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Channel Characterization for Wideband Large-Scale
Antenna Systems Based on a Low-Complexity

Maximum Likelihood Estimator
Yilin Ji, Wei Fan, Gert F. Pedersen

Abstract—Wideband large-scale array systems operating at
millimeter-wave bands are expected to play a key role in future
communication systems. It is recommended by standardization
groups to use spherical-wave models (SWMs) to characterize the
channel in near-field cases because of the large array apertures
and the small cell size. However, this feature is not widely
reflected in channel models yet, mainly due to the high computa-
tional complexity of SWMs compared to that of the conventional
plane-wave model (PWM), especially when ultrawideband signals
are considered. In this paper, a maximum likelihood estimator
(MLE) of low computational complexity is implemented with a
SWM for ultrawideband signals. The measurement data obtained
from an ultrawideband large-scale antenna array system at 28-
30GHz are processed with the proposed algorithm. The power
azimuth-delay profiles (PADP) estimated from the SWM and
the PWM are compared to those obtained from rotational horn
antenna measurement, respectively. It shows that the multipath
components (MPCs) are well-estimated with the proposed algo-
rithm, and significant improvement in estimation performance is
achieved with the SWM compared to the PWM. Moreover, the
physical interpretation of the estimated MPCs is also given along
with the estimated scatterers.

Index Terms—Spherical-wave signal model, ultrawideband,
millimeter wave, channel estimation.

I. INTRODUCTION

FOR the upcoming fifth generation (5G) communication

systems or future generations, it has been predicted that

key features, including massive multiple-input multiple-output

(MIMO) systems and high frequency bands (above 6GHz),

will be crucial to increase the system capacity. With a large-

scale antenna array system (e.g. array with tens to hundreds of

elements) [1], the beamwidth of the beamforming technique

can be ultra-narrow, which increases the spatial degrees of

freedom of the system [2]. In addition, the high array gain

is also beneficial to compensate the high propagation loss at

high frequency bands. For multi-user scenarios, the system

ability to serve a number of users over the same frequency

and time resources through spatial multiplexing at the base

station will be improved, and a higher spectral efficiency can

be achieved. On the other hand, the rich spectrum resource at

high frequency bands is also a key to deliver high capacity.

In order to exploit wideband large-scale antenna array

systems, it is necessary to measure and characterize the under-

lying propagation channels. Channel measurement techniques
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can be generally separated into two categories, namely the

time-domain sounding techniques [3]–[9], and the frequency-

domain sounding techniques [6], [10], [11]. The time-domain

sounding techniques have the advantage of fast measurement

speed, which makes them suitable for measuring time-variant

channels [12], [13]. However, time-domain channel sounders

are usually designed for specific measurement requirements

such as measurement frequency and bandwidth. Once the time-

domain sounder is implemented, it typically would need much

effort to modify it for different measurement requirements. On

the contrary, the frequency-domain channel sounders, which

are usually vector network analyzer (VNA) based, are more

flexible in this regard. Measurement frequency and bandwidth

can be set to any desired value supported by the VNA systems,

which makes the VNA-based sounders versatile for different

frequencies. Therefore, the VNA-based sounders are quite pop-

ular among research groups for ultrawideband measurement

at high frequency bands [6], [14]–[16]. The relatively slow

measurement speed for frequency sweeping is a drawback

of the VNA-based sounder, which makes it inappropriate to

measure time-variant channels.

There are some new challenges for channel estimation

algorithms. Two assumptions usually adopted for channel

estimation are probably violated for wideband large-scale

antenna array systems, namely the far-field assumption and

the narrowband assumption. The far-field assumption holds

when the distance between the scattering source and the

antenna array is larger than the so-called near-field outer

boundary, which is also known as the Fraunhofer distance.

In the literature [17]–[20], there are several definitions for

the near-field outer boundary, among which 2D2/λ is most

frequently used, where D is the array aperture in meters, and

λ is the wavelength in meters [17]. Under this definition, a

uniform linear array of 100 elements with half-wavelength

inter-element spacing operating at 30GHz has a near-field

outer boundary of nearly 50m, which covers the scope of

many short-range application scenarios [21]. Basically, the

significance of the spherical wavefront observed at the array

increases as the scattering sources getting closer to the array.

In order to reduce the model mismatch from the plane-wave

model (PWM) for channel estimation, the spherical-wave

model (SWM) can be used instead. In many standardization

organizations and research groups, it is recommended to use

SWMs to characterize channels for near-field cases [22]–

[25]. Moreover, some measurement results also showed the

necessity of utilizing SWM, e.g. see in [26]–[28].
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The narrowband assumption holds when the condition

D/λ ≪ f/B is satisfied, where f is the frequency and B
is the bandwidth [29]. When the bandwidth becomes so wide

(e.g. several GHz) that the narrowband assumption does not

hold anymore for a given array aperture and frequency, the

propagation delay of a single multipath component (MPC) can

be resolved at different delay bins between array elements.

