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A STATISTICAL APPROACH TO THE INVERSE PROBLEM IN

MAGNETOENCEPHALOGRAPHY

Zhigang Yao, PhD

University of Pittsburgh, 2011

Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic

field outside the human head produced by the electrical activity inside the brain. The MEG

inverse problem, identifying the location of the electric sources from the magnetic signal

measurements, is ill-posed; that is, there is an infinite number of mathematically correct

solutions. Common source localization methods assume the source does not vary with time

and do not provide estimates of the variability of the fitted model. We reformulate the

MEG inverse problem by considering time-varying sources and we model their time evolu-

tion using a state space model. Based on our model, we investigate the inverse problem by

finding the posterior source distribution given the multiple channels of observations at each

time rather than fitting fixed source estimates. A computational challenge arises because

the data likelihood is nonlinear, where Markov chain Monte Carlo (MCMC) methods in-

cluding conventional Gibbs sampling are difficult to implement. We propose two new Monte

Carlo methods based on sequential importance sampling. Unlike the usual MCMC sampling

scheme, our new methods work in this situation without needing to tune a high-dimensional

transition kernel which has a very high-cost. We have created a set of C programs under

LINUX and use Parallel Virtual Machine (PVM) software to speed up the computation.

Common methods used to estimate the number of sources in the MEG data include

principal component analysis and factor analysis, both of which make use of the eigenvalue

distribution of the data. Other methods involve the information criterion and minimum

description length. Unfortunately, all these methods are very sensitive to the signal-to-
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noise ratio (SNR). First, we consider a wavelet approach, a residual analysis approach and

a Fourier approach to estimate the noise variance. Second, a Neyman-Pearson detection

theory-based eigenthresholding method is used to decide the number of signal sources. We

apply our methods to simulated data where we know the truth. A real MEG dataset without

a human subject is also tested. Our methods allow us to estimate the noise more accurately

and are robust in deciding the number of signal sources.
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1.0 INTRODUCTION

1.1 THE BASICS OF MEG

Exploration of the human brain is of fundamental interest. Although the anatomy of the

brain has been studied intensively for millennia, how the brain functions is still not well

understood; in particular, how the physical functioning of the brain as an organ gives rise

to the thinking of the mind remains a complete mystery. The neurons in the brain produce

macroscopic electric currents when the brain functions, and those synchronized neuronal

currents in the gray matter of the brain induce extremely weak magnetic fields (10 − 100

femtoTesla) outside the head. The comparatively recent development of Superconducting

Quantum Interference Devices (SQUIDs) makes it possible to detect those magnetic signals.

MEG is an imaging technique using SQUIDs to measure the magnetic signals outside of the

head produced by the electrical activity inside the brain [24]. Due to its noninvasiveness (it

is a completely passive measurement method) and its impressive temporal resolution (better

than 1 millisecond, compared to 1 second for functional magnetic resonance imaging, or to 1

minute for positron emission tomography) (see Figure 1) and due to the fact that the signal it

measures is a direct consequence of neural activity, MEG is a near optimal tool for studying

brain activity in both the research and the clinical setting. The computation associated with

estimating the electric source from the magnetic measurement is a challenging problem that

needs to be solved to allow high temporal and spatial resolution imaging of the dynamic

activity of the human brain.

Because of its ability in revealing the precise dynamic of neuronal activities, MEG has

started to move toward clinical applications such as presurgical planning for epileptic patients

[42]. However, the full potentiality has not been exploited due to the difficulties of the MEG
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data analysis. The main problem is the ill-posed neuromagnetic inverse problem; that is,

estimating neuronal current flow from magnetic field measurements has no unique solution

[47]. The ill-posedness directly results in the instability of the solution. Second, the magnetic

signals from the brain are extremely weak, i.e., nine orders less than Earth’s magnetic field;

this means the MEG recording contain not only a magnetic field associated with the signal

sources of interest but also interference magnetic fields generated from non-target activities.

Such non-target activities include spontaneous brain activities or some evoked activities

that are not the focus of the current investigation. Third, the temporal analysis of the

data has not been extensively investigated due to computational ineffectiveness. The MEG

data is characterized by a very low signal-to-noise ratio (SNR); the commonly used method

to improve the SNR is simply to average over the data in time. However, this ignores

the high temporal resolution that MEG offers and prevents the possibility of discovering

the dynamics of the underlying neuronal current. The complexity of studying the inverse

problem still exists and the computional challenge associated with it still needs to be solved.

There are three key steps to any source localization algorithm in MEG. First, define

the solution space and the parameter space of the signal source in MEG. Second, calcu-

late the magnetic field given the information about the head model. Third, according to

what criterion the solution must satisfy, perform a search for the solution iteratively which

automatically requires the same amount of forward model calculation. Methods of finding

the solution of the neuronal current from the observed MEG signal have been extensively

exploited during the past two decades. Rather than working with continuous neuronal cur-

rent, one type of method assumes that the current can be thought of an electric dipole; this

model is called equivalent current dipole (ECD). From the perspective of ECD, a dipole has

its location, orientation, and magnitude and the magnetic field generated by this dipole can

explain the MEG measurement. In addition, there is a version of ECD assuming multiple

dipoles [52]. Such an ECD models a large number of dipoles located at fixed places over

the cortical surface. In neuroscience, it is believed that the MEG data should be explained

by only a few dipoles (less than 10), and different criteria or algorithms are made to shrink

the number of dipoles in various ECD models. These criteria include L1-norm [74, 93, 96] ,

L2-norm [42], or L1L2-norm [70]. Other algorithms from spatial filters or array signal pro-

2



cessing field are used with the application to the MEG inverse problem. There algorithms

invlove multiple signal classification [68] and beamforers [94, 95, 98, 39, 85]. Fitting ECDs

requires solving nonconvex optimization problems which often leed to a nonstable solution.

The other type of method used to solve the MEG inverse problems is called distributed

model or Bayesian model, where high-level knowledge of the dipole is considered when doing

the dipole fitting. Such high level information can be the anatomy of a subject, physiologi-

cal or functional information and other prior information concerning the source [27, 73, 81].

The existing Bayesian model [10, 83, 12] plays a role in furnishing the unique solution by

imposing extra constraints or inverse criteria. However, the “distributed” term has not been

fully utilized in the sense of the meaning itself. Finding the distribution of the source in

space and (particularly) in time is still a problem requiring investigation.

1.2 A TIME-VARYING SOURCE MODEL FOR THE MEG INVERSE

PROBLEM WITH PARALLEL COMPUTING

We motivate the development of a time-varying source model for the MEG inverse problem.

Rather than attempting to “solve” the inverse problem, we try to develop estimates of the

dipole parameters using an inherently spatio-temporal model. Throughout this thesis, we

are not interested in developing an algorithm for finding an unique solution for any dipole.

Instead, we present a statistical framework to the inverse problem in MEG; that is, solving the

model allows us to provide the distribution of the dipoles’ parameters. This naturally comes

up with a time-varying dipole model, where the dipole at each time point is assumed not

fixed . Although we use the term “time-varying” which seems to only refer to the temporal

resolution of the dipole, we consider the spatial resolution as well. We parameterize each

dipole using both the electric moments and spatial location for each time point; the time

dependencies for the parameters are modelled by a state-space model. The goal of interest

is to find the joint distribution of these parameters at each time. Based on our predictive

model, we investigate the inverse problem by finding the posterior source distribution given

the multiple channels of observations at each time rather than fitting fixed source estimates.
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This new model faces the following statistical challenge: the parameter spaces is greatly

expanded by the new parameterization. The dipole parameters increase with the number of

time points included. The joint distribution of interest inevitably becomes very high dimen-

sional as the number of time points increases without bound. In addition, the data likelihood

is nonlinear (the model is nonlinear). The regular MCMC methods, including conventional

Gibbs sampling, suffer from being difficult to implement and extremely slow to converge.

This makes it difficult to find the joint distribution, even if for a single dipole. We propose

two new Monte Carlo methods based on sequential importance sampling. Unlike the usual

MCMC sampling scheme, our new methods work in this situation without a very high cost

tuning of the high-dimensional transition kernel. The benefit of sequential methods is that

we do not attempt to estimate the entire target distribution at once, but rather attempt

to estimate samples for each time point sequentially. To assess the performance of our pro-

posed method, we also do simulation studies. In particular, we study our method’s ability

to sample from a high dimensional distribution and compare our method with other meth-

ods such as MCMC+Gibbs sampling or Hybrid MCMC+Gibbs. The simulations help give

credibility to the use of sequential methods to investigate the time-varying model. Guided

by the simulation study, we implement our proposed methods on the real MEG data sets.

Our interest is also in the context of implementing our proposed algorithms for long time.

Because of the expanded parameter space, there is an obvious need for parallel computa-

tional methods. Our initial attempt utilized PVM and provided the expected reduction in

running time. We have software that runs our sequential methods for data of up to 5000

milliseconds. The common MEG dataset we have from an experiment is very large (e.g.,

hundreds of thousands of milliseconds or more), and no regular computing facility that can

help. A natural extension of running our algorithms is through a highly parallel computing

scheme. We are exploring the use of more advanced forms of parallelism such as CUDA and

OPENCL to further reduce the running time.
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1.3 STATISTICAL APPROACHES TO ESTIMATING THE NUMBER OF

SIGNAL SOURCES IN MEG

The source localization method to the MEG inverse problem that was mentioned in the

previous section assume the number of sources is known. In most cases, the number of signal

sources in MEG is predefined or chosen from some prior distribution. However, in practice,

the number of sources is often not known. Estimating the number of electric sources in the

MEG data is not easy. Common methods include use of principal component analysis (PCA)

[75], independent component analysis (ICA) [37] and factor analysis [62, 63, 22], all of which

make use of the eigenvalue distribution of the data covariance matrix to estimate the number

of sources. Other methods use the information criterion such as Akaike information criterion

(AIC) [99, 100, 7, 8, 56, 101] and minimum description length (MDL) [40] as criterion for

choosing a solution.

The development of hyperspectral imaging in remote sensing and geographic information

suggests an alternative way to decide the number of signal sources in hyperdimensional data.

Hyperdimensional data (or spectra) can be thought of as points in n-dimensional space.

The data for a given pixel corresponds to a spectral reflectance for that given pixel. The

distribution of the hyperspectral data in n-space can be used to estimate the number of

spectral endmembers and their pure spectral signatures and to help understand the spectral

characteristics of the materials which make up that signature. The MEG data can be thought

as an analog of hyperspectral data where each channel corresponds to a frequency band in

the spectrum. Unfortunately, all of the methods above are equivalent to identifying the

intrinsic data dimensionality rather than the number of clusters constituted by distinct

sources, and therefore they become quite sensitive if the signal-to-noise ratio is relatively

small. Furthermore, they are not very useful for hyperdimensional image datasets with

hundreds of channels, or more.

We consider the virtual dimensionality concept for MEG data and consider a wavelet

approach, a residual analysis approach, and a Fourier approach to estimate the noise at each

sensor of the data. A Neyman-Pearson detection theory-based eigenthresholding method

is used to decide the number of signal sources in the data. To assess performance of our
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methods, we apply them to simulated data where we vary the number of sources and SNRs

and also compare our methods with other methods. A real MEG dataset collected in a

special room without a human subject is also tested. Our methods allow us to estimate the

noise more accurately for MEG data and are robust in deciding the number of signal sources.

1.4 OTHER ISSUES

In the application of the proposed time-varying source model to the inverse problem in MEG,

some other important statistical issues are of concern in both theory and computation.

First, our results so far were mainly based on a one-source model where we assume there

was only one dipole in the MEG data. We are still developing a multiple-source model for

the MEG inverse problem. The extension from one source to having multiple sources is

natural and only the computational complexity increases. Our algorithms will still work in

this case.

Second, in both the time-varying source model for the MEG inverse problem and the

approaches to estimating the number of signal sources, we assume the noise from each sensor

is normally distributed. We also assume the distinct sources in the brain act independently.

Such assumptions statistically simplify our analysis. Unfortunately in practice the data is

always far from normal and the noise is correlated.

Third, while implementing our algorithms, in order to focus on the source parameters we

fixed several parameters (source noise parameters, measurement noise parameters, etc.) in

the model. In fact, those parameters could be estimated along with the source distribution.

The natural way of implementing this is to iterate estimates of those parameters and of the

source distribution until all of them converge. Furthermore, the skewness of weights that

arise in the sequential importance sampling could be a tradeoff between the efficiency of the

program and the quality of the source distribution. Residual sampling can be used to replace

regular weight sampling.

Fourth, previous results show that PVM did improve the speed of calculating the source

distribution by computing in parallel. Since our PVM program involves randomness and a
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resampling scheme, several issues from our PVM implementation still need to be resolved: 1)

If our algorithm were implemented in a single program without parallelism, all samples gen-

erated before resampling from this program should be simply related to the random number

generator. However, when there were several worker programs with each of them doing the

same thing as a single program but in parallel, the unique randomness within each worker

program will eventually come up with different but similar samples before resampling. 2) In

a single program without parallelism, we would only have one resampling procedure. The

samples would be generated from the resampling procudure. However, there was one resam-

pling procedure within each of our worker programs in PVM. The samples were generated

from each of these workers and should eventually be pooled together. 3) There is always

a tradeoff between resampling in parallel or not. We will address these issues in the PVM

section.

1.5 ORGANIZATION OF THE DISSERTATION

The dissertation mainly consists of three parts:

1. A time-varying source model for the MEG inverse problem with parallel computing;

2. Statistical approaches to estimating the number of signal sources in MEG;

3. Future work: real-time analysis of the MEG data.

In Chapter 2, we introduce the forward and inverse problem in MEG (Section 2.1), the

general statistical framework of the MEG inverse problem (Section 2.2), and the related

source localization methods (Section 2.3). In Chapter 3, we describe a probabilistic time-

varying source model for the MEG inverse problem (Section 3.1). Due to the difficulty of

using Markov chain Monte Carlo (MCMC) methods for generating samples from the time-

varying model, our algorithms based on sequential importance sampling will be proposed

(Section 3.2). Simulation studies of comparing our methods with other methods are presented

in Section 3.3. A PVM application to speed up the computations follows in Section 3.4. At

the end of Chapter 3 are the real data analysis (Section 3.5) and discussion (Section 3.6).
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In Chapter 4, we describe spectral signatures in hyperspectral data and summarize previous

work on estimating the number of signal sources in the EEG/MEG field based on intrinsic

dimensionality (Section 4.1). Three methods (a wavelet, a residual analysis and a Fourier

framework) for noise estimation in multi-channel data are presented (Section 4.2) followed

by the introduction of the virtual dimensionality concept for hyperspectral imagery. A

simulation study (Section 4.3) and a real data analysis (Section 4.4) are described. Discussion

is in Section 4.5. Finally, in Chapter 5, promised future work about the real-time MEG

imaging (Section 5.1), an ongoing NSF project (Section 5.2) and the dissemination of our

research (Section 5.3) are briefly sketched.
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Figure 1: Temporal and spatial resolution of each brain imaging technique. The color bar

displays the invasiveness of each imaging technique.
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2.0 BACKGROUND ON MEG AND RELATED WORK

2.1 FORWARD AND INVERSE MEG PROBLEM

The MEG signals derive from the primary current (the net effect of ionic currents flowing in

the dendrites of neurons) and the volume current (that is, the additive ohmic current set up in

the surrounding medium to complete the electric circuit) (see Figure 2). If the electric source

is known and the head model [57] is specified (e.g., a sphere with homogeneous conductivity),

then the “forward problem” is to compute the electric field E and the magnetic field B from

the source current J. The calculation uses Maxwell’s equations, see, e.g., [38],

∇ · E = ρ/ε0

∇× E = −∂B/∂t

∇ ·B = 0

∇×B = µ0(J + ε0∂E/∂t)

where ε0 and µ0 are the permittivity and permeability of a vacuum, respectively, and ρ is

the charge density. The total current J consists of the primary current JP plus the volume

current JV . The source activity in the brain corresponds to the primary current. Under

reasonable assumptions, see [42], the volume current JV is not included in the analysis

because of its diffuse nature. The terms ∂B/∂t and ∂E/∂t in Maxwell’s equations can be

ignored by assuming that the magnetic field varies relatively slowly in time. We assume that

E is generated by JP which comes from the sum of N localized current dipoles at locations

rn

JPn (r) = Qnδ(r− rn), n = 1, . . . , N (2.1)
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where δ(·) is the Dirac delta function. The Qn is a charged dipole at the point rn in the brain

volume Ω. Using the quasi-static approximation to Maxwell’s equations (that is, ignoring

the partial derivatives with respect to time) in [79], the magnetic field B at location r of a

current dipole at rn can be calculated by the Biot-Savart equation,

B(r) =
µ0

4π

∫
Ω

JP (rn)× (r− rn)

|r− rn|3
drn. (2.2)

In the case of multiple current dipoles, the induced magnetic fields simply add.

