make this task feasible, accurate chan-
nel models, which reproduce in a realistic manner the chan-
nel behavior, are required. However, efficient joint estima-
tion of the channel parameters, for example, number of the
multipath components (model order), their relative delays,
Doppler frequencies, directions of the impinging wavefronts,
and polarizations, is a particularly difficult task. It often
leads to analytically intractable and computationally very ex-
pensive optimization procedures. The problem is often re-
laxed by assuming that the number of multipath compo-
nents is fixed, which simplifies optimization in many cases
[1, 2]. However, both underspecifying and overspecifying the
model order leads to significant performance degradation:
residual intersymbol interference impairs the performance

of the decoder in the former case, while additive noise is
injected in the channel equalizer in the latter: the excessive
components amount only to the random fluctuations of the
background noise. To amend this situation, empirical meth-
ods like cross-validation can be employed (see, e.g., [3]).
Cross-validation selects the optimal model by measuring its
performance over a validation data set and selecting the one
that performs the best. In case of practical multipath chan-
nels, such data sets are often unavailable due to the time-
variability of the channel impulse responses. Alternatively,
one can employ model selection schemes in the spirit of Ock-
ham’s razor principle: simple models (in terms of the num-
ber of parameters involved) are preferred over more complex
ones. Examples are the Akaike information criterion (AIC)
and minimum description length (MDL) [4, 5]. In this pa-
per, we show how the Ockham principle can be effectively
used to perform estimation of the channel parameters cou-
pled with estimating the model order, that is, the number of
wavefronts.

Consider a certain class of parametric models (hypothe-
ses) Hi defined as the collection of prior distributions p(wi |
Hi) for the model parameters wi. Given the measurement
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data Z and a family of conditional distributions p(Z | wi,
Hi), our goal is to infer the hypothesis ̂H and the corre-
sponding parameters ŵ that maximize the posterior

{ŵ,̂H} = arg max
wi ,Hi

{

p
(

wi, Hi | Z
)}

. (1)

The key to solving (1) lies in inferring the correspond-
ing parameters wi and Hi from the data Z, which is of-
ten a nontrivial task. As far as the Bayesian methodol-
ogy is concerned, there are two ways this inference prob-
lem can be solved [6, Section 5]. In the joint estimation
method, p(wi, Hi | Z) is maximized directly with respect
to the quantities of interest wi and Hi. This often leads to
computationally-intractable optimization algorithms. Alter-
natively, one can rewrite the posterior p(wi, Hi | Z) as

p
(

wi, Hi | Z
) = p

(

wi | Z, Hi
)

p
(

Hi | Z
)

(2)

and maximize each term on the right-hand side sequentially
from right to left. This approach is known as the marginal es-
timation method. Marginal estimation methods (MEM) are
well exemplified by expectation-maximization (EM) algo-
rithms and used in many different signal processing appli-
cations (see [2, 3, 7]). MEMs are usually easier to compute,
however they are prone to land in a local rather than global
optimum. We recognize the first factor on the right-hand
side of (2) as a parameter posterior, while the other one is a
posterior for different model hypotheses. It is the maximiza-
tion of p(Hi | Z) that guides our model selection decision.
Then, the data analysis consists of two steps [8, Chapter 28],
[9]:

(1) inferring the parameters under the hypothesis Hi

p
(

wi | Z, Hi
) = p

(

Z | wi, Hi
)

p
(

wi |Hi
)

p
(

Z |Hi
)

≡ Likelihood× Prior
Evidence

,

(3)

(2) comparing different model hypotheses using the mod-
el posterior

p
(

Hi | Z
)∝ p

(

Z |Hi
)

p
(

Hi
)

≡ Evidence×Hypothesis Prior.
(4)

In the second stage, p(Hi) measures our subjective prior over
different hypotheses before the data is observed. In many
cases it is reasonable to assign equal probabilities to differ-
ent hypotheses, thus reducing the hypothesis selection to se-
lecting the model with the highest evidence p(Z | Hi).1 The
evidence can be expressed as the following integral:

p
(

Z |Hi
) =

∫

p
(

Z | wi, Hi
)

p
(

wi |Hi
)

dwi. (5)

1 In the Bayesian literature, the evidence is also known as the likelihood for
the hypothesis Hi.
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h(t) =

L
∑

l=1

alcl(φl)e j2πνl tδ(t − τl)
y(t)

η(t) MF

ChannelTx Rx

u∗(−t)
z(t) z[n]

t = nTs

Figure 1: An equivalent baseband model of the radio channel with
receiver matched filter (MF) front-end.

The evidence integral (5) plays a crucial role in the develop-
ment of Schwarz’s approach to model order estimation [10]
(Bayesian information criterion), as well as in a Bayesian in-
terpretation of Rissanen’s MDL principle and its variations
[5, 11, 12]. Maximizing (5) with respect to the unknown
model Hi is known as the evidence maximization procedure,
or evidence procedure (EP) [13, 14].

Equations (3), (4), and (5) form the theoretical frame-
work for our joint model and parameter estimation. The esti-
mation algorithm is based on relevance vector machines. Rel-
evance vector machines (RVM), originally proposed by Tip-
ping [15], are an example of the marginal estimation method
that, for a set of hypotheses Hi, iteratively approximates (1)
by alternating between the model selection, that is, maxi-
mizing (5) with respect to Hi, and inferring the correspond-
ing model parameters from maximization of (3). RVMs have
been initially proposed to find sparse solutions to general lin-
ear problems. However, they can be quite effectively adapted
to the estimation of the impulse response of wireless chan-
nels, thus resulting in an effective channel parameter estima-
tion and model selection scheme within the Bayesian frame-
work.

The material presented in the paper is organized as fol-
lows: Section 2 introduces the signal model of the wire-
less channel and the used notation; Section 3 explains the
framework of the EP in the context of wireless channels. In
Section 4 we explain how model selection is implemented
within the presented framework and discuss the relation-
ship between the EP and the MDL criterion for model se-
lection. Finally, Section 5 presents some application results
illustrating the performance of the RVM-based estimator in
synthetic as well as in actual wireless environments.

2. CHANNEL ESTIMATION USING
PULSE-COMPRESSION TECHNIQUE

Channel estimation usually consists of two steps: (1) send-
ing a specific sounding sequence s(t) through the channel
and observing the response y(t) at the other end, and (2) es-
timating the channel parameters from the matched-filtered
received signal z(t) (Figure 1). It is common to represent
the multipath channel response as the sum of delayed and
weighted Dirac impulses, with each impulse representing one
individual multipath component (see, e.g., [16, Section 5]).
Such special structure of the channel impulse response im-
plies that the filtered signal z(t) should have a sparse struc-
ture. Unfortunately, this sparse structure is often obscured
by additive noise and temporal dispersion due to the finite
bandwidth of the transmitter and receiver hardwares. This
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Figure 2: Sounding sequence s(t).

motivates the application of algorithms capable of recover-
ing this sparse structure from the measurement data.

Let us consider an equivalent baseband channel sound-
ing scheme shown in Figure 1. The sounding signal s(t)
(Figure 2) consists of periodically repeated burst waveforms
u(t), that is, s(t) =∑∞

i=−∞ u(t− iT f ), where u(t) has duration

Tu ≤ Tf and is formed as u(t) = ∑M−1
m=0 bmp(t −mTp). The

sequence b0 · · · bM−1 is the known sounding sequence con-
sisting of M chips, and p(t) is the shaping pulse of duration
Tp, MTp = Tu. Furthermore, we assume that the receiver
(Rx) is equipped with a planar antenna array consisting of P
sensors located at positions s1, . . . , sP ∈ R2 with respect to an
arbitrary reference point. Let us now assume that the maxi-
mum absolute Doppler frequency of the impinging waves is
much smaller than the inverse of a single burst duration 1/Tu.
This low Doppler frequency assumption is equivalent to as-
suming that, within a single observation window equivalent
to the period of the sounding sequence, we can safely neglect
the influence of the Doppler shifts.

The received signal vector y(t) ∈ CP×1 for a single burst
waveform is given as [2]

y(t) =
L
∑

l=1

alc
(

φl
)

e j2πνl t u
(

t − τl
)

+ η(t). (6)

Here, al, τl, and νl are respectively the complex gain,
the delay, and the Doppler shift of the lth multipath
component. The P-dimensional complex vector c(φl) =
[c1(φl), . . . , cP(φl)]T is the steering vector of the ar-
ray. Provided the coupling between the elements can
be neglected, its components are given as cp(φl) =
fp(φl) exp( j2πλ−1〈e(φl), sp〉) with λ, e(φl) and fp(φl) denot-
ing the wavelength, the unit vector in R2 pointing in the
direction of the incoming wavefront determined by the az-
imuth φl, and the complex electric field pattern of the pth
sensor, respectively. The additive term η(t) ∈ CP×1 is a
vector-valued complex white Gaussian noise process, that is,
the components of η(t) are independent complex Gaussian
processes with double-sided spectral density N0.

The receiver front-end consists of a matched filter (MF)
matched to the transmitted sequence u(t). Under the low
Doppler frequency assumption the term e j2πνl t stays time-
invariant within a single burst duration, that is, equal to a
complex constant that can be incorporated in the complex
gain al. The signal z(t) at the output of the MF is then given

as

z(t) =
L
∑

l=1

alc
(

φl
)

Ruu
(

t − τl
)

+ ξ(t), (7)

where Ruu(t) = ∫

u(t′)u∗(t + t′)dt′ is the autocorrelation
function of the burst waveform u(t) and ξ(t) = ∫ η(t′)u∗(t+
t′)dt′ is a spatially white P-dimensional vector with each ele-
ment being a zero-mean wide-sense stationary (WSS) Gaus-
sian noise with autocorrelation function

Rξξ(t) = E
{

ξp(t′)ξ∗p (t + t′)
} = N0Ruu(t),

E
{

ξp(t′)ξp(t + t′)
} = 0.

(8)

Here E{·} denotes the expectation operator. Equation (7)
states that the MF output is a linear combination of L scaled
and delayed kernel functions Ruu(t−τl), weighted across sen-
sors as given by the components of c(φl) and observed in the
presence of the colored noise ξ(t).