Therefore, the array steering vector should be calculated

with respect to each frequency point instead of the center

frequency for channel estimation. In the literature [30], the

term “ultrawideband” is usually defined as either the relative

bandwidth is larger than 20% or the absolute bandwidth is

larger than 500MHz. However, it is not directly related to

the array aperture by its definition. Therefore, in this paper,

we use the term “wideband” to refer to the case where the

narrowband assumption does not hold.

For the SWM, signals are assumed to be radiated from

point sources. The phase difference between array elements

is usually calculated based on the law of cosines according

to the distance from the point sources to the array elements

[26]. In the literature, the SWM has been applied to many

source localization applications [18], [28], [31]–[34] with

different estimation algorithms. Subspace based algorithms,

such as the multiple signal classification algorithm (MUSIC)

[35] and the estimation of signal parameters via rotational

invariant techniques (ESPRIT) [36], have been adapted to

estimate the locations of scatterers for narrowband scenarios

in [18], [32], [37]. However, multi-dimensional estimation (e.g.

joint delay-angle estimation) is hard to implement, since the

computational complexity grows significantly as the size of

the covariance matrix increases drastically with the number

of estimation dimensions. Moreover, their estimation perfor-

mance degrades severely when channel snapshots are not suffi-

cient or coherent sources exist [29]. Maximum-likehood based

algorithms, e.g. the space-alternating generalized expectation-

maximization (SAGE) [38] and Richter’s Maximum likelihood

estimation (RiMAX) [39], have been proposed for the wide-

band signal with the SWM in [26], [28], [40]. Although these

algorithms were not restricted by snapshot number or source

correlation, the supported bandwidth is still bounded by the

narrowband assumption. If the narrowband assumption does

not hold due to large measurement bandwidth, the prerequisite

for deploying the space-alternating mechanism would not be

fulfilled [39], [41]. In [26], in order to enable the space-

alternating mechanism, the wideband signal was divided into

several subbands. In [28], the SAGE algorithm was imple-

mented based on the SWM with the narrowband assumption

fulfilled.

In our previous work [16], a measurement campaign was

conducted with a virtual uniform circular array (UCA) with

2GHz bandwidth at different frequencies. Using a virtual

antenna array helps to reduce the mutual coupling effect

between antenna elements for channel estimation [42]. The

measurement data were processed with a classic (Bartlett)

beamforming under the plane-wave assumption. It was shown

that severe joint sidelobes exist in the power azimuth-delay

profile (PADP) due to the frequency-variant array factor for

huge bandwidths. To cope with the high joint sidelobes, a

frequency-invariant beamformer was proposed for the UCA

in [43]. However, the resulting PADP still suffers from high

sidelobes for the detected dominant paths. In [27], a relaxed

near-field outer boundary compared to 2D2/λ was proposed,

above which the PWM can still be used for estimating

solely the angle information. In [44], a preliminary study

on channel estimation based on the SWM was conducted.

In order to eventually achieve a geometry-based stochastic

channel model (GSCM) in connection to the 3rd generation

partnership project (3GPP) [23], it is essential to obtain the

multi-dimensional MPC parameters.

The main contributions of this paper are summarized as

follows:

• A low-complexity maximum likelihood estimator (MLE)

is proposed for wideband large-scale array systems. The

proposed estimator works for the case where the far-field

and the narrowband assumption are both violated.

• MPC parameters are estimated for indoor large-scale array

measurements at 28-30GHz.

• Comparison is made between the SWM and the PWM with

the proposed MLE algorithm in terms of the estimation

performance for the measurement data.

• Physical interpretation of the estimated MPCs is given

along with the locations of the estimated scatterers in the

environment.

The rest of the paper is organized as follows: Section II

gives the generic signal model for wideband large-scale an-

tenna array systems. Section III discusses the limitations of

the widely deployed SAGE algorithm for wideband large-scale

antenna array systems. Section IV describes the details of the

proposed low-complexity MLE algorithm. Section V shows

the estimation results for an indoor wideband large-scale array

measurement, and Section VI concludes the paper.

The notation used in this paper is as follows: Scalars are

shown in regular font, and vectors and matrices are in bold

font. (·)T represents the transpose operator, (·)H the complex

conjugate operator, ‖ · ‖ the Euclidean norm, | · | the absolute

value operator, and vec{·} denotes the vectorization operator

which transforms a matrix into a column vector.

II. SIGNAL MODEL FOR THE WIDEBAND SWM

When the SWM is considered, signals are assumed to be

radiated from point sources [26]. Either a single antenna or

a single scatterer can be regarded as a point source. Without

loss of generality, here we assume that the transmitter (Tx)

is equipped with a single antenna, and the receiver (Rx) is

equipped with an M -element antenna array of an arbitrary

structure (e.g. linear, circular, or rectangular). It follows that

both the Tx antenna and the scatterers can be considered as

the point sources in the environment, as illustrated in Fig. 1

along with the local coordinate system at the Rx side.