Figure 2: Primary current and volumn current.

The “inverse problem” comes from the forward model; we want to estimate the dipole

parameters from the observed magnetic signal. The difficulty is that there is not a unique

solution; there are infinitely many different sources within the skull that produce the same

observed data (see [47]). The goal is to find a meaningful solution among the many mathe-

matically correct solutions.

2.2 GENERAL FRAMEWORK OF THE MEG INVERSE PROBLEM

In a typical MEG scanner, the magnetic field B is sampled on a finite number L of sensors,

each one measuring one component (z direction) of the magnetic field, namely Bz (see the

arrow in Figure 3); if e = (0, 0, 1), a unit vector, is used to find Bz, the z component of B

can be obained by Bz = B ·e. Nevertheless, for simplicity, we will ignore the superscript z in
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Bz from now on. With the Biot-Savart equation, mathematically the MEG forward model

based on (lead-field) can be written as,

B(r) =
N∑
n=1

g(r, rn) ·Qn (2.3)

where

g(r, rn) =
µ0

4πF 2(r)
rn × [F (r)e− (∇F (r) · e)r]

is the lead-field vector and

F (r) = |r− rn| (|r| |r− rn|+ |r|2 − rn · r).

(a) (b)

Figure 3: Left: perpendicular direction (blue arrow) of the magnetic field is observed. Right:

black loop (magnetometer); grey and white loops (two gradiometers)

Therefore, the general framework of the MEG inverse problem has the follwing form

Y = GQ + U (2.4)

where Y is the L×T matrix with each entry Yk,t representing the observed magnetic field at

the kth sensor at time t, 1 ≤ k ≤ L; 1 ≤ t ≤ T . G is the L× 3N matrix constructed by the
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N L × 3 sub-block matrices corresponding to the three components of the above lead-field

vector. The columns of G describe the measurements observed across sensors, induced by a

parciluar dipole. The kth row of G describe the flow of current for a given sensor through N

dipoles with each one at location rn, 1 ≤ n ≤ N . The Q is the 3N × T matrix constructed

by the N 3 × L sub-block matrices associated to the three components (moments) of the

current dipole JPn . The U is the L× T matrix with each entry (Uk,t) associated the additive

observation noise.

2.3 EXISTING SOURCE LOCALIZATION METHODS

2.3.1 Classical Approach: Minimum Norm Estimates

A well-known approach to the MEG inverse problem is the minimum norm estimate (MNE)

[42] which recovers source parameters with minimum overall energy (or minimum L2-norm).

This method minimizes the quadratic energy function

argmin
Q
‖Y −GQ‖2 + λ ‖Q‖2 (2.5)

where ‖·‖ denotes the Frobenius norm of a matrix. To be specific, let A = [aij]m×n be a

matrix with m rows and n columns, then ‖A‖ =
(∑m

i=1

∑n
j=1 a

2
ij

)1/2

=
√

tr(AT A). The

tuning parameter λ controls the regularization strength. An extended framework for the

MNE is the weighted minimum norm estimate (WMNE) [91, 65]. It minimizes

argmin
Q
‖Y −GQ‖2

W1
+ λ ‖Q‖2

W2
(2.6)

where ‖·‖W indicates the Frobenius norm of a matrix associated with metric W. Specifically,

‖A‖W =
√

tr(AT WA); W1 and W2 are the two weight matrices (commonly diagonal

matrices) that are associated with the two terms in the minimization, respectively.

The solution of the minimization problem above can be expressed as

Q̂ =
[
GT (WT

1 W1)G + λ(WT
2 W2)

]−1
GT (WT

1 W1)Y

= (WT
2 W2)−1GT

[
G(WT

2 W2)−1GT + λ(WT
1 W1)−1

]−1
Y. (2.7)
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This formulation shows that the MNE solution is the special case of the WMNE where

the diagonal weight matrix W1 is an identity I1 (Frobenius norm) and the diagonal weight

matrix W2 satisfies λW−1
2 ×W2 = I2. The LORETA approach [71] is another special case

of the WMNE in which the W2 is equal to a spatial Laplacian operator [82]. Although

the L2-norm method leads to an efficient linear solution to the MEG inverse problem, it

is often too diffuse; in other words, the MNE (or WMNE) estimates are typically spread

out spatially, which turns out a large number of dipoles are active. This drawback makes

the solutions of the method contradictive in some circumstances where there are only a few

well-localized dipoles appearing in the brain.

2.3.2 Minimum Current Estimates

An alternative solution that can provide sparse estimates of the dipole is to minimize the

same quadratic energy function but penalize on L1-norm

argmin
Q
‖Y −GQ‖2 + λ|Q| (2.8)

where | · | denotes the a matrix version of L1-norm. Following the notation used in Section

2.3.1, we now have |A| =
∑m

i=1

∑n
j=1 |aij|. The L1 estimates are called the minimum current

estimates (MCE) [74, 93, 96]. Unlike the solutions based on L2-norm regularization, the

L1-norm solutions cannot be computed in closed form; instead, they need to be obtained by

a nonlinear minimization procedure. The conventional method is to search for the solution

through linear programming (LP). From the view of computation and accuracy, there exist

two types of methods in the context of finding L1 solution over the past decades: 1) gradient-

based methods; 2) methods based on path algorithms. The gradient-based methods, like

Newton-Raphson method, cannot be applied directly. On numerical optimization, Tibshirani

[90] offered an algorithm where the regularization term was seen as a combination of linear

constraints; however, it was proven to be computationally inefficient, because the L1 term

implies a large number linear constraints. Methods based on path algorithms (e.g., [30])

improved the computation time and the accuracy of the estimates. The coordinate descent

method (e.g., [31]) is one of the methods that computes the estimate efficiently and largely
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improves the accuracy of the estimates. The MCE leads to more focal source estimates than

estimates using MNE and can represent well the relatively compact source areas typically

activated in the sensory projection areas.

There is also a weighted version of MCE:

argmin
Q
‖Y −GQ‖2

W1
+ λ|Q|W2 (2.9)

where | · |W is weighted version of | · |; to be specific, |A|W = |WA|. W1 and W2 are the two

weight matrices defined in the Section 2.3.1. Similarly, this can be solved by the weighted L1

method where the coordinate descent algorithm can be embedded within each iteration of

fitting weighted linear regression problems [104]. MCE could be thought of as the maximum

of a posterior distribution corresponding to an exponential prior distribution. Because of

the columnar organization of the cortex, the observable sources are typically perpendicular

to the cortical surface. Magnetic resonance imaging (MRI) can be used to determine the

normal of the cortex at given points and thus also the most probable current orientation

[27, 10]. Since the cortex is heavily convoluted, a large number of points are required to

represent its geometry accurately. However, the use of a dense point set may be unnecessary

because of the relatively poor spatial resolution of MEG.

2.3.3 Multiple Signal Classification

The multiple signal classification (MUSIC) was first developed in the array signal processing

community [84]. With the application of this method to the MEG field, one of the earliest

works can be found in [68] where the MUSIC formulation is considered in the nonlinear

framework of the MEG inverse problem. The motivation of MUSIC is that: due to the orga-

nization of the brain and the neuroscience perspective of activity in the brain, the primary

current Jp usually concentrates in one or a few regions; in other words, it is reasonable to

believe that the magnetic fields that are observed are produced by a very small number of

dipoles (< 10). The MUSIC approach does not require testing all possible dipole orientations

at each location; instead, it needs to solve a generalized eigenvalue problem whose solution

gives us the estimates of the dipole parameters. This eases the difficulty of optimizing the

15



energy function with respect to the locations of the dipoles by either MNE or MCE, which

often become trapped in local minima, yielding significant localization errors. We reconsider

the model (see Section 2.2) by assuming there are only N unique dipoles

Y =
[

Y1, · · · ,YT

]
= GQ + U

=


g(r

′
1, r1) · · · g(r

′
1, rN)

...
. . .

...

g(r
′
L, r1) · · · g(r

′
L, rN)




q1(1) · · · q1(T )
...

. . .
...

qN(1) · · · qN(T )

+ U (2.10)

where Yt = (Y1,t, · · · , YL,t)T , 1 ≤ t ≤ T . To avoid confusion, we rename the sensor location

ri by r
′
i (1 ≤ i ≤ L); we still use rj (1 ≤ j ≤ N) as dipole location, and rewrite a new matrix

Q as

Q =


q1(1) · · · q1(T )

...
. . .

...

qN(1) · · · qN(T )

 =


o1 · · · 0
...

. . .
...

0 · · · oN



s1(1) · · · s1(T )

...
. . .

...

sN(1) · · · sN(T )

 ,

where each entry qj(t) = ojsj(t) and oj is a unit norm orientation vector of dimension 3.

The sj(t) scalar time series is a linear parameter of the jth dipole at time t, 1 ≤ t ≤ T .

Notice the corresponding dipole locations rj (1 ≤ j ≤ N) are the nonlinear parameters, and

the dipole orientations oj (1 ≤ i ≤ N) are the quasilinear parameters. For convenience, we

rewrite the model in terms of A and S as

Y = AS + U (2.11)

where

A = G


o1 · · · 0
...

. . .
...

0 · · · oN

 and S =


s1(1) · · · s1(T )

...
. . .

...

sN(1) · · · sN(T )

 .
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If we assume ASSTAT is rank r, then from the singular value decomposition (SVD) point

of view, we have

ASSTAT = ΦΛLΦT

= [Φs Φn]

 Λs 0

0 Λn

 [Φs Φn]T

= ΦsΛsΦ
T
s (2.12)

where ΛL is the L × L diagonal matrix of the eigenvalues of ASSTAT and Φ is the corre-

sponding matrix of eigenvectors; specifically, there are r non-zero and L− r zero eigenvalues

in the ΛL. Furthermore, we can write Φ = (Φs,Φn) where Λs is defined as the diagonal

matrix containing the r nonzero eigenvalues and Φs as the matrix containing the correspond-

ing eigenvectors (signal space); similarly, Λn (0 matrix) is defined as the diagonal matrix

containing the L − r zero eigenvalues and Φn as the matrix containing the corresponding

eigenvectors (noise space). We also have the other diagonalization

SST = ΓΛrΓ
T (2.13)

where Λr is the r×r diagonal matrix of the r non-zero eigenvalues of SST and Γ is the N×r

matrix containing the corresponding eigenvectors. Based on the two diagonalizations, the

result of MUSIC for MEG is that

r(AΓ) = r(Φs) (2.14)

where r(·) is the rank of a matrix. We observe under the white noise assumption (i.e.,

E(utu
T
t ) = σ2I),

E(YYT ) = ASSTAT +
T∑
t=1

E(utu
T
t )

= ASSTAT + Tσ2I

= [Φs Φn]

 Λs + Tσ2I 0

0 Tσ2I

 [Φs Φn]T (2.15)
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holds. In practice, we observe YYT = ASSTAT + σ2I, the MUSIC algorithm is performed

as follows: 1) After YYT is diagonalized, the number of eigenvalues bigger than σ2 is calcu-

lated as an estimate of r; together with the corresponding eigenvectors, estimate the signal

subspace . 2) All the points in the brain and, for each point, all the orientations, are spanned

to find the ones that satisfy r(AΓ) = r(Φs). 3) Given A determined from the previous two

steps, the S is fitted by solving least square solutions from Y = AS + U.

The drawback of the MUSIC approach include the following: determining the number

of useful eigenvalues (comparing with σ2) might be a difficult task in real application, where

the common SVD often overestimates the number of useful eigenvalues. The other problem

that arises with the use of MUSIC is based on the assumptions that the data are produced by

a set of asynchronous dipolar sources and that the data are corrupted by additive spatially

white noise. Often both of these assumptions are incorrect in clinical or experimental data.

Different versions of MUSIC, such as Recursive-MUSIC [66], RAP-MUSIC [67] have been

proposed to improve the performance.

2.3.4 Beamformers

The beamformer apprach was originally developed in the radar and sonar signal processing

community [17, 46]. Beamformers are spatial filters discriminating the signals on the basis of

their spatial location. Recently, there has been a variety of beamformer approaches that have

been introduced to study brain activity, particularly with application to the inverse problem

in MEG [94, 98, 39]. The basic idea of beamformer design is to allow the source signal of

interest to pass through in certain source location(s) and orientation(s), called pass-band(s),

while suppressing noise or unwanted signal in other source location(s) or orientation(s), called

stop-band(s). The beamformer output is a weighted linear combination of the measurements,

reflecting the dipole activity in a specified location over time. The conventional beamformer

approaches in MEG assume that the dipole orientations known, and therefore that there are

only N beamformers, with one for each known dipole location [86, 98]. This assumption is

not realistic; a more reasonable version of the beamformer approach is to design separate

beamformers for each individual principal dipole orientation using the vectorized beamformer
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approaches [95, 85].

The general framework of beamformer approaches is: we decompose the L× 3N matrix

G into N L × 3 matrices Gi, i = 1, . . . N . Each Gi = (g(r
′
1, ri), · · · , g(r

′
L, ri))

T is a sub-

matrix, representing the lead-fields for a dipole at a particular location across all sensors

(see Section 2.3.3 for notation). The key idea in beamforming is that: the N L× 3 unknown

weight matrics Wi, i = 1, . . . N are introduced, and they can be determined by solving the

following minimization problem (see e.g., [25])

argmin
Wi

Var(Q̂i) subject to WT
i Gi = I3 (2.16)

where Q̂i = WT
i Y. The variance term Var(Q̂i)

Var(Q̂i) = tr
[
(Q̂i − E(Q̂i))(Q̂i − E(Q̂i))

T
]

is used to measure the strength of the vectorial process Q̂i. To simplify calculating Var(Q̂i),

we assume the dipoles are uncoorelated in time; that is, if we divide the 3N × T matrix Q

into N 3× T matrices Qi, i = 1, . . . N , then we will have

E(Qi − E(Qi))(Qj − E(Qj))
T = 0 if i 6= j. (2.17)

The problem of finding the weight matrix Wi that minimizes Var(Q̂i) is equivalent to finding

the matrix Ĝi with the strength closest to the strength of Gi at rn. This statement can be

easily noticed from the relation between Ĝi and Gi

Var(Q̂i) = Var(Qi) + Var

(
WT

i

[
N∑
k 6=i

Gk(Qk − E(Qk))(Qk − E(Qk))
TGT

k

]
Wi

)
.

The solution can be easily obtained using the Lagrange multiplier method (see [95])

Wi = (YYT )−1Gi(G
T
i (YYT )−1Gi)

−1. (2.18)

There are several advantages of the beamformer over L1-norm or (L2-norm) dipole fitting:

1) It requires no prior assumptions about the number of dipoles; 2) Beamformers can easily

handle both superficial and deep sources; 3) Statistical tests are usually difficult for both

MNE and MCE solutions, whereas a variety of statistical analysis can be easily implemented
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using beamformer approaches. However, beamformers are very sensitive to noise in calcu-

lating the Wi, and the inversion of YYT needs to be regularized, i.e., (YYT )−1 can be

partially solved by (YYT +λI)−1, where the parameter λ is chosen on the basis of the noise

level [98]. The assumption of uncorrelated dipole is often unrealistic from a neurophysiolog-

ical viewpoint. YYT is treated as stationary in beamformer analysis. A large sample size is

needed to estimate YYT and the local time series models for estimating YYT with temporal

adjustment are necessary.