In practice, however, the output of the MF is sampled
with the sampling period Ts ≤ Tp, resulting in PN-tuples of
the MF output, where N is the number of MF output sam-
ples. By collecting the output of each sensor into a vector, we
can rewrite (7) in a vector form:

zp = Kwp + ξ p, p = 1 · · ·P, (9)

where we have defined

zp =
[

zp[0], zp[1], . . . , zp[N − 1]
]T

,

wp =
[

a1cp
(

φ1
)

, . . . , aLcp
(

φL
)]T

,

ξ p =
[

ξp[0], ξp[1], . . . , ξp[N − 1]
]T
.

(10)

The additive noise vectors ξ p, p = 1 · · ·P, possess the
following properties that will be exploited later:

E
{

ξ p
} = 0, E

{

ξmξ
H
k

} = 0, for m /= k, (11)

E
{

ξ pξ
H
p

} = Σ = N0Λ, where Λi, j = Ruu
(

(i− j)Ts
)

.

(12)

Note that (12) follows directly from (8). The matrix K,
also called the design matrix, accumulates the shifted and
sampled versions of the kernel function Ruu(t). It is con-
structed as K = [r1, . . . , rL], with rl = [Ruu(−τl),Ruu(Ts −
τl), . . . ,Ruu((N − 1)Ts − τl)]T .

In general, the channel estimation problem is posed as
follows: given the measured sampled signals zp, p = 1 · · ·P,
determine the order L of the model and estimate optimally
(with respect to some quality criterion) all multipath param-
eters al, τl, and φl, for l = 1 · · ·L. In this contribution, we re-
strict ourselves to the estimation of the model order L along
with the vector wp, rather than of the constituting parame-
ters τl, φl, and al. We will also quantize, although arbitrarily
fine,2 the search space for the multipath delays τl. Thus, we

2 There is actually a limit beyond which it makes no sense to make the
search grid finer, since it will not decrease the variance of the estimates,
which is lower-bounded by the Crammer-Rao bound [2].
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do not try to estimate the path delays with infinite resolu-
tion, but rather fix the delay values to be located on a grid
with a given mesh determining the quantization error. The
size of the delay search space L0 and the resulting quantized
delays T = {T1, . . . ,TL0} form the initial model hypothesis
H0, which would manifest itself in the L0 columns of the de-
sign matrix K. This allows to formulate the channel estima-
tion problem as a standard linear problem to which the RVM
algorithm can be applied.

As it can be seen, our idea lies in finding the closest
approximation of the continuous-time model (7) with the
discrete-time equivalent (9). By incorporating the model se-
lection in the analysis, we also strive to find the most com-
pact representation (in terms of the number of components),
while preserving good approximation quality. Thus, our goal
is to estimate the channel parameters wp as well as to deter-
mine how many multipath components L ≤ L0 are present in
the measured impulse response. The application of the RVM
framework to solve this problem follows in the next section.

3. EVIDENCE MAXIMIZATION, RELEVANCE VECTOR
MACHINES, AND WIRELESS CHANNELS

We begin our analysis following the steps outlined in
Section 1. In order to ease the algorithm description we first
assume that P = 1, that is, only a single sensor is used. Ex-
tensions to the case P > 1 are carried out later in Section 3.2.
To simplify the notations we also drop the subscript index p
in our further notations.

From (9) it follows that the observation vector z is a lin-
ear combination of the vectors from the column-space of K,
weighted according to the parameters w and embedded in
the correlated noise ξ. In order to correctly assess the order
of the model, it is imperative to take the noise process into
account. It follows from (12) that the covariance matrix of
the noise is proportional to the unknown spectral height N0,
which should therefore be estimated from the data. Thus,
the model hypotheses Hi should include the term N0. In
the following analysis we assume that β = N−1

0 is Gamma-
distributed [15], with the corresponding probability density
function (pdf) given as

p(β | κ, υ) = κυ

Γ(υ)
βυ−1 exp(−κβ), (13)

with parameters κ and υ predefined so that (13) accurately
reflects our a priori information about N0. In the absence of
any a priori knowledge one can make use of a noninforma-
tive (i.e., flat in the logarithmic domain) prior by fixing the
parameters to small values κ = υ = 10−4 [15]. Furthermore,
to steer the model selection mechanism, we introduce an ex-
tra parameter (hyperparameter) αl, l = 1 · · ·L0, for each
column in K. This parameter measures the contribution or
relevance of the corresponding weight wl in explaining the
data z from the likelihood p(z | wi, Hi). This is achieved by
specifying the prior p(w | α) for the model weights:

p(w | α) =
L0
∏

l=1

αl
π

exp
(

− ∣∣wl

∣

∣

2
αl
)

. (14)

High values of αl will render the contribution of the cor-
responding column in the matrix K “irrelevant,” since the
weight wl is likely to have a very small value (hence they
are termed relevance hyperparameters). This will enable us
to prune the model by setting the corresponding weight wl

to zero, thus effectively removing the corresponding column
from the matrix and the corresponding delay Tl from the de-
lay search space T . We also see that α−1

l is nothing else as
the prior variance of the model weight wl. Also note that the
prior (14) implicitly assumes statistical independence of the
multipath contributions.

To complete the Bayesian framework, we also specify the
prior over the hyperparameters. Similarly to the noise con-
tribution, we assume the hyperparameters αl to be Gamma-
distributed with the corresponding pdf

p(α | ζ , ε) =
L
∏

l=1

ζε

Γ(ε)
αε−1
l exp

(− ζαl
)

, (15)

where ζ and ε are fixed at some values that ensure an ap-
propriate form of the prior. Again, we can make this prior
noninformative by fixing ζ and ε to small values, for exam-
ple, ε = ζ = 10−4.

Now, let us define the hypothesis Hi more formally. Let
P (S) be a power set consisting of all possible subsets of basis
vector indices S = {1 · · ·L0}, and i�→P (i) the indexing of
P (S) such that P (0) = S. Then for each index value i the
hypothesis Hi is the set Hi = {β;αj , j ∈ P (i)}. Clearly, the
initial hypothesis H0 = {β;αj , j ∈ S} includes all possible
potential basis functions.

Now we are ready to outline the learning algorithm that
estimates the model parameters w, β, and hyperparameters α
from the measurement data z.

3.1. Learning algorithm

Basically, learning consists of inferring the values of wi and
the hypothesis Hi that maximize the posterior (2): p(wi, Hi |
Z) ≡ p(wi,αi,β | z). Here αi denotes the vector of all ev-
idence hyperparameters associated with the ith hypothesis.
The latter expression can also be rewritten as

p(w,α,β | z) = p(w | z,α,β)p(α,β | z). (16)

The explicit dependence on the hypothesis index i has been
dropped to simplify the notation. We recognize that the first
term p(w | z,α,β) in (16) is the weight posterior and the
other one p(α,β | z) is the hypothesis posterior. From this
point we can start with the Bayesian two-step analysis as has
been indicated before.

Assuming the parameters α and β are known, estimation
of model parameters consists of finding values w that max-
imize p(w | z,α,β). Using Bayes’ rule we can rewrite this
posterior as

p(w | z,α,β) ∝ p(z | w,α,β)p(w | α,β). (17)

Consider the Bayesian graphical model [17] in Figure 3.
This graph captures the relationship between different vari-
ables involved in (16). It is a useful tool to represent the de-
pendencies among the variables involved in the analysis in
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Figure 3: Graph representing the discrete-time model of the wire-
less channel.

order to factor the joint density function into contributing
marginals.

It immediately follows from the structure of the graph in
Figure 3 that p(z | w,α,β) = p(z | w,β) and p(w | α,β) =
p(w | α), that is, z and α are conditionally independent given
w and β, and w and β are conditionally independent given α.
Thus, (17) is equivalent to

p(w | z,α,β) ∝ p(z | w,β)p(w | α), (18)

where the second factor on the right-hand side is given in
(14). The first term is the likelihood of w and β given the
data. From (9) it follows that

p(z | w,β) = exp
{− (z−Kw)HβΛ−1(z−Kw)

}

πN
∣

∣β−1Λ
∣

∣

. (19)

Since both right-hand factors in (18) are Gaussian densities,
p(w | z,α,β) is also a Gaussian density with the covariance
matrix Φ and mean μ given as

Φ = (A + βKHΛ−1K
)−1

, (20)

μ = βΦKHΛ−1z. (21)

The matrix A = diag(α) is a diagonal matrix that contains
the evidence parameters αl on its main diagonal. Clearly, μ
is a maximum a-posteriori (MAP) estimate of the parame-
ter vector w under the hypothesis Hi, with Φ being the co-
variance matrix of the resulting estimates. This completes the
model fitting step.

Our next step is to find parameters α and β that maxi-
mize the hypothesis posterior p(α,β | z) in (16). This den-
sity function can be represented as p(α,β | z) ∝ p(z |
α,β)p(α,β), where p(z | α,β) is the evidence term and
p(α,β) = p(α)p(β) is the hypothesis prior. As it was men-
tioned earlier, it is quite reasonable to choose noninformative
priors since we would like to give all possible hypotheses Hi

an equal chance of being valid. This can be achieved by set-
ting ζ , ε, κ, and υ to very small values. In fact, it can be easily
concluded (see derivations in the appendix) that maximum
of the evidence p(z | α,β) coincides with the maximum of
p(z | α,β)p(α,β) when ζ = ε = κ = υ = 0, which effectively
results in the noninformative hyperpriors for α and β.

This formulation of prior distributions is related to au-
tomatic relevance determination (ARD) [14, 18]. As a con-
sequence of this assumption, the maximization of the model

posterior is equivalent to the maximization of the evidence,
which is known as the evidence procedure [13].