For a propagation channel consisting of L paths, the channel

transfer function H(f ;Θl) ∈ CM×K of the l-th path over K
frequency points f = [f1, f2, . . . , fK ] can be expressed as

[26]

H(f ;Θl) = αls(f ;φl, θl, d0,l, τl), (1)
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Fig. 1. Illustration of the SWM and the local coordinate system at the Rx
side.

where Θl = {αl, φl, θl, d0,l, τl} is the parameter set of the l-th
path, including the complex amplitude αl, the azimuth angle

of direction of arrival φl, the elevation angle of direction of

arrival θl, the distance d0,l from the source to the array center,

and the delay τl from the Tx antenna to the Rx array center.

The (m, k)-th component of s(f ;φl, θl, d0,l, τl) ∈ CM×K can

be written as

sm(fk;φl, θl, d0,l, τl) =
gm(fk;φl, θl)

4πfkdm,l/c

· exp{−j2πfk(dm,l − d0,l)/c}
· exp{−j2πfkτl}, (2)

where gm(·) is the antenna field pattern, c is the speed of light,

and dm,l denotes the distance from the source to the m-th array

element for the l-th path. Note when the source corresponds to

the Tx instead of a scatterer, it leads to τl = d0,l/c. Given the

coordinates rm of the m-th array element with respect to the

array center, the distance dm,l can be determined by applying

the law of cosines as

dm,l =
√

d20,l + ‖rm‖2 − 2d0,l‖rm‖ cosΦm,l , (3)

where Φm,l denotes the angle between vector rm and the

direction of arrival of the l-th wave. For notation simplicity, we

use Θ
ᾱ
l = {φl, θl, d0,l, τl} to denote the parameter set without

αl, and s(f ;Θᾱ
l ) to represent s(f ;φl, θl, d0,l, τl) hereafter.

The measured channel frequency response Y(f ) ∈ CM×K

at the output of the Rx array can then be expressed as

Y(f ) =

L
∑

l=1

H(f ;Θl) + n(f), (4)

where n(f ) ∈ CM×K is the noise of the measurement

system, and its entries are assumed to follow the independent

and identically distributed (i.i.d.) complex white Gaussian

distribution with zero mean and variance σ2
n [26]. To keep

a compact notation, we further define

H(f ;Θ) =

L
∑

l=1

H(f ;Θl), (5)

with Θ = {Θ1,Θ2, . . . ,ΘL}.

III. LIMITATIONS OF THE SAGE ALGORITHM FOR

WIDEBAND LARGE-SCALE ANTENNA ARRAY SYSTEMS

For channels measured with conventional narrowband small-

scale array systems, under the narrowband and the far-field

assumptions, the channel transfer function H(f ;Θl) in (1)

can be simplified as [38]

H(f ; Θ̃l) = αlv(φl, θl)⊗ ζ(f ; τl) (6)

where Θ̃l = {αl, φl, θl, τl} denotes the parameter set with d0,l
left out, and ⊗ denotes the Kronecker product. v(φl, θl) ∈
CM×1 is the array steering vector with the m-th entry written

as

vm(φl, θl) = gm(fc;φl, θl) exp{j2πfc〈e(φl, θl), rm〉}, (7)

where fc is the center frequency, e(·) is the unit direction

vector, and 〈·, ·〉 denotes the inner product. ζ(f ; τl) ∈ C1×K

is the frequency response corresponding to the delay τl, with

its k-th entry written as ζ(fk; τl) = exp{−j2πfkτl}.

The SAGE algorithm [38] is often used to estimate the

parameters of MPCs. Its main advantage over conventional

expectation-maximization (EM) algorithms is that a multi-

dimensional search is replaced with several one-dimensional

searches. Therefore, the computational complexity is signif-

icantly decreased, while the estimator still converges to the

global maximum of its likelihood function with a sufficient

number of iterations. A prerequisite to utilize the space-

alternating mechanism is that the likelihood function needs to

be independent between different parameter spaces [41]. This

likelihood independency between direction e(φl, θl) and delay

τl is guaranteed from the Kronecker structure of H(f ; Θ̃l)
[39], as shown in (6). As a result, a sequentially parameter

updating procedure, i.e. the space-alternating mechanism, can

be deployed as in [38].

However, as discussed in the introduction, with the nar-

rowband assumption violated, the Kronecker structure in (6)

cannot be maintained due to the frequency dependency of

v(φl, θl). Thus, the likelihood independency between e(φl, θl)
and τl does not hold. Moreover, with the far-field assumption

violated, an additional parameter, i.e. source distance d0,l, is

introduced in the signal model. Consequently, the sequentially

parameter updating procedure cannot be applied between

e(φl, θl), d0,l and τl for channels measured with wideband

large-scale array systems. In other words, estimation needs

to be done jointly among parameters in order to prevent the

estimator from converging to a local maxima of the likelihood

function. Fig. 2 gives the sketch of the feasibility region of

the SAGE algorithm and the proposed algorithm with respect

to array aperture and signal bandwidth.

IV. A LOW-COMPLEXITY MAXIMUM LIKELIHOOD

ESTIMATOR

Given the observation Y(f ) at the output of the Rx array,

the expectation of the log-likelihood function of the parameters
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Fig. 2. Feasibility region of the SAGE and the proposed MLE algorithm.