2.3.5 Bayesian Methods

Recently, there have been some studies where the Bayesian formalism is used to find a

solution to the MEG inverse problem. By introducing some prior information into the

regularization processes discussed (i.e., L1-norm, L2-norm), the Bayeisan methods yield a

maximum a posteriori (MAP) estimator of dipole parameters. So far, the attempts to insert

physiological and anatomical criteria into the prior are still preliminary due to the complexity

of optimization [27, 73, 10, 83, 12]. In general, the goal of the Bayesian framework is to

maximize the posterior probability

Q̂t = argmax
Qt

p(Qt|Yt) (2.19)

where Qt = (q1(t), · · · ,qP (t))T (not the Qi defined in Section 2.3.4) and Yt = (Y1,t, · · · , YL,t)T

are corresponding columns (at time t, 1 ≤ t ≤ T ) of the matrices Q and Y (see Section

2.3.3). Given the distribution of p(Qt), according to the Bayes’ law, we have

p(Qt|Yt) ∝ p(Yt|Qt)p(Qt) (2.20)

where p(Yt|Qt) is the likelihood function of Qt, which in this case is the forward model

calculation. As the regularization of the Qt (e.g., L1-norm or L2-norm) discussed in Sections

2.3.2 and 2.3.1, the p(Qt|Yt) can be written owing to an energy function in terms of Qt that

can be associated to the probability distributions above. Specifically, let U and λ denote the

energy function, we have

p(Qt|Yt) =
1

Z
exp(−U(Qt)) (2.21)
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where Z is a normalization constant called partition function; then the MAP estimator of

dipole becomes

Q̂t = argmin
Qt

U(Qt) (2.22)

where the U(Qt) = U1(Qt) + λU2(Qt), and U1(·) and U2(·) are energy functions associated

with p(Yt|Qt) and p(Qt), respectively; λ is the tuning parameter. The MAP scheme can be

related to the MNE or MCE; the U1(Qt) is simply the Frobenius norm such that

U1(Qt) = ‖Yt −GtQt‖2

and as a prior term, U2(Qt) is ‖Qt‖2 in MNE; U2(Qt) is ‖Qt‖1 in MCE. Forthermore, the

U2(Qt) can be written as a combination of spatial constraints U2,s(·) and temporal constraints

U2,t(·) such that

U2(Qt) = U2,s(Qt) + U2,t(Qt).

In the literature, several choices of the spatial and temporal constraints are used [91, 35, 16,

69]. Although it is convenient to use a Bayesian framework to build an estimator of dipole,

one of the main drawbacks of regularization techniques is that they need some well chosen

tuning parameters in order to be effective. The statistical method suffers from being very

time consuming and practically its convergence is not guaranteed.

2.3.6 Other Methods

Independent component analysis (ICA) has been used to identify and remove the artifacts

such as blinking, eye muscle movement, facial muscle artifacts, cardiac artifacts, etc. from the

MEG data [97, 51, 48]. ICA has also been studied to separate different brain sources [61, 11].

There has been some work on using other modalities of imaging methods (i.e., MRI, fMRI)

in combination with the MEG data. The MRI image can give information on the position

and orientation of the cortical dipoles, while fMRI provides topographical information on

active dipoles. In general, the information from other imaging methods is used as prior

information about the source [26, 72, 83]. The problem with this approach is that although

fMRI has high spatial resolution, it has been pointed out that the hemodynamic signals

of fMRI may not precisely correspond to neural activity due to various factors such as the
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effects of noise and artifacts. Thus, this is still an open question and a variety of hierarchical

models [80, 81, 2] have been introduced attempting to investigate the inverse problem in

MEG.
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3.0 A TIME-VARYING SOURCE MODEL FOR THE MEG INVERSE

PROBLEM WITH PARALLEL COMPUTING

3.1 A PROBABILISTIC TIME-VARYING SOURCE MODEL

3.1.1 Motivation

The methods mentioned briefly in Chapter 2 (MNE, MCE, MUSIC, etc.) have been widely

used and produce meaningful solutions of dipole estimates; however, they have overly re-

stricted model assumptions and lack estimates of variability and sensitivity of source es-

timates. By assuming a static localized dipole, these methods are limited in their ability

to incorporate problem-specific anatomical or physiological information. It is quite reason-

able to consider that the source is time-varying rather than fixed, in which case the noise

reduction obtained by averaging over consecutive observations in time is problematic. By

utilizing a time-varying source model, we will be able to investigate the distribution of the

source at each time point and provide estimates of its variability. Following this idea, the

time evolution of the source is modelled by a state space model and our goal is to find the

posterior distribution of the source parameters. Our reformulaton of the inverse problem is

to present a predictive model for the location and moments of each dipole. Such an approach

automatically uses Bayes’ rule. It turns out that the posterior source distribution from our

predictive model can be interpreted as a statistical solution to the MEG inverse problem.
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3.1.2 The State-space Model Formulation

Assume that the magnetic field data from the kth sensor, k = (1, . . . , L) is measured respec-

tively at time t, t = (1, . . . , T ) as Yk,t. We model Yk,t as

Yk,t = Bk(J
P
t ) + Uk,t, 1 ≤ t ≤ T, 1 ≤ k ≤ L, (3.1)

where Uk,t ∼ N(0, σ2
1) denotes the observation noise that is assumed, for simplicity, to be

Gaussian, additive, and homogeneous for all the sensors. Therefore, we can write

Yt = B(JPt ) + Ut, 1 ≤ t ≤ T, (3.2)

where Yt = (Y1,t, · · · , YL,t)T , B(JPt ) = (B1(JPt ), · · · ,BL(JPt ))T and Ut = (U1,t, · · · , UL,t)T .

Here, Ut ∼MVN(0,Σ1). For simplicity we assume Σ1 is a known L by L diagonal matrix

with the following form Σ1 = diag[σ2
1, σ

2
1, ..., σ

2
1].

The Bk(J
P
t ), a function of the dipole with parameter vector JPt , is the physical approxi-

mation of the Biot-Savart law in Section 2.2. The noiseless magnetic field, Bk, is computed

from the source JPt = (pt,qt) at time t. The vector pt = (p1t, p2t, p3t) contains the loca-

tion parameters of the source and the vector qt = (q1t, q2t, q3t) contains the moments of the

source. Thus,

Bk(J
P
t ) =

µ0

4π

qt × (rk − pt) · e
|rk − pt|3

. (3.3)

Here, rk is the location of the kth sensor, pt and qt are parameters associated with the source

defined above at time t. Because the magnetometers measure only the z direction of the

magnetic field, B, e = (0, 0, 1), a unit vector, is used to find Bz, the z component of B.

Conventionally, z is perpendicular to the surface of the skull.

To specify the prior : first, the time evolution of the current density JPt is specified by

a state space model; we note that one could choose any state space model one might wish,

but for simplicity, we have chosen a six-dimensional first-order autoregression:

JPt = mcom + ρ(JPt−1 −mcom) + Vt, 1 ≤ t ≤ T, (3.4)

where Vt ∼ MVN(0,Σ2) denotes the state evolution noise. We assume for simplicity that

Σ2 = diag[σ2
11, σ

2
22, ..., σ

2
66] is a known 6 by 6 diagonal matrix and σ2

ii is the variance of the
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ith source parameter. The parameter vector mcom is a constant (over time) associated with

the source JPt for 1 ≤ t ≤ T . The initial state JP0 has distribution MVN(mini,Σ2) and mini

is also a constant (over time) parameter vector for JP0 . Both mini and mcom are specified in

advance. The diagonal matrix ρ = diag[ρ1, ρ2, ..., ρ6] is 6 by 6 with the diagonal representing

the autoregressive coefficients. Hence, JPt or ((pt,qt)) is the random vector containing the

parameters of the current at time t and Yt = (Y1,t, . . . , YL,t) is the (very noisy) data at time

t from all L sensors. Both {JPt }Tt=0 and {Yk,t}Tt=1 are assumed to have the following Markov

properties:

(i) The JP is a first order Markov process. The distribution of each state JPt only depends

on its own previous state JPt−1,

p(JPt |JP0 ,JP1 , . . . ,JPt−1) = p(JPt |JPt−1)

(we are using p as a generic symbol for a probability distribution; the two p’s in this equation

are not the same function).

(ii) The process Yk,t (for any 1 ≤ k ≤ L) is also a Markov process with respect to the

history of JP . The density of Yk,t conditioned on {JPt }t0 satisfies,

f(Yk,t|JP0 ,JP1 , . . . ,JPt ) = f(Yk,t|JPt )

(again f is a generic symbol, in this case, for a likelihood function).

(iii) When conditioned on its own history, the unknown JPt does not depend on past

measurements. The distribution of JPt based on Yk = (Yk,1, · · · , Yk,t−1) and JPt−1 is,

g(JPt |JPt−1,Y
k) = p(JPt |JPt−1), t > 0

(the right-hand side in (iii) is the same as the right-hand side in (i)). The transition kernel,

p(JPt |JPt−1), is defined here as a first order Markov process in the state space model above. For

a more complex state space model it could be also be a higher order Markov process. The

choice of more realistic models for this process (e.g., in the situation where the magnetic

signal is a response to a stimulus, the source variance might change much more rapidly

immediately after the stimulus than before it; the likelihood f(Yk,t|JPt ) for any 1 ≤ k ≤ L
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may also vary in time since not all the measurements can be carried out simultaneously) is

not our aim for this thesis.

By taking all the previous prior information and the three assumptions ((i), (ii), (iii))

above into account, our problem can be stated as finding the posterior distribution, p(J P
t |Y tobs),

given the magnetic measurements Y tobs. By Bayes’ Theorem, we have

p(J P
t |Y tobs) ∝ f(Y tobs|J P

t )p(J P
t )

=

[
t∏

s=1

L∏
k=1

f(Yk,s|JPt )

][
t∏

s=1

p(JPs+1|JPs )

]
p(JP0 ) (3.5)

where Y tobs = (Y1, · · · ,YL) = (Y1,1, · · · , Y1,t, . . . , YL,1, · · · , YL,t) and J P
t = (JP0 , . . . ,J

P
t ). Our

framework is based on a one-source model (N=1). This framework can be extended to a

multiple-source model which includes several JP because the fields generated by distinct

sources simply add. This framework is used here to find the joint source distribution given

all the measurements we have. Because this distribution is high-dimensional (1 ≤ t ≤ T , T

is very large), MCMC methods or conventional Gibbs sampling are very hard to implement,

as we will show in Section 3.2.1. Obtainng p(J P
t |Y tobs) can be achieved dynamically by

computing the p(JPu |Yuobs) at each time point 1 ≤ u ≤ t; the details can be found in Section

3.2.2.

3.2 SOLVING THE MEG INVERSE PROBLEM

3.2.1 The Difficulty of Solving the Time-varying Model

A major problem with MCMC methods (e.g., Metropolis-Hastings) for getting joint posterior

samples from p(J P
t |Y tobs) when there are a large number of states is the difficulty of finding

a joint transition kernel which can be used in an MCMC sampler. However, the goal of

getting p(J P
t |Y tobs) can be achieved by sampling from the distribution p(JPs |Ysobs) for each

state s (1 ≤ s ≤ t) separately and the entire outcome can be regarded as the sample from

the joint distribution. Classical Gibbs sampling can be used for this alternative goal, but

because the likelihood term f(Y tobs|J P
t ) is not linear in JPt , it is not easy to sample from
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p(JPt |JPs 6=t,Y tobs) because we do not know the form of p(·|·). One natural way to address

this is to insert some kind of Metropolis MCMC sampler for p(·|·) into a Gibbs sampling

scheme. When we insert a random-walk Metropolis algorithm into the Gibbs sampler we

call it a random-walk MCMC+Gibbs sampler and when we insert a hybrid Metropolis

algorithm into the Gibbs sampler we call it a hybrid MCMC+Gibbs sampler.

The key to random-walk MCMC+Gibbs is to propose a JP
∗

t ∼ MVN(JPt ,Σ3) for

each t = (1, . . . , T ) where Σ3 = diag[τ 2
1 , τ

2
2 , ..., τ

2
6 ] is a 6 by 6 diagonal matrix and accept JP

∗
t

through the Metropolis-Hasting ratio if

αt =

∏L
k=1 f(Yk,t|Bk(J

P ∗
t ))p(JP

∗
t |JPt−1)p(JPt+1|JP

∗
t )∏L

k=1 f(Yk,t|Bk(JPt ))p(JPt |JPt−1)p(JPt+1|JPt )

is large enough. The problem is that MVN(JPt ,Σ3) is not a good proposal for JP
∗

t (that

is, we almost always reject the proposal) and this cannot be solved by extensively tuning

Σ3 = diag[τ 2
1 , τ

2
2 , ..., τ

2
6 ] in most practical cases if the dimension of the states is very high.

The Taylor expansion in [87] is worth attention if we could linearize the term f(Yk,t|JPt ) and

incorporate it into the proposal distribution. However, the extra work of a Taylor expansion

might be unnecessary if we only need an efficient sampling scheme in high dimensional

analysis.

The hybrid MCMC+Gibbs improves upon the random-walk MCMC+Gibbs when

the target distribution is difficult to capture by a simple random-walk MCMC+Gibbs. In

[19, 14, 87], a full conditional prior (hybrid MCMC) was proposed. Similar work can also

be found in [20] where a single move blocking strategy was developed but bad convergence

behavior was discovered. Gamerman [33] suggested using a reparameterization of the model

to a prior independent of the system disturbance and built a proposal by a weighted least

squares algorithm; however, that reparameterization resulted in quadratic computational

time. Knorr-Held [55] suggested an autoregressive prior which does not approximate the full

conditionals; instead of depending on the observation, the proposal is only dependent on

other states. As a comparison, our hybrid MCMC+Gibbs is built on a single move proposal;

that is, JP
∗

t is proposed from the distribution of p(JPt |JPs 6=t) which could be further reduced

to p(JPt |JPt−1,J
P
t+1) due to the Markov property. Careful computation leads to

JP
∗

t ∼MVN(ρ(JPt−1 − JPt+1) + (I− ρρ′)mcom(I + ρρ
′
)−1,Σ2(I + ρρ

′
)−1). (3.6)
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The Metropolis-Hasting ratio therefore reduces to

αt =

∏L
k=1 f(Yk,t|Bk(J

P ∗
t ))∏L

k=1 f(Yk,t|Bk(JPt ))
.

The performance of a single move could be improved by extending to a block move by

sampling a block of states at the same time based on other states. As an intermediate

strategy, the block move method updates a block of JPt s at once rather than one at a time.

Naturally the JP
∗

r , . . . ,JP
∗

s comes from the conditional proposal

p(JPr , . . . ,J
P
s |JP1,...,T/(JPr , . . . ,JPs ))

where r < s and JP1,...,T/(J
P
r , . . . ,J

P
s ) means a collection of JP1 , . . . ,J

P
r−1,J

P
s+1, . . . ,J

P
T . Thus,

the Metropolis-Hasting ratio becomes

αt =

∏L
k=1

∏s
t=r p(Yk,t|JP

∗
t )∏L

k=1

∏s
t=r p(Yk,t|JPt )

.

Although the block move provides a considerable improvement in the situation where a

single move has poor mixing behavior, Carter and Kohn [20] showed that both of these two

methods will cause convergence problems.

Recently developed adaptive samplers [102, 41, 5, 4, 6, 9, 78] might help find the transition

kernel within a Gibbs sampler, but these methods do not seem to work for MEG data. In

addition, although parallel tempering [88] seems reasonable, finding the temperature is not

straighforward and significantly increases the computational cost. Again, the MEG data set

is extremely large; in particular, we collect hundreds of channels of data at each time and

we collect data for hundreds of thousands of time points. It is quite difficult to implement

these methods even in a simple model which has an extremely large number of states. The

computational burden is even more substantial in the multiple-dipole case. We need a simple

and efficient sampling scheme for our dynamic system.
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3.2.2 Sequential Importance Sampling (SIS)

Sequential importance sampling (SIS) (see [59]) is advocated as a more practical tool for a

dynamic system. As we mentioned briefly in Section 3.1.2, computing p(JPu |Yuobs) sequentially

in u for 1 ≤ u ≤ t can lead to p(J P
t |Y tobs). Suppose πt(J

P
t ) = p(JPt |Y tobs), calculating

p(J P
t |Y tobs) can be achieved by performing the following two processes in sequential order

πt(J
P
t ) =

f(Yt|JPt )πt−1(JPt )

πt−1(Yt)
, (3.7)

πt(J
P
t+1) =

∫
p(JPt+1|JPt )πt(J

P
t )dJPt , (3.8)

where f(Yt|JPt ) =
∏L

k=1 f(Yk,t|Bk) and Yt is defined in Section 3.1.2. The denominator

πt−1(Yt) is a constant
∫
f(Yt|JPt )πt−1(JPt )dJPt . The first equation computes the posterior

density πt(J
P
t ) and the second equation is the well-known Chapman-Kolmogorov equation,

which allows computing of the next prior density based on p(JPt+1|JPt ) (the initial p(JP0 ) is

also known). For each t, most of the MCMC samples are either obtained from sampling

the joint πt(J P
t ) or some other distribution gt(J P

t ) and use an acceptance criterion [45].