The evidence term p(z | α,β) can be expressed as

p(z | α,β) =
∫

p(z | w,β)p(w | α)dw

=exp
(− zH

(

β−1Λ + KA−1KH
)−1

z
)

πN
∣

∣β−1Λ + KA−1KH
∣

∣

,

(22)

which is equivalent to (5), where conditional independencies
between variables have been used to simplify the integrands.
In the Bayesian literature this quantity is known as marginal
likelihood and its maximization with respect to the unknown
hyperparameters α and β is a type-II maximum likelihood
method [19]. To ease the optimization, several terms in (22)
can be expressed as a function of the weight posterior param-
eters μ and Φ as given by (20) and (21). Then, by taking the
derivatives of the logarithm of (22) with respect to α and β
and by setting them to zero, we obtain its maximizing values
as (see also the appendix)

αl = 1

Φll +
∣

∣μl
∣

∣

2 , (23)

β−1 = tr
[

ΦKHΛ−1K
]

+ (z−Kμ)HΛ−1(z−Kμ)
N

. (24)

In (23) μl and Φll denote the lth element of, respectively, the
vector μ, and the main diagonal of the matrix Φ. Unlike the
maximizing values obtained in the original RVM paper [15,
equation (18)], (24) is derived for the extended, more gen-
eral case of colored additive noise ξ with the corresponding
covariance matrix β−1Λ arising due to the MF processing at
the receiver. Clearly, if the noise is assumed to be white, ex-
pressions (23) and (24) coincide with those derived in [15].
Also note that α and β are dependent as it can be seen from
(23) and (24).

Thus, for a particular hypothesis Hi the learning algo-
rithm proceeds by repeated application of (20) and (21), al-
ternated with the update of the corresponding evidence pa-
rameters αi and β from (23) and (24), as depicted in Figure 4,
until some suitable convergence criterion has been satisfied.

Provided a good initialization of α[0]
i and β[0] is chosen,3 the

scheme in Figure 4 converges after j iterations to the station-
ary point of the system of coupled equations (20), (21), (23),
and (24). Then, the maximization (1) is performed by select-
ing the hypothesis that results in the highest posterior (2).

In practice, however, we will observe that during the rees-
timation some of the hyperparameters αl diverge, or, in fact,
become numerically indistinguishable from infinity given the
computer accuracy.4 The divergence of some of the hyper-
parameters enables us to approximate (1) by performing an

3 Later in Section 5 we consider several rules for initializing the hyperpa-
rameters.

4 In the finite sample size case, however, this will only happen in the
high SNR regime. Otherwise, αl will take large but still finite values. In
Section 4.1 we elaborate more on the conditions that lead to conver-
gence/divergence of this learning scheme.
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Hypothesis Hi Parameter
posteriors

Eq. (20), (21)

Hypothesis
update

Eq. (23), (24)

α
[0]
i , β[0]

Φ
[ j]
i , μ

[ j]
i

α
[ j]
i , β[ j]

Figure 4: Iterative learning of the parameters; the superscript [ j]
denotes the iteration index.

on-line model selection: starting from the initial hypothesis
H0, we prune the hyperparameters that become larger than
a certain threshold as the iterations proceed by setting them
to infinity. In turn, this sets the corresponding coefficient wl

to zero, thus “switching off” the lth column in the kernel
matrix K and removing the delay Tl from the search space
T . This effectively implements the model selection by cre-
ating smaller hypotheses Hi < H0 (with fewer basis func-
tions) without performing an exhaustive search over all the
possibilities. The choice of the threshold will be discussed in
Section 4.

3.2. Extensions to multiple channel observations

In this subsection we extend the above analysis to multiple
channel observations or multiple antenna systems. When de-
tecting multipath components any additional channel mea-
surement (either in time, by observing several periods of the
sounding sequence u(t), or in space, by using multiple sen-
sor antenna) can be used to increase detection quality. Of
course, it is important to make sure that the multipath com-
ponents are time-invariant within the observation interval.
The basic idea how to incorporate several channel observa-
tions is quite simple: in the original formulation each hyper-
parameter αl was used to control a single weight wl and thus
the single component. Having several channel observations,
a single hyperparameter αl now controls weights represent-
ing contribution of the same physical multipath component,
but present in the different channel observations.

Usage of a single parameter in this case expresses the
channel coherence property in the Bayesian framework. The
corresponding graphical model that illustrates this idea for a
single hyperparameter αl is depicted in Figure 5. It is inter-
esting to note that similar ideas, though in a totally different
context, were adapted to train neural networks by allowing
a single hyperparameter to control a group of weights [18].
Note that it is also possible to introduce an individual hyper-
parameter αp,l for each weightwp,l, but this eventually decou-
ples the problem into P separate one-dimensional problems
and, as the result, any dependency between the consecutive
channels is ignored.

Now, let us return to (9). It can be seen that the weights
wp capture the structure induced by multiple antennas.
However, for the moment we ignore this structure and treat
the components of wp as a wide-sense stationary (WSS)

αl

w2,l

w1,l

z1[n]

z2[n]

β

wP,l

zP[n]

Figure 5: Usage of αl in a multiple-observation discrete-time wire-
less channel model to represent P coherent channel measurements.

process over the individual channels, p = 1 · · ·P. We will
also allow each sensor to have a different MF. This might
not necessarily be the case for wireless channel sounding,
but thus a more general situation can be considered. Differ-
ent matched filters result in different design matrices Kp, and
thus different noise covariance matrices Σp, p = 1 · · ·P. We
will however require that the variance of the input noise re-
mains the same and equals N0 = β−1 for all channels, so that
Σp = N0Λp, and the noise components are statistically inde-
pendent among the channels. Then, by defining

˜Σ = β−1

⎡

⎢

⎢

⎣

Λ1 0
. . .

0 ΛP

⎤

⎥

⎥

⎦

, ˜A =

⎡

⎢

⎢

⎣

A 0
. . .

0 A

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

P×P block matrix

,

˜K =

⎡

⎢

⎢

⎣

K1 0
. . .

0 KP

⎤

⎥

⎥

⎦

, z̃ =

⎡

⎢

⎢

⎣

z1
...

zP

⎤

⎥

⎥

⎦

, w̃ =

⎡

⎢

⎢

⎣

w1
...

wP

⎤

⎥

⎥

⎦

,

(25)

we rewrite (9) as

z̃ = ˜Kw̃ + ˜ξ. (26)

A crucial point of this system representation is that the hy-
perparameters αl are shared by P channels as it can be seen
in the structure of the matrix ˜A. This will have a correspond-
ing effect on the hyperparameter reestimation algorithm.

From the structural equivalence of (9) and (26) we can
easily infer that (20) and (21) are modified as follows:

Φp =
(

A + βKH
p Λ

−1
p Kp

)−1
, (27)

μp = βΦpKH
p Λ

−1
p zp, p = 1 · · ·P. (28)
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The expressions for the hyperparameter updates become
a bit more complicated but are still straight-forward to com-
pute. It is shown in the appendix that

αl = P
∑P

p=1

(

Φp,ll +
∣

∣μp,l
∣

∣

2) , (29)

N0 = β−1

= 1
NP

( P
∑

p=1

tr
[

ΦpKH
p Λ

−1
p Kp

]

+
P
∑

p=1

(

zp −Kpμp

)H
Λ−1

p

(

zp −Kpμp

)

)

,

(30)

where μp,l is the lth element of the MAP estimate of the pa-
rameter vector wp given by (28), and Φp,ll is the lth element
on the main diagonal of Φp from (27). Comparing the latter
expressions with those developed for the single channel case,
we observe that (29) and (30) use multiple channels to im-
prove the estimates of the noise spectral height and channel
weight hyperparameters. They also offer more insight into
the physical meaning of the hyperparameters α. On the one
hand, the hyperparameters are used to regularize the matrix
inversion (27), needed to obtain the MAP estimates of the
parameters wp,l and their corresponding variances. On the
other hand, they act as the inverse of the second noncentral
moments of the coefficients wp,l, as can be seen from (29).

4. MODEL SELECTION AND BASIS PRUNING

The ability to select the best model to represent the mea-
sured data is an important feature of the proposed scheme,
and thus it is paramount to consider in more detail how the
model selection is effectively achieved. In Section 3.1 we have
briefly mentioned that during the learning phase many of
the hyperparameters αl’s tend to large values, meaning that
the corresponding weights wl’s will cluster around zero ac-
cording to the prior (14). This will allow us to set these co-
efficients to zero, thus effectively pruning the corresponding
basis function from the design matrix. However the question
how large a hyperparameter has to grow in order to prune
its corresponding basis function has not yet been discussed.
In the original RVM paper [15], the author suggests using
a threshold αth to prune the model. The empirical evidence
collected by the author suggests setting the threshold to “a
sufficiently large number” (e.g., αth = 1012). However, our
theoretical analysis presented in the following section will
show that such high thresholds are only meaningful in very
high SNR regimes, or if the number of channel observations
P is sufficiently large. In more general, and often more realis-
tic, scenarios such high thresholds are absolutely impractical.
Thus, there is a need to study the model selection problem in
the context of the presented approach more rigorously.

Below, we present two methods for implementing model
selection within the proposed algorithm. The first method
relies on the statistical properties of the hyperparameters αl,
when the update equations (27), (28), (29), and (30) con-
verge to a stationary point. The second method exploits the

relationship that we will establish between the proposed
scheme and the minimum description length principle [4, 8,
20, 21], thus linking the EP to this classical model selection
approach.

4.1. Statistical analysis of the hyperparameters
in the stationary point

The decision to keep or to prune a basis function from the de-
sign matrix is based purely on the value of the corresponding
hyperparameter αl. In the following we analyze the conver-
gence properties of the iterative learning scheme depicted in
Figure 4 using expressions (27), (28), (29), and (30), and the
resulting distribution of the hyperparameters once conver-
gence is achieved.

We start our analysis of the evidence parameters αl
by making some simplifications to make the derivations
tractable.

(i) P channels are assumed.
(ii) The same MF is used to process each of the P sensor

output signals, that is, Kp = K and Σp = Σ = β−1Λ,
p = 1 · · ·P.

(iii) The noise covariance matrix Σ is known, and B = Σ−1.
(iv) We assume the presence of a single multipath compo-

nent, that is, L = 1, with known delay τ. Thus, the
design matrix is given as K = [r(τ)], where r(τ) =
[Ruu(−τ),Ruu(Ts − τ), . . . ,Ruu((N − 1)Ts − τ)]T is the
associated basis function.