Θ can be written as [29]

E[Λ(Θ;Y(f ))] =

− ln (πσ2
n)−

1

σ2
nMK

‖vec{Y(f )} − vec{H(f ;Θ)}‖2 ,
(8)

where E[·] denotes expectation, and is calculated as the sample

mean. The estimate of Θ is obtained by maximizing (8) over

the span of parameters,

Θ̂ = argmax
Θ

{

E[Λ(Θ;Y(f ))]
}

. (9)

A brute-force search for (9) is computationally prohibitive

due to the high dimension of Θ [38]. Given two paths,

l and l′, if any of the differences |φl − φl′ |, |θl − θl′ |,
|d0,l − d0,l′ |, and |τl − τl′ | is larger than the resolution in

its respective domain, the inner product of vec{s(f ;Θᾱ
l )}

and vec{s(f ;Θᾱ
l′)} approaches zero due to the orthogonality

of their vector spaces [27], [38]. Therefore, Θ̂ in (9) can be

approximated alternatively through matched filtering [2], [38].

However, due to the large power difference between the strong

MPCs and the weak MPCs, the mainlobes of the estimated

power spectra of the weak MPCs may be buried under the

sidelobes of the estimated power spectra of the strong MPCs,

which causes interference to the estimation of the weak MPCs.

To cope with that, the estimate Θ̂l for individual paths can be

obtained sequentially in a successive interference cancellation

(SIC) manner as described below.

A. Procedure of an MLE Algorithm with SIC

The estimate Θ̂l for individual paths can be obtained

sequentially through the matched filtering with SIC as

Θ̂
ᾱ
l = argmax

Θᾱ
l

‖z(Θᾱ
l )‖, (10)

α̂l =
z(Θ̂ᾱ

l )

‖vec{s(f ; Θ̂ᾱ
l )}‖

, (11)

where

z(Θᾱ
l ) =

vec {s(f ;Θᾱ
l )}

H
vec{Y(l)(f)}

‖vec{s(f ;Θᾱ
l )}‖

, (12)

and

Y
(l)(f ) =

{

Y(f ) if l = 1.

Y(f )−∑l−1
l′=1 H(f ; Θ̂l′) if l > 1.

(13)

When the first path (i.e. l = 1) is estimated, the parameters

are obtained with the original observation Y(f ). The transfer

function given in (1) is then reconstructed with respect to

Θ̂1, and subtracted from the original observation Y(f ). The

remaining observation is then used for estimating the next path.

This procedure is repeated until we have extracted a preset

number of paths L, which is usually determined empirically.

B. A Coarse-to-Fine Search

The MLE is well-known for its high computational complex-

ity due to its joint estimation mechanism, especially when the

parameter dimension is large. The computational complexity

comes from both the high-dimensional joint estimation and

the large matrix size (i.e. Y(f ) ∈ CM×K ) as well. In order to

reduce the complexity, we separate the estimation for Θ̂l into

two stages, namely the initialization stage and the refinement

stage.

1) The Initialization Stage: The frequency point with the

highest signal power over M elements is selected as [32]

fmax
k = argmax

fk

∥

∥

∥
Y

(l)(fk)
∥

∥

∥

2

, (14)

where Y
(l)(fk) ∈ CM×1 is the k-th column vector of Y(l)(f).

The initial estimates of Θ
ᾱ,τ̄
l = {φl, θl, d0,l} are obtained

through the matched filtering as

(Θ̂ᾱ,τ̄
l )init = argmax

Θ
ᾱ,τ̄

l

∥

∥z(fmax
k ;Θᾱ,τ̄

l )
∥

∥ , (15)

where

z(fk;Θ
ᾱ,τ̄
l ) =

s(fk;Θ
ᾱ,τ̄
l )H

Y
(l)(fk)

‖s(fk;Θᾱ,τ̄
l )‖

, (16)

and the m-th entry of s(fk;Θ
ᾱ,τ̄
l ) ∈ C

M×1 is

sm(fk;Θ
ᾱ,τ̄
l ) =

gm(fk;φl, θl)

4πfkdm,l/c

· exp{−j2πfk(dm,l − d0,l)/c}. (17)

The initial estimate of τl is then estimated following the same

principle as

τ̂l
init =

argmax
τl

1√
K

∥

∥

∥

∥

∥

K
∑

k=1

z
(

fk; (Θ̂
ᾱ,τ̄
l )init

)

exp{j2πfkτl}
∥

∥

∥

∥

∥

.

(18)

The initial estimates of Θ
ᾱ
l are obtained as (Θ̂ᾱ

l )
init =

{φ̂init
l , θ̂initl , d̂init0,l , τ̂ initl }.
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2) The Refinement Stage: The search candidates are refined

in the vicinity of the initial estimates (Θ̂ᾱ
l )

init obtained from

the initialization stage. The MLE algorithm described in (10)

to (13) is then conducted with the full observation matrix

Y
(l)(f ) over the confined region of the channel parameters

to obtain the final estimates Θ̂l.
In the initialization stage, the matrix size decreases from

M ×K to M × 1 and 1 × K in (15) and (18), respectively.