However, the random draws of πt(J P
t ) are never used again when the system proceeds from

πt to πt+1 [19]. In high dimensions, the posterior samples for each state will have larger

variation between iterations and hence both convergence and computation problems arise.

In contrast, the SIS is able to reuse the current samples and help create the samples for

the next iteration; that improves the computational efficiency and reduces the variations

between iteratons. For non-linear problems or non-Gaussian densities, SIS requires the use

of numerical approximation techniques where the key idea is to represent an approximation

to the target posterior distribution by a set of samples and their associated weights.

In practice, suppose a stream St = {(J P
t )(j), j = 1, . . . ,m} (m by t) is a set of random

samples properly weighted by the the set of weights {w(j)
t , j = 1, . . . ,m} (m by 1) with respect

to πt(J P
t ) (this can be viewed as approximated posterior samples from J P

t = (JP1 , . . . ,J
P
t )).

Define gt+1(JPt+1|(J P
t )(j)) a trial function for JPt+1; the recursive SIS procedure produces a
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new stream St+1 by drawing a new sample JPt+1 and updating its associated weight. This is

summarized as follows:

Algorithm 1: SIS

(i) Sample a new (JPt+1)(j) from the trial distribution gt+1(JPt+1|(J P
t )(j)) and form

(J P
t+1)(j) = ((J P

t )(j), (JPt+1)(j)).

(ii) Compute the incremental weight u
(j)
t+1 =

πt+1((J P
t+1)(j))

πt((J P
t )(j))gt+1(JP

t+1|(J P
t )(j))

and update the

weight w
(j)
t+1 = u

(j)
t+1w

(j)
t .

(ii*) Sample a new stream S
′
t+1 from the stream St based on the updated weights w

(j)
t .

(iii) Assign equal weights to the samples in S
′
t+1.

Liu and Chen [60] showed that the new samples and weights ((J P
t )(j), w

(j)
t+1) are properly

weighted samples from πt+1. As time t increases, a resampling scheme is inserted between ad-

jacent times or one can just resample after the last time. This step is summarized in the (ii*)

and (iii) steps. Shephard and Pitt [87] showed that resampling (Step (ii*)) is only necessary

when the weights are very skewed; resampling reduces m and thus reduces the computational

burden. A schedule for the resampling scheme in SIS is proposed by [36, 54, 58]. The choice

of trial distribution gt+1(JPt+1|(J P
t )(j)) is crucial in SIS. The choice of gt+1(JPt+1|(J P

t )(j)) =

πt(J
P
t+1|(JPt )(j)) is much easier to implement, although it might bring greater variation (see

[13]). This procedure ends up getting gt+1(JPt+1|(J P
t )(j)) = p(JPt+1|(JPt )(j)) and incremen-

tal weights f(Yt+1|JPt+1). There exsits in the literature several kinds of local Monte Carlo

methods which could be embedded into SIS to get the weights, or even approximate weights,

no matter what gt+1 function we choose. This strategy provides the opportunity to find

relatively good weights that could be used in SIS so we thus can limit our attention to the

choice of trial function when we apply SIS.

3.2.3 Regular SIS Method with Rejection

Liu and Chen’s algorithm [60] inserts the standard rejection method as a local Monte Carlo

scheme into the SIS procedure. The system collects local samples from the rejection method

and estimates the associated weights for each state by the above estimation procedure

(Algorithm 1). In order to improve the efficiency of SIS, the resampling scheme is used

when the SIS arrives at the last time step, rather than resampling after every step. The
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details of the algorithm are summarized in Algorithm 2.

Algorithm 2: Regular SIS method with Rejection

(i) Initialize the first time step {(JP0 )(j)}m1 and its weights {w(j)
0 }m1 .

(ii) Sample (JP1 )(j) from p(JP1 |(JP0 )(j)) over j|m1 with

p(JP1 |(JP0 )(j)) =
1

(2π)6/2|Σ2|1/2
e
− 1

2

(
(JP

1 )(j)−(mcom+ρ(J
(j)
0 −mcom))

)>
Σ−1

2

(
(JP

1 )(j)−(mcom+ρ(J
(j)
0 −mcom))

)
.

(iii) Compute the constant c1 = supj
∏L

k=1 f(Yk,1|(JP1 )(j)).

(iv) Sample J = j with w
(j)
0 . Given J = j, draw JP1 from p((JP1 )(j)|(JP0 )(j)).

(v) Accept(j, (JP1 )(j)) if
∏L

k=1 f(Yk,1|(JP
1 )(j))

c1
≥ U(0, 1) else reject (j, (JP1 )(j)).

(vi) Estimate the weight w
(j)
1 by f̂j = frequency of {J = j} in the {J(l), (J

P
1 )(l)}m′l=1

sample. Update the sample (J P
1 )(j) = ((JP0 )(j), (JP1 )∗) if f̂j 6= 0 where (JP1 )∗ is any

value of JP1 if the associated f̂j 6= 0, or take a random draw from those with f̂j 6= 0 if

associated f̂j = 0.

(vii) Repeat steps (ii)-(vi) with

p(JPt+1|(JPt )(j)) =
1

(2π)6/2|Σ2|1/2
e
− 1

2

(
(JP

t+1)(j)−(mcom+ρ(J
(j)
t −mcom))

)>
Σ−1

2

(
(JP

t+1)(j)−(mcom+ρ(J
(j)
t −mcom))

)

and ct+1 = supj
∏L

k=1 f(Yk,t+1|(JPt+1)(j)).

(viii) Resample m′ out of m rows from J P
t without replacement based on the weights

wT |m1 .

3.2.4 Improved SIS Method with Resampling

The disadvantage of the regular SIS with the rejection method is that it requires computing

the constant ct+1 within the embedded rejection method and re-estimation of the weights

for the SIS procedure from the samples {J(l), (J
P
t+1)(l)}m′l=1. Both of these computations could

be quite inefficient in the state space model with high dimension. However, an improvement

could be made when the local importance resampling takes place where the samples are not

collected based on the accept/reject ratio, but instead by assigning a weight to each sample

[60]. It has been proven that the samples from the local importance resampling method

would automatically achieve the resampling effect. Thus, we could just keep those weights
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from any of the local Monte Carlo methods and directly iterate the SIS. The details of the

algorithm are summarized in Algorithm 3.

Algorithm 3: Improved SIS method with Resampling

(i) Initialize the first state {(JP0 )(j)}m1 and weights {w(j)
0 }m1 .

(ii) Sample J = j with w
(j)
0 .

(iii) Given J = j, draw JP1 from p((JP1 )(j)|(JP0 )(j)) with

p(JP1 |(JP0 )(j)) =
1

(2π)6/2|Σ2|1/2
e
− 1

2

(
(JP

1 )(j)−(mcom+ρ(J
(j)
0 −mcom))

)>
Σ−1

2

(
(JP

1 )(j)−(mcom+ρ(J
(j)
0 −mcom))

)
.

(iv) Given J = j, update the weights w
(j)
0 with p((JP1 )(j)|(JP0 )(j)) or assign w

(j)
0 with 0

if j is not sampled.

(v) Repeat step (ii)-(iv) with

p(JPt+1|(JPt )(j)) =
1

(2π)6/2|Σ2|1/2
e
− 1

2

(
(JP

t+1)(j)−(mcom+ρ(J
(j)
t −mcom))

)>
Σ−1

2

(
(JP

t+1)(j)−(mcom+ρ(J
(j)
t −mcom))

)
.

(vi) Resample m′ out of m rows from J P
t without replacement based on last weights

wT |m1 .

3.3 SIMULATION STUDY

In a typical MEG experiment, time is measured in milliseconds (the sampling rate is 1

KHz). However, for better understanding, from now on, we will use timesteps rather than

milliseconds. We ran two simulated cases to verify that the methods work. First, we present

some preliminary results for the single dipole case with a few parameters and low-dimension

in time. Second, an extension to the single dipole case with six parameters to high-dimension

in time is given. We used 40 radially oriented magnetometers and 15 timesteps in one case,

100 radially oriented magnetometers and 100 timesteps in the other case and we restricted

movement of the dipole to remain inside the brain.
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3.3.1 Simulated Case 1

In order to work in a known situation, we generated artificial data as follows. The head was

modeled by a homogeneous sphere of radius 100 mm. The measurements of the magnetic

field were simulated for 40 radially oriented magnetometers, located on the upper half of a

sphere with 110 mm radius. Only one dipole was used in our simulation. We added normally

distributed noise to the source. The magnetometer data were calculated from the electric

source data using the Biot-Savart equation at each sensor and normally distributed noise

was added. Before running our algorithms for a long time, we tested a simplified case where

the simulation was run for only 15 timesteps with only one of the six parameters allowed to

vary. In this very simple example, the dipole only moves in the z dimension in the brain

and both the strength and moments of the dipole remain constant. The parameters of the

simulated dipole are summarized in Table 1.

Table 1: Illustration of dipole simulation 1. The location parameters of the dipole are

expressed in terms of Cartesian coordinates (x(cm),y(cm),z(cm)); m1 and m2 are the dipole

moment parameters. s(mA) is the strength parameter of a dipole.

mint = (x, y, z,m1,m2, s) (1,1,5,3,3,3)

mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, ..., ρ6] diag[1 1 0.9 1 1 1]

Σ1 = diag[σ2
1, σ

2
1, ..., σ

2
1] diag[0.0625, 0.0625, ..., 0.0625]

Σ2 = diag[σ2
11, σ

2
22, ..., σ

2
66] diag[0, 0, 0.0225, 0, 0, 0]

# of timesteps 15

The Regular SIS method with Rejection (Algorithm 2) and the Improved SIS method

with Resampling (Algorithm 3) were tested on this dataset. The random-walk MCMC+Gibbs

and the hybrid MCMC+Gibbs were also run for comparison. In our SIS related methods, we

used (1.00, 1.09, 4.75, 3.10, 2.98, 3.15) for the initial state as a starting value. In the random-

walk MCMC+Gibbs and the hybrid MCMC+Gibbs, we generated random values from the

joint source distribution and used them as starting values for all the states. Figure 5 summa-

rizes sample plots for 4 selected timesteps from all the methods. We observe that both the
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random-walk MCMC+Gibbs and hybrid MCMC+Gibbs do not provide a stable estimate

for each timepoint and their samples are highly correlated. Both of our methods produce

much stable samples which oscillate around the true values.

3.3.2 Simulated Case 2

In addition to Case 1, a case of multiple source parameters (three location parameters and

three moment and strength parameters) was done. In this simulation, the source was modeled

as a moving dipole following a multivariate autoregressive time series model. The dipole

moves in the three coordinate directions x, y and z and both strength and moments of the

dipole change as well. The magnetic measurements were simulated for 100 radially oriented

magnetometers, located on the upper half of a sphere with 110 mm radius. To control the

movement of the simulated dipole (to not move outside of the brain when the number of

timepoints are large), we restricted the range of each parameter for the dipole. In order to

do this, we set boundary values for each parameter (i.e., maximum and minimum). The

autoregressive model for JPt in Section 3.1.2 occured only at certain timepoints specified in

advanced. In other words, the dipole had two type of moves: one is a move based on the

autoregressive model, and the other is a random walk move. The dipole moved according

to the autoregressive model at certain specified timesteps, whereas the random walk was

applied to the dipole at the other timepoints. We had similar restrictions on the other

parameters of the dipoles. The total length of simulation is 100 timesteps (we will run

2000 timesteps for data in Section 3.4.1). The starting values for the initial state are set to

(5.9, 7.15, 7.97, 2.89, 5.09, 4.97). The parameter setup is given in Table 2. The location and

moments of simulated source of 100 timesteps are given in Figure 4. The plots (histogram)

for each dipole location parameter and pairwise plots for the location parameters are shown

in Figure 6. These side by side histograms show the distribution of each location parameter

at 6 selected timepoints. Similar plots for the other three moment and strength parameters

are also shown in Figure 7. We can see the distribution (not Gaussian) of each parameter

of the source is varying at each timestep as we expected.

34



Table 2: Illustration of dipole simulation 2. The location parameters of dipole are expressed

in terms of Cartesian coordinates (x(cm),y(cm),z(cm)); m1 and m2 are the dipole moment

parameters. s(mA) is the strength parameter of a dipole. The diagonal elements of Σ1 and

Σ2 are 0.0625 fT2 and 0.01 cm2, respectively.

Initial Timepoint

mint = (x, y, z,m1,m2, s) (6,7,8,3,5,5)

mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, ..., ρ6] diag[0.65 0.7 0.75 0.8 0.85 0.9]

Random-walk Move

(x, y, z,m1,m2, s) based on previous value

# of timesteps 10

Autoregressive Move

(x, y, z,m1,m2, s) based on previous value

mcom = (x, y, z,m1,m2, s) (0,0,0,0,0,0)

ρ = diag[ρ1, ρ2, ..., ρ6] diag[0.65 0.7 0.75 0.8 0.85 0.9]

Random-walk Move

(x, y, z,m1,m2, s) based on previous value

# of timesteps 10

· · · · · ·

repeat until 100th timepoint
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3.4 PARALLEL VIRTUAL MACHINE (PVM) FOR HIGH-DIMENSION IN

TIME

In practice, the MEG dataset we have from an experiment is very large (e.g., hundreds of

thousands of timesteps or more). A natural extension of running our algorithms (Section

3.2.3 and Section 3.2.4) is to run them for a much longer time. To be exact, if we run for

5000 timesteps with 1500 replications (sample paths) for each JPt , we are supposed to get

a stream of S5000 = {(J P
5000)(j), j = 1, . . . , 1500} (St is defined in Section 3.2.2). Because

of the sequential character of our algorithms, sample paths for each time are computed in

a sequential fashion and the weights updated at each time. Therefore, it is very inefficient

to get the sample paths for a longer time. Based on our previous experience, the time

spent for running 100 timesteps has increased significantly from 15 minutes (a single dipole

parameter) to about 40 minutes (multiple parameters) on a single computer. It turns out

that a computational challenge arises even running for only 5000 timesteps. So far, we have

only used time spent (waiting time) to measure the running time of an algorithm. In the

next section, a formal terminology for time spent will be evaluated and compared.

Improving the speed is necessary and meaningful for the practical use of our algorithms.

Since we always need the sample path for the previous time (JPt−1) when we work on the

current time (JPt ) and they are not independent, therefore, the speed cannot be possibly

improved in the direction of time (e.g., sequentially). However, the sample paths are in-

dependent within each timestep (e.g., at time t), so they can be computed in a separate

fashion. In other words, it is always possible for us to compute several sample paths (several

chunks) for the same timestep (at time t) simultaneously. This simultaneous computation

for sample paths at each time t until the final timestep (5000) could be achieved by comput-

ing in parallel where each parallel scheme contains a sequential calculation for all the time t

(1 ≤ t ≤ 5000) with fewer samples, so that our sequential problem can be solved in parallel.

We use a parallel computing paradigm called Parallel Virtual Machine (PVM) [34] here

to speed up the computation. PVM software allows parallel computing using a message-

passing paradigm for a parallel network of computers. It is designed to allow a network

of heterogeneous machines to be used as a single distributed parallel processor. Thus large
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computational problems can be solved more cost effectively by using the aggregate power and

memory of many computers. The PVM structure we use is a Master-Worker model (Figure 8)

where there are several worker programs performing tasks in parallel and a master program

collecting the outcomes from each worker. Each task is to separately compute a partial sam-

ple path for all the timesteps. The resampling scheme is included in the worker program and

there is no parallelism in time. To be exact, if there are three worker programs in the Master-

Worker model to generate a steam ST = {(J P
T )(j), j = 1, . . . ,m}, the way of running PVM is:

Algorithm 4: PVM schedule

(i) Initialize each worker program and let each worker run Algorithm 2 (or

Algorithm 3) for 1 ≤ t ≤ T for a substream S
′
T = {(J P

T )(j), j = 1, . . . , m
3
}.

(ii) Stack each S
′
T and get a complete ST .

The size of S
′
T can be adjusted according to the size of ST and the number of worker

programs that are in use. The PVM speed is mainly influenced by hardware and software

components of network and I/O systems. The speed of PVM also depends on the number of

worker programs, e.g., adding too many parallel workers does not enhance the speed when

most of the time is spent on communication among the workers. In practice, deciding on

a good number of workers requires experience and it varies for the different performance of

machines. An application of running PVM for our simulated data is in Section 3.4.1. The

whole program at this time handles 102 channels of MEG data and works with one brain

source with multiple parameters. Since the magnetic fields generated by independent dipoles

add, there is no complexity (other than increased computation) brought by multiple dipoles.

