46 research outputs found

    Gaussian optimizers and other topics in quantum information

    Get PDF
    The main topic of this thesis is the proof of two fundamental entropic inequalities for quantum Gaussian channels. Quantum Gaussian channels model the propagation of electromagnetic waves through optical fibers and free space in the quantum regime, and provide the mathematical model to determine the maximum rates achievable by quantum communication devices for communication and quantum key distribution. The first inequality proven in this thesis is the quantum Entropy Power Inequality, which provides a lower bound to the output entropy of the beam-splitter or of the squeezing in terms of the entropies of the two inputs. The second inequality states that Gaussian states minimize the output entropy of the one-mode quantum Gaussian attenuator among all the input states with a given entropy, and was a longstanding conjecture in quantum communication theory. The generalization of this inequality to the multimode attenuator would determine its triple trade-off region and its capacity region for broadcast communication to two receivers. The thesis contains further results in Gaussian quantum information, quantum statistical mechanics and relativistic quantum information. The most important of these results concerns the Eigenstate Thermalization Hypothesis (ETH). The ETH is an assumption in quantum statistical mechanics stating that the eigenstates of the Hamiltonian of a system+bath compound look as thermal states if we can access only the system. We prove that the ETH must hold if the system thermalizes for any initial product state of the system+bath compound with a well-defined temperature.Comment: PhD thesis defended on 12 Sep 2016, supervisor: Prof. Vittorio Giovannett

    The convexification effect of Minkowski summation

    Full text link
    Let us define for a compact set ARnA \subset \mathbb{R}^n the sequence A(k)={a1++akk:a1,,akA}=1k(A++Ak times). A(k) = \left\{\frac{a_1+\cdots +a_k}{k}: a_1, \ldots, a_k\in A\right\}=\frac{1}{k}\Big(\underset{k\ {\rm times}}{\underbrace{A + \cdots + A}}\Big). It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf (1969) that A(k)A(k) approaches the convex hull of AA in the Hausdorff distance induced by the Euclidean norm as kk goes to \infty. We explore in this survey how exactly A(k)A(k) approaches the convex hull of AA, and more generally, how a Minkowski sum of possibly different compact sets approaches convexity, as measured by various indices of non-convexity. The non-convexity indices considered include the Hausdorff distance induced by any norm on Rn\mathbb{R}^n, the volume deficit (the difference of volumes), a non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner radius. After first clarifying the interrelationships between these various indices of non-convexity, which were previously either unknown or scattered in the literature, we show that the volume deficit of A(k)A(k) does not monotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain sets AA with special structure. On the other hand, Schneider's index possesses a strong monotonicity property along the sequence A(k)A(k), and both the Hausdorff distance and effective standard deviation are eventually monotone (once kk exceeds nn). Along the way, we obtain new inequalities for the volume of the Minkowski sum of compact sets, falsify a conjecture of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy theory, and suggest some questions worthy of further investigation.Comment: 60 pages, 7 figures. v2: Title changed. v3: Added Section 7.2 resolving Dyn-Farkhi conjectur

    Distance Degree Regular Graphs and Theireccentric Digraphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G.The distance degree sequence (dds) of a vertex v in a graph G = (V,E) is a list of the number of vertices at distance 1, 2, . . . , e(u) in that order, where e(u) denotes the eccentricity of v in G. Thus the sequence (di0 , di1 , di2 , . . . , dij , . . .) is the dds of the vertex vi in G where dij denotes number of vertices at distance j from vi. A graph is distance degree regular (DDR) graph if all vertices have the same dds. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we consider the construction of new families of DDR graphs with arbitrary diameter. Also we consider some special class of DDR graphs in relation with eccentric digraph of a graph. Different structural properties of eccentric digraphs of DDR graphs are dealt herewith

    Distance Degree Regular Graphs and Distance Degree Injective Graphs: An Overview

    Get PDF
    The distance d ( v , u ) from a vertex v of G to a vertex u is the length of shortest v to u path. The eccentricity e v of v is the distance to a farthest vertex from v . If d ( v , u ) = e ( v ) , ( u ≠ v ) , we say that u is an eccentric vertex of v . The radius rad ( G ) is the minimum eccentricity of the vertices, whereas the diameter diam ( G ) is the maximum eccentricity. A vertex v is a central vertex if e ( v ) = r a d ( G ) , and a vertex is a peripheral vertex if e ( v ) = d i a m ( G ) . A graph is self-centered if every vertex has the same eccentricity; that is, r a d ( G ) = d i a m ( G ) . The distance degree sequence (dds) of a vertex v in a graph G = ( V , E ) is a list of the number of vertices at distance 1 , 2 , . . . . , e ( v ) in that order, where e ( v ) denotes the eccentricity of v in G . Thus, the sequence ( d i 0 , d i 1 , d i 2 , … , d i j , … ) is the distance degree sequence of the vertex v i in G where d i j denotes the number of vertices at distance j from v i . The concept of distance degree regular (DDR) graphs was introduced by Bloom et al., as the graphs for which all vertices have the same distance degree sequence. By definition, a DDR graph must be a regular graph, but a regular graph may not be DDR. A graph is distance degree injective (DDI) graph if no two vertices have the same distance degree sequence. DDI graphs are highly irregular, in comparison with the DDR graphs. In this paper we present an exhaustive review of the two concepts of DDR and DDI graphs. The paper starts with an insight into all distance related sequences and their applications. All the related open problems are listed

    Convex Geometry and its Applications

    Get PDF
    The past 30 years have not only seen substantial progress and lively activity in various areas within convex geometry, e.g., in asymptotic geometric analysis, valuation theory, the LpL_p-Brunn-Minkowski theory and stochastic geometry, but also an increasing amount and variety of applications of convex geometry to other branches of mathematics (and beyond), e.g. to PDEs, statistics, discrete geometry, optimization, or geometric algorithms in computer science. Thus convex geometry is a flourishing and attractive field, which is also reflected by the considerable number of talented young mathematicians at this meeting

    Aggregative games

    Get PDF
    This survey presents in a historical way the main contributions to the hardcore theory of aggregative games and the applications of this model to several fields of economics, other social sciences and engineering

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems
    corecore