In the refinement stage, the number of search candidates is

further decreased due to the confined region around the initial

estimates. Therefore, the overall computational complexity

decreases significantly.

C. Decision of Number of Paths L̂

The number of paths L̂ varies a lot with respect to differ-

ent estimation algorithms. Usually, the maximum-likelihood

based algorithms return more paths than the subspace-based

algorithms. One of the reasons for this is that the MLE-

based algorithms often assume specular propagation, so the

diffuse scattering part of the channel would also be treated

as specular paths, which could increase the number of paths

drastically. Another reason is that when the deployed signal

model does not match the measurement data, either due to

a poor system calibration before measurement, or an invalid

assumption (e.g. the narrowband or the far-field assumption)

for a specific scenario, artificial paths would also be created

during estimation. To alleviate over-estimation, the Akaike

information criterion (AIC) [45]–[47] is used to determine the

appropriate number of paths, and it can be expressed as

AIC(L) = −2Λ(Θ̂) + γL. (19)

The first term stands for the likelihood as in (8), and the second

term represents the penalty for overfitting. The factor γ can be

adjusted to define different significance levels of the penalty

[48]. By substituting (8) in (19), we obtain the AIC expression

as

AIC(L) = 2 ln (πσ2
n) + γL

+
2

σ2
nMK

∥

∥

∥

∥

∥

vec{Y(f )} − vec

{

L
∑

l=1

H(f ; Θ̂l)

}∥

∥

∥

∥

∥

2

. (20)

The appropriate number of paths is determined by L̂ =
argminL AIC(L). Note the indices of the estimated paths

need to be permuted according to the likelihood of each path

calculated in (12) in descending order.
To have a more intuitive understanding for the decision L̂

from (20), we calculate the first-order difference of AIC(L) as

∆AIC(L) = AIC(L)− AIC(L− 1), (21)

where ∆ denotes the difference operator. Inserting (20) into

(21) yields

∆AIC(L) =
2

σ2
nMK

∥

∥

∥

∥

∥

vec{Y(f )} − vec

{

L
∑

l=1

H(f ; Θ̂l)

}∥

∥

∥

∥

∥

2

− 2

σ2
nMK

∥

∥

∥

∥

∥

vec{Y(f)} − vec

{

L−1
∑

l=1

H(f ; Θ̂l)

}∥

∥

∥

∥

∥

2

+ γ.

(22)

When the MPCs are well-separated in the parameter domain,

vec
{

H(f ; Θ̂l)
}

is roughly orthogonal to vec
{

H(f ; Θ̂l′)
}

given l 6= l′. By applying the Pythagorean theorem, (22) can

be approximated as

∆AIC(L) = − 2

σ2
nMK

∥

∥

∥
vec

{

H(f ; Θ̂L)
}
∥

∥

∥

2

+ γ. (23)

Since the indices of the estimated paths are permuted

in descending order of the likelihood, the term
∥

∥

∥
vec

{

H(f ; Θ̂L)
}
∥

∥

∥

2

, which can be interpreted as the

power of the L-th path, decreases monotonically with L. In

other words, the first-order difference of AIC(L) increases

monotonically with L, and hence the second-order difference

of AIC(L) is non-negative. Therefore, AIC(L) is convex,

and its minimum can be achieved when ∆AIC(L) = 0 [49].

Setting (23) to zero leads to

1

σ2
nMK

∥

∥

∥
vec

{

H(f ; Θ̂L)
}∥

∥

∥

2

=
γ

2
, (24)

which indicates this criterion can be interpreted as a threshold

in power-to-noise ratio averaged by MK . The estimated paths

with power-to-noise ratio above γ/2 will be considered as

dominant and kept. γ = 2 was assumed to be sufficient in

significance in [45]. When γ = 2 is used, it corresponds to a

power-to-noise ratio of 0 dB. In the following sections, γ = 2
was also used for data processing. The whole procedure of the

proposed MLE algorithm is summarized in Algorithm 1.

Algorithm 1 Procedure of the proposed MLE algorithm with

SIC.

Input: Y(f ), L
for l = 1 to L do

Initialization:

(Θ̂ᾱ
l )

init = {φ̂init
l , θ̂initl , d̂init0,l , τ̂ initl }. // Eqs. (14)

to (18)

Define search candidates with respect to (Θ̂ᾱ
l )

init.

Refinement:

Θ̂l = {α̂l, φ̂l, θ̂l, d̂0,l, τ̂l}. // Eqs. (10) to (12)

SIC:

Y
(l)(f ). // (13)

end for

Rearrange path indices with respect to likelihood in descend-

ing order. // (12)

Determine L̂ with AIC. // (20)

Output: Θ̂ = {Θ̂1, Θ̂2, . . . , Θ̂L̂
}.