3.4.1 Numerical Results for Running PVM

The PVM program was initially run on a single Linux workstation (Intel Pentium 4 CPU

3.80GHz, Memory 2 GB) for different PVM configurations. The data size was 2000 MEG

timesteps with 1500 sample paths for each timestep. We split the computation into a number

of tasks: 1 (without PVM), 3, 5, 10 and 15 workers respectively and run for 100 timesteps,

500 timesteps, 1000 timesteps, 1500 timesteps and 2000 timesteps. The user CPU time

(total number of CPU-seconds for master and worker programs) is used to measure the time

spent by our program for each PVM run. The real time elapsed (Minutes) is also attached
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Table 3: Machine configuration for PVM

Machine Name Model Name CPU (MHz) Stepping Cache Size (KB)

machine1 Intel(R) Pentium(R) 4 3790.644 3 2048

machine2 Intel(R) Xeon(TM) 3000.000 1 1024

machine3 Intel(R) Xeon(TM) 3000.000 1 1024

machine4 Intel(R) Xeon(TM) 2800.000 3 2048

machine5 Intel(R) Xeon(TM) 3000.000 3 2048

in parenthesis behind the user CPU time. The result is shown in Table 4.

We can see that the user CPU time increases roughly linearly in the number of timesteps

from 0.008 second to 0.146 second on average. The linear relationship of user CPU time on

experiment time is almost the same for each of these PVM configurations as we expected.

This can be clearly observed from Figure 9: in Figure 9 (a), these lines (user CPU time/Task)

are nearly equally distant and stay roughly constant for different tasks within the samesteps

time run; in Figure 9 (b), the slope of each line (user CPU time/Timesteps) is almost the

same. Notice that there is a significant difference in real time elapsed for different PVM

configurations. This should not be considered a contradiction with user CPU time because

real time elapsed is mostly affected by other programs and it includes time spent in memory,

I/O and other resources.

The performance can still be improved when extra machines are included. Table 5 lists

the PVM performance of 1 machines, 2 machine, 3 machines and 4 machines with experiment

time 1500 timesteps. First, since user CPU time is the sum of the CPU time for master and

worker programs, it is expected that the user CPU time for each of these PVM runs is

roughly 0.120 second. Second, the real time elapsed of each PVM runs is cut into 50%-70%

if one machine is added. The real time spent goes down to 40%-50% when three computers

are employed. The real time elapsed decreases to 10%-30% when four computers are added.

These performances are based on our public computer cluster with heterogeneous CPU speed
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Table 4: Illustration of PVM application on a single workstation. Five different PVM

configurations were run. The number of workers in PVM is denoted “# of Tasks.” The

number of sample paths within each worker is denoted “# per Task.” Each PVM run

eventually generates 1500 sample paths. Each PVM configuration was run for 100 timesteps,

500 timesteps, 1000 timesteps, 1500 timesteps and 2000 timesteps. This table shows the user

CPU time (Seconds) for each PVM run and real time elapsed (Minutes) in parenthesis.

# of # per CPU Time

Tasks Task Timesteps 1 Timesteps 2 Timesteps 3 Timesteps 4 Timesteps 5

(100) (500) (1000) (1500) (2000)

1 1500 0.008(1.00) 0.032(5.12) 0.064(10.35) 0.120(16.47) 0.136(22.08)

3 500 0.008(0.24) 0.032(2.05) 0.060(4.12) 0.096(6.23 ) 0.148(8.40)

5 300 0.008(0.17) 0.036(1.27) 0.064(3.17) 0.104(4.25) 0.148(6.47)

10 150 0.008(0.11) 0.040(0.59) 0.072(1.59) 0.096(3.00) 0.136(4.51)

15 100 0.008(0.10) 0.036(0.50) 0.064(1.43) 0.124(2.33) 0.164(3.24)
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(a) CPU time with Tasks (b) CPU time with Timesteps

Figure 9: PVM Performance: user CPU time (Seconds) for number of tasks and different

time run. (a) Each line (with a specific timesteps) is a plot of user CPU time for different

number of tasks. (b) Each line (with a specific number of tasks) is a plot of user CPU time

for different timesteps.

Table 5: Illustration of PVM application on multiple workstations. This table shows the user

CPU time (Seconds) for each PVM run and real time elapsed (Minutes) in parenthesis for

using one, two, three and four machines. The length of each PVM run was 1500 timesteps.

# of # per PVM Performance

Tasks Task 1 2 3 4

(1500) (1500) (1500) (1500)

3 500 0.084(7.56) 0.128(5.46) 0.108(3.39) 0.096(2.34)

5 300 0.100(4.55) 0.084(3.10) 0.124(2.23) 0.108(1.29)

10 150 0.100(3.19) 0.096(1.51) 0.104(1.39) 0.116(1.03)

15 100 0.124(2.34) 0.112(1.31) 0.104(1.00) 0.112(0.44)
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and cache size (Table 3); the theoretical reduction in execution time of our program by PVM

is not necessarily expected. For example, in our 3-task run, it is expected that we include

no more than 3 machines and the time should remain the same if an extra one is added.

However, we still have decreased real time when we run this on four machines. The reason

is that it is always the first three machines (sequentially) that are used and one standby.

Finally, we still get reasonable time reduction from our computer cluster for each of those

runs. It is suggested that, in order to get a good time execution by PVM, we need to adjust

number of CPU, number of tasks and use relatively similar machines. To summarize, Figure

10 is a graphic illustration of both real time elapsed and user CPU time for our PVM run.

(a) Real time for PVM run (b) Total user CPU time for PVM run

Figure 10: PVM Performance: real time elapsed (Minutes) and user CPU time (Seconds)

graph for number of machines for 1500 timesteps PVM run. (a) Each line (with a specific

number of tasks) is a plot of real time elapsed for different number of machines. (b) Each

line (with a specific number of tasks) is a plot of total user CPU time of master and worker

programs for different number of machines.
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3.5 A REAL DATA APPLICATION

Data was collected by a 306-channel (102 magnetometers and 204 planar gradiometers)

system (Elekta-Neuromag) at the Center for Advanced Brain Magnetic Source Imaging

(CABMSI) at UPMC Presbyterian hospital in Pittsburgh in an experiment related to Brain-

controlled interfaces (BCI). A BCI expresses motor commands via neural signals directly

from the brain. The experiment involves two parts (see Figure 11): in the first part the

subjects were asked to imagine performing the “center-out” task using the wrist (imagined

movement task) and in the second part the subjects controlled a 2-D cursor using the wrist to

perform the center-out task following a visual target (overt movement task). The magnetic

field at each sensor was acquired at sampling rate of 1000 Hz.

Our data consists of one trial recording 37000 milliseconds long at 102 MEG sensors

(magnetometers). We used this data for testing our model along with our PVM scheme

rather than decoding the intended movement direction of subjects. Instead of analyzing

the whole trial of data, we only analyzed about 400 milliseconds (dashed box in Figure 12)

after movement onset (12000 - 12400 milliseconds in the original data) from all the chan-

nels. To simplify our calculation for the real data, we were only estimating the location

of the source (x, y, z). The moment and strength parameters (m1,m2, s) were not of our

interest (not varying too much by assumption). The choice of prior for real data is an

open question; we used almost the same prior as we did in Section 3.3.2 for simplification.

We set the mean mini of the initial state JP0 as (−4,−4, 11) motivated by the minimum

norm estimate [43], which is (−2,−2, 10). The starting values for the initial state are set

(−4.06,−3.77, 13.13, 1.11, 0.98, 1, 12). The empirical density plots of the dipole location pa-

rameter (x, y, z) at two selected timesteps are shown in Figure 13. Different initial values

might have different performance due to the complexity of this problem and the real data;

thus, a more realistic prior needs to be investigated in our future work. We ran PVM for

1500 milliseconds (12000 milliseconds - 13500 milliseconds in the original data) with the

same PVM configuration as our simulation; the time spent is very close to that from our

result in Section 3.4.1.
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Figure 11: The subject controls the 2-D cursor position using wrist movements. The cursor

needs to go to the center and stay there for a hold period until the peripheral target ap-

pears. Then the cursor moves from the center out to the target and stays there for another

hold period to complete the trial successfully. The target changes color when hit by the

cursor, and disappears when the holding period has finished. The bottom trace shows the

speed profile of the cursor from a representative trial, and the dotted lines delimit the pre-

movement/planning period. Picture and explanations were obtained from J Neurophysiol

(August 25, 2010). doi:10.1152/jn.00239.2010.
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Figure 12: The MEG signal of a typical trial at a sensor. The Horizontal line is the time

(ms); the vetical line shows the magnitude of the signal (fT).

Figure 13: Empirical density for source location parameter (x, y, z). Left: density plot for

1st millisecond; Right: density plot for 100th millisecond.
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3.6 DISCUSSION

We studied the MEG inverse problem. For this important scientific problem, we formulated

a predictive model aiming to find the source distribution. We modelled a time-varying source

by a state-space model and tackled the inverse problem by finding the posterior distribution

for the source at each time point rather than fitting a single estimate. Due to the complex-

ity of the problem (i.e., non-linearity of likelihood; high-dimension), we discussed why the

conventional MCMC methods (e.g., random-walk MCMC+Gibbs or hybrid MCMC+Gibbs)

would not be able to work efficiently in this situation. Two algorithms based on sequential

methodology were proposed in order to find the source distributions. We also addressed

developing an efficient computing scheme to speed up the computation of the methods. A

practical aspect of our study is that we could provide useful information for a doctor who

might be interested to know, before conducting brain surgery, where the source area might

be. To make this huge computation possible, a set of C programs under LINUX has been

developed and the PVM extension has been used.

Our results so far were mainly based on a one-source model where we assume there is

only one dipole in the MEG data. We are still developing a multiple-source model for the

MEG inverse problem. The extension from one source to having multiple sources is natural

and only the computational complexity increases. Our algorithms will still work in this

multiple-source model case. However, to determine the number of sources in the MEG data

is still an open question. To experiment with this issue, there are three general ways of

finding the number of sources for the advanced model. The first one, which is relatively

easy, is to use a pre-defined number of sources for the data. The second one is to estimate

the number of sources from the data in advance [100, 103]. The third one is to model the

number of the sources in a Bayesian way using a prior distribution.

We simulated a dataset to run our algorithms and PVM. We compared our algorithms

with other MCMC methods. In our simulation sudy, in order to focus on the source param-

eters we fixed several parameters (source noise parameters, measurement noise parameters,

etc.) in the model. In fact, those parameters could be estimated along with the source

distribution. The natural way of implementing this is to iterate those parameters and the

50



source distribution until all of them become stable. Furthermore, the skewness of weights

that arise in the sequential importance sampling could be a tradeoff between the efficiency

of the program and the quality of the source distribution. Residual sampling can be used to

replace regular weight sampling. For a real data analysis, a collection of high frequency (1

KHz) MEG data was analyzed. We used the same prior in this analysis and calculated the

distribution of the source location.

Our results show that PVM did improve the speed by computing in parallel. Since

our PVM program involves randomness and a resampling scheme, several issues from our

PVM implementation still need to be resolved. First, if our algorithm were implemented

in a single program without parallelism, all samples generated before resampling from this

program should be simply related to the random number generator. However, when there

were several workers with each of them doing the same thing as a single program but in

parallel, the unique randomness within each worker will eventually come up with different

but similar samples before resampling. To be exact, in order to have the two programs

generate the same results, in the PVM structure we need to explicitly and precisely choose

different workers correspondingly according to a pre-defined random sequence. This random

sequence can be obtained from the single program without parallelism. Unfortunately, this

needs a lot of work in programming. Second, in a single program without parallelism,

we would only have one resampling procedure. The samples would be generated from the

resampling procedure. However, there was one resampling procedure within each of our

worker programs in PVM. The samples were generated from each of these workers and

should eventually be pooled together. In principle, the weights from each worker should

be pooled first and then we would perform the resampling procedure. The reason is each

worker might generate different weights so that the normalizing constants might be different.

If the resampling happens only one time (at the end of all timesteps), a reasonable way to

solve this problem is that we can do the resampling scheme in the master program after

normalizing all the weights when pooled. If there are several resampling schemes before the

end of timestep, we can still return to the master program at each time. Again, it needs

extensive programming. In our current program, sums of weights within each worker were

almost the same (normalizing constants are almost the same), so we retained the resampling
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procedure in each worker program. Third, there is always a tradeoff between resampling in

parallel or not. Since we are dealing with a huge amount of data, our goal is to discover

some distributed samples and it is not our interest to get the exact same samples as a single

sequential program does.
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4.0 STATISTICAL APPROACHES TO ESTIMATING THE NUMBER OF

SIGNAL SOURCES IN MEG

4.1 DETERMINING THE NUMBER OF SIGNAL SOURCES BY

INTRINSIC DIMENSIONALITY (ID)

4.1.1 Matrix View of Finding the Number of Sources for MEG Data

The conventional estimation of the number of signal sources for any hyperdimensional data

(e.g., Y tobs defined in Eq. (3.5)) is equivalent to estimating the minimum number of param-

eters required to account for the observed properties of the data. In practice, this number

is difficult to find because it is much smaller than the dimensionality of the data sample

vector (e.g., L). Ideally, this problem can be formulated as a maximization problem based

on intrinsic dimensionality (ID). The maximization procedure (see [32]) is to derive a matrix

X (a L by L matrix) such that

argmax
X

XTRX

XTRnX
= argmax

X

XTRsX

XTRnX
+ 1, (4.1)

where R is the covariance matrix of the observed data matrix Y tobs defined in Section

3.1.2; specifically, Rs and Rn are the covariance matrices for the pure signal B(JPt ) =

(B1(JPt ), · · · ,BL(JPt ))T (1 ≤ t ≤ T ) and the noise Ut = (U1,t, · · · , UL,t)T (1 ≤ t ≤ T ), re-

spectively. If we assume that the signal is uncorrelated, then the matrix R can simply break

down to R = Rs + Rn (see i.e., [37, 92]). Suppose we know the noise covariance matrix Rn,

then a whitening process can be applied to transform both R and Rn

W
′

nRWn = WT
nRsWn + WT

nRnWn = Rs,adj + I = Radj (4.2)
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where Wn = ΦnΛ
−1/2
n denotes the transformation matrix, in which Φn and Λn are the

associated eigenvectors and eigenvalues of Rn, respectively. Therefore we have

ΦT
adjRadjΦadj = Λadj (4.3)

Finally we have X = ΦnΛ
−1/2
n Φadj and

XTRX = diag[λ1, λ2, ..., λp, λp+1, ..., λL] (4.4)

where Φadj and Λadj are the associated eigenvectors and eigenvalues of Radj, respectively.

The two sequences {λi}pi=1 and {λi}Li=p+1 = 1 are the associated eigenvalues for Rs and

Rn. The constant 1s are the eigenvalues of Rn from the whitening process. Therefore, the

intrinsic dimensionality of the data can be determined by counting the number of eigenvalues

of Radj that are larger than unity.

4.1.2 Previous Work on Estimating the Number of Signal Sources

Model-choosing methods, such as PCA, AIC, etc., have been used for a while for both

multispectral data (with only a small number of channels) and hyperspectral data (a large

number of channels). All of these methods try to find the minimum number of parameters

that are required to account for the data, and use minimum number that as an estimate of the

number of sources for the data. While these methods sometimes work well on multispectral

data, they are very limited in hyperspectral data where hundreds of channels of data are

presented. Hyperspectral imagery has a very high component dimensionality (306 channels

for MEG here), and to determine their intrinsic dimenionality could be problematic. This

is because a high spectral resolution hyperspectral sensor has the capability of uncovering

many unknown target sources spectrally that could not be identified by visual inspection or

“a prior”. Moreover, when signal sources are relatively weak or noise is not negligible (such

as in MEG data), methods based on data covariance (see Section 4.1.1) become difficult. The

eigenvalue distribution will be strongly affected by the noise whitening process. Hence, in

practice it will be very critical to estimate the noise structure Rn before the whitening process

is applied. However, estimating the noise structure is not easy. In the literature, there exist
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several categories of methods that have been used in hyperspectral data analysis: (1) noise-

adjusted PCA [37] and fast ICA [49, 50]; (2) spectral data explorer [92]; (3) a wavelet-based

approach [29] and (4) the most recent methods for high dimensional covariance estimation

[15, 18]. The methods from (1), (2) and (4) tend to need more information about the noise

structure before the estimation; the methods from (4) also have high computational cost.