(v) The hyperparameter associated with this component
is denoted as α.

Our goal is to consider the steady-state solution α∞ for
hyperparameter α in this simplified scenario. In this case (27)
and (28) simplify to

φ = (α + r(τ)HBr(τ)
)−1

,

μp = φKHBzp =
r(τ)HBzp

α + r(τ)HBr(τ)
, p = 1 · · ·P.

(31)

Inserting these two expressions into (29) yields

α−1 = 1
α + r(τ)HBr(τ)

+

∑

p

∣

∣r(τ)HBzp/
(

α + r(τ)HBr(τ)
)∣

∣

2

P
.

(32)

From (32) the solution α∞ is easily found to be

α∞ =
(

r(τ)HBr(τ)
)2

(1/P)
∑

p

∣

∣r(τ)HBzp

∣

∣

2 − r(τ)HBr(τ)
. (33)

A closer look at (33) reveals that the right-hand side ex-
pression might not always be positive since the denominator
can be negative for some values of zp. This contradicts the
assumption that the hyperparameter α is positive.5 A further

5 Recall that α−1 is the prior variance of the corresponding parameter w.
This constrains α to be nonnegative.
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analysis of (32) reveals that (29) converges to (33) if and only
if the denominator of (33) is positive:

1
P

∑

p

∣

∣r(τ)HBzp

∣

∣

2
> r(τ)HBr(τ). (34)

Otherwise, the iterative learning scheme depicted in Figure 4
diverges, that is, α∞ = ∞. This can be inferred by interpreting
(29) as a nonlinear dynamic system that, at iteration j, maps
α[ j−1] into the updated value α[ j]. The nonlinear mapping is
given by the right-hand side of (29), where the quantities Φp

and μp depend on the values of the hyperparameters at it-
eration j − 1. In Figure 6 we show several iterations of this
mapping that illustrate how the solution trajectories evolve.
If condition (34) is satisfied, the sequence of solutions {α[ j]}
converges to a stationary point (Figure 6(a)) given by (33).
Otherwise, {α[ j]} diverges (Figure 6(b)). Thus, (32) is a sta-
tionary point only provided the condition (34) is satisfied:

α∞

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

r(τ)HBr(τ)
)2

∑

p

∣

∣r(τ)HBzp

∣

∣

2
/P−r(τ)HBr(τ)

; cond. (34) is satisfied,

∞; otherwise.
(35)

Practically, this means that for a given measurement zp, and
known noise matrix B, we can immediately decide whether a
given basis function r(τ) should be included in the basis by
simply checking if (34) is satisfied or not.

A similar analysis is performed in [22], where the behav-
ior of the likelihood function with respect to a single parame-
ter is studied. The obtained convergence results coincide with
ours when P = 1. Expression (34) is, however, more gen-
eral and accounts for multiple channel observations and col-
ored noise. In [22] the authors also suggest that testing (34)
for a given basis function r(τ) is sufficient to find a sparse
representation and no further pruning is necessary. In other
words, each basis function in the design matrix K is subject
to the test (34) and, if the test fails, that is, (34) does not hold
for the basis function under test, the basis function is pruned.

In case of wireless channels, however, we have exper-
imentally observed that even in simulated high-SNR sce-
narios such pruning results in a significantly overestimated
number of multipath components. Moreover, it can be in-
ferred from (34) that, as the SNR increases, the number of
functions pruned with this approach decreases, resulting in
less and less sparse representations. This motivates us to per-
form a more detailed analysis of (35).

Let us slightly modify the assumptions we made earlier.
We now assume that the multipath delay τ is unknown. The
design matrix is constructed similarly but this time K = [rl],
where

rl =
[

Ruu
(− Tl

)

, . . . ,Ruu
(

(N − 1)Ts − Tl
)]T

(36)

is the basis function associated with the delay Tl ∈ T used in
our discrete-time model. Under these assumptions the input
signal zp is nothing else but the basis function r(τ) scaled

1.03
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1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

α
[j

]

1 1.05 1.1 1.15

α[ j−1]

Nonlinear mapping

α[ j] = α[ j−1]

Iteration trajectory 1

Iteration trajectory 2

(a)

0

10

20

30

40
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60

70

80
α

[j
]

0 10 20 30 40 50 60 70

α[ j−1]

Nonlinear mapping

α[ j] = α[ j−1]

Iteration trajectory 1

Iteration trajectory 2

(b)

Figure 6: Evolution of the two representative solution trajectories
for two cases: (a) {α[ j]} converges, (b) {α[ j]} diverges.

and embedded in the additive complex zero-mean Gaussian
noise with covariance matrix Σ, that is,

zp = wpr(τ) + ξ p. (37)

Let us further assume that wp ∈ C, p = 1 · · ·P, are un-
known but fixed complex scaling factors. In further deriva-
tions we assume, unless explicitly stated otherwise, that the
condition (34) is satisfied for the basis rl. By plugging (37)
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into (33) and rearranging the result with respect to α−1∞ we
arrive at

α−1
∞ =

∣

∣rHl Br(τ)
∣

∣

2∑
p

∣

∣wp

∣

∣

2

P
∣

∣rHl Brl
∣

∣

2

+
2
∑

p Re
{

wprHl Br(τ)ξHp Brl
}

P
∣

∣rHl Brl
∣

∣

2

+
rHl B

(∑

p ξ pξ
H
p

)

Brl

P
∣

∣rHl Brl
∣

∣

2 − 1
rHl Brl

.

(38)

Now, we consider two scenarios. In the first scenario τ =
Tl ∈ T , that is, the discrete-time model matches the ob-
served signal. Although unrealistic, this allows to study the
properties of α−1∞ more closely. In the second scenario, we
study what happens if the discrete-time model does not
match perfectly the measured signal. This case helps us to
define how the model selection rules have to be adjusted to
consider possible misalignment of the path component de-
lays in the model.

4.1.1. Model match: τ = Tl

In this situation, rl = r(τ), and thus (38) can be further sim-
plified according to

α−1
∞ =

∑

p

∣

∣wp

∣

∣

2

P
+

2
∑

p Re
{

wpξ pBrl
}

P
(

rHl Brl
)

+
rHl B

(∑

p ξ pξ
H
p

)

Brl

P
(

rHl Brl
)2 − 1

rHl Brl
,

(39)

where the only random quantity is the additive noise term ξ p.
This allows us to study the statistical properties of the finite
stationary point in (35).

Equation (39) shows how the noise and multipath com-
ponent contribute to α−1∞ . If all wp are set to be zero, that is,
there is no multipath component, then α−1∞ = α−1

n reflects
only the noise contribution:

α−1
n = rHl B

(∑

p ξ pξ
H
p

)

Brl

P
(

rHl Brl
)2 − 1

rHl Brl
. (40)

On the other hand, in the absence of noise, that is, in the
infinite SNR case, the corresponding hyperparameter α−1∞ in-
cludes the contribution of the multipath component6 α−1

s :

α−1
s =

∑

p

∣

∣wp

∣

∣

2

P
+

2
∑

p Re
{

wpξ
H
p Brl

}

P
(

rHl Brl
) . (41)

In a realistic case, both noise and multipath component are
present, and α−1∞ consists of the sum of two contributions

6 Actually, the second term in the resulting expression vanishes in a per-
fectly noise-free case, and then α−1

s =∑p |wp|2/P.

α−1∞ = α−1
s + α−1

n . Both quantities α−1
s and α−1

n are random
variables with pdf ’s depending on the number of channel ob-
servations P, the basis function rl, and the noise covariance
matrix Σ. In the sequel we analyze their statistical properties.

We first consider α−1
s . The first term on the right-hand

side of (41) is a deterministic quantity that equals the average
power of the multipath component. The second one, on the
other hand, is random. The product Re{wpξ

H
p Brl} in (41)

is recognized as the cross-correlation between the additive
noise term and the basis function rl. It is Gaussian distributed
with expectation and variance given as

E

{

2
∑

p Re
{

wpξ
H
p Brl

}

P
(

rHl Brl
)

}

= 0,

E

{(

2
∑

p Re
{

wpξ
H
p Brl

}

P
(

rHl Brl
)

)2}

= 2
∑

p

∣

∣wp

∣

∣

2

P2
(

rHl Brl
) ,

(42)

respectively, where E{·} denotes the expectation operator.
Thus, α−1

s is distributed as

α−1
s ∼ N

(∑

p

∣

∣wp

∣

∣

2

P
,

2
∑

p

∣

∣wp

∣

∣

2

P2
(

rHl Brl
)

)

, (43)

which is a normal distribution with the mean given by the av-
erage power of the multipath component and variance pro-
portional to this power.

Now, let us consider the term α−1
n . In (40) the only ran-

dom element is
∑P

p=1 ξ pξ
H
p . This random matrix is known to

have a complex Wishart distribution [23, 24] with the scale
matrix Σ and P degrees of freedom. Let us denote

c = Brl√
PrHl Brl

, x = cH
P
∑

p=1

ξ pξ
H
p c. (44)

It can be shown that x is Gamma-distributed, that is, x ∼

G(P, σ2
c ), with the shape parameter P and the scale parameter

σ2
c given as

σ2
c = cHΣc = 1

P
(

rHl Brl
) . (45)

The pdf of x reads

p
(

x | P, σ2
c

) = xP−1

Γ(P)
(

σ2
c

)P e−x/σ
2
c . (46)

The mean and the variance of x are easily computed to be

E{x} = Pσ2
c =

1
rHl Brl

,

Var{x} = P
(

σ2
c

)2 = 1

P
(

rHl Brl
)2 .