V. CHANNEL MEASUREMENT AND ESTIMATION

A. Indoor LoS and OLoS Scenarios

The measurements were conducted in a basement. A sketch

of the measurement area is shown in Fig. 3(a). Two sets of

antenna configurations were used in the measurements, namely

“Config. 1” and “Config. 2”. For “Config. 1”, both the Tx and

the Rx were equipped with biconical antennas. For “Config.

2”, the Rx antenna was replaced with a horn antenna. The

antenna specifications are summarized in Table I.
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Fig. 3. (a) Dimensions and (b) photo of the measurement environment.

During the measurement, both the Tx and the Rx antenna

were placed 0.84m above the floor. The Rx antenna was

mounted on a turntable. A virtual UCA of 720 elements,

i.e. M = 720, with radius 0.5m was formed on the Rx

side. The frequency response was measured with a VNA

from 28-30GHz with 750 frequency points, i.e. K = 750,

at each element position. The corresponding delay range

is [0, 374.5] ns. The inter-element spacing of the UCA is

4.4mm, which is smaller than half the wavelength at 30GHz
(i.e. 5mm). Therefore, spatial aliasing is avoided [50]. The

Fraunhofer distance at 30GHz is 200m, whereas the distance

between the Tx and the center of the Rx array is only 5m
(see Fig. 3(a)). Thus, the far-field assumption is not met in

our measurement. The narrowband assumption does not hold

either since the array aperture (i.e. 1m) is much larger than the

delay resolution multiplied by the speed of light (i.e. 0.15m).

The measurement settings are summarized in Table I.

Note that in “Config. 2”, when the horn antenna was

deployed at the Rx, the feed of the horn was positioned at the

rotation center of the turntable. Therefore, the rotation radius

is denoted as 0m in Table I. Also note that to cope with the

influence of the cable effect in the measurement setup, the

RF cable was fixed to a wooden board to minimize the cable

movement.

For each set of antenna configurations, two scenarios were

considered, i.e. the line-of-sight (LoS) and the obstructed line-

of-sight (OLoS) scenario. The OLoS scenario was created by

placing an additional blackboard with a metallic substrate of

dimensions 1.19m× 1.19m between the Tx and the Rx to

block the LoS path. When measuring the LoS scenario, the

blackboard was removed from the environment. A photo of

the measurement environment is shown in Fig. 3(b). Readers

are referred to [16] for a full description of the measurement

campaign.

The rotational horn antenna measurement was conducted to

obtain a reference PADP of the channel. The estimated PADP

from the UCA measurement are compared to the reference

PADP to assess the performance of the proposed algorithm in

the next subsection.

TABLE I
ANTENNA SPECIFICATIONS AND MEASUREMENT SETTINGS.

Antenna specifications

Horn Biconical

Operating frequency 26.4-40.1GHz 2-30GHz

Half-power beamwidtha 20◦ Omnidirectional

Gainb 19 dB 6dB

Polarization Vertical Vertical

Measurement settings

Config. 1 Config. 2

Tx antenna Biconical Biconical

Rx antenna Biconical Horn

Rx rotation radius 0.5m 0m

Azimuth rotation span 0◦-360◦ with 720 steps

Frequency sweep range 28-30GHz with 750 points

aEvaluated in the azimuth plane at 28-30GHz.
bEvaluated at 28-30GHz.

B. MPC Parameter Estimation and Comparison between the

SWM and the PWM

According to the data sheet of the biconical antenna [51],

the variation of the antenna gain in the measurement frequency

range is up to 1.5 dB, so we assume frequency independent

antenna response for the estimation. The measurement data

were processed with the proposed algorithm based on the

SWM and the PWM, respectively. Initially, 60 paths were

assigned to the estimator for both the LoS and the OLoS

scenario. Fig. 4 shows the likelihood function and the AIC

with respect to the number of paths for both scenarios. It can

be clearly seen that the likelihood obtained with the SWM

is always higher than that obtained with the PWM for both

scenarios. Also, the AIC of the SWM is always lower than that

of the PWM. Therefore, it can be concluded that the SWM is

superior to the PWM for the large-scale antenna array systems

in the estimation.

Moreover, the likelihood for the SWM increases signif-

icantly with the number of paths at first. After a certain

point, it tends to converge for both scenarios, which means
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Fig. 4. The log-likelihood (left) and the AIC (right) with respect to the number of paths for the LoS and the OLoS scenario. Results from the SAGE algorithm
based on the PWM with 10 EM iterations are also presented for comparison.

the additional benefits of using a larger number of paths are

insignificant. The number of paths is selected at the minimum

AIC, which corresponds to L̂LoS = 19 and L̂OLoS = 39 for

the LoS and the OLoS scenario, respectively. The number

of paths for the PWM is L̂LoS = 57 and L̂OLoS = 53. By

comparison, both a higher likelihood and a less number of

paths are obtained with the SWM, which shows the advantages

of the SWM for large-scale array systems. The results obtained

from the SAGE algorithm based on the PWM with 10 EM

iterations are also given in Fig. 4, which shows it does not

work well for wideband signals. Estimation with the SAGE

algorithm assuming the SWM were not carried out due to its

high computation time caused by the joint estimation together

with multiple iterations of calculation.