Here, we assume the MEG sensors are independent such that Rn = diag[σ2
1, σ

2
2, ..., σ

2
L] and

focus on the wavelet approach, residual analysis method and Fourier method, respectively,

and use them to estimate the noise covariance matrix for our MEG data.

4.2 ESTIMATION OF THE NUMBER OF SIGNAL SOURCES BY

VIRTUAL DIMENSIONALITY (VD)

4.2.1 Noise Estimation by Using Wavelet Basis

For convenience, we rewrite the pure signal function Bk(J
P
t ) by Ȳk,t, and the magnetic

observation at the kth sensor at time t can be described as

Yk,t = Ȳk,t + Uk,t, 1 ≤ t ≤ T, 1 ≤ k ≤ L. (4.5)

The whitening process of the covariance matrix R largely relies on the accuracy of noise

estimation; we need a robust estimation of the noise. We will use the wavelet coefficients of

Yk,t to estimate the noise. In case of the time varying source of the MEG, the estimator is

insensitive to the time-varying characteristic of the signal [53]. Since we will be using discrete

wavelets, a brief review of the discrete wavelet transformation (DWT) [28] is necessary.

Starting from a single basic wavelet Ψ(t), called the mother function, the discrete wavelets

are generated as follows

Ψm,n(t) =
1√
am

Ψ(
t− namb

am
) (4.6)
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where m ∈ Z is the scale factor, n ∈ Z is the translation factor, and a > 1, b > 0 are real

numbers (R). The DWT is the inner-product of the signal Yk (Yk = (Yk,1, · · · , Yk,T )) and

the wavelets Ψm,n,

γ(m,n) =< Yk,Ψm,n > . (4.7)

The definition of Yk here is different from that in Eq. (3.2). The set of functions Ψm,n∈Z

is a complete and orthogonal basis in L2(R). The reconstruction of any signal Yk,t can be

obtained by

Yk,t =
∑
m∈Z

∑
n∈Z

γ(m,n) ·Ψm,n(t) =
∑
m∈Z

∑
n∈Z

< Yk,Ψm,n > ·Ψm,n(t). (4.8)

In theory, to get the wavelet coeffcients WYk
, we need to do the transform of the data Yk

by WYk
= WYk. The orthogonal wavelet transform matrix W (formed by the orthogonal

wavelet basis, Ψm,n∈Z) is T by T . In practice, one performs the DWT without explicitly

calculating all the wavelet functions. Many fast filtering algorithms based on the filter bank

that uniquely correspond to the wavelet of choice are used to do the wavelet transformation.

Suppose that the DWT is applied to the vector Yk transforming it into a vector WYk
. The

decomposition can be written as

WYk
= (HnYk, GH

n−1Yk, · · · , GH2Yk, GHYk, GYk) (4.9)

where G and H are high-pass and low-pass filters corresponding to the wavelet basis. The

high-pass filter G and the low-pass filter H are related (knowing the low-pass filter implies

knowing the high-pass filter) and thus together they are known as a quadrature mirror

filter [64]. Let W j
Yk

be the jth element of the vector WYk
such that the elements of W j

Yk

are the wavelet coefficients representing different levels in the wavelet decomposition. To

be specific, the wavelet coeffcients of the jth level of decomposition is GHn−j−1Yk. For

example, GYk contains T/2 coefficients representing the finest level scale ((n − 1)th level).

At each level, the high-pass filter produces detailed information coefficients (from G) while

the low-pass filter produces coarse approximation coefficients (from H). We note that, for

a more complex model one could choose a higher order wavelet, but for simplicity, we have
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chosen the Daubechies 4 wavelet [28]. The high-pass filter coefficients (g0, g1, g2, g3) are given

by

(−0.1294095226,−0.2241438680, 0.8365163037,−0.4829629131)

and the low-pass filter coefficients (h0, h1, h2, h3) are given by

(0.4829629131, 0.8365163037, 0.2241438680,−0.1294095226).

Each row of the high-pass filter matrix G consists of (g0, g1, g2, g3) and each row of the low-

pass filter matrix H consists of (h0, h1, h2, h3). The ith detailed information coefficient can

be computed by

GYk(i) = g0Yk,2i + g1Yk,2i+1 + g2Yk,2i+2 + g3Yk,2i+3.

Similarly, the ith coarse approximation coefficient can be computed by

HYk(i) = h0Yk,2i + h1Yk,2i+1 + h2Yk,2i+2 + h3Yk,2i+3.

It is reasonable to assume that the signal function Ȳk,t (see Eq. (4.5)) is a continuous function

and piecewise smooth. Therefore Ȳk,t can be approximated by a polynomial function of degree

of M according to Stone-Weierstrass theory [77]

Ȳk,t = ak,0 + ak,1t+ ...+ ak,M t
M . (4.10)

If Ψ(t) has a vanishing moment c(c > M) (
∫∞
−∞ t

cΨ(t)dt = 0, c = 0, 1, ...,M − 1 and∫∞
−∞ t

MΨ(t)dt 6= 0), then after the discrete wavelet transformation as defined in [28], the

signal Ȳk,t is supressed and only the noisy components Uk,t are left; that is

WYk
= WUk

(4.11)

where Uk = (Uk,1, . . . , Uk,T ); the definition of Uk here is different from that in Eq. (3.2)

in Section 3.1.2. The standard deviation of the noise Uk can be estimated from the me-

dian of the finest scale wavelet coefficients provided that the signal function Ȳk,t is a linear

combination of a set of wavelet basis [29].

σ̂k ≈
1

0.6745
Med(

∣∣W n−1
Yk

∣∣) (4.12)
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The W n−1
Yk

are the detailed information coefficients (finest scale) of size T/2 contained in

WYk
. Med represents the median of the data sequence of absolute value |W n−1

Yk
|. The factor

0.6745 is chosen for calibration with the Gaussian distribution. The square of this estimator

above is a robust estimator of the variance of noise σ2
k at the kth sensor. Finally we have the

estimated noise covariance matrix R̂n = diag[σ̂2
1, σ̂

2
2, ..., σ̂

2
L].

4.2.2 Noise Estimation by Residual Analysis

To overcome the random property that the wavelet method leaves on the noise estimation,

which might cause a problem in the eigenvalue distribution of the de-noised data covariance,

we will use the noise estimation method developed by [76] based on residual analysis. The

decomposion of the sample covariance matrix R∗ can be expressed as R∗ = DLELDT
L, where

DL = diag[σ∗1, σ
∗
2, ..., σ

∗
L] with

{
(σ∗j )

2
}L
j=1

being diagonal elements of R∗, and

EL =



1 ρ12 ρ13 · · · ρ1L

ρ21 1 ρ23 · · · ρ2L

ρ31 ρ32
. . . . . .

...
...

...
. . . . . . ρ(L−1)L

ρL1 ρL2 · · · ρL(L−1) 1


(4.13)

with ρmn being the correlation coefficient at the (m,n)th entry of R∗. Similarly, the decom-

position of the inverse, (R∗)−1, is (R∗)−1 = DL−1EL−1DT
L−1 , where DL−1 = diag[ς∗1 , ς

∗
2 , ..., ς

∗
L]

with
{

(ς∗j )2
}L
j=1

being diagonal elements of (R∗)−1, and

EL−1 =



1 ξ12 ξ13 · · · ξ1L

ξ21 1 ξ23 · · · ξ2L

ξ31 ξ32
. . . . . .

...
...

...
. . . . . . ξ(L−1)L

ξL1 ξL2 · · · ξL(L−1) 1


(4.14)
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with ξmn being the correlation coefficient at the (m,n)th entry of (R∗)−1. This method

estimates the noise covariance matrix Rn by R̂n = diag[1/(ς∗1 )2, 1/(ς∗2 )2, ..., 1/(ς∗L)2], which is

a diagonal matrix, and

ς∗j =
1√

(σ∗j )
2(1− r2

L−j)
(4.15)

where r2
L−j is the multiple correlation coefficients of channel Yj on the other L− 1 channels

{Yk}Lk=1,k 6=j from the multiple regression theory. The advantage of using ς∗j is that ς∗j removes

its correlation on the other ς∗j s while σ∗j does not.

4.2.3 Noise Estimation by Using Fourier Basis

The utility of the Fourier transform lies in its ability to analyze a signal in the time domain

by its frequency content. The transform works by first translating a function in the time

domain into a function in the frequency domain. The signal can then be analyzed for its

frequency content because the Fourier coefficients of the transformed function represent the

contribution of the complex exponential function at each frequency. The discrete Fourier

transform (DFT) relates two finite sequences. In terms of our previous definition for Yk,t

in Section 3.1.2 (a sequence indexed by t, k is fixed), the discrete Fourier transform of the

sequence Yk,t where 1 ≤ t ≤ T is a sequence of Cr for r = 0, 1, . . . , T − 1 defined by

Cr =
1

T

T∑
t=1

Yk,texp(−i2πrt
T

). (4.16)

The corresponding inverse transform is

Yk,t =
T−1∑
r=0

Crexp(
i2πrt

T
). (4.17)

The complex numbers Cr are the Fourier coefficients (based on the complex exponential

basis functions). Recall Yk,t = Ȳk,t + Uk,t for the kth sensor (1 ≤ k ≤ L), where we have

the assumption that the noise Uk,t is additive and independent of the signal Ȳk,t. When we

perform the Fourier transform on the observed Yk,t, the Fourier coefficients evaluated by Eq.

(4.16) can be considered as a sum of the true Fourier coefficients of the signal Cs
r and the
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Fourier coeffcients generated by noise Cε
r; that is Ĉr = Cs

r + Cε
r. The first two moments of

the calculated Fourier coefficients Ĉr can be found in [89]

Mean(Ĉr) = Cs
r Var(Ĉr) =

σ2
k

T
. (4.18)

These formulas give the relation between the variances of the calculated Fourier coefficients

and the variance of noise. This means that we can estimate the noise variance by calculating

the sample variance of the calculated Fourier coefficients. However, the effect of signal on the

calculated Fourier coefficients is not always negligible. To avoid using Fourier coefficients that

are largely affected by the signal, the median of the modulus of the Fourier coefficients is used

instead of the sample variance of the coefficients. Because the coefficients are Hermitian,

we need only use the first half (or first quarter) of the Fourier coefficients (not including

coefficients for r = 0) in the noise estimation. For each sensor k, if the complex coefficients

Ĉr are used, the standard deviation of the noise is estimated by

σ̂k ≈MMed(|Ĉr|, 1 ≤ r ≤ T/2)/0.6745 (4.19)

where |Ĉr| is the modulus of Cr and M is the scale term
√
T/6 (see the APPENDIX A for

details). Finally we have the estimated noise covariance matrix R̂n = diag[σ̂2
1, σ̂

2
2, ..., σ̂

2
L].

4.2.4 Virtual Dimensionality (VD) and Eigensystem Thresholding

Although we can estimate the covariance of the noise (R̂n) from the data by the three meth-

ods above on a relatively accurate basis, in practice, we still face a problem of determining

the cutoff threshold between the eigenvalues caused by signals and noise (such as eigenvalues

from Radj). In other words, it is difficult to decide when a change between two adjacent

eigenvalues is significant or not. Therefore, for real MEG data, using 1 as the threshold

to decide the number of significant eigenvalues may not be reliable. To solve this problem,

we will be using the concept of virtual dimensionality (VD) [21, 23], which is the minimum

number of spectrally distinct signal sources that characterize the hyperspectral data from the

perspective of target detection and classification. The idea comes from the remote sensing

field where VD provides an effective solution for estimating signal sources in a huge hyper-

spectral imagery dataset. Because of its similarity to estimating the number of sources in
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MEG data, we believe VD is a reasonable choice for our data and can be used after possible

adjustment.

The idea of VD is realized by simply calculating the eigenvalues of both the sample

correlation and covariance matrices,
{
λ̂j

}L
j=1

and {λj}Lj=1, for the jth sensor. A signal source

is present if the difference, λ̂j − λj is positive. Let C∗ (L by L) and R∗ (L by L) be the

sample correlation matrix and covariance matrix. Their eigenvalues are ordered and have

the following form, (λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂L) and (λ1 ≥ λ2 ≥ ... ≥ λL), respectively. We expect

λ̂j > λj j = 1, ...,VD (4.20)

λ̂j = λj j = VD + 1, ..., L. (4.21)

Estimating VD is usually through a series of Neyman-Pearson tests [21, 23, 44, 1], that is,

for j = 1, ..., L, we test

H0 : zj = λ̂j − λj = 0 (4.22)

H1 : zj = λ̂j − λj > 0. (4.23)

Since the noise energy represented by
{
λ̂j

}L
j=1

is the same as the one represented by {λj}Lj=1,

when H1 is true, it implies there is a signal source contributing to the correlation eigenvalue

in addition to noise. Thus, each pair of eigenvalues λ̂j and λj can be modeled as random

variables under both H0 and H1 as

p0(zj) = p(zj|H0) ∼= N(0, σ2
zj

) j = 1, ..., L (4.24)

p1(zj) = p(zj|H1) ∼= N(µj, σ
2
zj

) j = 1, ..., L (4.25)

where µj is unknown and the variances σ2
zj

are asymptotically zero [3] given the assumption

that Cov(λ̂i, λi)→ 0, Var(λ̂i) ∼= 0 and Var(λi) ∼= 0. When sample size T is large, from [23],

we have Var(λ̂i) ∼= 0 and Var(λi) ∼= 0, therefore Cov(λ̂i, λi) → 0 is guaranteed (Schwarz’

Inequality). However, this is not always true when T is not large enough. To avoid this

trouble, we will not be working with either C∗ or R∗. To be precise, the Neyman-Pearson test

is applied directly on Radj introduced in Section 4.1.1. The whitening matrix Wn is obtained

by any of the wavelet method, the residual analysis method or the Fourier method (because
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Rn is diagonal, the whitening process defined in Eq. (4.2) is equivalent to R
−1/2
n R∗R

−1/2
n ).

Let R̄adj denote the estimated Radj using R̂
−1/2
n R∗R̂

−1/2
n , then

R̄adj =
VD∑
j=1

λ̄j,adjuju
T
j +

L∑
j=VD+1

λ̄j,adjuju
T
j (4.26)

where
{
λ̄j,adj

}L
j=1

and {uj}Lj=1 are the associated eigenvalues and eigenvectors. Now since

after whitening, λ̄j,adj = 1 for j = 1, ...VD in theory, the test becomes

H0 : yj = λj,adj = 1 (4.27)

H1 : yj = λj,adj > 1 (4.28)

where p0(yj|H0) ∼= N(1, σ2
yj

) and p1(yj|H1) ∼= N(µj, σ
2
yj

). Now, from [23] σ2
yj

is given by

σ2
yj

= Var(λj,adj) ≈
2λ2

j,adj

T
. (4.29)

The VD is based on the target detection and classification point of view. Define a Neyman-

Pearson detector as δNP (λ̂j − λj) in the jth binary composite hypothesis test introduced in

Eq. (4.20). For a fixed false-alarm probability pF = α, the threshold τj (1 ≤ j ≤ L) can be

obtained by maximizing the detection probability pD, where pF and pD are defined as

pF =

∫ ∞
τj

p0(z)dz (4.30)

pD =

∫ ∞
τj

p1(z)dz. (4.31)

Thus, according to the Neyman-Pearson lemma, a case of λ̂j−λj > τj means that δNP (λ̂j−λj)

fails the test. The threshold τj depends on the index j. Under H0, σ2
yj
≈ 2

T
, which means

we have the same threshold for each λj,adj. In order to determine τj, we have∫ ∞
τj

p(yj|H0)dyj =

∫ ∞
τj

1√
2πσyj

e
−(yj−1)2/2σ2

yj dyj = α j = 1, ..., L. (4.32)

Therefore, τj = 1 + µασyj , where µα is the 100(1 − α) of the standard normal distribution.