(47)

Taking the term −1/(rHl Brl) in (40) into account, we intro-
duce a variable α̃−1

n : a zero mean random variable with the
pdf

pα̃−1
n

(

x | P, σ2
c

) =
(

x − E{x})P−1

Γ(P)
(

σ2
c

)P e−(x−E{x})/σ2
c , (48)
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which is equivalent to (46), but shifted so as to correspond
to a zero-mean distribution. However, it is known that only
positive values of α−1

n occur in practice. The probability mass
of the negative part of (48) equals the probability that the
condition (34) is not satisfied and the resulting α∞ eventually
diverges to infinity and is pruned. Taking this into account
the pdf of α−1

n reads

pα−1
n

(x) = Pnδ(x) +
(

1− Pn
)

I+(x) p̃α−1
n

(

x | P, σ2
c

)

, (49)

where δ(·) denotes a Dirac delta function, Pn is defined as

Pn =
∫ 0

−1/(rHl Brl)
p̃α−1

n

(

x | P, σ2
c

)

dx, (50)

and I+(·) is the indicator function of the set of positive real
numbers:

I+(x) =
⎧

⎨

⎩

0 x ≤ 0,

1 x > 0.
(51)

A closer look at (49) shows that as P increases the variance of
the Gamma distribution decreases, with α−1

n concentrating
at zero. In the limiting case as P → ∞, (49) converges to a
Dirac delta function localized at zero, that is, αn = ∞. This
allows natural pruning of the corresponding basis function.
This situation is equivalent to averaging out the noise, as the
number of channel observations grows. Practically, however,
P stays always finite, which means that (43) and (49) have a
certain finite variance.

The pruning problem can now be approached from the
perspective of classical detection theory. To prune a basis
function, we have to decide if the corresponding value of
α−1 has been generated by the noise distribution (49), that
is, the null hypothesis, or by the pdf of α−1

s + α−1
n , that is, the

alternative hypothesis. Computing the latter is difficult. The
problem might be somewhat relaxed by taking the assump-
tion that α−1

s and α−1
n are statistically independent. However

proving the plausibility of this assumption is difficult. Even
if we were successful in finding the analytical expression for
the pdf of the alternative hypothesis, such model selection
approach is hampered by our inability to evaluate (43) since
the gains wp’s are not known a priori. However, we can still
use (49) to select a threshold.

Recall that the presented algorithm allows to learn (esti-
mate) the noise spectral height N0 = β−1 from the measure-
ments. Assuming that we know β, and, as a consequence, the
whole matrix B then, for any basis function rl in the design
matrix K and the corresponding hyperparameter αl, we can
decide with a priori specified probability ρ that αl is gener-
ated by the distribution (49). Indeed, let α−1

th be a ρ-quantile
of (49) such that the probability P(α−1 ≤ α−1

th ) = ρ. Since
(49) is known exactly, we can easily compute α−1

th and prune
all the basis functions for which α−1

l ≤ α−1
th .

4.1.2. Model mismatch: τ /= Tl

The analysis performed above relies on the knowledge
that the true multipath delay τ belongs to T . Unfortunately,

this is often unrealistic and the model mismatch τ /∈ T
must be considered. To be able to study how the model mis-
match influences the value of the hyperparameters we have to
make a few more assumptions. Let us for simplicity select the
model delay Tl to be a multiple of the chip period Tp. We will
also need to assume a certain shape of the correlation func-
tion Ruu(t) to make the whole analysis tractable. It may be
convenient to assume that the main lobe of Ruu(t) can be ap-
proximated by a raised cosine function with period 2Tp. This
approximation makes sense if the sounding pulse p(t) de-
fined in Section 2 is a square root raised cosine pulse. Clearly,
this approximation can also be applied for other shapes of the
main lobe, but the analysis of quality of such approximation
remains outside the scope of this paper.

Just as in the previous case, we can split the expression
(38) into the multipath component contribution α−1

s

α−1
s =

∣

∣γ(τ)
∣

∣

2∑
p

∣

∣wp

∣

∣

2

P
+

2
∑

p Re
{

wpγ(τ)ξHp Brl
}

P
∣

∣rHl Brl
∣

∣

,

(52)

where

γ(τ) = rHl Br(τ)

rHl Brl
, (53)

and the same noise contribution α−1
n defined in (40). It can

be seen that the γ(τ) makes (52) differ from (41), and as such
it is the key to the analysis of the model mismatch. Note that
this function is bounded as |γ(τ)| ≤ 1, with equality follow-
ing only if τ = Tl. Note also that in our case for |τ −Tl| < Tp

the correlation γ(τ) is strictly positive.
Due to the properties of the sounding sequence u(t), the

magnitude of Ruu(t) for |t| > Tp is sufficiently small and in
our analysis of model mismatch can be safely assumed to be
zero. Furthermore, if rl is chosen to coincide with the mul-
tiple of the sampling period Tl = lTs, then it follows from
(12) that the product rHl B = rHl Σ

−1 = βeHl is a vector with
all elements being zero except the lth element, which is equal
to β. Thus, the product rHl Br(τ) for |τ − Tl| < Tp must have
a form identical to that of the correlation function Ruu(t) for
|t| < Tp. It follows that when |τ − Tl| ≥ Tp the correlation
γ(τ) can be assumed to be zero, and it makes sense to ana-
lyze (52) only when |τ − Tl| < Tp. In Figure 7 we plot the
correlation functions Ruu(t) and γ(τ) for this case.

Since the true value of τ is unknown, we assume this pa-
rameter to be random, uniformly distributed in the interval
[Tl −Tp,Tl +Tp]. This in turn induces corresponding distri-
butions for the random variables γ(τ) and γ(τ)2, which enter,
respectively, the second and first terms on the right-hand side
of (52).

It can be shown that in this case γ(τ) ∼ B(0.5, 0.5),
where B(0.5, 0.5) is a Beta distribution [25] with both distri-
bution parameters equal to 1/2. The corresponding pdf pγ(x)
is given in this case as

pγ(x) = 1
B(0.5, 0.5)

x−1/2(1− x)−1/2, (54)

where B(·, ·) is a Beta-function [26] with B(0.5, 0.5) = π.
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Figure 7: Evaluated correlation functions (a) Ruu(t) and (b) γ(τ).

It is also straight-forward to compute the pdf of the term
γ(τ)2:

pγ2 (x) = 1
π
x−3/4(1−√x)−1/2. (55)

The corresponding empirical and theoretical pdf ’s of
γ(τ) and γ(τ)2 are shown in Figure 8.

Now we have to find out how this information can be uti-
lized to design an appropriate threshold. In the case of a per-
fectly matched model the threshold is selected based on the
noise distribution (49). In the case of a model mismatch, the
term (52) measures the amount of the interference resulting
from the model imperfection.

Indeed, if |τ − Tl| ≥ Tp, then the resulting γ(τ) = 0,
and thus α−1

s = 0. The corresponding evidence parameter
α−1∞ is then equal to the noise contribution α−1

n only and will
be pruned using the method we described for the matched
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Figure 8: Comparison between the empirical and theoretical pdf ’s
of (a) γ(τ) and (b) γ(τ)2 for the cosine approximation case. To com-
pute the histogram N = 5000 samples were used.

model case. If however, |τ − Tl| < Tp, then a certain fraction
of α−1

s will be added to the noise contribution α−1
n , thus caus-

ing the interference. In order to be able to take this interfer-
ence into account and adjust the threshold accordingly, we
propose the following approach.

The amount of interference added is measured by the
magnitude of α−1

s in (52). It consists of two terms: the first
one is the multipath power, scaled by the factor γ(τ)2:

γ(τ)2

∑

p

∣

∣wp

∣

∣

2

P
. (56)
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The second term is a cross product between the multi-
path component and the additive noise, scaled by γ(τ):

γ(τ)
2
∑

p Re
{

wpξ
H
p Brl

}

P
(

rHl Brl
) . (57)

Both terms have the same physical interpretation as in (41),
but with scaling factors γ(τ) depending on the true value of τ.

We see that in (52) there are quite a few unknowns: we
do not know the true multipath delay τ, the multipath gains
wp, as well as the instantaneous noise value ξ. To be able to
circumvent these uncertainties, we consider the large sample
size case, that is, P →∞ and invoke the law of large numbers
to approximate (56) and (57) by their expectations.

First of all, using (42) it is easy to see that

E
{

γ(τ)
2
∑

p Re
{

wpξ
H
p Brl

}

P
(

rHl Brl
)

}

= 0. (58)

The other term (56) converges to γ(τ)2E{|wp|2} as P grows.
So, even in the high SNR regime and infinite number of
channel observations P the term (56) does not go to zero.
In order to assess how large it is, we approximate the gains
of the multipath component wp by the corresponding MAP
estimate μp obtained with (28).

The correlation function γ(τ) can also be taken into ac-
count. Since we know the distributions of both γ(τ) and
γ(τ)2, we can summarize these by the corresponding mean
values. In fact, we will need the mean only for γ(τ)2 since it
enters the irreducible part of α−1

s .
In our case it is computed as

E
{

γ(τ)2} =
∫ 1

0

x

π
x−3/4(1−√x)−1/2dx = 3

8
. (59)

Having obtained the mean, we can approximate the in-
terference α̂−1

s due to the model mismatch as

α̂−1
s = 3

8
×
∑P−1

p=0

∣

∣μp

∣

∣

2

P
. (60)

The final threshold that accounts for the model mismatch
is then obtained as

α̂−1
th = α̂−1

s + α−1
th , (61)

where α−1
th is the threshold developed earlier for the matched

model case.
4.2. Improving the learning algorithm to cope

with the model selection

In the light of the model selection strategy considered here,
we anticipate two major problems arising with the learning
algorithm discussed in Section 3. The first one is the estima-
tion of the channel parameters that requires computation of
the posterior (27). Even for the modest sizes of the hypothe-
sis Hi (from 100 to 200 basis functions), the matrix inver-
sion is computationally very intensive. This issue becomes
even more critical if we consider a hardware implementa-
tion of the estimation algorithm. The second problem arises

due to the nonvanishing correlation between the basis vec-
tors rl constituting the design matrix K. A very undesirable
consequence of this correlation is that the evidence parame-
ters αl associated with these vectors become also correlated,
and thus no longer represent the contribution of a single ba-
sis function. As a consequence the developed model selection
rules are no longer applicable.