Fig. 5 and Fig. 6 show the estimated PADP in comparison to

that measured with the horn antenna for the LoS and the OLoS

scenario, respectively. For the LoS scenario in Fig. 5, it can be

observed that the resulting PADP from the SWM matches that

from the horn measurement very well, whereas using the PWM

leads to poor extraction of the weak paths even with a larger

number of paths. Moreover, most of the MPCs (i.e. 49 out of

57) estimated with the PWM concentrate in the region around

the LoS component, which shows a severe model mismatch

between the PWM and the measurement. This is due to the fact

that the power of the LoS component is dominant, and it would

be estimated first by the estimator. However, if the transfer

function reconstructed form the signal model is not accurate

enough to cancel its contribution in the observation Y(f ),
artificial paths would be recursively created and estimated

around the LoS component due to the incomplete cancellation.

In addition, there is an obvious difference in power between

the dominant MPCs estimated from the SWM and the PWM.

For example, the power of the LoS component for the SWM

case is around 10 dB higher than that for the PWM case. The

power loss from the PWM was also reported in [26], [27],

which is considered as a result of the model mismatch in near-

field estimation problems.

For the OLoS scenario in Fig. 6, the PADP from the PWM
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Fig. 5. The reference PADP obtained from the horn measurement (top) and
the estimated MPCs for the LoS scenario. 19 paths are shown for the SWM
(middle), and 57 paths for the PWM (bottom) according to the number of
paths set by the AIC criterion as shown in Fig. 4.

is more similar to that from the SWM compared to the LoS

scenario. This is due to the fact that the power of the MPCs

is more evenly distributed for the OLoS scenario. However,

model mismatch can still be observed from the difference in

power between the MPCs estimated with the PWM and those

with the SWM. According to the observations from Figs. 4

to 6, it can be concluded that the SWM outperforms the PWM
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Fig. 6. The reference PADP obtained from the horn measurement (top) and
the estimated MPCs for the OLoS scenario. 39 paths are shown for the SWM
(middle), and 53 paths for the PWM (bottom) according to the number of
paths set by the AIC criterion as shown in Fig. 4.

for near-field estimation problems. It is worth mentioning that

a clustering procedure [52] can be applied to the estimated

MPCs for cluster based channel models [23].

C. Power Delay Profile and Power Extraction Rate

The power delay profile (PDP) for each element of the

array is calculated as the inverse discrete Fourier transform

(IDFT) of the reconstructed channel frequency response using

the SWM for the LoS and the OLoS scenario, as shown in

Fig. 7 and Fig. 8, respectively. A good match between them

can be clearly seen. The power extraction rate P̂ is further

calculated as

P̂ = 1−

∥

∥

∥
vec

{

H(f ; Θ̂)−Y(f )
}
∥

∥

∥

2

‖vec {Y(f )}‖2
. (25)

P̂LoS = 95% and P̂OLoS = 69% are obtained for the SWM

case for the LoS and the OLoS scenario, respectively. In

comparison, a lower power extraction rate of P̂LoS = 86%
and P̂OLoS = 54% are obtained for the PWM case. For the

LoS scenario, the LoS component is the main contribution

of the total power, hence the high extraction rate. For the

OLoS scenario, the proportion of the power in the diffuse

scattering components becomes more significant as seen in the

background in Fig. 8, and a lower extraction rate is expected.
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Fig. 7. The PDP of all elements from measurement (top), and the recon-
structed channel (bottom) with the SWM for the LoS scenario with 30 dB

power range.
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Fig. 8. The PDP of all elements from measurement (top), and the recon-
structed channel (bottom) with the SWM for the OLoS scenario with 30 dB

power range.

D. Channel Characteristics Obtained from Estimated MPCs

Channel characteristics including azimuth spread of arrival

(ASA), elevation spread of arrival (ESA), and delay spread

(DS), are calculated the same way as in [23], and are listed in

Table II. Huge differences can be seen between the parameter

spreads obtained from the proposed MLE algorithm with the

PWM and the SWM. For example, the DS and the ASA

from the SWM results are much larger than those from the

PWM results, whereas the ESA for the LoS scenario from the

SWM results is only around one-fourth of that from the PWM

results. This is because the estimator implemented with the

SWM captured more weak MPCs, which are widely spread

in the azimuth and delay domain. In contrast, the estimator

implemented with the PWM returned many artificial paths

around the dominant paths due to the model mismatch, which

causes spread in the elevation domain. The comparison shows

the model mismatch can severely affect the estimated chan-

nel characteristics. The corresponding values given in 3GPP



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2018.2854553, IEEE
Transactions on Wireless Communications

9

TABLE II
CHANNEL CHARACTERISTICS OBTAINED FROM MLE (PWM), MLE

(SWM), AND 3GPP FOR INDOOR SCENARIOS AT 28-30GHz.