This threshold depends on the false-alarm probability α, the eigenvalue λj,adj and the number

of samples T . When the same threshold is chosen for all sensors under the H0, it depends

on the false-alarm probability α and the number of samples T . When the data dimension

is large (L is large), the λj,adj computed from spectral decomposition are not necessarily

greater than 1, since the whitening process is affected by noise estimation.
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4.2.5 AIC, MDL and Malinowski’s Method

The common AIC and MDL methods will be also used here for comparison. The following

formulas can be found in [101],

AIC(N) = −2 log

 ∏L
j=N+1 λ

1
L−N

j

1
L−N

∏L
j=N+1 λj

(L−N)T

+ 2N(2L−N) (4.33)

and

MDL(N) = − log

 ∏L
j=N+1 λ

1
L−N

j

1
L−N

∏L
j=N+1 λj

(L−N)T

+
1

2
N(2L−N) log T (4.34)

where (λ1 ≥ λ2 ≥ ... ≥ λL) are the eigenvalues calculated from R∗ and the N is the number

of free parameters. In our case, N refers to the number of signal sources. If the noise is

independent and identically distributed, the problem of finding the number of signal sources

can be achieved by minimizing the following,

Number of sources = argmin
N

AIC(N) (4.35)

and similarly

Number of sources = argmin
N

MDL(N). (4.36)

Malinowski’s method [63], a popular factor analysis method, is also used here for com-

parison, where an empirical indicator function (EIF) [62] is introduced as a criterion

EIF(N) =

(∑L
j=N+1 λj

)1/2

T 1/2 (L−N)3/2
(4.37)

and the number of sources is estimated by

.Number of sources = argmin
N

EIF(N). (4.38)

Each of the AIC, MDL and EIF methods tends to overestimate the number of signal

sources and rely on the independence and normality assumption. In Sections 4.3 and 4.4,

their performance is compared with our methods as well as PCA in our simulation study

and a real data application.
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4.3 SIMULATION STUDY

Before running our algorithms on a real data set, we tested a simplified case. In this example,

10 dipoles were simulated. The locations of these simulated dipoles are summarized in Table

6. The associated parameters for each dipole such as locations, moments and strength did not

vary during the simulation. In other words, each dipole contributed a different but constant

signal at the same sensor. However, to work with time-varying dipoles, we applied a different

frequency to the magnitudes of each dipole so that we can create a distinct time series for

each dipole. In order to work in a known situation, we generated artificial data as follows.

The head was modeled by a homogeneous sphere of radius 85 mm. The measurements of the

magnetic field were simulated for 45 radially oriented magnetometers, located on the upper

half of a sphere with 90 mm radius. The pure magnetic signal produced by each dipole at

each sensor was calculated using the Biot-Savart equation. To get a time series for each dipole

with unique frequency, the pure magnetic signal was transformed by a sine function with

frequency 1, 2, · · · , 10. The simulated noise data was normally distributed having constant

and independent variance across sensors. The magnetometer data were obtained by adding

up the contributions from each dipole at each sensor and simulated noise. The total length of

the simulation is 1024 timesteps. We have used the wavelet approach (Daubechies 4 wavelet

transformation), the residual analysis method, and the Fast Fourier transform (FFT) in our

noise covariance estimation.

We have worked with five datasets with each dataset containing 1, 2, 3, 4 and 8 dipoles,

respectively. In each of those datasets having more than one dipole, the magnetic fields of

the different dipoles add. Each data set has five different SNRs. Our methods and PCA are

tested on data sets where the number of dipoles is small (1, 2 and 3) and number of dipoles

is large (4, 6 and 8) under different SNRs. In addition, one more dataset with ten dipoles is

also tested against PCA without varying the SNRs.

From Table 7, we can see that when there is only one dipole in our simulated data, all of

the methods (NPW, NPR, NWF) and PCA can detect the correct number of dipoles when

the SNR is large (e.g., SNR=220 and 110). When the SNR is small (e.g., SNR=75, 55 and

45), PCA tends to detect more dipoles (2, 12 and 23 dipoles) while our methods do not. The
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Table 6: Illustration of dipole simulation 3. In this simuation, 10 different dipoles are simu-

lated. The location parameters of each dipole are expressed in terms of spherical coordinates

(r,θ,φ), where r is radial distance, θ is inclination and φ is azimuth. m1 and m2 are the dipole

moment parameters. s is the strength parameter of a dipole.

Dipole index 1 2 3 4 5 6 7 8 9 10

r (mm) 20 30 40 50 60 70 80 15 10 25

φ π/3 π/4 π/5 π/6 π/7 π/5.5 π/3 4π/5 5π/6 6π/7

θ 3π/2 π/3 π/4 3π/5 π/6 π/4 π/8 3π/4 4π/5 5π/6

m1 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4

m2 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4

s (mA) 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4

more dipoles that are in the data, the more difficult it is for PCA to detect the correct number

of dipoles. PCA comes up with eigenvalues that are very close, thus it tends to find a larger

number of dipoles. In particular, when the number of dipoles is two, PCA becomes very

sensitive under small SNR (i.e., SNR=110); in contrast, our methods still detect the correct

number of dipoles. When the number of dipoles is more than two, PCA is not able to detect

the correct number of dipoles under any SNR; however, we notice that when the number of

dipoles becomes large, our methods still find about the right number of dipoles. Figure 14

shows the eigenvalue plots for all of our methods and PCA when the true number of dipoles

is ten. The PCA method comes up with 39 dipoles (3 very large eigenvalues but needs 39

eigenvalues to achieve the cut-off point of 90%). However, the NPW estimates 10 dipoles

(false alarm probability PF = 10−4), the NPR estimates 11 dipoles (false alarm probability

PF = 10−7) and the NPF estimates 10 dipoles (false alarm probability PF = 10−5).
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Table 7: Comparison of results from NPW (Neyman-Pearson with wavelet), NPR (Neyman-

Pearson with residual analysis), NPF (Neyman-Pearson with FFT) and PCA when the

number of dipoles is one, two, three, four and eight.

Number of sources NPW NPR NPF PCA SNR

1 1 1 1 1 220

1 1 1 1 1 110

1 1 1 1 2 75

1 1 1 1 15 55

1 1 1 1 23 45

2 2 2 2 1 220

2 2 2 2 2 110

2 2 2 2 17 75

2 2 2 2 25 55

2 2 2 2 30 45

3 3 3 3 2 220

3 3 3 3 2 110

3 3 3 3 18 75

3 4 3 3 26 55

3 3 2 2 30 45

4 4 4 4 29 220

4 4 3 3 36 110

4 4 2 3 38 75

4 3 1 3 38 55

4 3 1 3 39 45

8 8 9 8 33 220

8 9 9 9 39 110

8 9 9 8 39 75

8 8 9 9 39 55

8 8 9 9 39 45
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(a) (b)

(c) (d)

Figure 14: Graphical illustration of NPW, NPR, NPF and PCA when the number of dipoles

is ten. (a) Plot of eigenvalues with threshold (horizontal line) used in NPW. (b) Plot of eigen-

values with threshold (horizontal line) used in NPR. (c) Plot of eigenvalues with threshold

(horizontal line) used in NPF. (d) Plot of eigenvalues from PCA. NPW(a), NPR(b) and

NPF(c) estimate roughly 10 dipoles; PCA(d) estimates about 39 dipoles.
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Table 8: Comparison of result from NPW (Neyman-Pearson with wavelet), NPR (Neyman-

Pearson with residual analysis) and NPF (Neyman-Pearson with FFT) with PCA, AIC,

MDL and EIF when the number of dipoles is two. The first column is the number of dipoles

in the simulation data. The second column to seventh column are the number of dipoles

estimated from the simulation data by each method. The last column is the corresponding

signal-to-noise ratio.

Number of sources NPW NPR NPF PCA AIC MDL EIF SNR

2 2 2 2 1 2 2 2-6 220

2 2 2 2 2 2 2 2-6 110

2 2 2 2 17 2 2 2-5 75

2 2 2 2 25 2 2 1-5 55

2 2 2 2 30 2 2 1-5 45

The performance of all the methods are shown in Table 8. As we can see, both the AIC

and MDL work as well as our methods in this particular simulation. The number of signal

sources by EIF (2-6, 2-5 and 1-5) shows that it is not very easy to pick up the number of free

parameters achieving the minimum (used as an estimate of the number of signal sources). We

will show in real MEG data application (Section 4.4) since the normality and independence

asuumptions of the data are not satisfied, AIC, MDL and EIF methods do not work well in

estimating the number of sources (they overestimate the number of signal sources).

4.4 A REAL DATA APPLICATION

For real MEG data, we cannot clarify the accuracy of our methods since the truth of how

many sources are present in the data is unknown. However, it will still be quite interesting

to see the performance of our methods on a specific real MEG data where we do know the

truth. In the following analysis, a dataset from an empty MEG room will be used; that is,

there is no subject in the MEG room. To our knowledge, all the devices in the room that
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might cause electric potential were turned off but one device was consistently producing

energy around 60 Hz. The magnetic field distribution was recorded by a 306-channel system

(Elekta-Neuromag) at the Center for Advanced Brain Magnetic Source Imaging (CABMSI)

at UPMC Presbyterian Hospital in Pittsburgh. The MEG data at each sensor was acquired

at sampling rate of 1000 Hz. A small portion of the dataset of 5000 milliseconds long

with only 102 channels was used in our analysis. Those 102 channels were direct magnetic

field measurements (the other 204 channels were measuring the change of the magnetic

field). Conservatively speaking, there was only one source (60 Hz) or at least one with high

frequency in our data. Our attempt is to verify the existence of this high frequency source

and hopefully to estimate the number of active sources using our proposed methods on this

data.

(a) (b)

Figure 15: Raw data (empty room) and the modulus plot of the data after Fourier trans-

form. (a) The gray scale plot of raw data of 5000 milliseconds. Horizontal axis is time

(milliseconds); Vertical axis is the channel number (102 channels in total). (b) The modu-

lus plot of the complex-valued Fourier coefficients of the raw data. Horizontal axis is time

(milliseconds); Vertical axis is frequency.

The magnitude of raw data (Figure 15(a)) of the empty room is in a range of −1.6× 104

fT to 1.3× 104 fT. We can see that those white lines are equally distant in the modulus plot

(Figure 15(b)) of complex Fourier coefficients truncated to 2000 for raw data. This is a clear

indication of a periodic source at about 60 Hz in the data. The number of sources estimated
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by our methods and PCA are in Figure 16. We list the 10 largest eigenvalues from each of

the four methods. NPW finds there are three eigenvalues above the threshold. But there is

a significantly large eigenvalue out of the three and it is significantly greater than the second

one; the second one is significantly greater than the third, so the threshold does not matter

too much here. Thus, we report by NPW one or two sources exist in the data (Figure 16(a)).

Similarly, we report three dipoles by NPR (Figure 16(b)) and three dipoles by NPF (Figure

16(c)). PCA finds two or three significant sources from the data (Figure 16(d)).

(a) (b)

(c) (d)

Figure 16: Graphical illustration of NPW, NPR, NPF and PCA for the empty room data.

(a) Plot of the 10 largest eigenvalues from NPW. (b) Plot of the 10 largest eigenvalues from

NPR. (c) Plot of the 10 largest eigenvalues from NPF. (d) Plot of the 10 largest eigenvalues

from PCA. NPW(a) estimates 2 dipoles; NPR(b) estimates 3 dipoles; NPF(c) estimates

three dipoles; PCA(d) estimates three dipoles.

In order to check if the number of sources that our methods detect does include the
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60 Hz one, it is necessary for us to run our methods in an environment when the 60 Hz is

not available. This means we need to filter the 60 Hz signal from the raw data. In fact,

we filtered all frequencies above 50Hz. Figure 17(a) shows the modulus plot of the Fourier

coefficients after filtering all frequencies above 50Hz; all the white lines associated with 60

Hz, 120 Hz, 180 Hz and so on disappear. The image after filtering (shown in Figure 17(b))

is reconstructed by the inverse Fourier transform of the real part after filtering. We do not

show the imaginary part of the filtered inverse transformed data, because they are all nearly

zero (less than 10× 10−11 fT).

(a) (b)

Figure 17: Raw data of empty room after filtering. (a) The modulus plot of the complex-

valued Fourier coefficients after filtering all frequencies above 50 Hz truncated to 1000.

Horizontal axis is time (milliseconds); Vertical axis is frequency. (b) The gray scale plot of

the real part of inverse Fourier transform after filtering coefficients; that is, the data after

all coefficients above 50 Hz are zeroed out.

We begin analyzing the real data (with and without filtering) by the NPW method. All

the eigenvalues from the filtered data become much larger than 1 (right plot in Figure 18(a))

and they are much larger than the corresponding eigenvalues before filtering (left plot in

Figure 18(a)). This makes the NPW not applicable. It is necessary to investigate the eigen-

value distributions for these two datasets. One of the reasons that eigenvalues are very large

when one source signal is filtered out lies in the change of the variation in the data; if the

covariance Rn is decreased which is the case after filtering (see Figure 19(a)), we will have
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smaller eigenvalues Λn. This makes the whitening matrix Wn = ΦnΛ
−1/2
n actually larger.

So eventually, we will have larger eigenvalues λj,adj from Radj = WT
nRWn. In addition, the

distribution of the eigenvalues λj,adj of Radj also matters in the situation. It is clear that λj,adj

is proportional to a Chi-square random variable with degrees of freedom L-1 if Wn is not a

random variable. However, since we estimate the noise by wavelets, Wn is a random variable.

Therefore, the eigenvalue distribution λj,adj does not follow a Chi-squared distribution. Fur-

thermore, the NPW is affected by the normality assumption. The raw data is not normally

distributed (left plot in Figure 19(b)) and the filtered data is much further away from nor-

mal (right plot in Figure 19(b)). All of this makes the eigenvalue decomposition problematic.

(a) (b)

Figure 18: (a) Eigenvalue distribution for empty room data by NPW (without filtering (left

plot) and filtered (right plot)). There are two very large eigenvalues which are significantly

larger than the threshold before filtering (left plot). All the eigenvalues after filtering (in

the level of 107, right plot) are much larger than the threshold. The scale of the eigenvalues

change much before and after filtering. (b) Eigenvalue distribution for simulation data

(without filtering (left plot) and filtered (right plot)). There are several eigenvalues which

are significantly larger than others before filtering (left plot). Those very large eigenvalues

disappear after filtering (right plot). The scale of the eigenvalues does not change much

before and after filtering.
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To check our analysis, we did a simulation. We added independent white noise to the

simulated signal at each sensor. Figure 18(b) is a plot of the eigenvalue distribution of the

simulated data and the filtered simulation data (only white noise). Notice that there are

some significantly large eigenvalues (between 60-80 Hz) in the simulation data (left plot in

Figure 18(b)), but the eigenvalues become very close to each other and the large eigenvalues

disappear when the signal is filtered out (right plot in Figure 18(b)). However, from the

eigenvalue distribution plot in Figure 18(a), we only have amplified the eigenvalue scale

after filtering; the shape of the eigenvalue distribution before and after filtering does not

change much. Since Figure 19(a) already shows the filtered data still has the similar trend

as the raw data but with small variation, we get a similar eigenvalue distribution with only

the scale changed. This makes us believe there is still another source (the 60 Hz signal is

not the only one). For the simulation data, the independent and white noise explains why

the eigenvalue distribution does not have much skewness in Figure 18(b).

(a) (b)

Figure 19: (a) Time series plot (channel 102) of the empty room data (with and without

filtering). The variation of data before filtering (left plot) is much larger than the data after

filtering (right plot). (b) Histogram plot of raw data of four selected channels (before filtering

(left plot) and after filtering (right plot)). The data before filtering is skewed but not far

from normal; the data after filtering is much further away from normal.

We re-estimated the noise of the empty room data by NPR as well as NPF, and calculated

the eigenvalue distribution. The results are shown in Figure 20. Interestingly, we can see
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that the scale problem of eigenvalues has been solved well by both NPR and NPF. In Figure

20(a), there are three significantly large eigenvalues before the data has been filtered (left

plot); there are two significant eigenvalues in the filtered data which matches the fact that

we filtered out the 60 Hz signal (right plot). In Figure 20(b) there are three significantly

large eigenvalues before the data has been filtered (left plot); there are still three significantly

large eigenvalues in the data after we filtered out the 60 Hz signal (right plot).

(a) (b)

Figure 20: (a) Eigenvalue distribution for empty room data by NPR (without filtering (left

plot) and filtered (right plot)). There are three very large eigenvalues which are significantly

larger than the threshold before filtering (left plot). There are two eigenvalues which are

significantly larger than the threshold after filtering (right plot). The scale of the eigenvalues

does not change much before and after filtering. (b) Eigenvalue distribution for empty

room data by NPF (without filtering (left plot) and filtered (right plot)). There are three

eigenvalues which are significantly larger than others before filtering (left plot). There are

three eigenvalues which are significantly larger than the threshold after filtering (right plot).