It is, however, possible to circumvent these two difficul-
ties by modifying the learning algorithm as discussed below.
The basic idea consists of estimating the channel parameters
for each basis independently. In other words, instead of solv-
ing (27), (28), (29), and (30) jointly for all L basis functions,
we find a solution for each basis vector separately. First, the
new data vector xp,l for the lth basis is computed as

xp,l = zp −
L
∑

k=1,k /=l
rkμp,l . (62)

This new data vector xp,l now contains the information rel-
evant to the basis rl only. It is then used to update the cor-
responding posterior statistics as well as evidence parameters
exclusively for the lth basis as follows:

Φl =
(

αl + βrHl Λ
−1rl

)−1
,

μp,l = βΦlrHl Λ
−1xp,l, p = 1 · · ·P.

(63)

Note that expressions (63) are now scalars, unlike their
matrix counterparts (27) and (28). Similarly, we update the
evidence parameters as

αl = P
∑P

p=1

(

Φl +
∣

∣μp,l
∣

∣

2) . (64)

Updates (63) and (64) are performed for all L compo-
nents sequentially. Once all components are updated, we up-
date the noise hyperparameter N0:

N0 =
(

β−1)

= 1
NP

( P
∑

p=1

tr
[

Φ(K)HΛ−1K
]

+
P
∑

p=1

(

zp −Kμp

)H
Λ−1

(

zp −Kμp

)

)

.

(65)

The above updating procedures constitute a single itera-
tion of the modified learning algorithm. This iteration is re-
peated until some suitable convergence criterion is satisfied.
Note that the procedure described here is an instance of the
SAGE algorithm. This opens a potential to unite both SAGE
and evidence procedure, allowing to implement simultane-
ous parameter and model order estimation within the SAGE
framework.

This iterative method, also known as successive interfer-
ence cancellation, allows solving both anticipated problems.
First of all, there is no need to compute matrix inversion at
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each iteration. Second, the obtained values of α now reflect
the contribution of a single basis function only, since they
were estimated while the contribution of other bases was can-
celed in (62).

Now, at the end of each iteration, once the new value of
the noise is obtained using (65), we can decide to prune some
of the components, as described in Section 4.1.

4.3. MDL principle and evidence procedure

The goal of this section is to establish a relationship between
the classical information-theoretic criteria for model selec-
tion, such as minimum description length (MDL) [4, 5, 8,
20], and the evidence procedure discussed here. For simplic-
ity we will only consider a single channel observation case,
that is, P = 1. Extension to the case P > 1 is straightforward.

The MDL criterion was originally formulated from the
perspective of coding theory as a solution to the problem of
balancing the code length and the resulting length of the data
encode with this code. This concept however can naturally be
transferred to general model selection problems.

In terms of parameter estimation theory, we can inter-
pret the length of the encoded data as the parameter likeli-
hood evaluated at its maximum. The length of the code is
equivalent to what is known in the literature as the stochas-
tic complexity [11, 20, 21]. The Bayesian interpretation of the
stochastic complexity term obtained for likelihood functions
from an exponential family (see [20] for more details) is of
particular interest for our problem at hand. The description
length in this case is given as

DL
(

Hi
)

= − log
(

p
(

z | wMAP, Hi
))

︸ ︷︷ ︸

model performance

+
L

2
log

N

2π
−log

(

p
(

wMAP |Hi
))

+log
(

√

∣

∣I1
(

wMAP
)∣

∣

)

︸ ︷︷ ︸

stochastic complexity

.

(66)

Here I1(wMAP) is the Fisher information matrix of a single
sample evaluated at the MAP estimate of the model param-
eter vector, and p(wMAP | Hi) is the corresponding prior for
this vector.

Thus, joint model and parameter estimation schemes
should aim at minimizing the DL so as to find the compro-
mise between the model fit (likelihood) and the number of
the parameters involved. The latter is directly proportional
to the stochastic complexity term.

We will now show that the EP employed in our model
selection scheme results in a very similar expression.

Let us once again come back to the evidence term (22). To
exemplify the main message that we want to convey here, we
will compute the integral in (22) differently. For each model
hypothesis defined as in Section 3, let us define Δ(wi) =
− log(p(z | wi,βi)) − log(p(wi | αi)). Then (22) can be ex-
pressed as

p
(

z | αi,βi
) =

∫

exp
(− Δ

(

wi
))

dwi. (67)

Now we proceed by computing the integral (67) using a
Laplace method [8, Chapter 27], also known as a saddle-
point approximation. The essence of the method consists of
computing the second-order Taylor series around the argu-
ment that maximizes the integrand in (67), which is the MAP
estimate of the model parameters μi given in (21). In our
case, Δ(wi) is known to be quadratic, since both p(z | wi,βi)
and p(wi | αi) are Gaussian, so the approximation is exact.

It is then easily verified that for the hypothesis Hi with
|P (i)| = L basis functions

p
(

z | αi,βi
) =

∫

exp
(− (wi − μi

)H
Φ−1

i

(

wi − μi
))

dwi

× exp
(− Δ

(

μi
)) = exp

(− Δ
(

μi
))

πL
∣

∣Φi

∣

∣.
(68)

By taking the logarithm of (68) and changing the sign of the
resulting expression we arrive at the final expression for the
negative log-evidence:

− log
(

p
(

z | αi,βi
)) = − log

(

p
(

z | μi,βi
))

− log
(

p
(

μi | αi
))− L log(π)

− log
(∣

∣Φi

∣

∣

)

.

(69)

Noting thatΦi has been computed usingN data samples, and
that in this case log(|Φi/N|) = log(|I−1

1 (μi)|), we rewrite (69)
as

DL
(

Hi
) = − log

(

p
(

z | μi,βi
))

︸ ︷︷ ︸

model performance

+ L log
(

N

π

)

− log
(

p
(

μi | αi
))

+ log
(∣

∣I1
(

μi
)∣

∣

)

︸ ︷︷ ︸

model complexity

.

(70)

We note that (66) and (70) are essentially similar, with the
distinction that the latter accounts for complex data. Thus
we conclude that maximizing evidence (or minimizing the
negative log-evidence) is equivalent to minimizing the DL.

Let us now consider how this can be exploited in our case.
In general, the MDL concept assumes presence of multiple
estimated models. The model that minimizes the DL func-
tional is then picked as the optimal one. In our case, evalu-
ation of the DL functional for all possible hypotheses Hi is
way too complex. In order to make this procedure more effi-
cient, we can exploit the estimated evidence information.

Consider the graph shown in Figure 9. Each node on the
graph corresponds to a certain hypothesis Hi consisting of
|Pi| basis functions. An edge emanating from a node is as-
sociated with a certain basis function from the hypothesis
Hi. Should the path through the graph include this edge, the
corresponding basis function would be pruned, leading to a
new smaller hypothesis. Clearly, the optimal path through
the graph should be the one that minimizes the DL crite-
rion. Now, let us propose a strategy to find the optimal model
without evaluating all possible paths through the graph.
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Figure 9: Model selection by evidence evaluation.

At the initial stage, we start in the leftmost node, which
corresponds to the full hypothesis H0. We then proceed with
the learning using the iterative scheme depicted in Figure 4 to
obtain the estimates of the evidence parameters αl, l ∈ P (0),
for each basis function in H0. Once convergence is achieved,
we evaluate the corresponding description length DL0 for
this hypothesis using (70). Since the optimal path should de-
crease the DL, the hypothesis at the next stage Hi is selected
by moving along the edge that corresponds to the basis func-
tion with the largest value of α (i.e., the basis function with
the smallest evidence). For the newly selected hypothesis Hi

we again estimate the evidence parameters αi and the corre-
sponding description length DLi. If DL0 < DLi, then the hy-
pothesis H0 achieves the minimum of the description length
and it is then selected as a solution. Otherwise, that is, if
DL0 > DLi, we continue along the graph, each time pruning
a basis function with the smallest evidence and comparing
the description length at each stage. We proceed so until the
DL does not decrease any more, or until we stop at the last
node that has no basis functions at all. Such an empty hy-
pothesis corresponds to the case when there is no structure
in the observed data. In other words, it corresponds to the
case when the algorithm failed to find any multipath com-
ponents. This technique requires searching between L0 to a
maximum of L0(L0 + 1)/2 possible hypotheses, while a total
search requires testing a total of 2L0 different models.

5. APPLICATION OF THE RVM TO
WIRELESS CHANNELS

The application of the proposed channel estimation scheme
coupled with the considered model selection approach re-
quires two major components: (1) it needs a proper con-
struction of the kernel design matrix that is dense enough
to ensure good delay resolution, and (2) the iterative nature
of the algorithm requires a good initialization.

The construction of the design matrix K can be done
with various approaches, depending on how much a pri-
ori information we have about the possible positions of the
multipath components. The columns of the matrix K con-
tain the shifted versions of the kernel Ruu(nTs − Tl), l =
1 · · ·L0, where Tl are the possible positions of the multipath

components that form the search space T . The delays Tl can
be selected uniformly to cover the whole delay span or might
be chosen so as to sample some areas of the impulse response
more densely, where multipath components are likely to ap-
pear. Note that the delays Tl are not constrained to fall on a
regular grid. The power-delay profile (PDP) may be a good
indicator of how to place the multipath components. Initial-
ization of the model hyperparameters can also be done quite
effectively. In the sequel we propose two different initializa-
tion techniques.

The simplest one consists of evaluating the condition
(34) for all the basis functions in the already created de-
sign matrix K. For those basis functions that satisfy condi-
tion (34), the corresponding evidence parameter is initialized
using (33). Other basis functions are removed from the de-
sign matrix K. Such initialization assumes that there is no in-
terference between the neighboring basis functions. It makes
sense to employ it when the minimal spacing between the
elements in T is at most half the duration of the sounding
pulse Tp.

In the case when the spacing is denser, it is better to use
independent evidence initialization. This type of initializa-
tion is in fact coupled with the construction of the design
matrix K and relies on the successive interference cancella-
tion scheme discussed in Section 4.2. To make the procedure
work, we need to set the initial channel coefficients to zero,
that is, μp ≡ 0. The basis vectors rl are computed as usual ac-
cording to the delay search space T . The initialization itera-
tions start by computing (62). The basis rl that is best aligned
with the residual xp,l is then selected. If the selected rl satis-
fies condition (34), it is included in the design matrix K, and
the corresponding parameters Φl, μp,l, and αl are computed
according to (63) and (64), respectively. These steps are con-
tinued until all bases with delays from the search space T are
initialized, or until the basis vector that does not satisfy the
condition (34) is encountered.