Characteristics
MLE (PWM) MLE (SWM) 3GPPa

LoS OLoS LoS OLoS LoS NLoS

DS [ns] 2.14 4.24 3.82 5.55 19.64 25.90

ASA [◦] 18.58 74.01 24.96 81.15 31.65 50.18

ESA [◦] 4.64 3.76 0.92 2.20 11.37 14.64

aThe values are evaluated at 29GHz with respect to the indoor-office
scenarios in 3GPP TR 38.901 [23]. NLoS denotes non-LoS scenarios.

TR 38.901 for the indoor-office scenario are also presented.

Basically, the values from TR 38.901 are several times larger

than those from the SWM, except the ASA for the non-line-

of-sight (NLoS) scenarios. Since the parameter values from

our measurement are obtained in a specific environment, they

are not necessarily very representative. However, it has been

extensively discussed in recent meetings, e.g. IRACON [53],

that the parameter values in the current release of 3GPP model

for high frequency bands may also be changed in future due

to the lack of input from measurement data.

E. Physical Interpretation of the Estimated MPCs

In order to have a physical interpretation of the propagation

mechanism, the estimated propagation paths are usually traced

back in the physical environment [54]–[56]. A simple ray

tracer is used here [44]. For a LoS path or a one-bounce path,

a unique path can be drawn in physical environment through

simple geometry with the delay and the direction of arrival

information. For multi-bounce paths, since we only have the

path parameters estimated from the Rx side, it is unknown

if they are induced from either reflection or diffraction, or a

combination of both. Here we assume only specular reflection

for high-order bounces (i.e. second-order and above). The

estimated paths are traced in the environment for both the

LoS and the OLoS scenario as shown in Fig. 9. Moreover, it

is interesting to see if the estimated locations of the scatterers

can match any physical object in the environment. Thus, the

locations of scatterers are also plotted as solid circles in Fig. 9.

The location of the scatterer associated with the l-th path is

calculated as the point from where the distance to the Rx array

center along the path trajectory is equal to d̂0,l. The color

shows the power of each path.

Fig. 9(a) shows the path trajectories for the LoS scenario.

Due to the metallic radiator (heater) on the right wall, it can

be seen the power reflected from the right wall is higher than

that from the left wall. From the estimated scatterer locations,

it can be observed that some of them are traced back to the

the Tx location, whereas the others are a bit off the physical

objects, which can be induced from the insufficient modelling

of the environment. In addition, since the estimation for the

distance d0 relies on the curvature of the spherical wavefront

impinging upon the array, the estimation for a farther scattering

source would be less accurate.

Fig. 9(b) shows the path trajectories for the OLoS scenario.

It can be observed that the power of the LoS component

is significantly attenuated by the blackboard. Besides the

reflection from the walls, the diffraction from the edges of

the blackboard can be seen as well. Most of the estimated

scatterer locations are either close to the walls, the edges of the

blackboard, or the Tx. The good match between the estimated

scatterer locations and the physical objects helps to reveal

the propagation mechanisms like reflection and diffraction.

Nonetheless, it is worth noting that when the surfaces of the

interacting objects are large and flat, e.g. walls, the shape of

the spherical wavefront is preserved after reflection, so the

scattering sources would be traced back to the Tx location, as

shown with some two-bounce paths in Fig. 9.

VI. CONCLUSION

In this paper, an MLE algorithm with SIC is proposed for

channel estimation when both the far-field and the narrowband

assumptions are violated. The wideband SWM is used as the

generic signal model for estimation. To reduce the computa-

tional complexity of traditional MLE algorithms, a two-stage

procedure is introduced, which consists of an initialization

stage and an estimation refinement stage. To alleviate over-

estimation of the channel, the AIC is used to determine the

appropriate number of paths in the channel.

The proposed algorithm is applied to estimate parameters

of the channel measured with a large-scale antenna array

system in a basement at 28-30GHz, including a LoS and

an OLoS scenario. It is shown that for near-field estimation

problems, the SWM outperforms the PWM significantly in

terms of likelihood, number of paths estimated, and power

extraction rate. By comparing the estimated PADP from the

UCA measurement to that from a rotational horn antenna mea-

surement, it is shown that the majority of channel components

are successfully captured.

Moreover, the physical interpretation of the propagation

channel is given along with the environment. The estimated

scatterer locations are observed to coincide with the physical

objects in the environment, such as the walls, the edges of

the blackboard, and the Tx. It is observed that reflection does

not always create new scattering sources on the interacting

objects. This is due to the fact that the original spherical

wavefront is preserved after reflection given that the surface of

the interacting objects is sufficiently large and flat, e.g. walls.

As a result, the scattering sources are traced back to the Tx

location for multi-bounce links.
Last but not least, the proposed low-complexity MLE al-

gorithm could be useful for extracting channel parameters

for standard channel models (e.g. 3GPP channel model) with

the SWM taken into account. Extension on the algorithm for

dual-polarization estimation will be conducted in future work.

The findings on the propagation mechanisms and the obtained

channel characteristics at 28-30GHz would be helpful for

channel characterization at high frequency bands.
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