The scale of the eigenvalues does not change much before and after filtering.

A summary of the performance of the different methods (NPR, NPF, PCA, AIC, MDL

and EIF) applied on the real MEG data is shown in Table 9. Table 9 shows the results for

the data before filtering and also after filtering. Since the normality and independency of

the data is not met, the AIC, MDL overestimate the number of signal sources very much
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Table 9: Comparison of result from NPR and NPF with PCA, AIC, MDL and EIF for the

real MEG data. The top is the data that has not been filtered and the bottom row is the

filtered data.

NPR NPF PCA AIC MDL EIF

Before filtering 3 3 3 21 16 14

After filtering 2 3 3 43 29 19

as we expected. The EIF method is better than AIC and MDL but still overestimates the

number of signal sources. The NPR still can tell the difference in the number of sources

before and after filtering. The NPF has a good performance but cannot tell the change in

the number of sources. The PCA method provides a reasonable estimate of the number of

sources although it does not in the simulation study. However, the PCA method could not

tell the difference in the number of sources for the data before and after filtering.

4.5 DISCUSSION

The determination of signal sources in the MEG data is a very challenging problem. Due to

the high-dimensional (306 channels) structure of MEG data, effective methods are lacking

for this problem. Regular approaches such as PCA-based methods or methods involving

information criteria such as AIC are essentially not helpful. The difficulty lies in the fact

that those approaches are simply using the eigenvalue distribution, and the eigenvalues are

still mixtures of signal sources and noise in the data. In addition, the MEG signal is much

weaker than the noise; it is quite hard to detect the energy that such a signal contributes to

the eigenvalues compared to noise.

We treat the MEG data in concept as an analogue of hyperspectral image data from a

remote sensing imaging technique. The large number of channels corresponds to the high

frequency band across the electromagnetic spectrum in hyperspectral imaging. The number
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of signal sources in the MEG data is determined by finding the eigenvalues through the

eigenthresholding method. In order to achieve this, a set of statistical tests are performed

to select the significant eigenvalues which we believe contain energy from this distinct signal

source. We need to maximize the power of each statistical test by controlling the false-alarm

probability.

The whitening process of the data covariance relies on the accuracy of the noise estima-

tion. To estimate the noise in MEG, we use a wavelet method, a residual analysis method

and a Fourier method. In our simulation, we use these methods to estimate the nosie co-

variance structure from the data where we assume the noise from each sensor is normal and

independent. We perform our methods on five datasets where each dataset has 1, 2, 3, 4,

and 8 signal sources, respectively. The number of signal sources estimated by our methods

is very satisfactory while the PCA, AIC, MDL and EIF approach only works for a few cases

and fails for the other situations. Our methods are also tested and compared with other

methods on 5 different SNRs for each dataset. Our methods still work very well but the

other methods fail when SNR increases.

We also attempt to deal with the real MEG data from an empty MEG room. Our

methods (NPW, NPR, and NPF) confirm the existence of a single 60 Hz source in the MEG

data. In addition, another one or two potential sources are detected by our methods. We

also believe the MEG data is far away from the normal distribution which is an assumption

the NPW method relies on. This causes a problem in eigenvalue magnitude for the data

when we filter out the 60 Hz known source. The NPR and NPF are used to replace NPW

for noise estimation. Both of them cure the scaling problem of the eigenvalues and the result

confirms our previous result. We compare our methods (NPR and NPF) with AIC, MDL

and EIF methods for both the real data and the data after filtering. Our methods (NPR and

NPF) tend to be very robust in either of the two situations. We verify that both AIC and

MDL overestimate the number of the sources when the data is not normal or noise is not

independent; the EIF method also overestimates the number of sources. The PCA method

is not as good as our method and could not tell the change in number of sources when the

data is filtered to remove one source.

In conclusion, we have been making an effort to find a way of estimating the number of
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signal sources in the MEG data. The number of sources from our methods are the number

of signals that are spectrally distinct. One advantage of using our methods is that we

might possibly detect the hidden signal sources that are different in frequency. Our methods

outperform others on both the simulation and the real data; in practice, since the data is

always very complicated (i.e., far from normal), our methods can be used as a reference.
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5.0 FUTURE WORK: REAL-TIME ANALYSIS OF THE MEG DATA

5.1 REAL-TIME ANALYSIS OF THE MEG IMAGING

The dissertation is essentially about studying the inverse problem in MEG in which theo-

retical methodology is developed. The real data analysis needs a sophisticated computing

approach due to its high dimensionality and extremely large size. A PVM scheme was in-

spired and successfully implemented in the thesis in order to run our algorithms for MEG

data; this scheme permits a heterogeneous collection of Unix and/or Windows computers

hooked together to be used as a single large parallel computer so that theoretically the

time spent for a task can be reduced at most by the same times as the number of com-

puters. To investigate the brain activity for much longer time (30 minutes - 1 hour), an

even more challenging computational problem must be faced; if we want to accomplish the

real-time analysis of this incredibly massive data. We plan to replace the PVM structure

(Master-Worker) in a multiple central processing unit (CPU) system with the most recent

programmable graphic processor units (GPUs). To better understand the brain activity in

real-time (at 1 millisecond temporal resolution), many hidden activities might be explored

but the computational task is cost-prohibitive. A supercomputer’s power might be a choice

for this purpose but supercomputer time is also pricey. Hence, a more practical approach is

desired.

More specifically, the discrepancy in floating-point capability between the CPU and the

GPU is that the GPU is specialized for highly parallel data processing rather than for

data caching and flow control as in the case of the CPU. The GPUs have very high ratio of

arithmetic operations to memory operations and the same program is executed on many data

elements in parallel. Both multicore CPUs and manycore GPUs are parallel systems and their
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parallelism continues to scale with Moore’s law. However, to develop application software

that transparently scales its parallelism to leverage the increasing number of processor cores

is hard. The GPU system that we will use is the newly developed NVIDIA’s compute

unified device architecture (CUDA) which transparently scales its parallelism to leverage

the increasing number of processor cores while multicore CPUs do not. To run our model

for 1-hour data, we will rewrite our previous LINUX program in CUDA and implement it in

GPUs with each one having 480 cores. The source distribution in 3D within the brain can

be seen in real-time (1/1000 sec) on a personal computer with CUDA-enabled GPUs and

this will help significantly in understanding brain activity.

CUDA computing scheme is the latest computing scheme in which a massive parallel

computing architecture enables dramatic increases in computing performance by harnessing

the power of the GPUs. This matches perfectly with our interest in parallel computing,

and most importantly, this high degree of parallelism can be achieved by CUDA GPUs on

a desktop computer, whereas CPUs cannot. Using the result of the pilot study in Section

3.4, for a one-hour experiment, we need almost three days to run our program by the PVM

scheme (in terms of parallel CPUs). Now by CUDA, we can roughly reduce the time spent

on computing MEG data of one hour long to less than 15 minutes. This is a very appealing

improvement. We have created a set of Linux codes for our PVM program. Moving from

PVM to a CUDA program requires modifying the C program that we have, but this is very

natural without too much difficulty. There are functions and procedures based on C language

in CUDA programming language which are analogous to the C extensions of PVM. Thus,

we will be able to implement our program in CUDA very quickly and run it on GPU. The

improvement is not only good for the thesis research, but also helpful for other brain imaging

reseachers.

We used PVM as an illustration to speed up the computation for the 2000-timestep

case (see pilot study in Section 3.4) where PVM allows a computing paradigm for a parallel

networking of computers. In our PVM structure (Master-Worker model), there are several

worker programs performing tasks in parallel and a master program collecting the outcomes

from each worker. Each task is to separately compute partial sample paths for all the

timesteps. There is no parallelism in time. The PVM speed is mainly influenced by hardware
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and software components of network and I/O systems. It also depends on the number

of worker programs; for instance, adding too many parallel workers does not enhance the

velocity where most of the time is wasted on the communications among the workers. The

parallelism of PVM (CPU-based) is not appropriate for situations, where data of much more

timesteps is included; thus, PVM is not helpful for real MEG data.

The idea of CUDA is simply to exploit computing resources (namely cores) as much as

possible. There are hundreds of cores in NVIDIA’s modern GPUs (i.e., 100s of processor

cores per GPU). The speed of the GPU increases at a much higher rate as compared to the

CPU and this makes the GPU as a co-processor for handling a large number of calculations

per second. After rewriting our Linux code for the MEG analysis in CUDA, the program

will be bifurcated into two portions: one portion is delivered to CPU (because CPU is best

for such tasks), while the other portion, involving extensive calculations, is delivered to the

GPUs that execute the code in parallel (CUDA exposes a fast-shared memory region). Figure

21 shows the processing flow of CUDA: 1. Copy data from main memory to GPU memory;

2. CPU instructs the process to GPU; 3. GPU execute parallel in each core; 4. Copy the

result from GPU memory to main memory.

5.2 A NSF-FUNDED PROJECT

As shown above, to reduce the real time elapsed of running the MEG data in the pilot

study, we increased the number of worker stations and tasks in PVM. The typical MEG

experiment lasts 30 minutes to 1 hour; the computational issue increases to the point that

computing 3.6 million milliseconds of data is required. Although the user CPU time increases

roughly linearly in the number of timesteps which is significantly long, the real time elapsed

is even much longer since it is also affected by other programs and it includes time spent

in memory, I/O and other resources. The PVM scheme is apparently not capable if the

real-time MEG data analysis is of interest. Due to the nature of the computation that each

worker does the same work in parallel, a GPU computing architecture is strongly needed.

A GPU can be regarded as a many-cores processor supporting numerous fine-grain threads.
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Consequently, previous GPU applications were largely in nature stream processing, which

performs identical operations onto each element of the input arrays. CUDA provides sets of

on-chip, fast shared memories for data exchange between threads, as well as flexible access

to the device memory. This in theory greatly broadens the scope of application kernels that

can be effectively executed on CUDA GPUs provided they exhibit substantial parallelism. A

CUDA GPU has a set of streaming multiprocessors (SM) with each SM consisting of many

processor cores called sreaming processors (SP). CUDA GPUs are single instruction multiple

data (SIMD) processors which execute from the same instruction stream on each SP. Thread

Block is a group of threads, where they are executed on the same SM so that data exchange

between the threads is possible using the shared memory of the SM. The current CUDA

GPUs are based on the same architecture, but vary in different architectural parameters.

Table 10 gives a few specifications of NVIDIA GPUs with different parameters (e.g.,

there are 480 cores in one GPU of model GeForce GTX 480). The computing environment

of CUDA-enabled GPUs that we will be using is a 4-GPU Tesla Personal Supercomputer

(see Table 11 in APPENDIX B for details). This desktop computer has more than 1600

cores each equivalent to the cluster level computer (300 times faster than standard PCs

and workstations). In order to compile our program, we have been learning the CUDA

programming (C extension) for parallel computing. To be exact, our former Master-Worker

model (PVM scheme) assigns tasks for each worker program in parallel; in our expected

CUDA program, even parameters (such as 6 source parameters) within each worker are

going to be computed in parallel. The parallel scheme also applies on a multi-source model

where computation of each source is achieved in parallel as well as the parameters within

each task. We will have the program run on this CUDA computer at the end of our NSF

grant period.

5.3 IMPACT AND DISSEMINATION OF THE RESEARCH

The proposed research will contribute to the neuroscience community by facilitating our

understanding of brain function using various imaging modalities. Any algorithm that per-
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forms efficiently using GPU computing would also be a worthwhile contribution to the field

of source localization. The proposed source localization algorithm used to estimate time

varying sources could be easily modified for use with EEG which can be used for practical

brain-computer interfaces; the real-time analysis can also be achieved by CUDA in similar

experiments that use fMRI. These two modalities that used to appear to be independent

of each other now can actually work together and will provide more information about the

brain. Programming using GPU hardware could encourage other scientists to do likewise

with their problems. This CUDA idea may allow these sophisticated computational algo-

rithms to be performed in real-time opening up applications in scientific computing such as

three-dimensional Fourier transformations applied to extremely large datasets, finding solu-

tions of massive sets of diffierential equations, and so on. Our work may also increase the

visibility of GPU computing for biologists and computer scientisits more generally. CUDA

provides a very affordable package that works in a high degree of parallelism on desktop

computers. Consequently, it becomes possible for experimenters to test their experimental

designs in advance of experimentation without having to leave their laboratories. The ben-

efit of increasing the popularity and use of GPU computing is motivating the update of the

computing environment within universities and institutions.

The proposed research will produce a set of computer programs based on the original

Linux code for the MEG analysis on the CUDA machine. The CUDA program will be

posted on my personal website at the end of the grant period. I will make this program

available for other researchers who might be interested in MEG analysis. For real-time

analysis, the localization algorithm written in the CUDA program could be easily modified

for use with EEG, so that people in the EEG field can have further investigation based on

the MEG code. The framework of the MEG CUDA program will be helpful for writing other

algorithms that perform efficiently using GPU computing. The CUDA program is expected

to be embedded in the FIASCO (Functional Image Analysis Software - Computational Olio)

tool (http://www.stat.cmu.edu/~fiasco/). A final report as well as a manuscript of the

program will be produced at the end of the research.
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Figure 21: Illustration of the processing flow of CUDA. Above picture taken from

wikipedia http://en.wikipedia.org/wiki/File:CUDA_processing_flow_(En).PNG, au-

thored by Tosaka

Table 10: Specifications of NVIDIA GeForce, Quadro and Telsa series GPUs.

Type Model Cores Clock GFLOPS Capability Interface Bandwith

GeForce GTX 480 480 1.4 1344 1.5 Gbyte 384 177.4

Quadro Quadro 6000 448 1.3 933 4 Gbyte 512 102

Telsa C2070 480 1.15 515 6 Gbyte 384 144
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APPENDIX A

DETERMINING THE SCALE TERM IN THE NOISE ESTIMATION BY

USING FOURIER BASIS

In Eq. (4.19), when the complex coefficients Ĉr are used for the noise estimation, the scale

term is chosen M =
√
T/6. To find an exact scale term in Eq. (4.19) is difficult due to the

median operation taken on |Ĉr|, 1 ≤ r ≤ T/2. Since we prefer to use complex coefficients,

the empirical scale term M =
√
T/6 is derived by the following procedure:

1. Draw 105 samples from N(0, 1) to represent the data (only noise).

2. Set the standard deviation for the real part coefficients (σr =
√

1× 2/105 = 0.0045)

and imaginary part coefficients (σi =
√

1× 2/105 = 0.0045).

3. Draw 105 samples from N(0, σ2
r) to represent the real part coefficients and draw 105

samples from N(0, σ2
i ) to represent the imaginary part coefficients (the coefficients from the

Fourier transform of N(0, 1) are still normal but not N(0, 1)).

4. Calculate the modulus of the simulated coefficients, compute the median (M = 0.0053)

of the first half of them except the first one (1 ≤ r ≤ T/2) and then devided by 0.6745

(M/0.6745=0.0078).

5. Compute the scale term from the known standard devation of the data, that is

105/(1/0.0078)2 ≈ 6.

We used this scale term on all the five simulated datasets in Section 4.3 when we knew

the true noise variance. In any of these cases, the scale term worked very well. We also used

this scale term in the NPF on our real data in Section 4.4.
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APPENDIX B

TECHNICAL SPECIFICATIONS OF THE NSF 4-TELSA WORKSTATION

Table 11: The workstation consists of 4 Tesla GPUs (Telsa C2050) with 2 CPUs and a

motherboard. Technical Specifications of Colfax CXT5000 Personal Supercomputer (PSC).

The first column is the name of each item. The second column is the specification. The last

column is the price of each item in the budget.

Item Model Price

Motherboard Colfax CXT5000 Personal Supercomputer Base Platform 1595 USD

Primary CPU Intel Xeon DP Quad Core L5530 2.26Ghz 636 USD

Secondary CPU Intel Xeon DP Quad Core L5530 2.26Ghz 636 USD

GPU 1 NVIDIA Telsa C2050 Computing Processor 2277 USD

GPU 2 NVIDIA Telsa C2050 Computing Processor 2277 USD

GPU 3 NVIDIA Telsa C2050 Computing Processor 2277 USD

GPU 4 NVIDIA Telsa C2050 Computing Processor 2277 USD

Operation System Scientific Linux 0 USD

Total 11975 USD
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