Of course, in order to be able to use this initialization
scheme, it is crucial to get a good initial noise estimate. The

initial noise parameter N [0]
0 can in most cases be estimated

from the tails of the channel impulse response, where mul-
tipath components are unlikely to be present or too weak to
be detected. Generally, we have observed that the algorithm
is less sensitive to the initial values of the hyperparameters α,
but proper initialization of the noise spectral height is cru-
cial.

Now we can describe the simulation setup used to assess
the performance of the proposed algorithm.

5.1. Simulation setup

The generation of the synthetic channel is done following
the block-diagram shown in Figure 1: a single period u(t) of
the sounding sequence s(t) is filtered by the channel with the
impulse response h(t), and complex white Gaussian noise is
added to the channel outputs to produce the received signal
y(t). The received signal is then run through the MF. The
continuous-time signals at the output of the MF are repre-
sented with cubic splines. The resulting spline representation
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is then used to obtain the sampled output zp[n], p = 1 · · ·P,
with n = 0 · · ·N − 1. Output signals zp[n] are then used as
the input to the estimation algorithm.

For all P channel observations we use the same MF, and
thus Φ = Φp, K = Kp, and Σ = Σp, p = 1 · · ·P. Without
loss of generality, we assume a shaping pulse of the duration
Tp = 10 nanoseconds. The sampling period is assumed to
be Ts = Tp/Ns, where Ns is the number of samples per chip
used in the simulations. The sounding waveform u(t) con-
sists of M = 255 chips. We also assume the maximum delay
spread in all simulations to be τspread = 1.27 microseconds.
With these parameters, a one-sample/chip resolution results
in N = 128 samples. The autocorrelation function Ruu(t) is
also represented with cubic splines, allowing a proper con-
struction of the design matrix K according to the predefined
delays in T . Realizations of the channel parameters wl,p are
randomly generated according to (14).

The performance of the algorithm is also evaluated under
different SNR’s at the output of the MF, defined as

SNR = 10 log10

(

1/α
N0

)

. (71)

For simplicity, we assumed that in the case L > 1 all simu-
lated multipath components have the same expected power
α−1. Although this is not always a realistic assumption, it en-
sures that all simulated multipath components present in the
measurement will be “treated” equally.

5.2. Numerical simulations

Let us now demonstrate the performance of the model selec-
tion schemes discussed in Section 4 on synthetic, as well as
on measured channels.

5.2.1. Multipath detection with the perfect model match

First we consider the distribution of the hyperparameters
once the stationary point has been reached. In order to do
that, we apply the learning algorithm to the full hypothesis
H0. The delays in H0 are evenly positioned over the length
of the impulse response: T = {lTs; l = 0 · · ·N − 1}, that is,
L0 = N . Here, we simulate the channel with a single multi-
path component, that is, L = 1, having the delay τ′ equal to a
multiple of the sampling period Ts. Thus, in the design ma-
trix K corresponding to the full hypothesis H0 there will be
a basis function that coincides with the contribution of the
true multipath component. Once the parameters have been
learned, we partition all the hyperparameters α into those
attributed to the noise, that is, αn, and one parameter that
corresponds to the multipath component αs, that is, the one
associated with the delay Tl = τ′.

In a next step, we compare the obtained histogram of
α−1

n with the theoretical pdf pα−1
n

(x) given in (49). The cor-
responding results are shown in Figure 10(a). A very good
match between the empirical and theoretical pdf ’s can be ob-
served.

Similarly, we investigate the behavior of the negative log-
evidence versus the size of the hypothesis. We consider a

similar simulation setup as above, however with more than
just one multipath component to make the results more
realistic. Figure 10(b) depicts the evaluated negative log-
evidence (69) as a function of the model order, evaluated for
a single realization, when the true number of components is
L = 20, and the number of channel observations is P = 5.

Note that, as the SNR increases, there are fewer compo-
nents subject to the initial pruning, that is, those that do not
satisfy condition (34). We also observe that the minimum of
the negative log-evidence (i.e., maximum of the evidence)
becomes more pronounced as the SNR increases, which has
an effect of decreasing the variance of the model order esti-
mates.

In order to find the best possible performance of the algo-
rithm, we first perform some simulations assuming that the
discrete-time model (9) perfectly matches the continuous-
time model (7), that is, τl ∈ T , l = 1, . . . ,L. This is realized
by drawing uniformly L out of N possible delay values in the
interval [0,Ts(N−1)]. Again, T = {lTs; l = 0 · · ·N−1}. The
number of multipath components in the simulated channels
is set to L = 5 and the channel is sampled with Ns = 2 sam-
ples per chip.

In this simulation we evaluate the detection performance
by counting the errors made by the algorithms. Two types of
errors can occur: (a) an insertion error—an erroneous detec-
tion of a nonexisting component; (b) a deletion error—a loss
of an existing component. The case when an estimated de-
lay ̂Tl matches one of the true simulated delays is called a hit.
We further define the multipath detection rate as the ratio be-
tween the number of hits to the true number of components
L plus the number of insertion errors. It follows that the de-
tection rate is equal to 1 only if the number of hits equals
the true number of components. If, however, the algorithm
makes any deletion or insertion errors, the detection rate is
then strongly smaller than 1. We study the detection rates
for both model selection schemes versus different SNR’s. The
presented results are averaged over 300 independent channel
realizations.

We start with the model selection approach based on
the threshold selection using the ρ-quantile of the noise
distribution-quantile-based model selection. The results
shown in Figure 11(a) are obtained for ρ = 1 − 10−6 and
different numbers of channel observations P. It can be seen
that, as P increases, the detection rate significantly improves.
To obtain the results shown in Figure 11(b) we fix the num-
ber of channel observations at P = 5 and vary the value of
the quantile ρ. It can be seen that as ρ approaches unity, the
threshold is placed higher, meaning that fewer noise com-
ponents can be mistakenly detected as multipath compo-
nents, thus slightly improving the detection rate. However
higher thresholds require a higher SNR to achieve the same
detection rate, as compared for the thresholds obtained with
lower ρ.

The next plot in Figure 11(c) shows the multipath de-
tection rate when the model is selected based on the evalu-
ation of the negative log-evidence under different model hy-
potheses (negative log-evidence model selection). It is inter-
esting to note that in this case the reported curves behave
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Figure 10: Evidence-based model selection criteria. (a) Empirical (bar plot) and theoretical (solid line) pdf ’s of hyperparameters α−1
n (SNR =
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Figure 11: Multipath detection rates based on the EP. (a) Quantile-based model selection versus P: ρ = 1− 10−6, L = 5; (b) Quantile-based
model selection versus ρ: P = 5, L = 5; (c) Negative log-evidence-based detection versus P.

quite differently from those shown in Figure 11(a). First, we
see that for the case P = 1 the behavior of this method
is slightly better, compared to the threshold-based method
in Figure 11(a). But as P grows, the performance of the
multipath detection does not increase proportionally, but
rather exhibits a threshold-like behavior. In other words,
multipath detection based on the negative log-evidence and
alike MDL-based model selection requires the SNR above a
certain threshold in order to operate reliably. Furthermore,

this threshold is independent of the number of channel ob-
servations P.

Thus from Figures 11(a) and 11(c) we can conclude that
the quantile-based method performs better in a sense that it
can always be improved by increasing the number of channel
observations. Further, model selection using the threshold-
ing approach can be performed on-line, concurrent with pa-
rameters estimation, while in the other case multiple models
have to be learned.
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Now, let us consider how the EP performs when the mul-
tipath component delays are on the real line, rather than on a
discrete grid. Clearly, this case corresponds more to the real-
life situation.

5.2.2. Multipath detection with the model mismatch

In the real world the delays of the multipath components
do not necessarily coincide with the elements in T used to
approximate the continuous-time model (7). By using the
discrete-time models to approximate the continuous-time
counterparts, we would necessarily expect some performance
degradation in terms of an increased number of components.
This problem is similar to the problem that occurs in frac-
tional delay filters (FDF) [27]. An FDF aims at approximat-
ing a delay that is not a multiple of the sampling period. As
shown in [27], such filters have infinite impulse response.
Though FIR approximations exist, they require several sam-
ples to represent a single delay.

Since there is an inevitable mismatch between the
continuous-time and discrete-time models, it is worth ask-
ing how densely we should quantize the delay line to form
the design matrix in order to achieve the best performance.
It is convenient to select the delays in T of the discrete-time
model as a multiple of the sampling period Ts. As the sam-
pling rate increases, the true delay values get closer to some
elements in T , thus approaching the continuous-time model
(7).

We simulate a channel with a single multipath compo-
nent that has a random delay, uniformly distributed in the
interval [0, τspread].

The criterion used here to assess the performance of the
algorithm is the probability of correct path extraction. This
probability is defined to be the conditional probability that,
given any path is detected, the algorithm finds exactly one
component with the absolute difference between the esti-
mated and the true delay less than the chip pulse duration
Tp. Notice that the probability of correct path extraction is
conditioned on the path detection, that is, it is evaluated for
the cases when the estimation algorithm is able to find at least
one component.

It is also interesting to compare the performance of the
EP with other parameter estimation techniques. Here we
consider the SAGE algorithm [2] that has become a popular
multipath parameter estimation technique. The SAGE algo-
rithm, however, does not provide any information about the
number of multipath components. To make the comparison
fair, we augment it with the standard MDL criterion [4, 5] to
perform model selection.

Thus, we are going to compare three different model se-
lection algorithms: the quantile-based (or threshold-based)
scheme with a preselected quantile ρ = 1 − 10−6, the
SAGE + MDL method, and negative log-evidence method.
We are also going to use the threshold-based method to
demonstrate the difference between two EP initialization
schemes: the joint initialization, and the independent ini-
tialization, discussed in Section 5. In all simulations the

negative log-evidence method was initialized using indepen-
dent initialization.

We start with channels sampled with Ns = 1 sample/chip
resolution and P = 5 channel observations. We see that
the shown methods have different probabilities of path de-
tection (Figure 12(a)), that is, they require different SNR to
achieve the same path detection probability. The threshold-
based methods can be, however, adjusted by selecting the
quantile ρ appropriately. As we see, with ρ = 1 − 10−6, the
threshold-based and SAGE+MDL methods achieve the same
probabilities of path detection. The resulting probabilities of
correct path extraction are shown in Figure 12(b). Note that
for low SNR comparison of the methods is meaningless, since
too few paths are detected. However, above SNR ≈ 15 dB,
with all methods we can achieve similar high path detection
probability, which allows direct comparison of the correct
path extraction probabilities. We can hence infer that, in this
regime, model selection with negative log-evidence is supe-
rior to other methods, since it has higher probabilities of path
extraction. In other words, this means that at higher SNR this
method will introduce fewer artifacts.

What is also important is that as the SNR increases, the
correct path extraction rate drops. This happens simply be-
cause our model has a fixed resolution in the delay. As the
result, at the higher SNR several components from the our
model are used to approximate a single one with a delay be-
tween the sampling instances. This leads to the degradation
of the correct path extraction rate since the number of com-
ponents is overestimated.

Now, let us increase the sampling rate and study the case
Ns = 2 (Figures 12(c) and 12(d)). We see that the proba-
bilities of path extraction are now higher for all methods. A
slight difference between the two EP initialization schemes
can also be observed. Note however that the performance
increase is higher for the SAGE + MDL and negative log-
evidence algorithms, which both rely on the same model se-
lection concept.

Finally, the last case with Ns = 4 is shown in Figures 12(e)
and 12(f). Again SAGE + MDL and negative log-evidence
schemes achieve higher correct path extraction probabili-
ties as compared to the threshold-based method. The per-
formance of the latter also increases with the sampling rate,
but unfortunately not as fast as that of the description length-
based model selection. These plots also demonstrate the dif-
ference between the two proposed initializations of the EP. In
Figure 12(e) we see that in this case the independent initial-
ization outperforms the joint one. As already mentioned, this
distinction becomes noticeable, once the basis functions in K
exhibit significant correlation, which is the case for Ns � 2.

5.3. Results for measured channels

We also apply the proposed algorithm to the measured data
collected in in-door environments. Channel measurements
were done with the MIMO channel sounder PropSound
manufactured by Elektrobit Oy. The basic setup for chan-
nel sounding is equivalent to the block-diagram shown in
Figure 1. In the conducted experiment the sounder operated
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Figure 12: Comparison of the model selection schemes in a single path scenario. (a), (c), (e) path detection probability, and (b), (d), (f)
probability of correct path extraction for P = 5, and (a), (b) Ns = 1; (c), (d) Ns = 2; and (e), (f) Ns = 4.
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at the carrier frequency 5.2 GHz with a chip period of Tp =
10 nanoseconds. The output of the matched filter was sam-
pled with the period Ts = Tp/2, thus resulting in a resolution
of 2 samples per chip. The sounding sequence consisted of
M = 255 chips, resulting in the burst waveform duration of
Tu =MTp = 0.255 microseconds.

Based on visual inspection of the PDP of the measured
channels, the delays Tl in the search space T are posi-
tioned uniformly in the interval between 250 nanoseconds
and 1000 nanoseconds, with spacing between adjacent de-
lays equal to Ts. This corresponds to the delay search space T
consisting of 151 elements. The initial estimate of the noise
floor is obtained from the tail of the measured PDP. The al-
gorithm stops once the relative change of the evidence pa-
rameters between two successive iterations is smaller than
0.0001%. The corresponding detection results for different
number of channel observations are shown in Figure 13.

When P = 1 (see Figure 13(a)), the independent initial-
ization results in only 9 basis functions constituting the ini-
tial hypothesis H0. The final estimated number of compo-
nents is found to be L = 8. As expected, increasing the num-
ber of channel observations P makes it possible to detect and
estimate components with smaller SNR. For the case of P = 5
we detect already L = 12 components (Figure 13(b)), and
for P = 32, L = 15 components (Figure 13(c)). This shows
that increasing the number of observations not necessarily
brings a proportional increase of the detected components,
thus suggesting that there might be a limit given by the true
number of multipath components.

6. CONCLUSION

This paper demonstrates the application of the evidence pro-
cedure to the analysis of wireless channels. The original for-
mulation of this method, known as relevance vector ma-
chines, was reformulated to cope with the estimation of wire-
less channels. We extended the method to the complex do-
main and colored additive noise. We further extended the
RVM to multiple channels by proposing a new graphical
Bayesian model, where a single evidence parameter controls
each multipath component observed with multiple channels.
To our knowledge this is a new concept that can be useful not
only for estimation, but also for simulating wireless channels.

Evidence parameters were originally introduced to con-
trol the sparsity of the model. Assuming a single path sce-
nario we were able to find the statistical laws that govern the
values of the evidence parameters once the estimation algo-
rithm has converged to the stationary point. It was shown
that in low SNR scenarios the evidence parameters do not
attain infinite values, as has been assumed in the Tipping’s
original RVM formulation, but stay finite with values de-
pending on the particular SNR level. This knowledge enabled
us to develop model selection rules based on the discovered
statistical laws behind the evidence parameters.

In order to be able to apply these rules in practice, we
also proposed a modified learning algorithm that exploits
the principle of successive interference cancellation. This
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Figure 13: Multipath detection results for quantile-based method
with ρ = 1− 10−6.
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modification not only allows to avoid computationally in-
tensive matrix inversions, but also removes the interference
between the neighboring basis functions in the design ma-
trix.

Model mismatch case was also considered in our analysis.
We were able to assess the possible influence of the finite al-
gorithm resolution and, to some extent, take it into account
by adjusting the corresponding model selection rules.

We also showed the relationship between the EP and the
classical model selection based on the MDL criterion. It was
found that the maximum of the evidence corresponds to
the minimum of the corresponding description length cri-
terion. Thus, EP can be used as the classical MDL-like model
selection scheme, but also allows faster and more efficient
threshold-based implementation.

The EP framework was also compared with the multipath
estimation using the SAGE algorithm augmented with the
MDL criterion.

According to the simulation results, the description
length-based methods, that is, negative log-evidence and
SAGE + MDL method, give better results in terms of the
achieved probabilities of correct path extraction. They also
improve faster as the sampling rate grows. However, these
model selection strategies require learning multiple models
in parallel, which, of course, imposes additional computa-
tional load. The threshold-based method, on the other hand,
allows to perform model selection on-line, thus being more
efficient, but its performance increase with the growing sam-
pling rate is more modest. The performance of the threshold-
based method also depends on the value of the quantile ρ. In
our simulations we set ρ = 1−10−6, which results in the same
probability of the path detection as in the SAGE + MDL al-
gorithm. However, other values of ρ can be used, thus giving
a way to further optimize the performance of the threshold-
based method.

The comparison between the SAGE and EP schemes
clearly shows that estimating evidence parameters really pays
off. Introducing them in the computation of the model com-
plexity, as it is done in the negative log-evidence approach,
results in the best performance, compared to the other two
methods. Although the negative log-evidence method needs
a slightly higher SNR to reliably detect channels, it however
results in the highest probability of the path extraction.

To summarize, we think that the EP is a very promising
method that can be superior to the standard model selection
algorithms like MDL, both in accuracy and in computational
efficiency. It also offers a number of possibilities: the evidence
parameters can also be estimated within the SAGE frame-
work, thus extending the list of multipath parameters and
enabling on-line model selection within the SAGE algorithm.
As a consequence, this would allow to adapt the design ma-
trix by estimating the delays τl from the data. The threshold-
based method also opens perspectives for on-line remod-
eling, that is, adding or removing components during the
estimation of the model parameters, which might result in
much better and sparser models. Since the evidence pareme-
ters reflect the contribution of the multipath components,
they might also be useful in applications, where it is necessary

to define some measure of confidence for a multipath com-
ponent.

APPENDIX

EVIDENCE UPDATE EXPRESSIONS

To derive the update expressions for the evidence parame-
ters in the multiple channels case, we first rewrite (22) using
the definitions (25). Since both terms under the integral are
Gaussian densities, the result can be easily evaluated as

p(z̃ | α,β) =
∫

p(z̃ | w̃,β)p(w̃ | α)dw̃

=exp
(− z̃H

(

β−1
˜Λ + ˜K˜A−1

˜KH
)−1

z̃
)

πPN
∣

∣β−1 ˜Λ + ˜K˜A−1 ˜KH
∣

∣

.

(A.1)

For the sake of completeness we also consider hypermodel
priors p(α,β) in the derivation of the hyperparameter up-
date expressions. Thus, our goal is to find the values of α and
β that maximize L(α,β | z̃) = log(p(z̃ | α,β)p(α,β)). This is
achieved by taking the partial derivatives of L(α,β | z̃) with
respect to α and β, and equating them to zero [19]. It is con-
venient to maximize L(α,β | z̃) with respect to log(αl) and
log(β) since the derivatives of the prior terms in the logarith-
mic domain are simpler.

First we prove the following matrix identity that we will
exploit later
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Now, we can begin with the derivation of the update of
the hyperparameters αl. Let us define ˜B−1 = β−1

˜Λ. According
to (A.2) we see that
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Making use of this result, we can write
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where in the latter expression the Woodbury inversion iden-
tity [28] was used to expand the term (˜B−1 + ˜K˜A−1

˜KH)−1.
After taking the derivative we arrive at
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Here Ell is a matrix with the lth element on the main diag-
onal equal to 1, and all other elements being zero. Similarly,
˜Ell is the P-times repetition of Ell on its main diagonal. By
noting that μ̃ = ˜Φ˜KH

˜Bz̃, we arrive at
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Solving for αl, we obtain the final expression for the hyper-
parameter update
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Note that by setting ζ = ε = 0 we effectively remove the
influence of the prior p(α | ζ , ε).

We proceed similarly to calculate the update of β
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Thus we arrive at the final expression:
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Solving for β we finally obtain
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Here again the choice κ = υ = 0 removes the influence of the
prior p(β | κ, υ) on the evidence maximization.
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